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This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight
data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of func-
tions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small
class of signals, namely those that are characterized by a single frequency component at any instant in time.
The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform
through a process known as empirical mode decomposition. Using this approach, the data is filtered into a
series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner,
the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool
has been applied in the analysis of scientific data, structural system identification, mechanical system fault
detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of
the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/on-
line processing. Applications for correlations between system input and output, and amongst output sensors,
are discussed to characterize the time-varying amplitude and frequency correlations present in the various
components of multiple data channels. Online stability analyses and modal identification are also presented.
Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostruc-
tures Test Wing, and pitch-plunge simulation.

Introduction

The Hilbert transform is a classical tool that has been used in the structural dynamics community as an indicator of
nonlinearity. It has also been used to estimate nonlinear damping and stiffness functions for single degree-of-freedom
systems. The Hilbert transform expresses a signal as a harmonic with time-dependent frequency and amplitude. In
this respect, it is an ideal tool for the analysis of nonstationary data. Unfortunately, the Hilbert transform has several
shortcomings that limit its usefulness in practice. Most notably, the Hilbert transform computes a single instantaneous
frequency for a signal at each instant in time. Therefore, when applied to a multi-component signal (i.e., a signal
from a system with multiple modes), the Hilbert transform computes an instantaneous frequency that corresponds to a
weighted average of the component frequencies. Such an instantaneous frequency does not provide any information as
to the values of the individual component frequencies.4 A further limitation is that the Hilbert transform yields grossly
distorted estimates of the frequency when applied to signals with nonzero mean and signals which have more extrema
than zero crossings.

In order to address these shortcomings, an Empirical Mode Decomposition (EMD) was developed by Huang et
al.8,9 as a means of decomposing a signal into a series of components known as Intrinsic Mode Functions (IMFs).
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These IMFs are computed based on local characteristics of the signal and can be viewed as an adaptive, data-dependent
basis. The IMFs form a complete, nearly orthogonal set of basis functions. Most importantly, each IMF contains only
a single frequency component at any instant in time and therefore admits a well-behaved Hilbert transform. Taken
collectively, the Hilbert spectra of the IMFs yield complete time-frequency information about the original signal.
This approach, which has been termed the Hilbert-Huang Transform (HHT), makes it possible to apply the Hilbert
transform to an extremely general class of functions and signals.

Although a relatively new tool, the Hilbert-Huang transform algorithm has received considerable attention in
a number of engineering disciplines. This HHT algorithm has been applied in the analysis of scientific data,8–10

structural system identification,26–28and mechanical system fault detection.11,15,25,29A recent adoption into the image
processing field,13,14,16 the two-dimensional EMD is an adaptive image decomposition without the limitations from
filter kernels or cost functions. The IMFs are interpreted as spatial frequency subbands with varying center frequency
and bandwidth along the image. The EMD is a truly empirical method, not based on the Fourier frequency approach
but related to the locations of extrema points and zero crossings. Based on this, the concept of “empiquency,” used
for time or space and short for “empirical mode frequency,” was adopted to describe signal (image) oscillations based
on the reciprocal distance between two consecutive extrema points. High concentrations of extrema points have high
empiquency with sparse areas having low empiquency. Hence, applications for time-frequency-space signal processing
are feasible.

A problem with the very versatile and most commonly used Morlet wavelet in dynamics data analysis is its leakage
generated by the limited length of the basic wavelet function, which makes the quantitative definition of the energy-
frequency-time distribution difficult. The interpretation of the wavelet can also be counterintuitive. For example,
definition of a local event in any frequency range requires analysis in the high-frequency range, for the higher the
frequency the more localized the basic wavelet. A local event in the low-frequency range requires an extended period
of time to discern it. Such interpretation can be difficult if possible at all. Another problem with wavelet analysis
is its nonadaptive nature. Wavelet basis functions are predefined, whether of one type, or a multi-wavelet basis, or
a dictionary of wavelets is selected. Data analysis is then constrained to these bases. Since the Morlet wavelet is
Fourier based, it also suffers the many shortcomings of Fourier spectral analysis. A truly adaptive basis is a necessary
requirement for nonstationary and nonlinear time series analysis and should be based on and derived from the data.

In this paper, results are obtained from the new approach. With the HHT, the intrinsic mode functions yield
instantaneous frequencies as functions of time that give sharp identification of imbedded structures. The main concep-
tual innovation in this approach is the introduction of the instantaneous frequencies for complicated data sets, which
eliminate the need of spurious harmonics to represent nonlinear and nonstationary signals. This paper looks at the
effect of enhancements like local/on-line versions of the algorithm.20 To date, HHT analysis has only been performed
on individual signals without regard to correlation with other data channels, or system inputs-to-outputs. Applica-
tion for correlations between system signals are introduced to characterize the time-varying amplitude and frequency
modulations present in the various components of multiple data channels including input and distributed sensors. In
these respects, this paper attempts to elucidate the way EMD behaves in the analysis of F/A-18 Active Aeroelastic
Wing (AAW) aircraft,18 aeroelastic and aeroservoelastic flight test data as well as Aerostructures Test Wing12 and
pitch-plunge simulation data.

Empirical Mode Decomposition

The classical Hilbert transform is, in principle, an effective tool for time-frequency analysis. Unfortunately, in
practice, it can only be applied to an extremely restricted class of signals. In order to extend the utility of the Hilbert
transform to more general signals, Huang et al.8,9 developed the empirical mode decomposition (EMD) as a means
of preprocessing data before applying the Hilbert transform. The EMD procedure decomposes the original signal
into a set of intrinsic mode functions (IMFs), each of which admits a well-behaved Hilbert transform. The Hilbert
transform is then applied to each individual IMF, yielding an instantaneous frequency and amplitude for each IMF.
Therefore, this procedure, termed the Hilbert-Huang transform (HHT), enables the Hilbert transform to be applied to
multi-component signals.
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There are two criteria that each IMF must satisy in order to be amenable to the Hilbert transform. Namely, each
IMF must have zero mean and the number of local extrema and zero crossings in each IMF can differ by no more than
one. The first step in the EMD procedure is to connect all the local maxima of the original signal using a cubic spline.
Similarly, the local minima are also connected with a cubic spline. The two splines define the envelope, and the mean
of this envelope is then calculated and subtracted from the original signal. The resulting signal is then tested to see if it
satisfies the criteria for an IMF. If it does not, the sifting process is repeated until a suitable first IMF,c1(t), is obtained.
The sifting process is then applied to the residual signalx(t)− c1(t) to obtain the next IMF. This process is repeated
until all that is left is a final residual,r(t), which represents the trend in the data and is not an IMF. Therefore, as
shown in Eq. 1, the EMD procedure yields a decomposition of the original signal in terms ofn IMFs and the residual:

x(t) =
n∑

j=1

cj(t) + r(t) (1)

The number of IMFs obtained is dependent on the original signal.
The EMD procedure serves to generate IMFs that are amenable to the Hilbert transform. In particular, the manner

in which the EMD is performed guarantees that each IMF will only possess a single harmonic at any instant in time.
Currently, the EMD procedure is ad hoc in the sense that there is no rigorous mathematical theory behind it. Recent
attempts have been made to formalize EMD, most notably the work of those who explored the properties of B-splines
and their use in the EMD process. Despite the lack of a firm theoretical foundation, several mathematical properties
of the IMFs are well understood. In particular, it is clear from Eq. 1 that the IMFs, along with the residual, form a
complete basis for the original signalx(t). In addition, Huang et al.8 demonstrated that the IMFs are nearly orthogonal
with an orthogonality index (OImn defined in Eq. 2) for the IMFs. This definition seems to be global but actually only
applies locally. Adjacent IMFs could have data with the same frequency but at different times.

