5.0 Aerodynamic and Propulsive Decelerator Systems

Presenter: Juan R. Cruz
Sub-Team Lead

Contributing Members
Richard Powell - LaRC, James Masciarelli - Ball Aerospace,
Glenn Brown - Vertigo Inc., Al Witkowski - Pioneer Aerospace,
Carl Guernsey, JPL
Presentation Outline

Part I - Introduction
- Capability Breakdown Structure
- Decelerator Functions
- Candidate Solutions

Part II - Performance and Technology
- Capability State-of-the-Art
- Performance Needs
- Candidate Configurations

Part III - Possible Technology Roadmaps
- Capability Roadmaps
Human Planetary Landing Systems
CRM # 7

5.1 Supersonic Aerodynamic Decelerators
5.2 Subsonic Aerodynamic Decelerators
5.3 Supersonic Propulsive Decelerators
5.4 Systems Design, Development, Testing, and Qualification
Decelerators typically provide one or more of the following functions in planetary landing systems:

- Deceleration from supersonic to subsonic speed
- Controlled acceleration
- Minimize descent rate
- Provide specified descent rate
- Provide stability (parachute drogue function)
- System deployment (parachute pilot function)
- Provide difference in ballistic coefficient for separation events
- Provide height
- Provide timeline
- Provide specific state (e.g., altitude, location, speed for precision landing)
Aerodynamic and Propulsive Decelerator Capabilities for Mars - Integrated Mission Architecture

Options for Hypersonic Decelerators

Options for Supersonic & Subsonic Decelerators

Options for Terminal Descent Systems

Parachutes

Inflatable Decelerators

Propulsion
## 5.0 Aerodynamic and Propulsive Decelerator Candidate Solutions

<table>
<thead>
<tr>
<th>Candidate Mission Scenario</th>
<th>Candidate Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mars Descent</strong></td>
<td><strong>Mars human and cargo landing</strong></td>
</tr>
<tr>
<td></td>
<td>Supersonic parachutes, subsonic parachute clusters</td>
</tr>
<tr>
<td></td>
<td>Inflatable decelerators</td>
</tr>
<tr>
<td></td>
<td>Supersonic and subsonic propulsion</td>
</tr>
<tr>
<td></td>
<td><strong>Combination</strong></td>
</tr>
<tr>
<td><strong>Earth Return (Mars)</strong></td>
<td><strong>Human direct entry or landing from orbit</strong></td>
</tr>
<tr>
<td></td>
<td>Subsonic parachute cluster</td>
</tr>
<tr>
<td></td>
<td>Parafoils</td>
</tr>
<tr>
<td></td>
<td>Lifting body/wings</td>
</tr>
<tr>
<td><strong>Earth Return (Lunar)</strong></td>
<td><strong>Human direct entry or landing from orbit</strong></td>
</tr>
<tr>
<td></td>
<td>Subsonic parachute cluster</td>
</tr>
<tr>
<td></td>
<td>Parafoils</td>
</tr>
<tr>
<td></td>
<td>Lifting body/wings</td>
</tr>
</tbody>
</table>
Supersonic Parachutes

- Disk-Gap-Band (DGB) heritage parachutes
- Deployment at Mach number \( M \approx 2.1 \) (Viking heritage)
- Deployment at dynamic pressure \( q \approx 800 \text{ Pa} \) (MER heritage)
- Nominal diameter, \( D_0 \approx 16.15 \text{ m} \) (Viking heritage)
- Maximum drag area, \( C_D S \approx 108 \text{ m}^2 \) (approximate for Viking parachute with \( D_0 = 16.15 \text{ m} \) at \( M = 2.1 \))
- No reefing, clustering, or glide control
- Mortar deployment
Viking DGB Parachute Drag Model

$C_{D0}$

0.9

0.8

Hi

M
Subsonic Parachutes

• DGB heritage parachutes (see supersonic parachutes)
  • Maximum drag area, $C_D S \cdot 139 \text{ m}^2$

