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ABSTRACT

Carbon nanotubes hold great promise for material advancements in the areas of
composites and electronics. The advancement of research in these areas is dependent
upon the availability of carbon nanotubes to a broad spectrum of academic and industrial
researchers. Although there has been much progress made in reducing the costs of carbon
nanotubes and increasing the quality and purity of the products, an increase in demand for
still less expensive and specific nanotubes types has also grown.

This summer's work has involved two experiments that have been designed to further the
understanding of the dynamics and chemical mechanisms of carbon nanotube formation.
It is expected that a better understanding of the process of formation of nanotubes will aid
current production designs and stimulate ideas for future production designs increasing
the quantity, quality, and production control of carbon nanotubes.

The first experiment involved the measurement of surface temperature of the target as a
function of time with respect to the ablation lasers. A peak surface temperature of 5000 K
was determined from spectral analysis of black body emission from the target surface.
The surface temperature as a function of various changes in operating parameters was
also obtained. This data is expected to aid the modeling of ablation and plume dynamics.

The second experiment involved a time and spatial measurement of the spectrally
resolved absorbance of the laser produced plume. This experiment explored the
possibility of developing absorbance and fluorescence to detect carbon nanotubes during
production. To attain control over the production of nanotubes with specific properties
and reduce costs, a real time in situ diagnostics method would be very beneficial. Results
from this summer's work indicate that detection of nanotubes during production may
possibly be used for production feed back control.
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INTRODUCTION

What is so important about carbon nanotubes?

Nanotechnology, the use of materials with dimensions of nanometers, represents
engineering at the molecular scale, at a dimension beyond those typically used by
chemists and much below those of the bulk dimensions used by engineers. It is within
this interfacial domain of measure that materials of great promise for material and
electronic advancement have been observed and proposed. Many of these promises have
focused on the use of nanometer scaled tubes discovered in 1991 by Iijima. i These
tubes, with dimension of nanometers in diameter and microns in length, can be described
as the elongation of fullerenes into tubes. Fullerenes are spherical or elliptical in shape,
the most well known being that composed of sixty carbon atoms and having the shape of
a soccer ball, as proposed by Smalley in 1985. 2 Examples of a fullerene and two
nanotubes can be seen in Figure 1. Carbon nanotubes are the building materials for many
proposed nanostructures; therefore, an understanding of their properties and techniques
for their utilization are essential to progress toward nanotube-based nanostructures.

Figure 1: C60,(9,0) metallic zigzag tube, and (5,4) semi-conducting armchair tube.

What are the problems?

Although much progress has been made in many areas of carbon nanotube production,
characterization and applications, current production methods are still financially
prohibitive for most commercial application and many academic research groups.
Current production methods also result in tubes of various purity, diameter, length, and
chirality. A more thorough understanding of the chemical mechanisms and better
production feedback controls are essential to improve the production of carbon nanotubes
and meet the demand for affordable quantities ofnanotubes of selective properties.

What has been done to elucidate the chemical mechanisms?

Initial work on the elucidation of the chemical mechanisms has been done on the

postproduction evaluation of the targets and products as a function of various production
parameters. 3-6 Recent in situ work has followed various species during nanotube
formation. Nickel atom, cobalt atom, C2, and nonspecific larger carbonaceous materials
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have been followed during nanotube formation in a laser-produced plume. 7-12 In situ
work has been much more productive in explaining the chemistry involved in tube
formation than the post analysis work. Scott et aI. presents a summary of current thought
with respect to the carbon nanotube formation mechanisms based on both the initial post
production analysis and the recent in situ reports) 3 Questions remain about the role of
the catalyst in its atomic and condensed particle form as well as the time and spatial
variables involved in carbon nanotube formation.

What are the current methods of production feedback controls?

Currently, there is no production feedback control employed in the laser production
methods at JSC. Production parameters such as gas flow, oven temperature, and laser
output are monitored by the operators during production. The quality and quantity of tube
production must be done post production.

