Human Planetary Landing System (HPLS) Capability Roadmap
NRC Progress Review

Rob Manning - NASA Chair
Dr. Harrison Schmitt - External Chair
Claude Graves - NASA Deputy Chair
May 4, 2005
Agenda

- Capability Roadmap Team
- Capability Description, Scope and Capability Breakdown Structure
- Benefits of the HPLS
- Roadmap Process and Approach
- Current State-of-the-Art, Assumptions and Key Requirements
- Top Level HPLS Roadmap
- Capability Presentations by Leads
 - 1.0 Mission Drivers Requirements
 - 2.0 “AEDL” System Engineering
 - 3.0 Communication & Navigation Systems
 - 4.0 Hypersonic Systems
 - 5.0 Super to Subsonic Decelerator Systems
 - 6.0/7.0/8.0 Terminal Descent and Landing Systems
 - 9.0 A Priori In-Situ Mars Observations
 - 10.0 AEDL Analysis, Test and Validation Infrastructure
- Capability Technical Challenges
- Capability Connection Points to other Roadmaps/Crosswalks
- Summary of Top Level Capability
- Forward Work
Capability Roadmap Team

Chairs

NASA Chair: Rob Manning, JPL
External Chair: Dr. Harrison Schmitt, Ret. Apollo 17 Astronaut
NASA Deputy Chair: Claude Graves, JSC

Team Members

Government / JPL
Jim Arnold, ARC
Chris Cerimele, JSC
Neil Cheatwood, LaRC
Juan Cruz, LaRC
Chirold Epp, JSC
Carl Guernsey, JPL
Kent Joosten, JSC
Mary Kae Lockwood, LaRC
Michelle Monk, MSFC
Dick Powell, LaRC
Ray Silvestri, JSC
Tom Rivellini, JPL
Ethiraj (Raj) Venkatapathy, ARC
Cmdr Barry (Butch) Wilmore, JSC
Aron Wolf, JPL

Academia
Bobby Braun, GaTech
Ken Mease, UCI

Industry
Glenn Brown, Vertigo
Jim Masciarelli, Ball
Bill Willcockson, LMSS

Other Participants
Mark Adler, JPL
Tina Beard, ARC
Brent Beutter, ARC
Joel Broome, JSC
Lee Bryant, JSC
Don Curry, JSC
Matthew Deans, QSS Grp
Les Deutsch, JPL
Linda Fuhrman, Draper
Jeff Hall, JPL
Brian Hollis, LaRC
Marsha Ivins, JSC
Bonnie James, MSFC
Frank Jordan, JPL
Dean Kontinos, ARC
Bernie Laub, ARC
Wayne Lee, JPL
Chris Madden, JSC
Chris Madsen, JSC
Lanny Miller, JPL
Bob Mitcheltree, JPL
Dave Murrow, Ball
Steve Price, LMSS
Ron Sostaric, JSC
Carlos Westelle, JSC
Mike Wright, ARC

Coordinators:
Directorate: Doug Craig, HQ
APIO: Rob Mueller, JPL/KSC
• Safely deliver human-scale piloted and unpiloted systems to the surface of Moon & Mars.
• Safely deliver human-scale piloted systems to the surface of Earth from a return from Mars & Moon.
Capability Breakdown Structure

Human Planetary Landing Systems
CRM # 7

- AEDL Human Mission Drivers 1.0
- AEDL Systems Engineering 2.0
- AEDL Communication & Navigation 3.0
- Hypersonic Systems 4.0
- Supersonic Decelerators 5.0
- Terminal Descent & Landing 6.0
- A Priori Mars Observations 9.0
- AEDL Analysis & Validation Infrastructure 10.0
Benefits of the HPLS CRM

• This roadmap defines a potentially realizable “master plan” for developing the capability to deliver the first cargo & piloted flights to the surface of Mars by 2032 with a “reasonable” mass starting at LEO.
 – This CRM defines the initial as well as long-term milestones needed to achieve that goal.
 – This roadmap was developed by consensus of many (majority) of the AEDL community within and outside of NASA.
 – This roadmap is consistent with the “The Vision for Space Exploration February 2004”

• With the development of aero-assisted Mars landing conceivably, the landed payload mass fraction from LEO is between 5 - 10x.
 – Compare with 70x from LEO for all propulsive landing on Mars.