OImn =
t=T∑
t=0

m∑

j=1

n∑

k(6=j)=1

cj(t)ck(t)
x(t)2

(2)

The EMD does not yield a unique basis for the original signal since there are countless sets of suitable IMFs that
can be generated from a given signal. However, the various IMF sets from the different sifting criteria are all equally
valid representations of the data provided their orthogonality indices are sufficiently small.8,10 The IMFs depend on
the stoppage criterion, maximum number of siftings, intermittance criteria, the end point boundary conditions, and use
of curvature- or extrema-based sifting.8–10 The uniqueness problem can only be meaningful if all these parameters are
fixed a priori. The problem is how to optimize the sifting procedure to produce the “best” IMF set. These questions are
difficult to answer theoretically. In Huang et. al.,10 a confidence limit is defined for the first time without invoking the
ergodic assumption. This provides a stable range of stopping criteria for the EMD-sifting operation, thereby making
the HHT method more definitive. Discussion later points out that the EMD sifting process also acts in such a manner
as to obtain IMFs that correspond to approximate bandpass filtering of the original signal.

Once the EMD procedure has been used to generate a set of IMFs, the Hilbert transform can be applied to each
individual IMF. In this manner, an instantaneous frequency and amplitude is computed for each function. A common
method for displaying the Hilbert spectrum is to generate a two-dimensional plot with time and frequency axes. The
amplitude is then plotted as a color spectrogram in the time-frequency plane. By plotting the Hilbert spectra of all the
IMFs together one obtains complete time-frequency information about the original signal.

To demonstrate the importance of the EMD in obtaining meaningful Hilbert spectra for general signals, consider
the following signals:

x1(t) = sin(2πt) + sin(8πt) + sin(32πt)
x2(t) = sin(4πt) + t

The signalx1 is a combination of harmonics with frequencies of{1, 4, 16} Hz while the signalx2 is composed of
a ramp signal and a2-Hz sine wave. First, consider the Hilbert spectra obtained by directly applying the Hilbert
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transform to each signal. Figure 1 displays the resulting Hilbert spectra for both signals. The Hilbert spectrum of
x1 yields a fluctuating frequency with most of the energy concentrated at7 Hz. This corresponds to the average of
the three frequencies present inx1 (each of which has the same amplitude) and gives no useful information about the
original signal. This averaging is due to the fact that the Hilbert transform computes a single instantaneous frequency
for the signal. The Hilbert spectrum ofx2 illustrates the effect of a nonzero mean. In this case, the estimated frequency
is distorted and the2-Hz harmonic is not identified at all.
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Figure 1. Time-frequency spectra from the Hilbert transforms of the signalsx1 and x2.
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Figure 2. Empirical mode decomposition and the Hilbert-Huang spectrum of the signalx1.

Figure 2 displays the signalx1 and its decomposition into four IMFs (imf1=c1, imf2=c2, etc.) and a residual.
Clearly, each IMF has captured a different frequency component of the original signal. The fourth IMF is extremely
small and results from boundary effects in the EMD process. The Hilbert spectra of the individual IMFs are plotted
together in Fig. 2. Now, an effective Hilbert spectrum, or Hilbert-Huang spectrum, ofx1 has been obtained, with
all three frequency components clearly identified. Similarly, Fig. 3 depicts two IMFs and a residual generated from
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Figure 3. Empirical mode decomposition and the Hilbert-Huang spectrum of the signalx2.

the signalx2. The2-Hz frequency component has been sifted into the first IMF and the ramp component has been
identified as the second IMF. The mean of the signal is2, which has been separated out as the residual. The Hilbert
spectrum clearly shows the2-Hz component and estimates a low frequency for the ramp component. This occurs
because the ramp is treated as part of a low frequency wave. The IMFs and Hilbert spectra in Figs. 2 and 3 illustrate
that there are some minor boundary effects associated with the EMD process. Most importantly, these examples
demonstrate that EMD makes it possible to apply the Hilbert transform to signals that otherwise do not admit well-
behaved Hilbert transforms.
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Figure 4. Empirical mode decomposition (EMD) and the Hilbert-Huang spectrum of the sum of two sinusoidal frequency
modulations (FMs) and one Gaussian wave packet. Original signal (top), FM1, FM2, Gaussian wave packet, and residual.

Finally, two more examples20 illustrate automatic and adaptive (signal-dependent) time-variant filtering of general
mixtures of signals. A signal composed of three components which significantly overlap in time and frequency is
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Figure 5. Empirical mode decomposition of the sum of one sinusoid with two triangular waveforms.
Original signal (top), high-frequency triangular, sinusoid, low-frequency triangular, and residual.

successfully decomposed in Fig. 4 for the sum of two sinusoidal frequency modulations and one Gaussian wave
packet. Another example, accenting the nonharmonic nature of EMD, is given in Fig. 5. The analyzed signal (top) is
the sum of three components, a sinusoid superimposed on two triangular waveforms with periods smaller and larger
than the sinusoid. The decomposition performed by the EMD is given in the three IMFs and the residue. In this
case, both linear (sinusoid) and nonlinear (triangular) oscillations are effectively identified and separated. Harmonic
analysis (Fourier, Morlet wavelets) would produce a less succinct and more nondescriptive decomposition.

Filtering Properties

The filtering properties of EMD have been studied in some detail.6,7,24 The EMD process yields a data-dependent
decomposition that focuses on local characteristics of the signal. In particular, EMD sifts out the highest-frequency
component in the signal at any given time. Indeed, EMD has surprisingly been shown to behave as a dyadic bandpass
filter when decomposing Gaussian white noise, much like a multiresolution wavelet decomposition. However, the
EMD method as an equivalent dyadic filter bank is only in the sense of its global behavior over the entire time extent.
In representing the time-frequency distribution, the Hilbert spectrum of each IMF is actually localized at any time.
This is different from predetermined filtering such as with Morlet wavelet filtering.

Analytical Interpretation

The EMD is faced with the fundamental difficulty of not admitting an analytical definition, but of rather being defined
by the algorithm itself, thus making the analysis of its performance and limitations difficult. The need for rigorous
mathematical foundation is imperative. This fundamental problem of the empirical mode decomposition has to be
resolved since only with the intrinsic mode function can nonlinear distorted waveforms be resolved from nonlinear
processes. There have been attempts to circumvent the mathematical difficulties in the EMD with some success by
casting the IMFs in terms of B-splines,3 and applying towards mechanical system fault-detection.15 System identi-
fication of the IMFs as a multi-component system is suggestive in the light of multiresolution system identification
procedures such as multiresolution singular value decompositions, Kalman filters, and subspace algorithms.
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More significantly, characterization of IMFs as solutions to certain self-adjoint ordinary differential equations is
demonstrated.21,22 Construction of envelopes which do not rely on the Hilbert transform is used directly to compute
the coefficients of the differential equations. These equations are natural models for linear vibrational problems and
provide further insight into both the EMD procedure and utilizing its IMF components to identify systems of differen-
tial equations naturally associated with the components. One of the uses of the EMD procedure is to study solutions to
differential equations, and vibration analysis was a major motivation in the development of the Sturm-Liouville theory.

Hilbert Transform and Instantaneous Frequency

The Hilbert transform of a time-domain function or signalx is defined in Eq. 3,

y(t) = H{x(t)} =
1
π

PV
∫ ∞

−∞

x(τ)
t− τ

dτ (3)

where PV denotes the Cauchy principal value, needed because the integrand is singular atτ = t. The Hilbert transform
can be viewed as the convolution of the original signal with1/t, emphasizing temporal locality ofx(t). Note that,
unlike Fourier analysis, the Hilbert transform of a time-domain signal is another time-domain signal. The Hilbert
transform is sometimes applied to frequency-domain signals using a similar expression as Eq. 3, but this paper will
focus on the time-domain case. In practice, the Hilbert transform is usually calculated using the Fourier transform.
Therefore, the fast Fourier transform algorithm can be employed for the efficient calculation of the Hilbert transform.

