
A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback

David A. Gwaltney
NASA Marshall Space Flight Center

Huntsville, AL 35812
david.a.gwaltney@nasa.gov

Abstract

The design of an Evolvable Machine VHDL Core is
presented, representing a discrete-time processing
structure capable of supporting control system
applications. This VHDL Core is implemented in an FPGA
and is interfaced with an evolutionary algorithm
implemented in firmware on a Digital Signal Processor
(DSP) to create an evolvable system platform. The salient
features of this architecture are presented. The capability
to implement IIR filter structures is presented along with
the results of the intrinsic evolution of a Jilter. The
robustness of the evolved filter design is tested and its
unique characteristics are described.

1 Introduction

The capability for automated design and adaptation are
often cited as the motivation for investigation of intrinsic
hardware evolution. Indeed, an evolutionary algorithm’s
capability to create designs from high level specifications
without real knowledge of the underlying configurable
medium makes evolvable hardware attractive when seeking
autonomy in the generation of innovative designs. In
systems where unknown or unanticipated forces may
conspire to impair the performance of an electronic design,
or render it inoperable, the ability to find a solution using
whatever functional components exist draws much
attention to evolvable hardware. The work presented here
is concerned with the implementation of an evolution
accessible discrete time computation medium in
reconfigurable hardware, and the application of an
evolutionary algorithm to the design of structures for
filtering and control. The motivation is to provide an
autonomous system that can configure itself to enable on-
line design, adaptation and self-repair.
Discrete time filtering is widely used for signal processing

and control applications. The same basic structures in
finite impulse response (FIR) filters and infinite impulse
response (IR) filters can be applied to low-pass, band-pass
and high-pass filtering, dynamic system representation and

Kenneth Dutton
Jacobs Sverdrup Company

Huntsville, AL 35812
kenne th.dutton@nasa. gov

controllers. For control applications, structures with output
feedback, such as the IIR, are preferred because they
implement the pole-zero representation used in control
system design and analysis. FIR structures (feed-forward)
are frequently used in filtering applications due to their
ease of implementation, flexibility of attainable filtering
and linear phase characteristics. However, the design
process for determining FIR coefficients is more involved
than that of the design of IIR filters [l]. While this paper
reports on the evolution of filters, rather than dynamic
system representation or controllers, the goal is to use
hardware evolution in control applications, so structures
with signal feedback are considered here.
Using hardware evolution for the design of discrete time

filters has been a topic of study by other researchers. So
has the implementation of adaptive filters for filtering and
dynamic system parameter identification. The majority of
these investigations use feed-forward structures. The ones
involving intrinsic evolution all use feed-forward
structures.
In [2], the authors concern themselves with evolving the

transfer functions of high order filter designs using multi-
objective criterion. The fitness of the designs is determined
analytically. Other notable work includes the
implementation of FIR filters using primitive operator filter
(POF) design [3]. This work utilized a simulated
reconfigurable hardware platform that was designed for
fault tolerance via redundancy. The platform consisted of
an array of programmable arithmetic logic units (PALUs),
including a shifter and adderlsubtracter. The PALUs
operated on 16-bit data words. Evolution was shown to
configure the hardware to produce desired results in the
presence of induced component faults. In [4], more work
was done using POFs to implement FIR filters using a
multi-objective approach. This work used automatically
generated Verilog netlists to simulate a filter design
employing blocks consisting of evolved multipliers and
adders. Recently, Particle Swarm Optimization (PSO) was
used to identify the parameters of fixed IIR structures used
to represent a dynamic system. The simulated results
showed that PSO was able to rapidly converge to a
reasonable solution, and should be considered for on-line
adaptive applications [5]. Other researchers have evolved

digital filters for imaging applications. Using a simulated
array of Configurable Function Blocks (CFBs) with a
variety of selectable arithmetic and Boolean functions, the
authors in [6] evolved image filters designed to remove
noise from corrupted images. The CFBs operated on 8-bit
data words representing pixels from a digital image. The
CFB array is configured such that the data moves forward
through the array.
Several researchers have evolved filters intrinsically. FIR

