Presented at The Ohio State University, Aerospace Engineering and Aviation Spring 29002 Seminar Series, April 25, 2002

Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

Raymond E. Gaugler, Chief, Turbine Branch

For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

By

Raymond E. Gaugler
Chief, Turbine Branch
NASA Glenn Research Center

Presented at
Ohio State University
Aerospace Engineering and Aviation
Spring 2002 Seminar Series
April 25, 2002
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

OUTLINE

- NASA Glenn Turbine Branch
- Glenn-HT History
- Glenn-HT Capabilities
- Glenn-HT Sample Validation Cases
- Glenn-HT Future Direction

Glenn Research Center
TURBINE BRANCH
at Lewis Field
CFM56-7

Glenn Research Center
TURBINE BRANCH
at Lewis Field
Some Typical Modern Cooled Turbine Blades

Glenn Research Center
TURBINE BRANCH at Lewis Field
Aerodynamics & Heat Transfer Research for Turbines

Experiments and Computations for:
- High-Pressure Turbine (HPT) - *Improved computational models for losses, heat transfer, and coolant flow.*
- Low-Pressure Turbine (LPT) - *Understand, model, and control the physical mechanisms responsible for high loss variations*

OUTCOME:
- Reduced design cycle time & cost
- Improved component robustness & efficiency

Glenn Research Center
TURBINE BRANCH

NASA

at Lewis Field
EXPERIMENTAL FACILITIES

Basic Heat Transfer & Flow Visualization Facility

Rotor Wake Rig

Linear Transonic Cascade

Boundary Layer Tunnel

Filter

Air Cooler

Flow Conditioner

Air Heater

Damper Valve

Blower

Test Section

Stagnation Heat Transfer Rig

Probe Access

4.85:1 Contraction

Heat Transfer Model

Turbulence Grid

Screens

Thermocouples

Soda Straws

W6A Warm Core Turbine Facility

Research Turbine with Cooling Air Manifolds

Torque Meter

Dynamometer

Relief Valve

Cooling Air 125 psig Combustion Air Filter

Exhaust Control Valve

Electric Heaters

Exhaust Water Spray Bars

Primary Air 40 psig Combustion Air

Filter

Annular Cascade, Laser Measurements

Glenn Research Center

TURBINE BRANCH

at Lewis Field
Turbine Blade Flow Phenomena to be Modeled

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

Background

• Late 1980's, Robert Boyle at NASA Lewis developed near-wall Navier-Stokes CFD tools for modeling heat transfer in the Chima code.

• Prof. A. Arnone (U. of Florence) developed Turbomachinery CFD code with improved grid, TRAF3D, while on sabbatical at NASA Lewis.

• Utility of code for convective heat transfer calculations recognized early, Boyle modeling added by A. Ameri & Arnone.

• Ameri & Arnone add 2-Equation Turbulence model.

• V. Garg adds film cooling modeling.

• E. Steinthorsson creates Multi-Block grid capability (TRAF3D-MB).

• D. Rigby adds internal cooling passage models.

• Originally a modeling research tool, evolved into a design analysis tool.

• Offered to the domestic Turbine Community for evaluation at the DOD/IHPTET 1998 Turbine Engine Technology Symposium, renamed Glenn-HT.
Capabilities of Glenn-HT

Accurate, efficient 3D analysis of flow & heat transfer in turbomachinery

- Multi-block grid systems for handling complex geometries.
 - Arbitrary index orientations & multiple patches on each grid face.
 - Globally unstructured assembly of blocks-
 - Great flexibility for modeling complex geometries.
 - Grid generation capability rivals unstructured grids.

- Locally structured (body fitted) grids-
 - Well suited for viscous, near-wall phenomena.
 - Simple array data structures.

- Block merging, using Rigby's Method of Weakest Descent (MWD), to reduce number of blocks & improve efficiency.

- Multi-grid convergence acceleration for computational efficiency

- Finite-volume discretization for computational efficiency

- k-ω Turbulence model, no wall functions

Glenn Research Center
TURBINE BRANCH at Lewis Field
Multi-Block Grid Capability in the Glenn-HT 3-D Navier-Stokes Computer Code Allows Complex Turbomachinery Flow Field Details to be Modeled with a Structured Grid.

- Multi-Block Topology results in the number of grid points reduced by an Order of Magnitude.
- Resulting grid can be concentrated in critical areas.

