James Webb Space Telescope (JWST)
Integrated Science Instrument Module (ISIM)
Cryogenic Component Test Facility

Presented by
Edward A. Packard

23rd Space Simulation Conference
November 8-11, 2004
Presentation Overview

• JWST / ISIM Overview
• ISIM Thermal Verification Requirements
 – Emittance Test Objectives
• Cryochamber Design Requirements
• Cryochamber Construction
• Emittance Test Sample Selection and Configuration
• Error Sources and Error Mitigation
• Cryochamber Operation
• Cryochamber and Emittance Sample Test Results
• Future Considerations
JWST Overview

• Large infrared observatory positioned at L2
• Proposed launch date: August 2011
• Mission goals:
 – Understand the birth and formation of stars
 – Determine how planetary systems form
 – Explain galaxy formation
 – Determine the shape of the universe
 – Provide a better understanding of the intriguing dark matter problem
Integrated Science Instrument Module (ISIM)

• Near Infrared Camera (NIRCam)
• Near Infrared Spectrograph (NIRSpec)
• Mid Infrared Instrument (MIRI)
• Fine Guidance Sensors (FGS)
ISIM Thermal Verification Flow

- TIS1. Strap Development Test
- TIS2. Bench Material Property Tests (k vs. T)
- TIS3. Harness Development Test (Small Sample)
- TIS4. SI Mounting & Housing Cooling
- TIS5. ISIM Coating ε at Cryogenic Temp
- TIS6. Heat Strap / Harness Standoff Test
- TIS7. Structure Joint Conductance Test
- TIS8. Harness Test (End to End) Thru Temp Regimes
- TIS9. OTE Interface H/W
- TIC1. Dewar Mounting Methods
- Final ISIM Thermal Design
- TIS10. Heat Switch & Miscellaneous Thermal H/W
- E17 ETU ISIM TB TEST
- Deliver ETU ISIM
- Final ISIM Design
- IS8 FLIGHT ISIM TB TEST
- Deliver FLT ISIM
TIS5 Test Objective

- To determine the emittance of candidate thermal control coatings for the JWST/ISIM Instrument Assembly from 30K to 293K
- To minimize associated error bars in determining emittance values (goal <5%) at 30K
First Analytical Method

• Transient Cool-Down

\[\left(mC_p \frac{dT}{dt} \right)_{\text{sample}} = \sigma \left(A\varepsilon\right)_{\text{sample}} \left(T_{\text{sample}}^4 - T_{\text{LHeShroud}}^4\right) + Q_{\text{loss}} \]

where \[\left(mC_p \right)_{\text{sample}} = \sum \left(mC_p \right)_{\text{substrate+coating+sensors}} \]

and \[T = f(t) \]

- \(m \) mass measured pre test
- \(C_p \) specific heat capacity theoretical*
- \(T \) temperature measured test data
- \(t \) time measured test data
- \(\sigma \) Stephan-Boltzmann constant = 5.67x10^{-8} W/m^2/K^4
- \(A \) sample radiating area measured test data
- \(A \) sample radiating area measured test data
- \(Q_{\text{loss}} \) lead wire+residual gas loss calculated
- \(\varepsilon \) emittance determined from above equation
Second Analytical Method

• Steady State Warm-Up

\[Q_{heater} = \sigma (A\varepsilon)_{sample} \left(T_{sample}^4 - T_{LheShroud}^4\right) + Q_{loss} \]

\[T \quad \text{temperature} \quad \text{measured test data} \]
\[\sigma \quad \text{Stephan-Boltzmann constant} \quad 5.67 \times 10^{-8} \text{ W/m}^2/\text{K}^4 \]
\[A \quad \text{sample radiating area} \quad \text{measured pre test} \]
\[Q_{loss} \quad \text{lead wire+residual gas loss} \quad \text{calculated} \]
\[Q_{heater} \quad \text{heater power} \quad \text{measured test data} \]
\[\varepsilon \quad \text{emittance} \quad \text{determined from above equation} \]
Test Profile – Overview
Timeline