filters have been evolved in hardware using an
implementation the authors called Complete Hardware
Evolution (CHE). In this implementation, the FIR filter
structure and a pipelined Genetic Algorithm (GA) were
configured on a Field Programmable Gate Array (FPGA).
The authors demonstrated the capability to adapt the
coefficients of the FIR filter on-line in response to
changing input signals [7]. A hardware system for
evolution of image filters has been implemented in an
FPGA. The system includes a genetic processing unit
(GPU) that implements an evolutionary strategy, and an
array of processing elements that have selectable Boolean
and arithmetic functions. Similar to [6], the array is feed-
forward and the processing elements act on 8-bit data
words that represent pixels from a digital image. Filters
were evolved that removed Gaussian noise from images to
recover the original image [8]. Using an array of
processing elements with Boolean operators and an
embedded evolutionary algorithm, researchers were able to
intrinsically evolve a 3x3 bit multiplier and a 4x3 bit
multiplier. Here the goal is to develop a design
environment that configures an FPGA with a complete
evolvable system based on characteristics selected by the
user. In this way, the user can tailor the configuration of
the reconfigurable elements to the application. At the time
of writing, the available reconfigurable element selection
was limited to an array of pipelined processing elements

In this paper, the design of Evolvable Machine VHDL
Core, which permits feed back of output and interior
signals, is presented. This VHDL Core is implemented in
an FPGA and is interfaced with an evolutionary algorithm
executed in firmware on a Digital Signal Processor (DSP)
to create an evolvable system platform. The salient
features of this architecture are presented. The goal is to
implement a discrete-time processing structure that
supports control system applications. The capability to
implement IIR filter structures will be presented along with
the initial results of intrinsic evolution of a filter on the
VHDL Core.

~91.

2 Evolvable Machine VHDL Core

The evolvable machine is implemented as a portable
VHDL core and will be referred to as the EMVCore in the

remainder of the paper. It consists of an array of
configurable function tiles. These tiles can be configured
to perform one of several different Boolean and arithmetic
operations, or functions, on one or two sixteen bit inputs.
Both Boolean and arithmetic operations provide the
flexibility to implement many different types of overall
functions. The tiles are interconnected with neighboring
tiles via multiplexed sixteen bit busses. A diagram of the
EMVCore configuration used is shown in Figure 1. Each
tile is restricted to making interconnections with its four
neighbors, except in the case of some edge tiles. In general
the input to a tile may be the output of up to two of the
neighboring tiles to the north, south, east or west. Outputs
from all of the neighboring tiles are connected to any given
tile, with the selection of inputs being made by internal
multiplexers. A tile may have the output from one of the
neighboring cells be selected as input one (inl) and input
two (in2) via the multiplexer arrangement. A tile may also
use an internally stored value as an input to a function,
rather than a signal from a neighboring tile. This allows the
use of a constant for arithmetic functions or a mask for
bitwise Boolean functions. In the case of some edge tiles,
inputs may come from other sources. Each tile requires 3
configuration data words; a 4 bit word for external signal
select, a 7-bit word for selection of the tile function input
and operator and a 16-bit word for the internal data
constant.
A 3x3 array of nine functional tiles is used, with delay

registers on either side of the array. In Figure 1, each tile is
labeled in the lower left hand comer with its location in the
array. It is labeled in the upper right hand comer with the
number of multiplexed inputs to that tile. The functional
tiles can be configured with the functions listed in Table 1.

In -

Figure 1 Diagram of the EMVCore configuration

A goal of this work is to implement discrete time filters
and controllers, so delay registers are included at the west
and east ends of the array. These delay registers can be
cascaded to provide the delayed input and output values
that are needed for a discrete time filter or controller.
These delay registers can also be used to delay the output
of neighboring function tiles. Note that the tiles labeled

.

FOO, F20 and F22 have multiplexed inputs from several of
the inputloutput delay registers. FOO has a direct
connection to the input. To allow the EMVCore to be used
in sampled data applications, there is a programmable clock
divider that is used to set the data sampling rate in the delay
registers in relation to the rate of data propagation through
the tile array. Since each tile output is registered, a clock is
required to move the data through the array. The
programmable clock divider is a means of setting the
number of clocks provided to the tile array between data
samples. The use of the EMVcore in a digital filtering
application will be covered in Section 4. The size of the
tile array can be easily increased by replication of existing
components used in the VHDL design.