A signal,x, and its Hilbert transform,y, can be used to define a complex analytical signal as in Eq. 4.

z(t) = a(t)eiθ(t) = x(t) + iy(t) (4)

Therefore, the Hilbert transform pair{x(t), y(t)} can be expressed as a harmonic function with time-varying amplitude
a(t) and time-varying phase angleθ(t).

a(t) =
√

x(t)2 + y(t)2

θ(t) = tan−1

(
y(t)
x(t)

)

Given the time-dependent phase angle, the instantaneous frequency of the signal can be defined as5

ω(t) =
dθ(t)
dt

.

In the context of Eq. 3 with instantaneous frequency, the Hilbert transform of an IMF can be interpreted as giving
the best fit with a sinusoidal function to the data weighted by1/t. Instantaneous frequency can be computed using
the derivative definition or centralized finite difference.5 In general, there are an infinite number of ways to express a
signal as in Eq. 4, so there can also be an infinite number of instantaneous frequencies. The Hilbert-transform pair was
proposed to uniquely define the amplitude and phase by building the complex analytic signal from the given signal
with the original signal,x(t), as the real part and the orthogonal transformed signal,y(t), the imaginary part, out of
phase withx(t) by π

2 . Note that Fourier analysis yields the decomposition

x(t) =
∞∑

j=0

aje
iωjt

which is similar to the form of the Hilbert transform in Eq. 4. A key difference, however, is that the Fourier de-
composition is in terms of harmonics with constant amplitudes and frequencies. In contrast, the Hilbert transform
yields instantaneous amplitudes and frequencies. Therefore, in principle, the Hilbert transform is an ideal tool for the
time-frequency analysis of a general class of signals, including nonstationary signals.
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Another important distinction between Fourier analysis and the Hilbert transform is that the Fourier decomposition
is in terms of multiple harmonics of constant amplitude and frequency, thereby producing artificial harmonics to
maintain energy conservation for nonstationary and nonlinear data. In contrast, the Hilbert transform of a signal
yields an expression in terms of a single harmonic with a time-varying frequency and amplitude. For this reason, the
Hilbert transform is only suitable for the analysis of mono-component signals, or signals that are composed of a single
frequency component at any instant in time. This is a considerable limitation as it implies that the Hilbert transform
cannot be directly applied to signals that are composed of multiple harmonics. As was shown, the Hilbert transform
fails to identify the individual frequencies and instead computes a single instantaneous frequency that corresponds to
a weighted average of the component frequencies. The resulting instantaneous frequency is both physically invalid
and erroneous4 since a multi-component signal has more than one instantaneous frequency. An additional limitation
of the Hilbert transform is that it yields extremely distorted estimates of the instantaneous frequencies of signals with
nonzero mean and signals that have more local extrema than zero crossings.

The EMD responds to the dilemma surrounding the applicability of instantaneous frequency. It decomposes a
multi-component signal into its associated mono-components while not obscuring or obliterating the physical essen-
tials of the signal and allows the traditional definition of instantaneous frequency to be complete by being applicable to
signals of both mono- and multi-component. To follow the true frequency evolution within a multi-component signal,
it is necessary to break down the components into individual and physically meaningful intrinsic parts. The adaptive
and nonarbitrary decomposition using EMD produces an orthogonal set of intrinsic components each retaining the
true physical characteristics of the original signal. The mono-components or intrinsic modes satisfy the conditions for
a well-defined notion of instantaneous frequency. These conditions include symmetry, no dependence on predefined
time scales, revelation of the nature of simultaneous amplitude and phase variation, and near-orthogonality.

Finally, since instantaneous frequency displays frequency variation with time, changes of dynamic states indica-
tive of nonlinearity can be identified. For example, if the instantaneous frequency of a new mode is about half of the
frequency of the old mode in a bifurcation, period doubling occurs. If the instantaneous frequency of the new mode is
disproportionate with the old mode, quasi-periodic bifurcation occurs. Similarly, intermittence and chaotic motion can
be determined. A dynamic state can be diagnosed simultaneously by observing the changes in time of the instanta-
neous frequency components and their corresponding energy. In summary, the concept of mode defined in relation to
instantaneous frequency as a periodic-modal structure in the instantaneous time-frequency plane is found to be more
appropriate than artificial sinusoidal harmonics in characterizing nonlinear responses.25 Instantaneous frequency is a
quantity critical for understanding nonstationary and nonlinear processes.

Local On-Line Decompositions

In the original EMD formulation, sifting iterations are applied to the predefined full length signal as long as there
exists a locality at which the mean of the upper and lower envelopes is not considered sufficiently small enough.
Excessive iterations on the entire signal to achieve a better local approximation contaminates other parts of the signal
by overcompressing the amplitude and overdecomposing it by spreading out its components over adjacent intrinsic
modes, i.e., overiteration leads to overdecomposition. The various stoppage criteria (to fulfill that the number of
extrema and the number of zero crossings must differ at most by one, and that the mean between the upper and
lower envelopes must be close to zero) are attempts to avoid the rigor of the symmetry of the envelopes without a
mathematically rigorous definition for an adaptive basis. The hierarchical and nonlinear nature of the EMD algorithm
will not provide that the EMD of segmented signals will be the segmentation of individual EMDs. Therefore, a
variation referred to as local EMD20 introduces an intermediate step in the sifting process. Localities at which the
error remains large are identified and isolated, and extra iterations are applied only to them. This is achieved by
introducing a weighting function such that maximum weighting is on those connected segments above a threshold
amplitude, with a soft decay to zero outside those supports, much like soft-thresholding is done in wavelet denoising.

Another option is based on the idea that sifting relies on interpolations between extrema, and thus only requires
a finite number of them (five minima and five maxima in the case of the recommended cubic splines3,8) for local
interpolation. Extraction of a mode could therefore be moving blockwise instead of globally over the entire time span.

8 of 29

American Institute of Aeronautics and Astronautics



This led to the development of the on-line EMD.20 A prerequisite for the sliding window extraction of a mode is to
apply the same number of sifting steps to all blocks in order to prevent possible discontinuities. Since this would
require the knowledge of the entire signal, the number of sifting operations is proposed to be fixed a priori to a number
less than 10 for effective application of the on-line version of the EMD algorithm operating in coordination with the
local EMD described above. The leading edge of the window progresses when new data become available, whereas the
trailing edge progresses by blocks when the stopping criterion is met on a block. Therefore, an IMF and corresponding
residual are computed sequentially, then again applied to this residual, thus extracting the next mode with some delay.

An aileron command multisine input used on the F/A-18 AAW for aeroservoelastic response and flutter clear-
ance is shown in Fig. 6 (top plots) using the standard EMD (left) and local/on-line version (right). The bandpass
nature of IMFs6,7,24 is reflected in the three standard IMF mean frequencies,{23.9, 16.3, 7.7} Hz for each of IMFs
{#1, #2,#3}, respectively, and on-line corresponding IMF mean frequencies{23.6, 13.0, 7.2} Hz. Immediately no-
ticeable is the more efficient extraction of the signal components by the local/on-line algorithm, most evident by the
sparse second and third IMFs (imf2 and imf3) being more sparse than the corresponding standard IMFs. Besides the
obvious advantage of an on-line algorithm for decomposing data, it has been found to clearly surpass the standard
global algorithm in terms of computational burden, especially with long original data records. An added bonus is that
it generally has better orthogonality properties among the IMFs, witnessed by an order of magnitude improvement in
the orthogonality index defined in Eq. 2.
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Figure 6. Standard (left) and local/on-line (right) empirical mode decomposition of an F/A-18 AAW multisine aileron com-
mand input, with original signal at top and residual at bottom.

Local Analytic Signal Correlation

Since the IMFs allow permissible, meaningful, physically sensible, and unique interpretations of instantaneous
frequency of general signals of interest, they fit into the class of asymptotic signals such that the time variation of
the IMF amplitude and frequency may directly be recovered from the time variation of the amplitude and of the
phase derivative of the associated analytic signal. An IMF after performing the Hilbert transform can be written as
in Eq. 4. These complex components are now used for analysis of analytic data correlations1,2 between input-output
and amongst spatially distributed sensor outputs. Note that these analyses are all local in nature since there are no
assumptions of stationarity, and differ from classical double-time expressions1 by being instantaneous.