• However, there is NO known Aerocapture/EDL conceptual design in existence today that has the ability to safely deliver human scale missions to Mars.
 – Significant work remains to determine which “system of systems” will be able to do the job. There are many options and no clear winners.

• This roadmap asserts that in order to achieve the first human scale missions to the surface of Mars (piloted or not) as early as 2032, near term work must begin with little delay.
Roadmap Process and Approach

- Three well attended workshops:
 - Workshop #1: Dec 2004 at JPL & Caltech
 - Workshop #2: Jan 2005 at NASA ARC
 - Workshop #3: Feb 2005 at NASA JSC
- A large fraction of the US EDL community was present.
 - 30 - 50 attendees from around the US.
- We asked:
 - Can we create an AEDL capability roadmap that provides a clear pathway to the needed capability?
 - Can we establish capability roadmaps that have appropriate connection points to each other?
 - Can technology maturity levels be accurately conveyed and used?
 - What are proper metrics for measuring the advancement of technical maturity?
- We then started at the “end” and worked backward to today.
 - The “end” here was the first Human scale Mars missions in early to mid 2030’s.
 - We tried to keep the “critical path” as short as possible, but it still required some movement to the right.
- We then discussed how we intend to retire the risks of this system as expeditiously as possible.
 - First working backwards from a human landing mission in 2032
 - Then defining the full scale system qualification test program (at Earth)
 - Then defining the scaled model validation test flights (at Mars)
 - Then defining the methodology to figure out how to determine what the full scale mission would look like so that it can be scaled for the model validation test flights.
 - Very quickly we get from 2032 to 2006.
So far the largest systems to land safely on Mars were the 2 Viking landers and the 2 MER rovers (<600 kg). Today NASA has “working” DESIGNS for robotic vehicles with landed mass up to about 1300 kg. These designs are expected to be realized in 2011. Unfortunately the EDL of recent landed missions (MER) is two orders of magnitude smaller than what is needed for human scale systems. The “lightest” of the human scale systems is 45-65 MT. Simple scaling of the systems used to land today’s robotic systems does not result in physically realizable systems. Shuttle provides somewhat of a model (especially for some aspects of human performance, interaction and safety systems), but it falls far far short as a relevant delivery system for Mars. Surprisingly, the state of knowledge of human EDL performance is very poor - this may have large consequences on the resulting system and mission designs.
There have only been five successful landings on Mars:
- 2 Viking landing in ‘76, 1 Mars Pathfinder in ‘97, 2 MER in ‘04
- There have been at least as many failures

These systems had touchdown masses < 0.6 MT.
Lunar Landing History

- 6 Apollo (US) Lunar landings
- 7 Luna (Russian) Lunar landings
- 5 Surveyor (US) Lunar landings
Where are we now with Mars Landers?

We are presently attempting to develop systems that deliver 1-2 MT for Mars Sample Return and for the Mars Precursor Surface missions.

The next step is across an ocean!
- We will need to develop AEDL systems that can get 30-60 MT down to surface per landing.

Will these human scale AEDL systems look anything like today’s robotic landers?
Probably not.
Moon and Mars Compared

Flight Dynamics Differences:
- **Moon**: Ballistic “entry” followed by long (11 min) propulsive descent to surface
 - Start terminal descent burn around 18 km at 1.7 km/s
- **Why can’t we do the same at Mars?**
 - Higher entry velocity at Mars by 2x (larger gravity)
 - Atmosphere starts high up (>100 km)
 - Need aero-thermal protection at these speeds
 - Prevents melting
 - Results in complex aerodynamics & large forces (this is handy)
 - Likely need to “disrobe” aero-thermal protection < 8 km above ground
 - Natural variations (density & winds) in the atmosphere strongly perturb the system (much worse than the gravity variations at the moon).
 - System needs to muscle through these uncertainties