Code
0
1
2
3
4
5
6
7
8
9

Function
out = 0
out = in1
out = in2
out = in1 and in2
out = not(in1 and in2)
out = in1 or in2
out = not(in1 or in2)
out = in1 + in2
out = in1 - in2
out = in1 x in2

Table 1 Configurable operations for function tiles

Because feedback paths are allowed to be established, the
outputs of the tiles are registered. Otherwise, when the
VHDL design code is synthesized, the worst case timing is
excessive due to the long signal paths that are possible.
Further, the Xilinx XST synthesis tool complains about the
possibility for what amounts to direct connection from cell
output to input. This is typically not done in digital design
because the results are usually considered undesirable. In
the case of the EMVCore, the possibility for long signal
paths would make the timing variable and unpredictable,
since the worst case path may be selected via evolution for
some individuals, but not for others. While only outputs
that can be fed back to tiles in a previous column need to be
registered, all outputs are registered to maintain predictable
timing within the tile array.
The EMVCore is implemented on a Xilinx Virtex

XCV600E Field Programmable Gate Array (FPGA). The
design consumes 47% of the CLB slices available on the
FPGA.

3 Evolvable System Architecture

The FPGA configured with the EMVCore is part of an
evolvable system architecture consisting of a carrier board

for the FPGA, a Digital Signal Processor based single
board computer (DSP SBC), A Personal Computer (PC)
and the software to execute an evolutionary algorithm and
to provide a graphical user interface (GUI). A diagram of
the configuration is shown in Figure 2.
The DSP SBC is a custom designed board using a Texas

Instruments TMS320VC33PGE150 floating point device,
and the carrier board for the FPGA is a Xilinx AFX-PQ-
240 prototyping board. The DSP SBC communicates with
the PC through a RS-232 serial link, so the user can control
and observe the execution of the evolution. The DSP SBC
interfaces with the EMVcore via the DSP external memory
interface, so the EMVcore is addressed like memory space.
The clocks for the EMVcore are generated by the DSP to
provide complete control over the data flow through it.
Input data can be supplied to the EMVcore externally or
from the DSP. In either case the DSP can access the input
and output data for use in the evolutionary algorithm.

/Control Sigi

PC

' DSP 1
SBC

Data and
/Control Sigi

I EMVCore I
FPGA

7als

Figure 2 Diagram of the Evolvable System
Architecture

The firmware that executes the evolutionary algorithm is
resident on the DSP. At this time, it is using a genetic
algorithm (GA) with selection, crossover, mutation and
fitness operators that are selected by the user. The
firmware design is modular so that the user can add, or
exchange, operator modules as desired. For instance, users
can select from proportional, tournament or stochastic
universal sampling selection. There are a variety of
crossover and mutation operators as well. Users can
define fitness operator modules and then add them to a
menu for later selection as desired in experiments. The
configuration and execution of the GA is managed through
the GUI.
The GUI allows the user to control the evolution and to

observe progress. The GUI provides the capability for
user selection of evolutionary operators from lists of
available choices as shown in Figure 3. The user can start,
stop, modify and restart the evolution at any time.

.

In order to verify the EMVcore design, and provide a test
case for evolutionary design, a second order infinite
impulse response (IIR) filter was implemented. The IIR

Templates for the GA configuration can be created and
loaded. The user can stop the evolution and save the GA
configuration and population, then later reload it to start
where the evolution was stopped. The GUI displays plots

of fitness and average fitness, as well as the output from the
EMVcore.

Y T b2 \ T bi w bo

Figure 3 Screen shot of the GUI page for selection of evolutionary operators

equation that is represented by this diagram is given in
Equation 1.

4 Second Order Filter Test Case

AL a2 AL at

different sampling rates, with the pass bands being set by
the sampling rate (period) and the coefficients, and b,.

2 - 2 I \ L

Y --+

(1) Figure 4 Direct form I1 transpose structure for 2nd
order IIR filter

A low-pass filter designed to provide a cut-off frequency of
2 KHz at a sampling rate of 10 KHz (sampling period 0.1

y (k) = Z b , x (k -i) - Z a ; y (k - i)
i=O i=l

In equation 1, the index k represents sampling instants in
time as multiples of the signal sampling period. The
filtering characteristics of this equation are invariant at

,

Coefficient
bo
bl
b2

a1
a2

milliseconds), will provide a cutoff frequency of 20 KHz at
a sampling rate of 100 KHz. This feature is utilized in this
test case in that the input data is sampled at a specific rate
and the filter is designed for that sampling rate, but the
filter is tested with a sampling rate that is much higher (230
KHz) using stored data input samples supplied as input at
each sample update time.
For the filter test case, a second order low pass filter

designed for a cut-off frequency of 200Hz at a sample rate
of 5 KHz is implemented. The filter coefficients are
selected using the Mathworks MATLAB Filter Design and
Analysis tool to give a filter that sets bZ to zero, thus
requiring only four coefficients for implementation [lo].
The coefficients are listed in Table 2.