9 of 29

American Institute of Aeronautics and Astronautics



Local Correlation Coefficient

Correlations are made between transformed IMFs of various signals given the associated complex analytic signals

Zx(t) = Ax(t)eiφx(t) = x(t) + ixH(t)
Zy(t) = Ay(t)eiφy(t) = y(t) + iyH(t)

by considering thecross-analyticsignal defined in Eq. 5 by

Zxy(t) = Z∗x(t)Zy(t) = Ax(t)Ay(t)eiφxy(t) = Ax(t)Ay(t)ei[(ωy−ωx)t+(φ0y−φ0x)] (5)

which is not necessarily analytic but can be used to characterize the time variation of the phase difference between
componentsat similar frequenciesextracted from two simultaneously acquired signals. This Hilbert demodulation
technique is only applicable for analytic components, in this case the transformed IMFs of the original signals. If the
two components are mainly in-phase and a change occurs in the cross-analytic signal, the instantaneous frequencies of
the two components may be drifting apart and this produces an instantaneous contribution to the phase difference from
Eq. 5. A measure of the local correlation between components, in terms of simultaneous changes in instantaneous
amplitude or frequency (phase) between analytic signals, is the Hilbert Local Correlation Coeffcient,HLCC.

HLCC(t) = Re[Zxy ]
|Zxy| = cos[φxy(t)].

As a simple illustration of the utility of theHLCC, Fig. 7 shows the EMDs of wingtip accelerometer responses
(accels) due to a symmetric aileron input, with the top plot in each set being the original signal, followed by EMDs
1-3 and the residual. The top two sets represent the forward (fwd) wingtip accels, and corresponding IMFs seem not
to compare quite as well as the bottom two IMF sets of aft wingtip accels for the same input. The bottom IMF sets
seem much more correlated with each other than the top two sets.

Table 1 lists the means, medians, and standard deviations of theHLCC data over the time span of the maneu-
ver. Note thatHLCCmn

xy indicates correlation coefficients between Accel#m and Accel#n, using cross-analytic IMF
functionZxy correlating Accel#m’s IMFx to Accel#n’s IMFy. Results from the table indicate strongest Hilbert local
correlation coefficients forZxy whenx = y, as expected since this is a correlation between similar bandpass char-
acteristics of IMFs from different responses due to the same input. For comparison, the standard statistical signal
correlation coefficient between Accel#1 and #3 isC13 = 0.8633, and between Accel#2 and #4 isC24 = 0.8332
(correlating fwd-to-fwd accels and aft-to-aft accels, respectively, wingtip-to-wingtip). This is consistent with the top
original signal plots in Fig. 7 in that the forward wingtip accels (top two, fwd) seem to correlate reasonably well with
each other, as also between the bottom two (aft), but not top compared with the bottom. Evident in Table 1 is the com-
mon standard deviations (STD in all the correlations, nearSTD = 0.7). In theHLCC values good commonality
is found between the mean and medians comparingHLCC13 andHLCC24 in that the trend is similar amongst the
cross-analytic IMF functionsZxy wherex andy correspond to respective IMF numbers in different accel EMDs. This
is surprising, since in Fig. 7 the correlation in corresponding IMFs seems much worse between the two fwd accels (top
plot IMFs) than between the two aft accels (bottom plot IMFs).

Figure 8 shows theHLCC functions between Accel#1 and Accel#3 (HLCC13
xy) at 5-20 s. Decomposing and

representing correlations in this fashion allows a true time-localized instantaneous measure revealing subtle properties
in the data and inconspicuous relations to other data sets using analytic components.

Instantaneous Transfer Function

In addition to investigating correlations between sensors, an instantaneous system transfer function is introduced with
instantaneous magnitude and theHLCC as a phase parameter between input-output analytic signals. This is viable in
terms of the HHT inducing analytic properties to the IMFs to yield localized system input-output properties. Instanta-
neous transfer function (ITF ), its instantaneous magnitude (IM ), and its instantaneous phase (IP ) are defined.

ITF (t) =
Zxy(t)
Zxx(t)

; IM(t) = |ITF (t)|; IP (t) = cos−1[HLCC(t)] = φxy(t)
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Figure 7. EMDs (with constant vertical plot scales) of F/A-18 AAW aircraft left-fwd wingtip accel (top left, Accel#3), right-
fwd wingtip accel (top right, Accel#1), left-aft wingtip accel (bottom left, Accel#4), and right-aft wingtip accel (bottom right,
Accel#2), responses from the multisine symmetric aileron command shown in Fig. 6 (original signal at top and residual at
bottom in each set).

In Fig. 9 the top set of plots represent instantaneous magnitude (IMa1
xy ) and the bottom plots represent instantaneous

phase (IP a1
xy ) from the instantaneous transfer function (ITF a1

xy ) of the aileron command input (Fig. 6) to Accel#1
(top right, Fig. 7) analytic IMFs (Hilbert-transformed i.e.,{Zx, Zy}). Note thatITFmn

xy indicates transfer functions
between Input#m and Accel#n, using cross-analytic IMF functionZxy correlating Input#m’s IMFx to Accel#n’s IMFy.
In this sense, by interpreting the input-output Hilbert-transformed pairs of IMFs as a multi-component system of
input-output signals, local stability measures are deemed to be feasible by tracking gain, phase, and instantaneous
frequencies between each IMF pair. How these local IMF properties correspond to global system properties, given
the analytic transformed IMFs, and aeroelastic and aeroservoelatic applications in stability and health monitoring, is
currently being researched.
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Table 1. HLCC results from F/A-18 AAW wingtip acceleration data.

Zxy MeanHLCC13 MedianHLCC13 STD13 MeanHLCC24 MedianHLCC24 STD24

Z11 0.3283 0.5968 0.6801 0.2733 0.5309 0.7060

Z12 0.0917 0.1782 0.7171 0.0502 0.1080 0.7142

Z13 0.0098 0.0252 0.7113 0.0005 -0.0106 0.7057

Z21 0.0953 0.1870 0.7148 0.0492 0.0896 0.7095

Z22 0.1844 0.3500 0.7048 0.2197 0.4012 0.7023

Z23 0.1187 0.2364 0.7136 0.0692 0.1319 0.7052

Z31 -0.0071 -0.0175 0.7075 0.0032 0.0062 0.7056

Z32 0.0845 0.1753 0.7097 0.0996 0.2025 0.7183

Z33 0.2403 0.4425 0.6866 0.1553 0.2877 0.7027
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Figure 8. HLCC13
xy functions between IMFs of Accel#1 (top right, Fig. 7) and Accel#3 (top left, Fig. 7).
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Empirigrams and Empirical Local Correlation Coefficient

Given two EMDs from different signals, select a common number of IMFs to use for correlation (as three were selected
in earlier examples for input and outputs). This is generally not difficult, especially for aeroelasticity data, since
the higher-numbered IMFs approach a residual characteristic quickly. From the transformed IMFs,{Zx(t), Zy(t)},
define the corresponding set of two-dimensional Hilbertempirigrams, {Hx(ηx, t),Hy(ηy, t)}, where for each common
η = ηx = ηy, the IMF number from the input EMD corresponds with the output EMD. Define in Eq. 6 the Hilbert
cross-empirigram

Hxy(η, t) = H∗
x(η, t)Hy(η, t) (6)

which correlates the respective IMFs from the two Hilbert empirigrams. Empirigrams relate to time-scale wavelet
scalograms,5 which relate to time-frequency maps, since scales relate to frequencies in standard wavelet decomposi-
tions. Because of the bandpass nature of IMFs discussed previously, a similar construction emanates with the HHT. As
with wavelet scalograms, the real part of the cross-empirigram (co-empirigram) gives the instantaneous contribution
of each IMF to the correlation between two signals. An Empirical Local Correlation Coefficient,ELCC(η, t), is then
defined as