Human System Flight Dynamics Differences:
- **Greater need to “architect system around the “human system”**
 - Need to ensure that hypersonic and other decelerators do not disable pilots.
 - Human capabilities reduced by journey to Mars
 - Much faster and more dramatic transformations - challenge to find safe means to enable the pilots to add reliability to the system.
Moon Landing vs Mars Landing
(to Scale)

“Freefall”
Guided Hypersonic Flight
Supersonic Deceleration
Propulsive Descent

Low Lunar Orbit
1.7 km/s
9.5 min

Low Mars Orbit
3.3 km/s
9.5 min

Top of Mars Atmosphere
< 1.5 min
< 60 s
The Mars Atmosphere is a Harsh Mistress

• Too much atmosphere to land like we do on the Moon
 – Aero-heating, winds, density variations & fuel ruin it.
• Too little atmosphere to land like we do at Earth
 – With 1% of Earth, imagine landing the Shuttle at 100,000 ft.

• But we absolutely need the atmosphere so that we are not forced into unreasonably large masses in LEO.
 – With traditional propulsion and NO aerodynamic assistance from Mars, for every 1 MT on Mars surface we would need 70 MT in LEO!
 – With traditional propulsion and high performance aero-assistance at Mars, for every 1 MT on Mars surface we need only 5-6 MT in LEO.

• That is the promise, but will it work?
 – So far no feasible Human scale AEDL system has been found
 – But there are promising ideas that need assessment and testing.
 – We need a roadmap to guide us to the answers and the systems.
Fortunately there is a wealth of design framework and reference mission designs to base the AEDL system on.

- DRM 3.0 (update to 6107)
- JSC Dual Lander Study

Many common aspect and requirements. E.g.

- 40-80 MT landing mass
- Large volume (e.g. return ascent vehicle fuel tanks)
- Aerocapture from high-speed Mars transfer orbit
- “Abort to Surface” abort mode (vs Apollo’s “abort to orbit”)
- High speed direct or aerocapture back into Earth orbit.
Key Assumptions for HPLS CRM

- Ongoing programs will “solve” some problems.
 - Robotic Mars Program:
 - Navigation (GPS-like & terrain relative) system designs (if not assets) to enable pin point landing.
 - Will acquire surface reconnaissance and multi-Mars year atmosphere density & wind monitoring to reduce model uncertainty.
 - Will acquire in-situ atmosphere & aero data to perform model validation of atmosphere and aero-database from robotic landings.
 - CEV/Moon Program:
 - Will develop large (but 1/4 scale) descent engine useful at Mars.
 - May develop large instrumented aeroentry earth return systems useful at Mars.
 - Will develop terminal guidance / human interactive landing & touchdown systems for terminal phase pin point landing.
 - ISS/Shuttle
 - Will begin astronaut post-landed test program to assess post gee crew performance.
Team 7: Human Planetary Landing Systems Top Level Capability Roadmap

Key Assumptions:
- 2006 MRO Surface site Characterization
- Launch orbiter-based Mars Atmosphere Recon.
- Pin point landing at Mars (MSL)
- 2014 Human CEV Flight Missions
- Subscale AEDL Model Validation Mission Launch

Capability Roadmap #7: HPLS

- Begin AEDL System Design Modeling
- Ensemble of Evaluation Architectures Selected
- Capability to begin scaled Fly-off Tests (Earth) for System downselect

7.1 Human Mission Drivers
- TRL 3
- Assess Human return performance from Shuttle flights and ISS

7.2 System Engineering
- TRL 3
- Performance Assess.

7.3 AEDL Comm & Nav
- TRL 2-6
- Launch of MTO-1.

7.4 Hypersonic Systems
- TRL 3-4
- Detailed testing & materials dev.

7.5 Supersonic Decelerators
- TRL 3
- Detailed testing & materials dev.

7.6 Terminal Descent & Landing
- TRL 3 - 5
- Detailed testing & materials dev.

7.9 A priori Mars Measurements
- TRL 3 - 5
- EDL Instrumentation Suite completed

7.10 Analysis & Validation Infrastructure
- TRL 3 - 6
- Select tools

AEDL System Architecture Down select
- Sub Scale CRL 1

AEDL Subscale System at CRL 3
- Project Start of Sub Scaled Mars Flight Model Validation Test. (phase A)