Value
0.02651057178
0.026510571 78
0.0
-1.647848081
0.7008692244

Second order filters are frequently used as building blocks
in digital filtering applications. A cascade of second order
filters can be used to minimize deviation in desired filtering
characteristics due to coefficient quantization effects in
high order filters [l]. This test case will serve as the target
response for evolution in the next section.

-
X + + b x m l in1 + in2 in1 + in2+

F00 FO1 FO2

I
Figure 5 Diagram of the low pass filter
implementation on the EMVCore

10‘ Added sine input ,$Added sine input FFT
lI I 3 ,

0 0 0 1 002 003 0 500 1000 1500 2000 2500
Seconds Hz

Filter Output
m - ~- ~-

-m olVil 0 0 0 1 002 003

Seconds

lo5 Filter Outplt FFT

----1 q L ,
z 1

0
0 500 1000 1500 2000 2500

Hz

Figure 6 Time and frequency response for low
pass filter implemented on the EMVCore

5 Evolved Filter

Evolution is conducted using the evolvable system
architecture presented in Section 3. The added sine input
from the test case is used again as input to the EVMCore.
The goal is to provide the same filtering characteristics as
the test case filter. So, the FFT magnitude of the output of
the evolved configurations for EVMCore is compared
directly with the FFT magnitude of the filter output from
the test case in Section 4. Fitness is based on the square of
the error between the frequency responses.

The chromosome consists of the 27 configuration data
words required for the 3x3 array of tiles. The chromosome
is structured such that the three data words required to
configure each of the tiles are grouped together. Taken as a
group, there are nine groups of data ordered row wise, so
the configuration for FOO appears first, then F01, then F02,
then F10 and so on. The registers controlling the
configuration of the delay registers and the clock divider
are fixed at the same configurations used in the test case.
For the evolution, tournament selection with a size of 2 is

used, along with a two point crossover operator. The two
crossover points are chosen at random. An adaptive
mutation operator is used that is based on the mutation
operator found in [SI. In this work, a mutation probability
is used to determine if mutation will occur. If mutation
occurs, the number of bits that are mutated is governed by
Equation 2.

k X l X [%)

Where N is the number of mutations, c is scaling factor, I is
the limit based on the length of the chromosome, Fp is the
max fitness of the parents and FA is the max worst case
fitness.
After 543,640 generations the evolution resulted in a

configuration that has nearly the frequency response
desired. A set of plots comparing the test case filter output
data and the evolved filter output data is shown in Figure 7.
The test case output data is plotted in black and the evolved
filter output data is plotted in gray. The time response
shows some large differences between the data values, but
the general shapes of the responses are similar. However,
the errors in the fiequency response shown in the plot of
the FFT data visually appear to be lower and are on the
order of 10% as shown in the FFT magnitude error plot.
The results do not perfectly match the test case, but a low
pass filter has indeed been evolved.
The evolved filter configuration is shown in Figure 7. It is

clear that a conventional digital filter has not been evolved.
The evolved filter uses one of the bitwise Boolean
operations, “not (inlor in2),” in tile F12 and the input of
tile F11 is squared. Additionally, there are two feedback
loops present. The evolved filter does not actually require
delayed sampled input or output data as the IIR filter
implementation does. It could use sampled data input
directly rather than two-sample delayed input, as it is
shown using in Figure 8. It is a non-linear mathematical
function that is dependent on the data circulating in tiles
F20, F21 and F22. These tiles act somewhat like cascaded
integrators, due to the registered output of the tiles. It is
also notable that the evolved filter uses six tiles rather than
eight and one less multiplier.