ELCC(η, t) = Re[Hxy(η,t)]
|Hxy(η,t)| =

Re[Hxy(η, t)]
|Hx(η, t)||Hy(η, t)|

whereELCC(η, t) (between±1, as theHLCC) gives the instantaneous contribution between corresponding IMFs
from the two signals to the correlation coefficient. Figure 10 shows an imaged decomposition plot of theELCC
between the input signal from Fig. 6 to Accel#1 in Fig. 7, but includes all nine IMFs from the EMDs of the input
and output. The first row represents the contributions of the first input IMF to first output IMF, etc., up to the ninth
IMF. In each IMF row there is much oscillation (higher frequency in the first and lower frequency to the ninth) of
contributions from corresponding IMFs to the correlation. There are generally stronger correlations over longer time
spans in the higher-numbered IMFs (lower frequencies), but the lower-numbered IMF correlations are less obvious
due to the higher frequency content. There is a tendency to cycle from high-to-low-to-high [strong(positive)-to-none-
to-strong(negative)] correlation very rapidly. A more detailed depiction in the zoomed-in bottom plot, between 10-11
s, demonstrates a rich interplay between correlation of mid-to-lower IMFs (higher frequencies) over the shorter time
period. Yet another view is presented in Fig. 11, where the contours are split up discretely in three dimensions showing
the heavy emphasis in the higher frequencies because the contours are more congested in each of the IMF levels. These
representations highlight the areas of commonality and incongruity between corresponding input-output IMFs.

From the Hilbert spectrumH(ω, t) the energy spectrumH2(ω, t) gives instantaneous energy,

IE(t) =
∫

ω

H2(ω, t)dω

which is an indication of the energy fluctuations with time being weighted by the Hilbert spectrum localized energy
over the entire set of IMFs. Corresponding to the signals in Fig. 7 are the instantaneous energy profiles of the output
accelerometer responses in Fig. 12 (top set of four plots). The aft wingtip accels (bottom plots) are very similar (from
the symmetric aileron input), indicating energy at{7−10, 13−20, 30} s time locations. In this case, with the particular
multisine input from Fig. 6 programmed over the3 − 35 Hz frequency range, these times correspond closely to the
primary F/A-18 AAW modal frequencies in a corresponding frequency range, i.e.,{6−9, 12−20, 30−35}Hz, as will
be shown with marginal Hilbert spectra. The forward accelerometer responses in the top plots are also very similar
indicating modes near{6, 12− 17, 25− 32} Hz. Instantaneous energy over a sensor suite is therefore a nonstationary
indicator of time-varying energy distribution amongst the sensor array.

Marginal Spectra

From the Hilbert spectrumH(ω, t), the marginal spectrum is also defined.

h(ω) =
∫

t

H(ω, t)dt
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Figure 10. Empirical local correlation coefficient ELCC plots using two different representations of theELCC between
the input signal from Fig. 6 to Accel#1 in Fig. 7. Top plot is an intrinsic mode component-by-component depiction, starting
from the first at the top to the ninth at the bottom, where individual intrinsic functions are clearly delineated. Bottom plot
is zoomed-in portion between 10-11 s of the sameELCC. 15 of 29
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Figure 12. Instantaneous energy (top plot set) and marginal spectra (bottom plot set) of right-fwd wingtip accel (top right,
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Corresponding to the signals in Fig. 7 are the marginal spectra of the output accelerometer responses in Fig. 12 (bottom
set of four plots). The aft wingtip accels (bottom plots) are again similar showing modal response at{5 − 10, 12 −
20, 30 − 35} Hz. The forward accelerometer responses in the top plots are also again very similar indicating modes
near{6, 12− 17, 25− 32} Hz.

The marginal spectrum measures total amplitude (or energy) contributions from each frequency value over the
entire data record in a probabilistic sense. Frequency in eitherH(ω, t) or h(ω) is very different from Fourier spectral
analysis. In the Fourier analysis the existence of energy at a frequency implies a wave component persisting through
the data. Energy at the marginal Hilbert frequency, however, implies a higher likelihood (expected value over time)
for such a wave to have appeared locally. As stated earlier, the Hilbert transform of an IMF gives the best fit with
a sinusoidal function to the data weighted by1/t, which makes it instantaneous. In fact, the Hilbert spectrum is
a weighted nonnormalized joint amplitude-frequency-time distribution in which the weight assigned to each time-
frequency cell is the local amplitude. Consequently, frequency in the marginal spectrum indicates only the likelihood
that an oscillation with such a frequency exists. Exact occurrence of frequency content is given in the full Hilbert
spectrum. The Fourier spectrum is meaningless for nonstationary data, and there is little similarity between Hilbert
and Fourier from previous studies8,9 for nonstationary data. Also, marginal cross-spectra between signals does not
make sense since the time-dependence (causality) is lost and the frequencies are time-ignorant, so an input-output
correlation at a certain frequency is meaningless.

The time-frequency Fourier spectrum, a spectrogram, suffers from the same restrictions over time due to window-
ing distortions. There is a lower bound on the local time-frequency resolution uncertainty product of the spectrogram
due to the windowing operation.This limitation is an inherent property of the spectrogram and is not a property of
the signal or a fundamental limit.17 For many other time-frequency distributions, the local uncertainty product is less
than that of the Fourier spectrogram and can be arbitrarily small. These results are contrary to the common notion that
the uncertainty principle limits local quantities. Similar considerations apply to window-based filter bank (wavelet)
methods. This limitation is due to the window and not to any inherent property of the signal.

This is a key point for application and understanding of HHT analysis, that windowing is not a factor, so standard
time-frequency resolution limitations based on the uncertainty principle do not apply. As seen in the on-line analysis,
an adaptive sliding window method has good performance simply requiring adequate data in the window to initiate a
sifting process for satisfying the two IMF properties for analyticity.

Wing Dynamics Analysis

Dynamics between different sensors from the same input will now be investigated. This information will be used to
guide the analysis of a group of wing accelerometer responses from a single input in terms of input-output correlation
contribution for the F/A-18 AAW aircraft18 and Aerostructures Test Wing (ATW).12

F/A-18 Active Aeroelastic Wing (AAW) Aircraft

Collective F/A-18 AAW aileron position, used as the multisine input, was obtained as the average of four position
transducer measurements from the right and left ailerons. Outputs are twelve wing structural accelerometers located at
the left (six accels) and correponding right (six accels) outer wings, all sampled at 400 sps, as designated in Table 2.
EMDs were calculated for the input and all outputs, with mean frequencies calculated for all the output IMFs compared
to the single input IMFs. Table 3 is a summary of the results. Included are the first six IMFs averaged amongst the
accels, percentage differences of these compared to the input IMFs, and standard deviations of output sensor IMFs.
The accels correspond very well amongst each other in IMF frequencies (as frequency decreases, from left to right).
The comparison to the input frequency is excellent even though input and output EMDs are performed independently.
Orthogonality of the IMFs in each case was also very good. This shows that for this type of data, where responses
are all from a common input (whether it is known or not), IMFs can be used for sensor-to-sensor correlation and
input-output analysis.

Now the concept of the using the essentially-orthogonal analytic IMFs from the inputs and outputs is pursued to
establish a multi-loop connotation of input IMFs to output IMFs for correlation and even stability properties. The

18 of 29

American Institute of Aeronautics and Astronautics



Table 2. F/A-18 AAW wing accelerometer nomenclature.

3. L-wt-fwd 1. R-wt-fwd

3. Left-wingtip forward 1. Right-wingtip forward

7. L-wof-fwd 5. R-wof-fwd

7. Left-wing outer-fold forward 5. Right-wing outer-fold forward

11. L-wif-fwd 9. R-wif-fwd

11. Left-wing inner-fold forward 9. Right-wing inner-fold forward

4. L-wt-aft 2. R-wt-aft

4. Left-wingtip aft 2. Right-wingtip aft

8. L-wof-aft 6. R-wof-aft

8. Left-wing outer-fold aft 6. Right-wing outer-fold aft

12. L-wif-aft 10. R-wif-aft

12. Left-wing inner-fold aft 10. Right-wing inner-fold aft

Table 3. IMF frequencies from F/A-18 AAW input collective aileron position
and outer wing response data.