Major Event / Accomplishment / Milestone
- Ready to Use
- 2005 2010 2015
HPLS CRM Crosswalk

1. High-energy power and propulsion
2. In-space transportation
3. Advanced telescopes and observatories
4. Communication & Navigation
5. Robotic access to planetary surfaces
6. Human planetary landing systems
7. Human health and support systems
8. Human exploration systems and mobility
9. Autonomous systems and robotics
10. Transformational spaceport/range technologies
11. Scientific instruments and sensors
12. In situ resource utilization
13. Advanced modeling, simulation, analysis
14. Systems engineering cost/risk analysis
15. Nanotechnology

Critical Relationship (dependent, synergistic, or enabling)
Moderate Relationship (enhancing, limited impact, or limited synergy)
No Relationship
Examples of Crosswalk Data

<table>
<thead>
<tr>
<th>5. Robotic access to planetary surfaces</th>
<th>6. Human planetary landing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry: Hypervelocity Transit</td>
<td>Hypersonic Entry/AeroCapture Aerothermal TPS Systems</td>
</tr>
<tr>
<td></td>
<td>Robotic Entry methods may be applied to Human Entry</td>
</tr>
<tr>
<td>Descent</td>
<td>Transonic decelerators</td>
</tr>
<tr>
<td></td>
<td>Robotic Descent methods may be applied to Human Descent</td>
</tr>
<tr>
<td>Landing</td>
<td>Terminal Descent Propulsion Touchdown Systems Terrain Relative Sensing</td>
</tr>
<tr>
<td></td>
<td>Robotic Landing methods may be applied to Human landing</td>
</tr>
<tr>
<td>Observations</td>
<td>Observations</td>
</tr>
<tr>
<td></td>
<td>Orbital reconnaissance requirements for surface site characterization and atmospheric characterization. Precursor surface-mission engineering observational requirements (meteorology, dust characterization, TPS/parachute performance).</td>
</tr>
<tr>
<td>Entry, Descent & Landing</td>
<td>Robotic-human interactions</td>
</tr>
<tr>
<td></td>
<td>Human in interaction with Robotic systems during EDL</td>
</tr>
<tr>
<td>Navigation- Beacons & Orbital Assets</td>
<td>Communications and Navigation Infrastructure</td>
</tr>
<tr>
<td></td>
<td>Common assets can be shared for navigation</td>
</tr>
<tr>
<td>Extreme Environment Avionics</td>
<td>Hypersonic Entry/AeroCapture Aerothermal TPS Systems</td>
</tr>
<tr>
<td></td>
<td>Avionics must function in extreme environment of Mars Entry</td>
</tr>
<tr>
<td>Planetary Protection</td>
<td>EDL Systems Engineering, Guidance, Nav & Control Analysis & Rqmnts</td>
</tr>
<tr>
<td></td>
<td>Landed mass must adhere to Planetary Protection Rules Robotic methods may be employed in Human landings</td>
</tr>
<tr>
<td>Mobility</td>
<td>Touchdown Systems</td>
</tr>
<tr>
<td></td>
<td>Successful Landing includes deployment of surface assets - robotic methods may be used</td>
</tr>
<tr>
<td>Propulsion</td>
<td>Terminal Descent Propulsion</td>
</tr>
<tr>
<td></td>
<td>Robotic propulsion methods may be applicable to Human landing</td>
</tr>
<tr>
<td>SR-#</td>
<td>Short</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Moon</td>
</tr>
<tr>
<td>2</td>
<td>Mars</td>
</tr>
<tr>
<td>3</td>
<td>Solar System</td>
</tr>
<tr>
<td>4</td>
<td>Earth-like Planets</td>
</tr>
<tr>
<td>5</td>
<td>CEV / Constellation</td>
</tr>
<tr>
<td>6</td>
<td>Space Station</td>
</tr>
<tr>
<td>7</td>
<td>Shuttle</td>
</tr>
<tr>
<td>CRM X SRM Crosswalk (Part 2)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Universe Exploration</td>
</tr>
<tr>
<td>9</td>
<td>Earth Science and Applications from Space</td>
</tr>
<tr>
<td>10</td>
<td>Sun-Solar System Connection</td>
</tr>
<tr>
<td>11</td>
<td>Aeronautical Technologies</td>
</tr>
<tr>
<td>12</td>
<td>Education</td>
</tr>
<tr>
<td>13</td>
<td>Nuclear Systems</td>
</tr>
</tbody>
</table>