- SS Sample
- TR Sample
- He Shroud

Temperature (K) vs Time (h)
Cryochamber Design Requirements

• Relatively large: $A_{\infty} >> A_s$ (chamber area >> sample area) and at least 3’x3’x3’ (1m³)
• Cool-down from 295K to < 7K in < 8 hours
• Thermal gradient < 1K
• Thermal stability < 0.1K/hr
• Chamber pressure < 1x10⁻⁷ Torr
• Cheap (to build and operate)
Cryochamber on Facility 239 Payload Cart
Cryochamber
Design Overview

• **Volume:** 6’L x 4’W x 5’H (1.9m x 1.2m x 1.5m)
• **Utilized 11 existing cryopanels**
 – (5) 76” x 29”
 – (2) 76” x 23”
 – (2) 61.5” x 29”
 – (2) 54” x 23”
• **Cryopanels painted with Aeroglaze Z307**
• **Supported by an “exoskeleton” frame**
• **Plumbed in four parallel circuits**
• **Covered with single-layer, two-sided VDA**
Cryochamber

Thermal Isolation

- Cryopanels supported by G-10 isolators with L/W=3.6
- Three mil double sided VDA over gaps between panels
- Three mil double sided VDA over all panels
- Four-layer MLI wrapped around all tubing

Calculated conduction and radiation heat loss = 10.7W
Cryochamber Instrumentation

• **Temperature**
 – (15) LakeShore DT-470-CU-13 standard curve silicon diodes used for panel and tube monitoring to LHe temperatures
 • ±1K accuracy
 – (20) Type T thermocouples used for fixture and tube monitoring down to LN$_2$ temperatures

• **Pressure**
 – NIST traceable calibrated Granville Phillips Stabil-Ion Gauge on Chamber
 • ±4% accuracy per decade from 1x10$^{-2}$ to 1x10$^{-9}$ Torr
Test Samples

- **Sample selection**
 - (2) Bare 8” x 8” x 0.024” (8 ply) M55J-954-6 Composite
 - (2) Black Kapton (2 mil) on 8” x 8” x 0.020” A1100 Aluminum Substrate
 - (2) Z306 Black Paint on 8” x 8” x 0.020” A1100 Aluminum Substrate
- **One transient (without heaters) and one steady state (with heaters) sample for each sample type**
Test Sample Description

- **Steady State Sample Heaters**
 - (4) 3” x 3” Minco HK5174R82.3l12B
 - 82.3 Ohms each wired in series

- **Temperature Sensors**
 - (2) LakeShore DT-470-SD-13 silicon diodes per sample
 - Calibrated from 4K-100K within at least +/-50mK

- **Wiring**
 - Heater to heater: 40AWG Cu; PTFE insulation; Aluminum tape overlay
 - Power leads: 30 AWG Manganin; Formvar insulation; VDA overcoat
 - Voltage leads: 36 AWG Manganin; Formvar insulation; VDA overcoat
 - Silicon diodes: 36 AWG Phosphor bronze; 2 twisted pairs; Formvar insulation
Steady State Test Sample Configuration

- Thermal control coating applied over heaters (except M55J).
- For M55J sample heaters covered with Aluminum tape.
- Heaters for steady state samples only.
- Al tape over SD sensors & heater leads.
- Sensor/heater lead wires not shown

Suspension holes (4)
Heaters (4)
SD Sensors (2)
A1100 Al or M55J Substrate
Test Sample Configuration

- Alternating transient / steady state samples
- Kevlar suspension not shown

Liquid Helium Shroud

196 cm (77 in)

148 cm (58 in)

119 cm (47 in)

Samples
20.32 cm x 20.32 cm (8” x 8”)

Transient Sample

Steady State Sample

Thermal Desktop™ Model
Test Sample Support Frame

- Black anodized
- Conductively coupled to He shroud
- Tension springs to attach Kevlar to frame
Test Sample Control & Measurement

System Accuracy
Power: <0.001mW
Temperature: ±50mK
Emissivity Determination

• Thermal Balance Equations

 – Transient

\[Q_c = \left(m C_p \frac{dT}{dt} \right)_{\text{sample}} = Q_{\text{rad}} + Q_{\text{gas}} + Q_{\text{wire}} \]

 – Steady State

\[Q_{\text{htr}} = Q_{\text{rad}} + Q_{\text{gas}} + Q_{\text{wire}} \]

where:

- \(Q_c \): sample internal energy rate of change
- \(m \): mass
- \(C_p \): Specific heat capacity
- \(T \): temperature
- \(t \): time
- \(Q_{\text{rad}} \): radiation to He shroud
- \(Q_{\text{gas}} \): residual gas conduction to He shroud
- \(Q_{\text{wire}} \): heater / sensor lead wire loss
- \(Q_{\text{htr}} \): heater dissipation
Emissivity Determination

• Radiation Heat Loss

\[Q_{rad} = \sigma A_s \varepsilon_{eff} (T_s^4 - T_\infty^4) \]

where

\[\varepsilon_{eff} = \left[\frac{1}{\varepsilon_s} + \frac{A_s}{A_\infty} \left(\frac{1}{\varepsilon_\infty} - 1 \right) \right]^{-1} \]

for \[A_s \ll A_\infty \]

\[\varepsilon_{eff} = \varepsilon_s \]

- \(\sigma \) = Stefan-Boltzmann constant
- \(A_s \) = area of the test sample
- \(A_\infty \) = area of the shroud
- \(\varepsilon_{eff} \) = effective emissivity
- \(\varepsilon_s \) = emissivity of test sample
- \(\varepsilon_\infty \) = emissivity of shroud
- \(T_s \) = sample temperature
- \(T_\infty \) = shroud temperature
Emissivity Determination

• Residual Helium Gas Heat Loss

\[
Q_{\text{gas}} = \alpha_{\text{eff}} X \gamma_{\text{He}} P_{\infty} A_s (T_s - T_{\infty})
\]

where

\[
\alpha_{\text{eff}} = \left[\frac{1}{\alpha_s} + \frac{A_s}{A_{\infty}} \left(\frac{1}{\alpha_{\infty}} - 1 \right) \right]^{-1}
\]

\[
X = \frac{\gamma_{\text{He}} + 1}{\gamma_{\text{He}} - 1}
\]

\[
Y = \left(\frac{R_{\text{He}}}{8 \pi T_{\infty}} \right)^{\frac{1}{2}}
\]

for \(A_s \ll A_{\infty} \) \(\alpha_{\text{eff}} = \alpha_s \)

- \(A_s \) = area of the test sample
- \(A_{\infty} \) = area of the shroud
- \(\alpha_{\text{eff}} \) = effective accommodation coefficient (ac)
- \(\alpha_s \) = ac of He @ sample temperature
- \(\alpha_{\infty} \) = ac of He @ shroud temperature
- \(T_s \) = sample temperature
- \(T_{\infty} \) = shroud temperature
- \(P_{\infty} \) = pressure @ He shroud
- \(g = \frac{C_p}{C_v} \)
- \(C_p \) = specific heat @ constant pressure
- \(C_v \) = specific heat @ constant volume
- \(R_{\text{He}} \) = Helium gas constant

Ref: “Cryogenic Engineering”, T.M. Flynn, p372 (7.9)
Emissivity Determination

• **Lead Wire Heat Loss – Sensor Wires**
 – Assumptions
 • Ohmic dissipation insignificant
 • Wire radiation significant
 • Long lead wires

\[
Q_{\text{wire}} = \pi \left(0.1\sigma\right) \frac{1}{2} \left(\frac{1}{k_{\text{wire}}^2 D_{\text{wire}}^2 \varepsilon_{\text{wire}}^2}\right) T_s^{\frac{5}{2}}
\]

- \(Q_{\text{wire}}\) = lead wire loss
- \(\sigma\) = Stephan-Boltzmann constant
- \(k_{\text{wire}}\) = Lead wire thermal conductivity (weighted average)
- \(D_{\text{wire}}\) = Lead wire outer diameter (includes insulation)
- \(\varepsilon_{\text{wire}}\) = lead wire insulation emittance
- \(T_s\) = sample temperature
Emissivity Determination

• Lead Wire Heat Loss / Gain – Heater Wires
 – Assumption
 • Ohmic dissipation significant (heater wires)
 • Wire radiation insignificant

\[Q_{\text{wire}} = \left(\frac{\pi D^2 k}{4L} \right)_{\text{wire}} \left(T_s - T_\infty \right) + \left(\frac{2I^2 \rho L}{\pi D^2} \right)_{\text{wire}} \]