Signal IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

0. Input 116.62 59.61 29.34 16.75 9.05 4.90

1. R-wt-fwd 99.05 56.94 27.90 12.56 6.96 3.62

2. R-wt-aft 123.85 71.36 35.15 16.83 9.35 5.02

3. L-wt-fwd 114.47 66.05 33.78 15.06 7.95 5.32

4. L-wt-aft 127.56 78.71 41.73 21.06 11.92 6.58

5. R-wof-fwd 105.83 58.52 32.06 17.17 9.34 5.47

6. R-wof-aft 96.31 54.96 29.24 14.91 8.64 4.63

7. L-wof-fwd 115.93 58.77 30.88 16.59 8.66 4.32

8. L-wof-aft 102.99 52.76 27.14 15.35 8.65 4.83

9. R-wif-fwd 112.19 60.61 31.99 17.78 9.90 5.17

10. R-wif-aft 115.39 64.07 36.09 19.05 10.29 5.72

11. L-wif-fwd 124.91 66.06 32.99 18.32 10.53 5.19

12. L-wif-aft 129.41 66.05 34.02 17.97 9.66 4.92

Average Output IMF Frequencies

Absolute 114.0 62.9 32.8 16.9 9.3 5.1

Wrt Input 2.3% 5.2% 10.4% 0.8% 2.9% 3.2%

Output IMF Frequency STDs

Absolute 11.2 7.3 4.0 2.2 1.3 0.7

Wrt Mean 9.8% 11.7% 12.1% 13.2% 13.9% 14.4%

input IMFs are interpreted as an orthogonal decomposition of the input(s), and the same for output IMFs for out-
put(s). This can be generalized to multi-input-multi-output (MIMO) signal analysis where in reality each signal is
represented by its EMD. Recall from the transformed input-output IMFs,{Zx(t), Zy(t)}, the corresponding set of
empirigrams{Hx(ηx, t),Hy(ηy, t)} were defined in Eq. 6 for each set ofη = ηx = ηy common IMFs from the
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input and output EMDs. For the analysis described here it is not necessary to use an identical number,η, of IMFs
from input and output (but this restriction is maintained here for simplicity). Then the Hilbert cross-empirigram
Hxy(η, t) = H∗

x(η, t)Hy(η, t) correlates the respective analytic IMFs from the two Hilbert empirigrams. Now define

σxy(η) = σ[H∗
x(η, t)HT

y (η, t)]

whereσxy represents theη-vector of singular values from the singular value decomposition (SVD) of the product of the
empirigrams. The singular values represent relative contributions from the principal cross-correlation analytic IMFs as
a result of correlation of all input analytic IMFs to all output analytic IMFs over the entire time span. Therefore, higher
σ-valued cross-analytic IMFs have more input-output significance in terms of operator norm from input to output. The
maximum singular value,̄σxy = maxη(σxy(η)), of this input-output operator corresponds to the structured singular
value with a full-complex uncertainty block structure. In this context, forMηxη = H∗

x(η, t)HT
y (η, t), a complex

matrix operator of input analytic IMFs to output analytic IMFs,µ∆(M) is a measure of the smallest uncertainty
∆ = Cηxη (note that ifηx 6= ηy, then∆ = Cηyxηx is not square) that causes instability if interpreted as a constant
matrix feedback loop,30

µ{∆=Cηxη}(M) = σ̄[H∗
x(η, t)HT

y (η, t)]

and for scalar uncertainty structure∆ = {δIη : δ ∈ C} representing diagonal structure between input-output IMFs,

µ∆(M) = ρ[H∗
x(η, t)HT

y (η, t)]

whereρ is the spectral radius (largest magnitude eigenvalue). This is distinctly different from the full-block structure
in that uncertainty is only between corresponding input-output analytic IMFs (similar dominant frequencies), while
ignoring uncertainty across different analytic IMFs (of different dominant frequencies) between input and output.
This is obviously less conservative but generally less realistic as well, especially for nonlinear effects which cross
frequencies. Largerµ∆ values in either case represent effects of uncertainty between input and output such that higher
correlated IMFs relate to more sensitivity to uncertainty at those dominant IMF frequencies.

For MIMO signal analysis, it would be most appropriate to combine complex blocks (either full or scalar) for each
input-output into a multi-block structure, where each complex sub-block corresponds to an input-output analytic IMF
complex uncertainty structure. In computation this is often expanded in a block-diagonal context with repeated scalar
and full blocks,30 where in this case each of these blocks would correspond to a single input-output analytic IMF
uncertainty structure.

Table 4. Normalized µ∆ results from F/A-18 AAW left and right wing acceleration data.

Full 3. L-wt-fwd 7. L-wof-fwd 11. L-wif-fwd 9. R-wif-fwd 5. R-wof-fwd 1. R-wt-fwd

Block 4. L-wt-aft 8. L-wof-aft 12. L-wif-aft 10. R-wif-aft 6. R-wof-aft 2. R-wt-aft

Fwd-wing 0.29 0.29 0.73 1.00 0.62 0.80

Aft-wing 0.65 0.67 0.56 0.19 0.31 0.72

Scalar 3. L-wt-fwd 7. L-wof-fwd 11. L-wif-fwd 9. R-wif-fwd 5. R-wof-fwd 1. R-wt-fwd

Block 4. L-wt-aft 8. L-wof-aft 12. L-wif-aft 10. R-wif-aft 6. R-wof-aft 2. R-wt-aft

Fwd-wing 0.11 0.13 0.19 1.00 0.47 0.49

Aft-wing 0.23 0.42 0.27 0.11 0.06 0.34

To compare input-to-output correlations from aileron position to wing accels for different uncertainty structures,
structured singular values were computed for the full-block and scalar-block structures between the collective aileron
position and F/A-18 AAW wing accelerometer responses, then normalized with respect to the largest of the group.
Table 4 lists the results for both types of uncertainty structures. Accelerometer#9 has the highest correlation (=1.00)
with the input aileron position in either case. Interestingly, comparison between left and right wing accels is poor
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Figure 13. Time-varying µ∆(M, t) (dB) for full-block (top plots) and scalar-block (bottom plots) uncertainty.
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even from a symmetric aileron input, thereby indicating asymmetry and/or nonlinearity. Lowerµ∆ values indicate a
degree of robustness to uncertainty in a feedback stability sense, and as pointed out previously, scalar uncertainty is
prevalently less conservative (as evidenced from absolute values before normalizing since the normalization factor is
almost equal between the uncertainty structures). If an apriori bound on gain levels (normalization) between input-
output is defined such that‖ ∆ ‖∞< 1 is considered acceptable in some sense (stability, health diagnostic, safety
margin), thenµ∆ has an absolute (scaled) interpretation such thatµ∆ > 1 indicates that an acceptable threshold has
been exceeded, and this can be used as a health, stability, or safety monitor.

A time-dependent interpretation is also available by calculatingµ∆(M, t) at each time point.

µ∆(M, t) = ρ[H∗
x(η, ti)HT

y (η, ti)]∀ti (scalar-block uncertainty structure)

= σ̄[H∗
x(η, ti)HT

y (η, ti)]∀ti (full-block uncertainty structure).