Cross Cutting

HUMAN PLANETARY LANDING SYSTEMS ARCHITECTURAL ISSUES

- **CRM** = Capability Road Map
- **SRM** = Strategic Road Map
SRM X CRM Example Data

Mars

<table>
<thead>
<tr>
<th>Capability Description</th>
<th>Requirement</th>
<th>Date Required</th>
<th>Investment Start</th>
<th>Tech Rationale for Capability</th>
<th>SRM Concurrency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerocapture, Entry, Descent & Landing (AEDL) Architecture Assessment</td>
<td>Decide what AEDL methods/technologies could work</td>
<td>2008</td>
<td>2006</td>
<td>Trade studies and research to define an ensemble of Evaluation Architectures and AEDLA methods/technologies</td>
<td></td>
</tr>
<tr>
<td>At Earth Sub Scale AEDL Component Development & Architecture Evaluation Testing</td>
<td>Technology development and testing to define & answer questions about AEDL architectures</td>
<td>2015</td>
<td>2009</td>
<td>Technology options & capabilities must be explored in order to get data for rationale of down selection</td>
<td></td>
</tr>
<tr>
<td>Scaled Mars AEDL Validation Flights</td>
<td>4 MT Landing Capability at Mars: Validate AEDL Models</td>
<td>2022</td>
<td>2015</td>
<td>Use Robotic Mars program to validate scaleable Mars Human AEDL methods</td>
<td></td>
</tr>
<tr>
<td>Earth Based Full Scale Development Program</td>
<td>Develop & Qualify the Full Scale Hardware</td>
<td>2028</td>
<td>2020</td>
<td>Use mostly Earth based Sub-Orbital qualification tests to develop the full scale of the hardware</td>
<td></td>
</tr>
<tr>
<td>Validate Mars Surface Models</td>
<td>Mars Odyssey and MRO Surface Assessment</td>
<td>2010</td>
<td>2006</td>
<td>DTM's and Site Hazard Maps for Human Scale Site Selection</td>
<td></td>
</tr>
<tr>
<td>Validate Mars Atmosphere Models</td>
<td>Entry, Descent & Landing (EDL) In Situ Measurements & 3 Mars Years Atmosphere Monitoring Mission</td>
<td>2022</td>
<td>2010</td>
<td>Mars Atmospheric variations and dust characteristics must be understood in order to successfully design high reliability EDL Systems.</td>
<td></td>
</tr>
<tr>
<td>Shuttle & ISS Return Human Physiological Performance Data</td>
<td>Human Performance Data</td>
<td>2006-2015</td>
<td>2006</td>
<td>Use empirical human performance data to drive designs and enable Human landings on Mars</td>
<td></td>
</tr>
<tr>
<td>Special Test facilities and knowledge</td>
<td>Specialized supersonic and large scale wind tunnels for aerodynamic testing & Other Test Facilities for Terminal Descent Landing</td>
<td>2015</td>
<td>2009</td>
<td>Test Facilities are required to efficiently develop Aerocapture, Entry, Descent & Landing Hardware on Earth</td>
<td></td>
</tr>
</tbody>
</table>
Sub Teams

- Sub Teams will now present charts
Technology Readiness Levels (TRL)

- Technology Readiness Levels (TRLs) are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL approach has been used on-and-off in NASA space technology planning for many years and was recently incorporated in the NASA Management Instruction (NMI 7100) addressing integrated technology planning at NASA.

