Redox-active star molecules incorporating the 4-benzoylpyridinium cation: implications for the charge transfer efficiency along branches vs. across the perimeter in dendrimers

Jinhua Yang¹, Abdel Monem M. Rawashdeh¹, Woon Su Oh¹, Chariklia Sotiriou-Leventis¹, and Nicholas Leventis². (1) Department of Chemistry, University of Missouri-Rolla, 142 Schrenk Hall, Rolla, MO 65409, jynn8@umr.edu, (2) Polymer Branch / Materials Division, NASA Glenn Research Center

We report the redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches, but remains constant at fixed radii. Voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that only two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers of a branch are accessible electrochemically within the same time frame. These results are discussed in terms of slow through-space charge transfer and the globular 3-D folding of the molecules.

ACCEPTED
Abstract ID#: 700124
Password: 354047
Program Selection: Division of Organic Chemistry
Topic Selection: Materials, Devices, and Switches
Title: Redox-active star molecules incorporating the 4-benzoylpyridinium cation: implications for the charge transfer efficiency along branches vs. across the perimeter in dendrimers
Invited: N
Presentation Format: Poster Only
Consider for Sci-Mix: Y
Conforms to Bylaw 6: Y

First Author

Presenting
Jinhua Yang
Department of Chemistry
University of Missouri-Rolla
142 Schrenk Hall
Rolla, MO 65409
Phone Number: 573-341-6668
Publishable Email: jynn8@umr.edu
* ACS Member
* Division Member

Second Author

Abdel Monem M. Rawashdeh
Department of Chemistry
University of Missouri-Rolla
Rolla, MO 65409
Phone Number: 573-341-6668
Fax Number: 573-341-6033
Publishable Email: rawash@umr.edu
* ACS Member

Third Author

Woon Su Oh
Department of Chemistry
University of Missouri-Rolla
Rolla, MO 65409
Phone Number: 573-341-4033
Fax Number: 573-341-6033
Publishable Email: wsoh@umr.edu

Fourth Author

Chariklia Sotiriou-Leventis
Fifth Author

Nicholas Leventis
Polymer Branch / Materials Division
NASA Glenn Research Center
2100 Brookpark Road MS 49-1
Cleveland, OH 44135
Phone Number: 216-433-3202
Publishable Email: Nicholas.Leventis@grc.nasa.gov
* ACS Member
* Membership Number 00971944