• Ringsail heritage parachutes
  • Beagle 2, MTP Subsonic Parachute, extensive Earth-flight experience (e.g., Mercury, Gemini, Apollo)
  • Deployment at Mach number $M = 0.8$ (MTP Subsonic Parachute)
  • Nominal diameter, $D_0 = 33.5 \text{ m}$ (MTP Subsonic Parachute)
  • Maximum drag area, $C_D S \cdot 679 \text{ m}^2$
  • Reefing
  • No clustering or glide control
Drag vs Stability Comparison

- Solid Textile Parachutes
- Slotted Textile Parachutes
- Disk-Gap-Band
- Conical Ribbon
- Ringsail
- Guide Surface

Current Mars Aerodynamic Decelerator Technology Capabilities and Limitations
Inflatable Supersonic Decelerators

- No inflatable supersonic decelerators have been flown in planetary exploration missions
- Several concepts proposed, some tested
- Some concepts show promise

Materials

- Kevlar, Nylon, Polyester (Dacron) are “qualified” materials
- Vectran, Spectra, Technora, Nextel, Zylon now used in some “qualified” applications
- Coated materials (impermeable, ablative) have been used for munitions programs
Analysis Methods

- Current methods have a significant empirical component (need data to calibrate)
- First-principle methods (e.g., Fluid Structures Interaction analyses) are available but validation is lacking
- Scaling of results (physical size and test conditions) possible but poorly understood

Test Methods

- Need improvements in our ability to adjust results of all testing to other scales and different conditions
- Wind tunnel testing (sub-scale and full-scale)
  - Available facilities at risk of closing
- Low altitude flight testing (subsonic)
- High altitude flight testing (supersonic and subsonic)
  - Sounding rocket
  - Balloon
  - Balloon/Rocket
Current Earth and Mars Aerodynamic Decelerator Technology Capabilities and Limitations

Sub-Scale Wind Tunnel Testing

Balloon/Rocket

Full-Scale Flight Testing

Sounding Rocket

Full-Scale Wind Tunnel Testing
Supersonic deceleration at Mars may require a propulsive component

- An aerodynamic-decelerator only solution may not be realistic (extremely large parachutes)

Use of retrorockets to decelerate from supersonic to subsonic speeds has issues

- Initiation of thrusting is likely to require blow-out covers in TPS
  - MER TIRS motor covers are a primitive example
- Thermal protection must be provided while vehicle is enveloped in high enthalpy recirculating exhaust
- Plume / freestream interaction will be fundamentally unsteady
  - Freestream Mach number and dynamic pressure change rapidly
  - Rapidly changing aerodynamic forces on aeroshell will require significant control authority, especially in the transonic regime

Development of modeling capability for this “inverse base flow” problem will be likely require subscale wind tunnel tests and flight testing.
Mars: Performance Needs

Supersonic-to-Subsonic Deceleration
- Larger aero decelerator drag area ($C_D S$) at supersonic speeds
- Aero decelerator drag area control at supersonic speeds (loads and trajectory)
- Aero decelerator deployment at Mach number > 4
- Propulsive supersonic deceleration

Subsonic Terminal Descent
- Larger aero decelerator drag area ($C_D S$) at subsonic speeds
- Large propulsive descent system

Pinpoint Landing Capability
- Ability to make parachute glide in a chosen direction
- Propulsive descent system guidance and hazard avoidance
Fluid-Structures Interaction Analyses

- Joining of Computational Fluid Mechanics (CFD) with structural Finite Element Methods (FEM)
- Allows for numerical design optimization
- Can yield insight on scaling of test results (physical size and test conditions)
- Can yield values of quantities usually obtained by test (e.g., $C_{D0}$)
- Can yield values of quantities that are difficult to obtain by test (e.g., dynamic aero coefficients - $C_{m_q}$)
- Has possibility of reducing testing and qualification costs by decreasing number of tests
- Works with trend of cheaper computing
- In need Verification (are we solving the equations right?) and Validation (are we solving the right equations?) to obtain level of trust suitable for exploration missions
- **Must-have technology**
Scaling

