Galium Electromagnetic (GEM) Thruster Concept and Design

Kurt A. Polzin and Thomas E. Markusic

Propulsion Research Center
NASA - Marshall Space Flight Center
Huntsville, AL 35812

July 2005

Abstract

We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagnetic pump[1]. At a designated time, a pulsed discharge (~10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (~500 J), second-stage pulse which provides the primary electromagnetic ($j \times B$) acceleration.

FIG. 1: Schematic illustration of the GEM two-stage PPT concept.
There exists some precedent both for employing a two-stage acceleration scheme and for using a metal derived plasma as propellant. Turchi et al.[2] used an ablative Teflon plasma injector as the first stage of a rectangular two-stage accelerator and Gomilka et al.[3] used ablation products from a solid cadmium electrode in a coaxial two-stage device. In addition, acceleration efficiencies of over 50% have been reported in the literature for metallic plasmas[4].

The GEM thruster differs from other concepts in the following ways.

- The center electrode in the first stage is chosen to be the anode. Previous research has shown that markedly higher inner electrode erosion occurs in this case[5]. However, this outcome is desired in the GEM thruster as the liquid gallium from the anode serves as the propellant.
- The use of the gallium plasma as a trigger for the high-energy second stage eliminates the need for a high-current electrical switch in the system.
- The need for high-speed (and failure-prone) gas valves is eliminated through the use of a liquid metal propellant. In addition, gallium is very dense and can be stored in a relatively compact manner, providing for ease of system integration.
- Propellant in the GEM thruster is fed to the discharge chamber using an electromagnetic pump, thus eliminating the need for moving parts.

The GEM thruster is a variant of a two-stage PPT design presented by Markusic et al.[6]. The primary differences are: a) the first stage design (propellant injection scheme), b) the GEM thruster uses gallium as propellant instead of lithium and c) the GEM thruster discharge energy is 500 J/pulse instead of 50 kJ/pulse.

In the present paper, we present the detailed design of the first-generation GEM thruster and present calculations and modeling aimed at giving insight into the thruster's operation and estimating its performance. One-dimensional analytical tools and the MACH2 code are used to model the temporal evolution of the current distribution and plasma properties within the discharge.

References: