James Webb Space Telescope (JWST)
Integrated Science Instrument Module (ISIM)
Cryogenic Component Test Facility

Presented by
Edward A. Packard

23rd Space Simulation Conference
November 8-11, 2004
Presentation Overview

• JWST / ISIM Overview
• ISIM Thermal Verification Requirements
 – Emittance Test Objectives
• Cryochamber Design Requirements
• Cryochamber Construction
• Emittance Test Sample Selection and Configuration
• Error Sources and Error Mitigation
• Cryochamber Operation
• Cryochamber and Emittance Sample Test Results
• Future Considerations
JWST Overview

• Large infrared observatory positioned at L2
• Proposed launch date: August 2011
• Mission goals:
 – Understand the birth and formation of stars
 – Determine how planetary systems form
 – Explain galaxy formation
 – Determine the shape of the universe
 – Provide a better understanding of the intriguing dark matter problem
ISIM & Enclosure on JWST

Integrated Science Instrument Module (ISIM)

- Near Infrared Camera (NIRCam)
- Near Infrared Spectrograph (NIRSpec)
- Mid Infrared Instrument (MIRI)
- Fine Guidance Sensors (FGS)
ISIM Thermal Verification Flow

1. **TIS1. Strap Development Test**
2. **TIS2. Bench Material Property Tests (k vs. T)**
3. **TIS3. Harness Development Test (Small Sample)**
4. **TIS4. SI Mounting & Housing Cooling**
5. **TIS5. ISIM Coating ε at Cryogenic Temp**
7. **TIS7. Structure Joint Conductance Test**
8. **TIS8. Harness Test (End to End) Thru Temp Regimes**
9. **TIS9. OTE Interface H/W**

Final ISIM Thermal Design

Deliver ETU ISIM

Final ISIM Design

IS8 FLIGHT ISIM TB TEST

Deliver FLT ISIM
TIS5 Test Objective

- To determine the emittance of candidate thermal control coatings for the JWST/ISIM Instrument Assembly from 30K to 293K
- To minimize associated error bars in determining emittance values (goal <5%) at 30K
First Analytical Method

• Transient Cool-Down

\[
\left(mC_p \frac{dT}{dt} \right)_{\text{sample}} = \sigma (A\varepsilon)_{\text{sample}} \left(T_{\text{sample}}^4 - T_{LHeShroud}^4 \right) + Q_{\text{loss}}
\]

where

\[
\left(mC_p \right)_{\text{sample}} = \sum \left(mC_p \right)_{\text{substrate+coating+sensors}}
\]

and

\[T = f(t) \]

\[m \quad \text{mass \ measured pre test} \]
\[C_p \quad \text{specific heat capacity \ theoretical*} \]
\[T \quad \text{temperature \ measured test data} \]
\[t \quad \text{time \ measured test data} \]
\[\sigma \quad \text{Stephan-Boltzmann constant} \]
\[A \quad \text{sample radiating area \ measured pre test} \]
\[Q_{\text{loss}} \quad \text{lead wire+residual gas loss \ calculated} \]
\[\varepsilon \quad \text{emittance \ determined from above equation} \]
Second Analytical Method

- **Steady State Warm-Up**

\[
Q_{\text{heater}} = \sigma (A \varepsilon)_{\text{sample}} \left(T^4_{\text{sample}} - T^4_{\text{LheShroud}} \right) + Q_{\text{loss}}
\]

- \(T\): temperature measured test data
- \(\sigma\): Stephan-Boltzmann constant = 5.67x10^{-8} \text{ W/m}^2/\text{K}^4
- \(A\): sample radiating area measured pre test
- \(Q_{\text{loss}}\): lead wire+residual gas loss calculated
- \(Q_{\text{heater}}\): heater power measured test data
- \(\varepsilon\): emittance determined from above equation
Test Profile – Overview

Timeline

![Graph showing temperature over time for different samples: PANEL.1100, SAMPLE.100, SAMPLE.600.](image)
Cryochamber
Design Requirements

- Relatively large: $A_\infty >> A_s$ (chamber area >> sample area) and at least 3’x3’x3’ (1m³)
- Cool-down from 295K to < 7K in < 8 hours
- Thermal gradient < 1K
- Thermal stability < 0.1K/hr
- Chamber pressure < 1x10^{-7} Torr
- Cheap (to build and operate)
Cryochamber on Facility 239 Payload Cart
Cryochamber
Design Overview

• Volume: 6’L x 4’W x 5’H (1.9m x 1.2m x 1.5m)
• Utilized 11 existing cryopanels
 – (5) 76” x 29”
 – (2) 76” x 23”
 – (2) 61.5” x 29”
 – (2) 54” x 23”
• Cryopanels painted with Aeroglaze Z307
• Supported by an “exoskeleton” frame
• Plumbed in four parallel circuits
• Covered with single-layer, two-sided VDA
Cryochamber
Thermal Isolation

- Cryopanels supported by G-10 isolators with L/W=3.6
- Three mil double sided VDA over gaps between panels
- Three mil double sided VDA over all panels
- Four-layer MLI wrapped around all tubing

Calculated conduction and radiation heat loss = 10.7W
Cryochamber Instrumentation

• **Temperature**
 – (15) LakeShore DT-470-CU-13 standard curve silicon diodes used for panel and tube monitoring to LHe temperatures
 • ±1K accuracy
 – (20) Type T thermocouples used for fixture and tube monitoring down to LN₂ temperatures

• **Pressure**
 – NIST traceable calibrated Granville Phillips Stabil-Ion Gauge on Chamber
 • ±4% accuracy per decade from 1x10⁻² to 1x10⁻⁹ Torr
Test Samples

• Sample selection
 – (2) Bare 8” x 8” x 0.024” (8 ply) M55J-954-6 Composite
 – (2) Black Kapton (2 mil) on 8” x 8” x 0.020” A1100 Aluminum Substrate
 – (2) Z306 Black Paint on 8” x 8” x 0.020” A1100 Aluminum Substrate

• One transient (without heaters) and one steady state (with heaters) sample for each sample type
Test Sample Description

• **Steady State Sample Heaters**
 – (4) 3” x 3” Minco HK5174R82.3l12B
 – 82.3 Ohms each wired in series

• **Temperature Sensors**
 – (2) LakeShore DT-470-SD-13 silicon diodes per sample
 – Calibrated from 4K-100K within at least +/-50mK

• **Wiring**
 – Heater to heater: 40AWG Cu; PTFE insulation; Aluminum tape overlay
 – Power leads: 30 AWG Manganin; Formvar insulation; VDA overcoat
 – Voltage leads: 36 AWG Manganin; Formvar insulation; VDA overcoat
 – Silicon diodes: 36 AWG Phosphor bronze; 2 twisted pairs; Formvar insulation
Steady State Test Sample Configuration

- Thermal control coating applied over heaters (except M55J).
- For M55J sample heaters covered with Aluminum tape.
- Heaters for steady state samples only.
- Al tape over SD sensors & heater leads.
- Sensor/heater lead wires not shown
Test Sample Configuration

- Alternating transient / steady state samples
- Kevlar suspension not shown
Test Sample
Support Frame

- Black anodized
- Conductively coupled to He shroud
- Tension springs to attach Kevlar to frame
Test Sample

Control & Measurement

- **HP 44705 Mux**
 -
 +

- **HP 44727 DAC**
 +
 -

- Shunt

- **HP 44705 Mux**
 -
 +

82.3Ω

TVDS

Lake Shore 218S

System Accuracy

- Power: <0.001mW
- Temperature: ±50mK
Emissivity Determination

• Thermal Balance Equations

– Transient

\[Q_c = \left(m C_p \frac{dT}{dt} \right)_{\text{sample}} = Q_{\text{rad}} + Q_{\text{gas}} + Q_{\text{wire}} \]

– Steady State

\[Q_{htr} = Q_{\text{rad}} + Q_{\text{gas}} + Q_{\text{wire}} \]

where:

- \(Q_c \): sample internal energy rate of change
- \(m \): mass
- \(C_p \): Specific heat capacity
- \(T \): temperature
- \(t \): time
- \(Q_{\text{rad}} \): radiation to He shroud
- \(Q_{\text{gas}} \): residual gas conduction to He shroud
- \(Q_{\text{wire}} \): heater / sensor lead wire loss
- \(Q_{htr} \): heater dissipation
Emissivity Determination

• Radiation Heat Loss

\[Q_{rad} = \sigma A_s \varepsilon_{eff} (T_s^4 - T_\infty^4) \]

where

\[\varepsilon_{eff} = \left[\frac{1}{\varepsilon_s} + \frac{A_s}{A_\infty} \left(\frac{1}{\varepsilon_\infty} - 1 \right) \right]^{-1} \]

for \(A_s \ll A_\infty \)

\[\varepsilon_{eff} = \varepsilon_s \]

- \(\sigma \) = Stefan-Boltzmann constant
- \(A_s \) = area of the test sample
- \(A_\infty \) = area of the shroud
- \(\varepsilon_{eff} \) = effective emissivity
- \(\varepsilon_s \) = emissivity of test sample
- \(\varepsilon_\infty \) = emissivity of shroud
- \(T_s \) = sample temperature
- \(T_\infty \) = shroud temperature
Emissivity Determination

- Residual Helium Gas Heat Loss

\[Q_{gas} = \alpha_{eff} X Y P \pi A_s (T_s - T_{\infty}) \]

where

\[\alpha_{eff} = \left[\frac{1}{\alpha_s} + \frac{A_s}{A_{\infty}} \left(\frac{1}{\alpha_{\infty}} - 1 \right) \right]^{-1} \]

\[X = \frac{\gamma_{He} + 1}{\gamma_{He} - 1} \]

\[Y = \left(\frac{R_{He}}{8\pi T_{\infty}} \right)^{1/2} \]

for \(A_s \ll A_{\infty} \)

\[\alpha_{eff} = \alpha_s \]

- \(A_s \) = area of the test sample
- \(A_{\infty} \) = area of the shroud
- \(\alpha_{eff} \) = effective accommodation coefficient (ac)
- \(\alpha_s \) = ac of He @ sample temperature
- \(\alpha_{\infty} \) = ac of He @ shroud temperature
- \(T_s \) = sample temperature
- \(T_{\infty} \) = shroud temperature
- \(P_{\infty} \) = pressure @ He shroud
- \(g = C_p / C_v \)
- \(C_p \) = specific heat @ constant pressure
- \(C_v \) = specific heat @ constant volume
- \(R_{He} \) = Helium gas constant

Ref: “Cryogenic Engineering”, T.M. Flynn, p372 (7.9)
Emissivity Determination

- **Lead Wire Heat Loss – Sensor Wires**
 - Assumptions
 - Ohmic dissipation insignificant
 - Wire radiation significant
 - Long lead wires

\[Q_{wire} = \pi \left(0.1\sigma \right)^{\frac{1}{2}} \left(k_{wire}^{\frac{1}{2}} D_{wire}^{\frac{3}{2}} \varepsilon_{wire}^{\frac{1}{2}} \right) T_s^{\frac{5}{2}} \]

- \(Q_{wire} \) = lead wire loss
- \(\sigma \) = Stephan-Boltzmann constant
- \(k_{wire} \) = Lead wire thermal conductivity (weighted average)
- \(D_{wire} \) = Lead wire outer diameter (includes insulation)
- \(\varepsilon_{wire} \) = lead wire insulation emittance
- \(T_s \) = sample temperature
Emissivity Determination

• Lead Wire Heat Loss / Gain – Heater Wires

 – Assumption
 • Ohmic dissipation significant (heater wires)
 • Wire radiation insignificant

 \[Q_{\text{wire}} = \left(\frac{\pi D_{\text{wire}}^2 k_{\text{wire}}}{4L_{\text{wire}}} \right) (T_s - T_\infty) + \left(\frac{2I_{\text{wire}}^2 \rho_{\text{wire}} L_{\text{wire}}}{\pi D_{\text{wire}}^2} \right) \]

 – \(Q_{\text{wire}} \) = heater lead wire loss/gain
 – \(k_{\text{wire}} \) = Lead wire thermal conductivity (weighted average)
 – \(D_{\text{wire}} \) = Lead wire outer diameter (includes insulation)
 – \(L_{\text{wire}} \) = Lead wire length
 – \(I_{\text{wire}} \) = Lead wire current
 – \(\rho_{\text{wire}} \) = Lead wire electrical resistivity
Error Bar Determination