The HiPco process of carbon nanotube production, at Rice University, does employ
feedback through the monitoring of CO2 produced during the disproportionation of CO
on iron to form C2 and CO2. 14Increased production of CO2 is correlated to increased
production of reduced carbon which will eventually lead to the formation of carbon
nanotubes. By tuning parameters so that CO2 output is optimized, the production of
nanotubes is also optimized.

CO is not the feedstock in the laser method, and there is no CO2 produced. The laser
method would need a different species to provide feedback.

What else do we need to know?

Although there are many variables involved in carbon nanotube formation that can be

explored, a method of detecting the presence of nanotubes in situ in real time during
nanotube production would be very valuable in elucidating the chemical mechanisms and
providing real time production feedback control.

EXPERIMENTAL

How can we do experiments that will give us the information we need?

At NASA-JSC any approach to studying surface temperature and the detection of
nanotubes in situ during nanotube formation would have to be designed with respect to
the current production configuration. The nanotube production configuration at JSC
follows that developed at Rice University t5 and has been described previously by
Arepalli, et al. 7,a Briefly, the setup includes a carbon target (19 mm diameter) which is
doped with 1% nickel and 1% cobalt and is supported on a rod in an oven which is heated
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to 1473 K during normal production. The target and rod are centered within a 50.8 mm
quartz tube. A smaller 25.4 mm quartz tube is centered within the 50.8 mm tube and
extends to within 6 mm of the target. Argon flows through the tubes toward the target at
a pressure of 67 kPa and a flow rate of 100 sccm. Two Nd:YAG ablation lasers follow a
path through the inner tube to strike the flat end of the target at normal incidence. The
green (532 nm) Nd:YAG laser fires 50 ns prior to the IR (1064 nm) Nd:YAG laser.

The JSC nanotube production approach and facilities are very conducive to spectroscopic
probing of intermediate species and products. We made use of spectroscopic techniques
to measure the surface temperature of the target upon ablation and to measure the
absorption of the laser produced plume during production. The former to provide
empirical values for modeling projects and the latter to explore the possibility of
developing production feedback controls.

Experiment 1: Target Surface Temperature Measurements

The surface temperature of the target
was measured using existing fiber
optics and optical dispersion
techniques. A new optical collection rranslatablesupport rod
configuration was introduced to collect Graphitetarget
blackbody emission directly from the "-
target surface. The experimental setup BlackBodyemission
is illustrated in Figure 2. This differs
slightly from the nominal production
configuration in that there is only a
25.4 mm tube rather than the 25.4 mm
tube within the 50.8 mm tube as Ablation ens

lasers
described above. Also there is a Y in Green

the tube, at an angle of 45°, with the Red
shorter leg being 19.0 mm in diameter.
Due to the smaller diameter tube, a
smaller diameter target was used, 12.0
mm rather than 19.0 mm.

Figure 2: Surface temperature experimental setup

Studies involving the green laser also included a notch filter at 532 nm to avoid saturating
the detector with scattered laser radiation. A temporal gate of 12 ns was used for
collecting emission using various slit widths on the spectrometer depending on the
amount of radiation emitted upon ablation.
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Experiment 2. Absorbance measurements of the laser produced plume.

One of the attractive properties of the carbon nanotube is that its conductivity has been
calculated to be a function of tube chirality and diameter. 16 An example of two different
chiralities can be seen in Figure 1, the extremes of zigzag and armchair. It has been only
recently that spectroscopic measurements of the band gaps associated with carbon
nanotubes have been measured. 17-20 Absorption and fluorescence measurements have
been well studied for nanotubes suspended in solution. Fluorescence of nanotubes
requires very good solvation as it is thought that if any of the individual tubes within the
ropes is a metallic conductor, fluorescence from excited electronic states will not be
observable due to quenching by the metallic tubes which allow for a path of non-radiative
electronic relaxation. Since there is a distribution of chirality and diameter in the
production of nanotubes, the presence of metallic tubes in a rope is quite probable. Not
until dispersion techniques had improved, was it possible to measure band gaps of
isolated tubes by detection of fluorescence.