Time Resmnse Canoatison Time ResDonse E m

0

0 001 002 003 2M00 001 002 003
5ooo

Seconds Seconds
lo5 FFTGnnpanson lo4 FFT Magnitude E m

~~~~ ~ 

, 1 1  
0 -2 

I 
0 500 1wo 15w xxx) 2500 0 5w 1000 1500 2wo 2500 

HZ Hz 

Figure 7 Comparison of time and frequency 
responses. Test case output is black and evolved 
filter output is gray 

C 2 x  IN1 - 
F22 

Figure 8 Diagram of the evolved filter on the 
EMVCore 

In order to test the robustness of the evolved design, two 
other input signals are used. One of the two inputs is an 
added sine, with sinusoids at 100 Hz, 200Hz, 300Hz, 
400Hz and 500 Hz. The other is a sinusoidal sweep 
frequency content from DC to 1200 Hz. The time sequence 
of both input signals are shown in Figure 9, along with the 
frequency content of each as determined by an FFT. 
The evolved filter response is compared with that of the 

test case filter for each signal. The responses to the added 
sine input are shown in Figure 10. The response of the test 
case low-pass filter is plotted in black, while the response 
of the evolved filter is in gray. Visually, the plots of the 
time response and frequency magnitudes are very close. 
Plots of the error between the outputs of the two filters are 
included. Figure 10 shows that the evolved filter provides 
a low pass filtering action for frequencies between the two 
used in the evolution. The comparison of output responses 
for the sinusoidal sweep input is shown in figure 1 1. There 
is a noticeable degradation in the output response of the 



evolved filter. There are significantly large errors between 
the time and frequency responses for the test case filter and 
the evolved filter. While a low-pass filtering action is 
being provided by the evolved filter, the response would 
not be acceptable in a signal processing application. 

10' Added Sine 15 10' Added Sine FFT 
I I I 

-1- 01 , \ -  I 

10' Sine Sweep 5 x  lo5 Sine Sweep FFT 

0 001 002 003 0 500 1000150020002500 
Seconds Hz 

I r 

\ J 01 I~. . 1 -2 ' 
0 001 002 003 0 500 1000 1500 2000 2500 

Seconds Hz 

Figure 9 Plots of the test input signals used after 
evolution 

lime Response Comparison Tim Response Error 
4000 1 1rnI I 

-2000 

-4000 -. 
0 001 002 003 0 01 002 003 

Seconds Seconds 
10' FFT Comparison 10' FFT Magnitude Error 

Hz Hz 

Figure 10 Comparison of time and frequency 
responses for input consisting of five added 
sines. Test case output is black and evolved filter 
output is gray 

It appears that using an input consisting of two added 
sines during the evolution is not sufficient to provide a 
robust filtering characteristic. The sine sweep contains 
significant frequencies beyond the 100 Hz and 500 Hz 
input used during the evolution. Additionally, it has a 
different dynamic characteristic than several sine waves 
added together. A conclusion is drawn that the stimulus 
used during evolution should be selected to provide good 

coverage of the inputs that will be experienced by the 
evolved design during deployment. The evolutionary 
algorithm will tend to optimize the design for the 
conditions under which evolution is conducted. 

10' lime Response Time Response Error ~- ~ 1 5 r  

-1 -10000; " I 
0 001 002 0.03 001 002 003 

Seconds Seconds 
lo5 FFT Comparison lo5 FFT Magnitude Error 

3 ,  21 

Hz Hz 

Figure 11 Comparison of time and frequency 
responses for the sine sweep input. Test case 
output is black and evolved filter output is gray 

6 Summary 

The design of an evolvable machine VHDL core 
(EMVCore) has been presented. The EMVCore is 
designed to have the components needed for a standard 
approach to discrete time signal processing and to have 
additional components that may be used in an innovative 
design. The evolvable system architecture in which the 
EMVCore is included has also been presented. The 
evolvable system provides a high degree of flexibility 
through user selectable and definable evolutionary 
operators. 

The ability to implement standard IIR filter designs is 
shown in the low-pass filter test case. Other filter functions 
can be implemented via a change in coefficient selection. 
The ability to implement discrete time filters with data 
feedback, rather than just data feed forward processing, 
enables the implementation of discrete time controllers, as 
well. 
Evolution of a novel low-pass filter design has been 

presented, along with an assessment of its capabilities. 
This filter performed well with the two added sines used as 
input during the evolution. It also performs well, when the 
input includes more sines at frequencies between the two 
used during evolution. The filter fails to function properly 
when the input is changed to a signal that is significantly 
different from that used during evolution, i.e. a sine sweep 
with wider bandwidth. This illustrates the importance of 



designing the evolution to be representative of the 