- \(Q_{\text{wire}} \) = heater lead wire loss/gain
- \(k_{\text{wire}} \) = Lead wire thermal conductivity (weighted average)
- \(D_{\text{wire}} \) = Lead wire outer diameter (includes insulation)
- \(L_{\text{wire}} \) = Lead wire length
- \(I_{\text{wire}} \) = Lead wire current
- \(\rho_{\text{wire}} \) = Lead wire electrical resistivity
Error Bar Determination

• All quantities in the aforementioned equations are known or measured except for the sample emissivity, \(\varepsilon_s \). For either the steady-state or transient case, we can isolate this term and derive an expression in terms of the other variables.

\[
\varepsilon_s = f \left(A_s, A_\infty, A_{wx}, A_{ws}, L, T_s, T_\infty, \varepsilon_w, \varepsilon_\infty, \alpha_{He}, \alpha_\infty, P_\infty, Q_{heater}, m, C_p, \frac{dT}{dt} \right)
\]

• The variance of \(\varepsilon_s \) is then given by

\[
E_{\varepsilon_s}^2 = \left(\frac{\partial \varepsilon_s}{\partial A_s} \right)^2 E_{A_s}^2 + \left(\frac{\partial \varepsilon_s}{\partial A_\infty} \right)^2 E_{A_\infty}^2 + \ldots + \left(\frac{\partial \varepsilon_s}{\partial Q_{heater}} \right)^2 E_{Q_{heater}}^2
\]

Ref: “Physics Quick Reference Guide”, American Inst. of Physics, p198
Error Bar Determination

Emissivity Error Contributions

$P_{\text{shroud}}=10^{-7}$ torr, Error(P_{shroud})=20%

<table>
<thead>
<tr>
<th></th>
<th>1.00E-11</th>
<th>1.00E-10</th>
<th>1.00E-09</th>
<th>1.00E-08</th>
<th>1.00E-07</th>
<th>1.00E-06</th>
<th>1.00E-05</th>
<th>1.00E-04</th>
<th>1.00E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{sample}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{sample}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{shroud}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{shroud}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{wire}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{wire}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{wire}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Temperature (K)

Emissivity Error Variance
Error Bar Determination

Sample Emissivity, & Emissivity Error

\[P_{\text{shroud}} = 10^{-7} \text{ torr}, \quad \text{Error}(P_{\text{shroud}}) = 20\% \]
Cryochamber Operation

• Baked-out cryochamber and emittance samples at 323K (50°C)
• Flooded Facility 225 chamber shroud with LN₂
• Pre-cooled cryochamber to 233K (-40°C) with GN₂ TCU
• Purged cryochamber with GHe
• Cooled cryochamber to 4.5 K with LHe
Cryochamber Cool-Down

Cool-Down on 9/17/04

Temperature (K)

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Time

Cryochamber Average
Facility 225 Shroud Average

GN₂ TCU
Helium
LN₂
LHe
Cryochamber Temperature Profile

Cryochamber Average Temperature Versus Time

![Graph showing temperature profile over time](image-url)
Cryochamber Test Results

- All cryochamber test objectives were met
 - Cooled-down from >300K to 4.5K in less than 6 hours
 - Thermal gradient < 0.5K
 - Thermal stability < 0.1K/hr
 - Chamber pressure < 5x10^{-8} Torr

- Total cost of cryochamber was $77,738 which included
 - Design, fabrication and construction
 - Helium transfer lines
 - Instrumentation
 - Thermal blanketing

- Helium consumption was as predicted – about 500 liters/day
Test Sample Results

- Emittance test samples
 - M55J and Z306 sample results look good
 - Black Kapton delaminated from A1100 substrate
 - Steady state approach superior – less error than transient approach

- Emittance data not released
 - Parasitic losses and error bars being characterized
 - Emittance data to be published soon
Future Considerations and Improvements

• Cryochamber
 – Improve GN₂ TCU pre-cooling
 – Eliminate GHe purge during dewar changes
 • Plug inlet instead
 – Procure second helium transfer line
 • Improve time to change-out helium dewars

• Test Samples
 – Eliminate transient samples – pending analysis
 – Perform emittance testing of external radiator coating candidates:
 • Ball Infrared Black (BIRB)
 • Ball S13GLO
 • Black anodized aluminum
Questions?