In the JSC nanotube production facility we hope to detect nanotubes in situ during carbon
nanotube formation using recently reported absorption bands. Absorption was chosen
rather than fluorescence because the JSC facility is equipped to measure light in the
visible wavelength range of nanotube absorption but not in the infrared region of
nanotube fluorescence. It was expected that tubes initially form individually in the gas
phase before they flocculate into bundles later in time. Flocculation or the condensing of
tubes into bundles would broaden the absorption bands and would likely quench
fluorescence.

StainlessSteel
Translatablesupport

Graphite Graphite
aperature target connection

windo Fiber

White 1_
Light lens Ablation
Source lasers

Green
Red

Figure 3: Experimental set up for absorbance measurements.
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The experimental setup for absorption measurements differs from production in the
following ways. An x-tube is used in place of the standard production tubes. The x-tube
is 25.4 mm in diameter along the optical path of the ablation lasers and a 19 mm in
diameter along the path perpendicular to path of the ablation lasers, rather than the 25.4
mm tube within the 50.8 mm tube as described above. The light transmitted through the
optical path of the white light is collected by an optical fiber and dispersed with a
spectrometer onto a CCD so that a wavelength resolved transmission spectrum is
obtained. The CCD is gatable with respect to time of ablation and the graphite target is
mounted on a translatable stage so that it is possible to probe for nanotubes in both
temporal and spatial dimensions. A simplified experimental set up is illustrated in Figure
3.

RESULTS and ANALYSIS

Experiment 1. Surface Temperature

Emission from the target surface was collected using the y-tube design. The y-tube
performed as designed, allowing for a consistent signal of much greater intensity than did
prev!ous diagnostic setups which collected emission transmitted through the standard
quartz production tube. Although the y-tube design appears to be fairly robust, it was
found that operating under lower pressures than 500 Torr at 1200 degrees Celsius caused
the y-tube to begin a collapse that would slowly continue when operating at 1200 degrees
Celsius even at the normal operating pressures of 500 Torr.

Emission from the surface of the target was collected under many different experimental
parameters. In all the experiments the emission was resolved by wavelength. In
experiments involving the ablation lasers, the emission was also resolved with respect to
the time of ablation. This was done by collecting wavelength resolved emission at a
variety of time delays from 200 nanoseconds prior to the laser pulse to 3 microseconds
after the laser pulse with a time gate of 40 nanoseconds. Although greater time resolution
is possible, 12 nanoseconds being the shortest time interval, shorter times result in poor
statistics and poor signal quality. Experimental conditions included lasers operating in
standard production parameters, operating singly, operating in reverse order, and
operating with time delays of 0, 50, and 500 nanoseconds. Argon flow rates were also
varied. Helium was used a substitute buffer gas for Argon. Oven temperature was
operated at the standard 1200 and also 1000 degrees Celsius. Emission was collected
from the center of the target to the edge of the target at 1 mm increments.

It would be difficult to report all the results of these experiments within the limits of a
report of this nature, so only a few remarks will be made here in hopes of writing a more
comprehensive report at a later date. Methodology of the analysis and then some of the
general results are described below.
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Although the y-tube is designed to collect emission from the target surface, emission
from the laser-produced plume is also unavoidably present. Analysis requires a
discernment to be made between the plume emission and the surface black body
emission. Two methods were developed that would allow for this discernment, the first
will be referred to as the ratio method and the second as the baseline curve fit method.

Method 1: The ratio method.

This method assumes an emission entirely from black body at a wavelength that was as
far from the plume emission as possible while still being in a responsive region of the
detector. This emission was then compared to the black body emission of the target
under conditions in which no lasers were being used, assuming a black body temperature
equal to the ambient temperature of the oven. The ratio of the emission intensity at a
given wavelength to the intensity of emission under ambient oven conditions at the same
wavelength can be used to determine the blackbody temperature of the emission of the
former. Since the emission produced by laser ablation may include contributions from
the plume in addition to emission from the surface the temperature obtained from the
emission intensity ratios will give an upper limit temperature.