environment that will be seen by the evolved design during 
deployment. 
The evolved design is interesting in that it uses a bitwise 

Boolean operation and a square operation in its design. 
This is non-standard in the field of digital signal 
processing. Also, it uses 6 tiles rather than the 8 tiles used 
by the IIR filter implementation. The use of non-standard 
operators and fewer resources leads one to the conclusion 
that an EMVcore as described here can be used to 
implement more compact representations of digital filters 
and to provide fault tolerance by implementing a new 
solution in the remaining tiles after some are damaged. In 
addition to investigating the design of innovative digital 
filters, future work will include implementation of 
controllers and experiments in repair of damaged 
configurations due to faults in the electronic device. 
The EMVcore can also be used to implement functions 

other than digital filters. The delay registers can be by- 
passed to implement numerical calculations for 
mathematical functions other than difference equations. If 
operators other than those defined in Table 1 are required 
they can be added, subject to the limitations of 
implementation in VHDL. It is possible to implement 
fuzzy logic processing and neural networks in an FPGA 
using an array of tiles which include the functions required 
for such structures. 
Large FPGAs are currently available at a moderate price 

that enable and encourage the implementation of 
configurations with parallel processing resources. The 
Xilinx Virtex I1 devices feature hardware multipliers to 
facilitate parallel implementation of digital signal 
processing. The largest of these devices provides 168 18- 
bit by 18-bit multiplier blocks [l 11. The latest Virtex 4 
devices include the SX family with Xtreme DSP slices. 
These slices contain an 18-bit by 18-bit multiplier blocks, 
an adder and an accumulator. The largest of these devices 
contain 192 such slices [12]. The Altera Stratix I1 devices 
include columns of DSP blocks with multipliers, adders 
and accumulators. Each block can implement one 36 x 36 
bit multiplier, or several multipliers with smaller word 
sizes. The largest of these devices contains 96 DSP blocks 
[13]. Industry is now providing high level functional 
components in commercial devices, which can support the 
implementation of complex evolution oriented intellectual 
property cores. 

Acknowledgments 

This work was supported in part by funding received from 
the Evolvable Systems Group at NASA Ames Research 
Center. Mr. Gwaltney was supported under a Marshall 
Space Flight Center Director’s Discretionary Fund Task. 

References 

[l]  Oppenheim, Alan V, and Shafer, Ronald W., Digital 
Signal Processing, Prentice-Hall Inc, Englewood Cliffs, NJ, 
1975. 
[2] Schnier, T., Yao, X. and Liu, P., Digital Filter Design 
using Multiple Pareto Fronts, Proceedings of the Third 
NASA/DoD Workshop on Evolvable Hardware, Long 
Beach, CA, July 2001, pp 136-145 
[3] Hounsell, B. I. and Arslan, T,. Evolutionary Design and 
Adaptation of Digital Filters within an Embedded Fault 
Tolerant Hardware Platform, Proceedings of the Third 
NASA/DoD Workshop on Evolvable Hardware, Long 
Beach, CA, July 2001, pp.127-135. 
[4] Thomson, R and Arslan, T, Evolvable Hardware for  the 
Generation of Sequential Filter Circuits, Proceedings of the 
2002 NASA/DoD Conference on Evolvable Hardware, 
Alexandria, VA, July 2002, pp 17-25 
[5] Krusienski, D. J. and Jenkins, W. K., Particle Swarm 
Optimization for Adaptive IIR Filter Structures, 
Proceedings of the 2004 Congress on Evolutionary 
Computation, Portland, OR, June 2004, pp.965-970. 
[6] Sekanina, L. and Ruzicka, R, Easily Testable Image 
Operators: The Class of Circuits Where Evolution Beats 
Engineers, Proceedings of the 2003 NASA/DoD 
Conference on Evolvable Hardware, Chicago, IL, July 

[7] Tufte, G. and Haddow, P. C., Evolving and Adaptive 
Digital Filter, Proceedings of the Second NASA/DoD 
Workshop on Evolvable Hardware, Palo Alto, CA, July 

[8] Zhang, Y., Smith, S. L., and Tyrell, A. M., Digital 
Circuit Design using Intrinsic Evolvable Hardware, 
Proceedings of the 2004 NASA/DoD Conference on 
Evolvable Hardware, Seattle, WA, June 2004, pp. 55-62. 
[9] Sekanina, L. and Friedl, S., On Routine Implementation 
of Virtual Evolvable Devices Using Combo6, Proceedings 
of the 2004 NASA/DoD Conference on Evolvable 
Hardware, Seattle, WA, June 2004, pp 63 - 70. 
[ 101 Mathworks, Signal Processing Toolbox Users Guide 
Version 6, October 2004. 
(http://w.mathworks.comlaccesslhel~desklhelD/Ddf doc 
isirnal/simal tb.pdf) 
[ 1 11 Xilinx Corporation, “Virtex I1 Platform FPGAs: 
Complete Data Sheet,” v3.3, June 24,2004. 
[ 121 Xilinx Corporation, “Virtex -4 Family Overview,” 
vl.2, December 8,2004. 
[ 131 Altera Corporation, “Stratix I1 Device Handbook, 
Volume I,” January 2005. 

2003, pp 135-144. 

2000, pp 143-150. 