In Fig. 13 are plots ofµ∆(M, t) for each input-to-output (aileron-to-accel) normalized analytic IMFs where it is evident
that values close to one (0 dB) are near a unity operator norm limit. Again, this depends on the bound‖ ∆ ‖∞< 1
indicating an acceptable threshold, in this case maximum input-to-output gain normalized to one. Values close to one
(0 dB) approach the acceptable limit. This uncertainty structure application has implications for model validation in
the time domain.19

Aerostructures Test Wing (ATW)

Another example which includes an actual instability is taken from Aerostructures Test Wing12 (ATW) flight test data.
The input is a sine sweep PZT voltage and outputs are three wingtip accelerometer responses. The EMDs of the PZT
input and center wingtip accelerometer output near the flutter condition are displayed in Fig. 14. Flutter response
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Figure 14. Empirical mode decomposition of the ATW input PZT (left plot) and center wingtip accelerometer (right plot) at
Mach 0.82, 10,000 feet (3,048 m) altitude, just before flutter (original signal at top and residual at bottom in each set).

EMDs of the center wingtip accelerometer and correspondingµ∆(M, t) plots between input analytic IMFs and all
three wingtip accelerometer output analytic IMFs are shown in Fig. 15. The input PZT was not activated during the
flutter occurrence, so the input is essentially a small arbitrary oscillation about zero. It is evident that at the point
of instability past 7.5 s,µ∆(M, t) appropriately approaches a value of one (0 dB) since the input and output are
normalized to unity, and assuming this limit corresponds to the limit of stability, and output response approaches its
upper limit at flutter.
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Figure 15. Empirical mode decomposition of the center wingtip accelerometer (left plot) near Mach 0.83, 10,000 feet (3,048
m) altitude, at flutter (original signal at top and residual at bottom), and time-varying µ∆(M, t) for full-block uncertainty
between input and output IMFs of the three wingtip accelerometer outputs (right plots).

Parameter Estimation Using the Hilbert-Huang Transform

The Hilbert transform can used for estimating modal parameters such as natural frequencies and damping ratios.
For a single-mode system, the damped natural frequency can be easily determined from the Hilbert transform of the
impulse response function. In this case, the damped natural frequencyωd is given by the slope of the instantaneous
phase angle plotted as a function of time, and damping ratioζ is estimated in a straightforward manner.23

For a linear single-mode system characterized by a pair of complex conjugate eigenvalues, the eigenvalues are
directly related to the modal parameters as−ζωn +ωd, whereωn denotes the natural frequency. The impulse response
function is given by

h(t) =
1

mωd
e−ζωnt sin(ωdt)

wherem denotes the mass. Provided the damping ratio is small, the following relationships hold23

H
{

e−ζωnt sin(ωdt)
}

= e−ζωnt cos(ωdt)

H
{

e−ζωnt cos(ωdt)
}

= −e−ζωnt sin(ωdt)

where again H denotes the Hilbert transform. Therefore, the Hilbert transform of the impulse response function can
be written as

H {h(t)} := h̃(t) =
1

mωd
e−ζωnt cos(ωdt).

The impulse response function can then be viewed as the real part of the following analytic signal23

z(t) = h(t) + ih̃(t)

=
1

mωd
e−ζωnt sin(ωdt) + i

1
mωd

e−ζωnt cos(ωdt).

The amplitude of this signal is given by

a(t) =
√

h(t)2 + h̃(t)2 =
1

mωd
e−ζωnt
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which represents the envelope of the impulse response. Taking the natural logarithm of the amplitude yields

ln (a(t)) = −ζωnt− ln (mωd) .

The slopeσ of the natural log ofa(t) plotted against time givesσ = −ζωn. Given thatωd can be obtained from the
slope of the phase plotted against time, and using the definition of the damped natural frequency, there resultsωn,

ωd =
√

1− ζ2ωn

ω2
d = (1− ζ2)ω2

n = ω2
n − σ2

ωn =
√

ω2
d + σ2

and the damping ratio can be calculated asζ = σ/ωn. This approach to damping estimation is in the same spirit as
the logarithmic decrement technique commonly used in structural dynamics.

Most systems have multiple modes, however, which implies that the impulse response function will generally
contain contributions from several modes. Therefore, because they are valid only for single-mode systems, logarithmic
decrement or the approach based on the Hilbert transform cannot be used for estimating damping. As emphasized
earlier, the Hilbert transform does not yield meaningful frequency information for multiple-mode systems since it
attempts to identify a single instantaneous frequency at each time step. The Hilbert-Huang algorithm makes it possible
to apply the above technique for damping and frequency estimation because it can decompose a multi-component
signal into a series of single-component signals through the EMD process. By performing EMD on the impulse
response function of a multiple-mode system, the contributions of the different modes can be extracted and analyzed
separately. This approach has been applied by Yang et al.26–28 in a series of papers in which the Hilbert-Huang
algorithm was used for parameter estimation of several multiple degree-of-freedom structures. A similar analysis is
used here to estimate damping ratios and frequencies for aeroelastic systems.

As an example, consider a prototypical linear pitch-plunge aeroelastic system that has been studied extensively
in the literature. The system consists of an airfoil with pitch and plunge degrees of freedom, and the input is the
deflectionβ of the trailing edge flap. The equations of motion for this system are given by

[
m mxαb

mxαb Iα

]{
ḧ

α̈

}
+

[
ch 0
0 cα

]{
ḣ

α̇

}
+

[
kh 0
0 kα

]{
h

α

}

= ρU2b


 clα

(
α + 1

U ḣ + 1
U

(
1
2 − a

)
bα̇

)

cmα

(
bα + 1

U bḣ + 1
U

(
1
2 − a

)
b2α̇

)

 + ρU2b

[
−clβ

cmβ
b

]
β

whereh denotes the plunge displacement of the airfoil andα represents the pitch angle. Left-hand side terms describe
the structural dynamics of the system while right-hand side terms represent quasi-steady aerodynamic forces and
moments. In this study, the flow velocityU is varied until the linear flutter speed is reached at approximatelyU =
11.8 m/s. The values of the other system parameters are held constant as listed in Table 5.

Table 5. Parameters for the pitch-plunge aeroelastic system.

m = 12.387 kg a = -0.6 clα = 6.28 kh = 2844.4 N/m

Iα = 0.065 m2kg xα = 0.2466 cmα = -0.628 kα = 2.82 Nm

ρ = 1.225 kg/m3 ch = 27.43 kg/s clβ = 3.358

b = 0.135 m cα = 0.036 m2kg/s cmβ
= -0.635

Because this system has two outputs, pitch and plunge, there are two impulse response functions that can be
measured. Each of these functions generally contains contributions from both modes of the system. As an example,
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Figure 16. Plunge and pitch impulse response functions forU = 8 m/s
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25 of 29

American Institute of Aeronautics and Astronautics



Fig. 16 depicts the pitch and plunge impulse response functions for a flow velocity ofU = 8 m/s. These were obtained
by simulating the pitch and plunge responses to an impulse applied to the trailing edge flap. The plunge impulse
responses are used over a range of flow velocities to measure frequencies and damping ratios using the Hilbert-Huang
algorithm. These impulse response functions are obtained by way of simulation in this paper, but in practice they can
be obtained by way of system identification techniques such as taking the inverse Fourier transform of the measured
frequency response function or identifying first-order Volterra kernels from measured input-output data.
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Figure 18. Instantaneous phase and amplitude plots used to estimate modal parameters from the first IMF of the plunge
impulse response function atU = 8 m/s.