Method 2: The curve fit method.

The curve fit method involves correcting the raw data for the instrument response and
then fitting the data to calculated black body curves. This method involves many data
across the spectral range and therefore emission from C2 and other sources is
unavoidable. Therefore a subjectively determined baseline underneath any structured
spectrum is interpreted as the blackbody emission. Spectra taken under ambient oven
conditions and corrected for response fit very well to a black body curve of the ambient
temperature, 1473 K.

Our results from method one and two indicate a peak surface temperature of 3000 K and
5000 K respectively. The ratio method was used in Figure 4 to calculate temperature at a
number of different time delays with respect to the time of laser ablation. From this, it is
noted that there is a steep temperature gradient across the target and that the target returns
to near ambient temperatures within a few milliseconds. Figure 4 represents a temporal
temperature profile at different positions on the target surface. The 'zero' position is
taken to be the center of the target where the 4.8 mm diameter laser beam is also centered.
As the target is moved one millimeter in, the 45 o angle of collection is such that emission
is collected from a spot on the surface one millimeter outward from the zero position.
Only three of these steps will move the emission spot from the laser spot. It should also
be expected that the laser's energy profile across the spot is not flat and drops off from
the center toward the edge. From Figure 4 it is clear that there is little change in
temperature after moving 2 millimeters away from the center position.
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Figure 4: Surface temperature as a function of time for the standard laser combination.

The different curves represent temporal profiles of temperature at different positions on

the target surface.
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Figure 5: An illustration of the surface temperature obtained using a corrected spectrum

fit to a calculated black body emission. The surface temperature obtained using this

method, method two, appears to be between 5000 K and 5500 K rather than 3000 K as

determined using the ratio method, method one.
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Using the temporal temperature profile for the zero position, the spectrum collected at a
time corresponding to the peak temperature was fit using the second method of analysis.
An illustration of this method can be seen in Figure 5. Fitting to a background emission

subjectively determined to fall in the valleys of what appears to be a C2 emission
spectrum, a black body curve fit of between 5000 and 5500 Kelvin seems reasonable.

Clearly, additional analysis needs to be done using both methods to determine there
consistencies and inconsistencies in various parts of the temporal temperature profile.
Such analysis will provide excellent opportunities for my undergraduate students to
engage in this research. Results of this additional analysis will be reported to the
nanotube team through student presentations and written reports.

Experiment 2. Absorption measurements.

Results of our absorption studies indicate a strong flat absorbance with a fairly linear bias
toward shorter wavelengths. Although this absorption does not appear to be highly
structured information on the absorbing material may be found by thorough analysis.
However, even without a thorough analysis of the data a few preliminary results may be
given.

It is clear that material begins to absorb within a few microseconds of ablation. The
amount of absorption decreases after its initial peak to reach a fairly constant level after
approximately one hundred microseconds. This level of absorption remains constant
until the next laser pulse perturbs the system. All of our data was taken under sixty Hertz
operation conditions. Figure 6 shows the relation of transmission with time of ablation.

There appears to be a great deal more absorbance in front of the target than behind the
target. This may be because the ablated materials remain longer near their turning point.
They are ablated from the target with the particles decreasing in velocity as they are
slowed by the incoming buffer gas coming. The particles eventual stop and begin
accelerating in the other direction to blow by the target. By time they have traveled past
the target they will have gained a good deal of velocity, aggregated into clusters, or
deposited out onto the walls of the quartz tubing. No absorption is observed at distances
of 3 cm or more in front of the target surface and saw a much lesser amount of absorption
behind the target.