- Ability to scale test results to the system size and test conditions
- May allow for relevant sub-scale testing of systems in flight at supersonic conditions
- Must-have technology for large Mars systems

Testing

- Adequate wind tunnel and flight test (e.g., high-altitude balloons, sounding rockets) capabilities must be retained and in some cases expanded
- Capability to flight test supersonic systems will become a necessity for Mars systems

Materials

- Development of new space-qualified materials will have a significant impact on aerodynamic decelerator design (i.e., mass to drag area ratio)
- Materials with high temperature capabilities for parachutes (M > 2.5) and inflatable decelerators will be required
Key Wind Tunnel Testing Facilities

- **NFAC at NASA ARC**
  - Full- and Sub-Scale Testing
  - Subsonic

- **TDT at NASA LaRC**
  - Sub-Scale Testing Subsonic and Transonic

- **10’ x 10’ Supersonic at NASA GRC**
  - Sub-Scale Testing Supersonic

Earth and Mars: Aerodynamic Decelerators Technology Needs
Possible Mars Configurations

2 Metric Ton Entry Mass Level
- Disk-Gap-Band Supersonic Parachute
- Ringsail Subsonic Parachute (single canopy)

4 Metric Ton Entry Mass Level
- Disk-Gap-Band Supersonic Parachute (reefed)
- Ringsail Subsonic Parachute (cluster)

10 Metric Ton Entry Mass Level
- Inflatable Supersonic Decelerator
- Ringsail Subsonic Parachute (cluster)

50 Metric Ton Entry Mass Level (Human)
- Inflatable Supersonic Decelerator
- Ringsail Subsonic Parachute (cluster)
- Propulsion Assisted Deceleration
Team 7: Supersonic Decelerators Capability Roadmap

**Key Assumptions:**
- Launch orbiter-based Mars Atmosphere Recon.
- Pin point landing at Mars (MSL)
- 2006 MRO Surface site Characterization
- 2017 Human Lunar Missions
- AEDL Subscale System at CRL 3

**Capability Roadmap #7: HPLS**
- Begin AEDL System Design Modeling
- Ensemble of Evaluation Architectures Selected
- Capability to begin scaled Fly-off Tests (Earth) for System downselect
- AEDLA System Architecture Down select
- Project Start of Sub Scaled Mars Flight Model Validation Test. (phase A)

**7.5 Aerodynamic and Propulsive Decelerator Capability**
- 4MT 30m Supersonic Chute Capability
- Detailed testing & materials dev.
- 10 MT >50 m dia. Sub scale Earth flight tests
- Supersonic Decelerator Scaled Capability Data (TRL6)

**Aerodynamic Decelerators**
- 4 MT 30m Supersonic Parachute
- Detailed testing & materials dev.
- 80x100 Wind Tunnel
- 10 MT >50 m dia. Sub scale Earth flight tests

**Propulsive Decelerators**
- CFD Analysis of Propulsion Methods
- Supersonic Wind Tunnel (9X7)
- Detailed testing & materials dev.
- If OK Sub scale Earth flight tests (10 MT)

**Solution**
- Mars Sub Scale Tests

**Major Event / Accomplishment / Milestone**
- Decision Point
- Ready to Use
- 2005 2010 2015
Backup Material
Symbols

- $C_{D0}$: drag coefficient
- $C_{DS}$: drag area
- $C_{mq}$: derivative of pitching moment with respect to pitch rate
- $D_0$: nominal diameter
- $M$: Mach number
- $q$: dynamic pressure

Acronyms

- AAO: Average Angle of Oscillation
- ARC: Ames Research Center
- CFD: Computational Fluid Dynamics
- DGB: Disk-Gap-Band
- FEM: Finite Element Method
- FSI: Fluid Structures Interaction
- GRC: Glenn Research Center
- LaRC: Langley Research Center
- MER: Mars Exploration Rover
- MT: Metric Ton
- MTP: Mars Technology Program
- NFAC: National Full-Scale Aerodynamics Complex
- TDT: Transonic Dynamics Tunnel
- V&V: Verification and Validation
- WT: Wind Tunnel