The plunge impulse response functions were used to estimate the damped natural frequencies, damping ratios, and
natural frequencies over a range of flow velocities. The results are summarized in Table 6, which lists the actual and
estimated damped natural frequencies and damping ratios for flow velocities ranging fromU = 1 m/s toU = 11.9 m/s
(just past the linear flutter speed). The actual frequencies and damping ratios were calculated by solving for the
eigenvalues of the system. The estimation of the modal parameters forU = 8 m/s is demonstrated in Figs. 17 and 18.
Figure 17 illustrates the EMD of the plunge impulse response function atU = 8 m/s. In this case, both modes of
vibration are evident in the first intrinsic mode function. This is because the first, higher-frequency mode damps out
quickly and the second mode persists for a longer period of time. Therefore, the frequencies and damping ratios of
both modes were estimated by using different portions of the first IMF, as depicted in Fig. 18. The figure shows plots
of the instantaneous phase and the natural log of the amplitude of the first IMF. Recall that the slopes of these lines
are used to estimate the modal parameters. The initial portion of the amplitude plot is not a straight line because of
initial transients in the IMF and possible boundary effects. Therefore, the portions of the plot that most resembled
straight lines were used for the slope calculations for each mode, as labeled in the figure. Because this analysis
technique is only approximate depending on the magnitude of the damping ratio (increased error for larger damping),
the amplitude curve tends to oscillate about an average slope. Therefore, the slope in each case was obtained using a
linear least-squares curve-fit of the data.26–28

The results presented in Table 6 show that the estimates of the damped natural frequencies and damping ratios are
fairly accurate in most cases. As the linear flutter speed (approximatelyU = 11.8 m/s) is approached, the plunge
mode is not discernible in the IMFs. In this regime, the system behaves essentially as a single-mode system and it was
not possible to estimate the damping and frequency of the plunge mode. The actual and estimated damping ratios for
each mode are plotted as a function of flow velocity in Fig. 19.

A few observations are now presented. The first IMF was used to estimate the parameters of both modes. The
analysis would be somewhat cleaner if each mode appeared in a different IMF. This is indeed the case in the work of
Yang et al.26–28 in which the frequency range of each IMF is controlled in the EMD process. Therefore, controlling the
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Table 6. Actual and estimated damped frequencies and damping ratios.

Velocity (m/s) Actualωd (Hz) Estimatedωd (Hz) Actualζ Estimatedζ

1 Plunge 2.765 2.735 .0854 .0874

Pitch 1.027 1.022 .0441 .0444

3 Plunge 2.739 2.709 .0855 .0881

Pitch 1.057 1.050 .0503 .0490

5 Plunge 2.684 2.655 .0862 .0895

Pitch 1.119 1.096 .0553 .0591

7 Plunge 2.595 2.567 .0877 .0926

Pitch 1.217 1.214 .0590 .0579

9 Plunge 2.454 2.452 .0906 .0957

Pitch 1.366 1.362 .0607 .0637

11 Plunge 2.198 – .1012 –

Pitch 1.628 1.619 .0544 .0544

11.5 Plunge 2.073 – .1174 –

Pitch 1.755 1.744 .0392 .0394

11.6 Plunge 2.040 – .1262 –

Pitch 1.788 1.775 .0305 .0305

11.7 Plunge 2.009 – .1392 –

Pitch 1.819 1.806 .0176 .0177

11.8 Plunge 1.984 – .1552 –

Pitch 1.844 1.831 .0016 .0017

11.9 Plunge 1.967 – .1713 –

Pitch – – -.0145 -.0146
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Figure 19. Actual and estimated damping ratios.

frequency range of each IMF is an option that could enhance the parameter estimation procedure. Also, even though
parameters for both modes were estimated using a single IMF, the same results would generally not be obtained from
an analysis of the impulse response function without the benefit of EMD. Although the IMF used in the analysis
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contains contributions from two modes, only one mode is present in the signal at any point in time. In contrast,
the impulse response function may contain contributions from both modes over the same time period. This example
demonstrates some potential benefits of the HHT for extracting modal parameters from aeroelastic flight data.

Conclusions

Application of the Hilbert-Huang algorithm for system signal decompositions, studying the effect of enhancements
such as local/on-line behavior, understanding filtering properties, and especially for investigating correlations between
input-output and between system sensors in terms of instantaneous properties, is revealed. System input-output signal
analysis is introduced to characterize the time-varying amplitude and frequency components of multiple data channels,
including input-to-output and distributed sensors, in terms of the intrinsic mode functions (IMFs) of the Hilbert-Huang
transform (HHT). Significant departures from Fourier and other time-frequency or time-scale wavelet approaches are
exposed. In these respects, this paper attempts to show how the HHT behaves in a sometimes nonintuitive and subtle
manner in the analysis of F/A-18 Active Aeroelastic Wing (AAW) aircraft aeroelastic flight test data. Online stability
analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18
Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.

An objective signal-adaptive basis function derivation, the Hilbert-Huang algorithm yields intrinsic mode functions
giving instantaneous frequencies as functions of time that permit identification of imbedded structures. There is a
multiresolution quality in the empirical mode decomposition process which even deals with intermittency by allowing
multiple time-scales within an intrinsic mode function, but not allowing a similar time-scale simultaneously with
other IMFs. System identification in the IMF sub-component environment is a practical endeavor in the domain of
multiresolution system identification. It should be noted that the idea of exploiting local properties for signal analysis
applies to spatial data as well as temporal data with frequency and scale (translation and duration) variations. From
the idea of empiquency to describe oscillations in images based on extrema points there are potential applications for
general time-space-frequency-scale signal processing.

Modern intelligent control and integrated aerostructures require control feedback signal processing congnizant of
system stability and health. Time-varying linear or nonlinear modal characteristics derived from flight data are all
within the realm of HHT. Further research will investigate these issues and HHT connections between localized in-
stantaneous dynamics, health diagnostics, and global system stability and performance for monitoring and prediction.
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7Flandrin, P. and P. Gonçalvès, “Empirical Mode Decompositions as Data-Driven Wavelet-Like Expansions,” accepted for publication in

International Journal of Wavelets, Multiresolution and Information Processing, 2005.
8Huang, N. E., Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N-C Yen, C.C. Tung, and H.H. Liu, “The empirical mode decomposition

and the Hilbert spectrum for nonlinear and non-stationary time series analysis,”Proc. Royal Society London A, 454(1998), pp. 903-995.
9Huang, N. E., Z. Shen, and S.R. Long, “A New View of Nonlinear Water Waves: The Hilbert Spectrum,”Annual Review of Fluid Mechanics,

31(1999), pp. 417-457.
10Huang, N. E., M-L.C. Liu, S.R. Long, S.S.P. Shen, W. Qu, P. Gloersen, and K.L. Fan, “A confidence limit for the empirical mode decompo-

sition and Hilbert spectral analysis,”Proc. Royal Society London A, 459(2003), pp. 2317-2345.
11Jha, R., F. Yan, and G. Ahmadi, “Energy-Frequency-Time Analysis of Structural Vibrations using Hibert-Huang Transform,” AIAA-2004-

1975.
12Lind, R., D.F. Voracek, R. Truax, T. Doyle, S. Potter, and M. Brenner, “A flight test to demonstrate flutter and evaluate the flutterometer,”

The Aeronautical Journal of the Royal Aeronautical Society, Oct 2003.

28 of 29

American Institute of Aeronautics and Astronautics



13Linderhed, A., “2D empirical mode decompositions in the spirit of image compression,”Wavelet and Independent Component Analysis
Applications IX, SPIE Proceedings, 4738(2002), pp. 1-8.

14Linderhed, A., “Image compression based on empirical mode decomposition,”Proc. of SSAB 04 Symp. on Image Analysis, Uppsala, Sweden,
Mar 11-12, 2004, pp. 110-113.

15Liu, B., S. Riemenschneider, and Y. Xu, “Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum,” submitted
for publication inMechanical Systems and Signal Processing, 2004.

16Liu, Z. and S. Peng, “Boundary Processing of Bidimensional EMD Using Texture Synthesis,”IEEE Signal Processing Letters, 12(1),
Jan 2005, pp. 33-36.

17Loughlin, P. J. and L. Cohen, “The Uncertainty Principle: Global, Local, or Both?,”IEEE Transactions on Signal Processing, 52(5),
May 2004, pp. 1218-1227.

18Pendleton, E., D. Bessette, P. Field, G. Miller, and K. Griffin, “Active Aeroelastic Wing Flight Research Program: Technical Program and
Model Analytical Development,”AIAA Journal of Aircraft, 37(4), Jul-Aug 2000, pp. 554-561.

19Poolla, K., P. Khargonekar, A. Tikku, J. Krause, and K. Nagpal, “A Time-Domain Approach to Model Validation,”IEEE Transactions on
Automatic Control, 39(5), May 1994, pp. 951-959.
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