A target without metal catalyst was also used under the same conditions as the standard
production target. This 'blank' target also produced a fairly steady level of absorbance
with a flat short wavelength biased spectrum. However, at early time delays, there is
some difference in the spectrum obtained using the standard and the 'blank' target as can
be seen in Figure 7.
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Figure 6: Temporal profile of transmission with respect to laser pulse. The profile shows
a fairly constant transmission from some hundred microseconds after the laser pulse to 15
milliseconds after the laser pulse at a position 2 cm in front of the target. There are 16.7
milliseconds between laser pulses when operating at 60 Hertz.
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Figure7: Difference in emission during time immediately following ablation of target.
The standard target exhibits additional emission at the shorter wavelengths.

The standard target appears to exhibit additional emissions at shorter wavelengths than
does the 'blank' target. If the "blank" emission is assumed to be resulting from C2
emissions, the emissions observed when using the standard target must be due to other
species than C2. It may be that the ablations lasers are acting as probes. It is known that
nanotubes absorb the shorter 532 nm wavelengths of the 'green' Nd:YAG laser, although
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one may expect that emission associated with that absorption should occur on a much
faster time scale. The use of a 532 nm Nd:YAG laser as a possible probe laser in future
experiments should be considered.

CONCLUSIONS

This summer's work has focused on a determination of target surface temperature as a
function of ablation parameters and on the development of a method to measure
absorption of species ablated from the target in spatial and temporal dimensions.

Emission from the target surfaces was measured and an initial analysis of that data
appears to show a surface temperature in the range of 3000-5500 K under standard
production conditions. Temporal temperature profiles under many different parametric
conditions were taken. The data needs further analysis and once confidence in the results
is obtained, they may be incorporated into other theoretical models of ablation and plume
dynamics.

Absorption measurements were taken during carbon nanotube production that indicates a
great deal of material is present at all times within the standard 16 msec window (Lasers
run at 60 Hz). This absorption does not have any clear absorption features, but may have
some wavelength dependence that may be useful when further analyzed. Also, there are
indications that suggest other methods for probing carbon nanotubes during production.

There are some common difficulties with both of these experiments which should also be
considered when planning for future studies. One of these difficulties is the changing of
the target surface due to the 'pitting' of the target as material from the center of the target
is ablated away while material outside the area of the laser spot remains. Spectra taken in
the beginning of a run and hours later after significant pitting has occurred can be very
different. A method to avoid pitting needs to be developed before reproducibility of
spectra can be obtained over longer periods of time.

A second difficulty involves the coating of optical components with carbonaceous
deposits. Deposits on the lenses decrease the transmission of the light source. This is a
problem similarly encountered when using the production tube for diagnostics, but to a
lesser degree. The optics of the y-tube are much less affected by these deposits than are
the optics of the x-tube, probably because they are upstream and farther from the target.
A method for introducing the buffer gas through the side arms of the x-tube or the design
of longer arms on the x-tube which can incorporate longer lens may also be beneficial. A
smaller hole than the current half inch hole in the 1 inch tube at the joint with the sidearm
may also help prevent material from depositing on the lenses and would also help
maintain a flow within the larger one inch tube.
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Although progress has been made in developing methods of probing nanotubes during
production, there are still other factors that also have remained elusive to the scientist's
probing. Metals are thought to play a role as atoms in a 'scooter' mechanism but also as
larger nanoparticles or clusters in a 'root' mechanism. Knowledge of the presence of the
metal atoms and the metal clusters would help determine the plausibility of the two
mechanisms. Although work has been done to follow the metal atoms, none has been
done to detect in situ the metal nanoparticles. It would also be interesting to follow the
progress of fullerenes with and without the presence of the metal catalysts during the
formation of carbon nanotubes.

Work in carbon nanotubes has made great progress in the last few years. It is exciting to
see that ideas that were only exploratory a few years ago have matured into rigorous
scientific and engineering projects. Those working in the field today have a much firmer
grasp of the issues, properties, challenges, and promise than they did just a few years ago.
As the field of carbon nanotubes gathers momentum, it will continue to deliver new
materials and applications beyond current imagination. NASA is well situated to take full
advantage of these material advances. It has been great adventure for this author to be a
small part of this project.
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