• All quantities in the aforementioned equations are known or measured except for the sample emissivity, ε_s. For either the steady-state or transient case, we can isolate this term and derive an expression in terms of the other variables.

\[\varepsilon_s = f\left(A_s, A_\infty, A_{WX}, A_{WS}, L, T_s, T_\infty, \varepsilon_w, \varepsilon_\infty, \alpha_{He}, \alpha_\infty, P_\infty, Q_{heater}, m, C_p, \frac{dT}{dt}\right) \]

• The variance of ε_s is then given by

\[E_{\varepsilon_s}^2 = \left(\frac{\partial \varepsilon_s}{\partial A_s}\right)^2 E_{A_s}^2 + \left(\frac{\partial \varepsilon_s}{\partial A_\infty}\right)^2 E_{A_\infty}^2 + \ldots + \left(\frac{\partial \varepsilon_s}{\partial Q_{heater}}\right)^2 E_{Q_{heater}}^2 \]

Ref: “Physics Quick Reference Guide”, American Inst. of Physics, p198
Error Bar Determination

Emissivity Error Contributions

$P_{\text{shroud}}=10^{-7}$ torr, Error(P_{shroud})=20%

<table>
<thead>
<tr>
<th>Sample Temperature (K)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Tsample</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Asample</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Eshroud</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Pshroud</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Ewire</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Kwire</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
<tr>
<td>Dwire</td>
<td>1.00E-11</td>
<td>1.00E-10</td>
<td>1.00E-9</td>
<td>1.00E-8</td>
<td>1.00E-7</td>
<td>1.00E-6</td>
<td>1.00E-5</td>
<td>1.00E-4</td>
</tr>
</tbody>
</table>
Error Bar Determination

Sample Emissivity, & Emissivity Error

\(P_{\text{shroud}} = 10^{-7} \text{ torr}, \quad \text{Error}(P_{\text{shroud}}) = 20\% \)
Cryochamber Operation

- Baked-out cryochamber and emittance samples at 323K (50°C)
- Flooded Facility 225 chamber shroud with LN₂
- Pre-cooled cryochamber to 233K (-40°C) with GN₂ TCU
- Purged cryochamber with GHe
- Cooled cryochamber to 4.5 K with LHe
Cryochamber Cool-Down

Cool-Down on 9/17/04

Temperature (K)

Time

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Cryochamber Average Facility 225 Shroud Average
Cryochamber Temperature Profile

Cryochamber Average Temperature Versus Time

Temperature (K)

Time

9/17/2004 0:00 9/18/2004 0:00 9/19/2004 0:00 9/20/2004 0:00 9/21/2004 0:00 9/22/2004 0:00 9/23/2004 0:00 9/24/2004 0:00
Cryochamber Test Results

• All cryochamber test objectives were met
 – Cooled-down from >300K to 4.5K in less than 6 hours
 – Thermal gradient < 0.5K
 – Thermal stability < 0.1K/hr
 – Chamber pressure < 5x10^-8 Torr

• Total cost of cryochamber was $77,738 which included
 – Design, fabrication and construction
 – Helium transfer lines
 – Instrumentation
 – Thermal blanketing

• Helium consumption was as predicted – about 500 liters/day
Test Sample Results

• Emittance test samples
 – M55J and Z306 sample results look good
 – Black Kapton delaminated from A1100 substrate
 – Steady state approach superior – less error than transient approach

• Emittance data not released
 – Parasitic losses and error bars being characterized
 – Emittance data to be published soon
Future Considerations and Improvements

• Cryochamber
 – Improve GN₂ TCU pre-cooling
 – Eliminate GHe purge during dewar changes
 • Plug inlet instead
 – Procure second helium transfer line
 • Improve time to change-out helium dewars

• Test Samples
 – Eliminate transient samples – pending analysis
 – Perform emittance testing of external radiator coating candidates:
 • Ball Infrared Black (BIRB)
 • Ball S13GLO
 • Black anodized aluminum
Questions?