1. **TRL 1** Basic principles observed and reported
2. **TRL 2** Technology concept and/or application formulated
3. **TRL 3** Analytical and experimental critical function and/or characteristic proof-of-concept
4. **TRL 4** Component and/or breadboard validation in laboratory environment
5. **TRL 5** Component and/or breadboard validation in relevant environment
6. **TRL 6** System/subsystem model or prototype demonstration in a relevant environment (ground or space)
7. **TRL 7** System prototype demonstration in a space environment
8. **TRL 8** Actual system completed and “flight qualified” through test and demonstration (ground or space)
9. **TRL 9** Actual system “flight proven” through successful mission operations
Capability Readiness Levels

7
Capability Operational Readiness

6
Integrated Capability Demonstrated in an Operational Environment

5
Integrated Capability Demonstrated in a Relevant Environment

4
Integrated Capability Demonstrated in a Laboratory Environment

3
Sub-Capabilities* Demonstrated in a Relevant Environment

2
Sub-Capabilities* Demonstrated in a Laboratory Environment

1
Concept of Use Defined, Capability, Constituent Sub-capabilities* and Requirements Specified

* Sub-capabilities include Technologies, Infrastructure, and Knowledge (process, procedures, training, facilities)
• A Capability is defined as a **set of systems** with associated technologies & knowledge that enable NASA to perform a function (e.g. scientific measurements) required to accomplish the NASA mission.

• The scope of a Capability includes the knowledge or infrastructure (process, procedures, training, facilities) required to provide the Capability.

• A Capability needs to be demonstrated and qualified, just as a technology does, in both laboratory and relevant environments.

 – The infrastructure and knowledge (process, procedures, training, facilities) of the Capability needs to be:
 • Demonstrated and qualified in both laboratory and relevant environments
 • Available in order for the Capability to be considered mission-ready.

• A minimum level of TRL 6 is required to integrate technologies into a Sub-capability.

• Sub-capabilities are required to reach CRL 3 before integration into a full Capability.
A Capability is defined as a set of systems (or system of systems) with associated technologies & knowledge that enable NASA to perform a function (e.g. scientific measurements) required to accomplish the NASA mission.

* Sub-capabilities include Technologies, Infrastructure, and Knowledge (process, procedures, training, facilities)
1 Concept of Use Defined, Capability, Constituent Sub-capabilities* and Requirements Specified

The Capability is defined in written form. The uses and/or applications of the Capability are described and an initial Proof-of-Concept analysis exists to support the concept. The constituent Sub-capabilities and requirements of the Capability are specified.

* Sub-capabilities include Technologies, Infrastructure, and Knowledge (process, procedures, training, facilities)
Sub-Capabilities* Demonstrated in a Laboratory Environment

Proof-of-Concept analyses of the Sub-capabilities are performed. Analytical and laboratory studies of the Sub-capabilities are performed to physically validate separate elements of the Capability. Analytical studies are performed to determine how constituent Sub-capabilities will work together.

* Sub-capabilities include Technologies, Infrastructure, and Knowledge (process, procedures, training, facilities).
Sub-capabilities are demonstrated with realistic supporting elements to simulate an operationally relevant environment to the Capability.

- of appropriate scale
- functionally equivalent flight articles
- major system interactions and interfaces identified
Integrated Capability Demonstrated in a Laboratory Environment

A representative model or prototype of the integrated Capability is tested in an ambient laboratory environment. Performance of the constituent Sub-capabilities is observed in addition to the Capability as an integrated system. Analytical modeling of the integrated Capability is performed.
An integrated prototype of the Capability is demonstrated with realistic supporting elements to simulate an operationally relevant environment to the Capability.

- of appropriate scale
- functionally equivalent flight articles
- all system interactions and interfaces identified
The Capability is near or at the completed system stage. The integrated Capability is demonstrated in an operational environment with the intended user organization(s).
- full scale flight articles
- demonstrated in the intended operational ‘envelope’
Capability Operational
Readiness

The Capability has been proven to work in its final form under expected operational condition. This level represents the application of the Capability in its operational configuration and under “mission” conditions.