Glenn Research Center
TURBINE BRANCH
at Lewis Field
Glenn-HT Numerical Flow Visualization of Turbine Blade Tip Flow & Heat Transfer

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

Some Samples of the Range of Code Validation Cases:

- Heat Transfer in a Transonic Turbine Cascade
- Turbine Tip Leakage Flow and Heat Transfer
- Analysis of Film Cooled Turbine Blade
- Turbine Internal Cooling Passage Analysis

Glenn Research Center
TURBINE BRANCH at Lewis Field
LINEAR TRANSONIC CASCADE FACILITY

Exit Mach Number: Up to 1.33
Reynolds Number: 500,000 to 1,000,000
Inlet Angle Variable, -30° to +15°
Design Turning Angle: 136°

Glenn Research Center
TURBINE BRANCH
at Lewis Field
Glenn-HT Validation - Heat Transfer in a Transonic Turbine Cascade

Experimental Heat Transfer Data from NASA Glenn Transonic Turbine Cascade Rig

Glenn-HT Computed Heat Transfer, using the Shear Stress Transport (SST) Turbulence Model

Glenn Research Center
TURBINE BRANCH

at Lewis Field
• 650 Blocks, Merged down to 33 Blocks
• Approximately 1.4 Million Grid Points

Glenn-HT Computational Grid Topology for GECRD Tip Heat Transfer Experiment

Grid Details Showing Recess in Outer Shroud
Tip Gap is 2.03mm, Blade Height is 101.6mm, (Gap = 2%)

GECRD Rig Schematic

Glenn Research Center at Lewis Field

TURBINE BRANCH
Blade Tip Heat Transfer

Comparison of GECRD Experiment and Glenn-HT Computation of Heat Transfer Coefficient. Tip Gap is 2.03mm, Blade Height is 101.6mm, (Gap = 2%)

- 650 Blocks, Merged down to 33 Blocks
- Approximately 1.4 Million Grid Points

Glenn Research Center
TURBINE BRANCH
at Lewis Field
Blade Tip Heat Transfer

Comparison of Glenn-HT Computation and GECRD Experiment of Heat Transfer Coefficient over a Blade Tip with a Mean-Camberline Strip.

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Heat Transfer in Film-Cooled Turbine Blades

Comparison of measured mid-span heat transfer coefficient on the Allison C3X vane (Hylton et al, 1988) and Glenn-HT CFD results (Garg & Gaugler, 1994)

Glenn Research Center

TURBINE BRANCH

at Lewis Field
Heat Transfer in Film-Cooled Turbine Blades

Comparison of measured span-averaged heat transfer coefficient (Camci & Arts, VKI, 1985) and CFD computation using the Glenn-HT code (Garg & Rigby, 1998)

Case 154: $M_{ex} = 0.905$, $Re_{c,in} = 8.42 \times 10^5$, $T_o = 408.9 K$, $T_w/T_o = 0.722$, $T_c/T_o = 0.52$
Glenn-HT 3D Coupled Internal/External Simulation of a Film-Cooled Turbine Vane

- Realistic film-cooled turbine vane
- Shaped & unshaped holes
- Holes supplied by two plena
- NASA GRC experiment planned
- Glenn-HT code used with 140 merged blocks
- Plena & film hole geometry fully modeled
- 2D design modeled as spanwise periodic

Glenn Research Center
TURBINE BRANCH at Lewis Field
Glenn-HT 3D Coupled Internal/External Simulation of Film-Cooled Turbine Vane

- Realistic film-cooled turbine vane
- Shaped & unshaped holes
- Holes supplied by two plena
- NASA GRC experiment planned
- Glenn-HT code used with 140 merged blocks
- Plena & film hole geometry fully modeled
- 2D design modeled as spanwise periodic

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Glenn-HT 3D Coupled Internal/External Simulation of Film-Cooled Turbine Vane

Wall Heat Flux on Plenum, Holes, & Vane

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Glenn-HT Computation for a Film-Cooled Rotor Blade

- Honeywell blade configuration, to be tested at OSU Turbine Lab.
- No span-wise symmetry, so all 172 holes must be gridded, as well as tip clearance gap.
- 80 cells over each hole exit, flow & turbulence boundary condition distributions specified for each hole.
- Over 2.2 million grid cells overall.

Glenn Research Center
TURBINE BRANCH at Lewis Field
Glenn-HT Computational Flow Visualization for a Film-Cooled Rotor Blade

STREAMLINES, COLORED BY TEMPERATURE, EMANATING FROM HOLES OVER THE COOLED BLADE SURFACE WITH DISTRIBUTION OF h

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Glenn-HT Computational Flow Visualization for a Film-Cooled Rotor Blade

STREAMLINES, COLORED BY TEMPERATURE, OVER THE COOLED BLADE SURFACE WITH DISTRIBUTION OF h

Glenn Research Center

TURBINE BRANCH

at Lewis Field
Glenn-HT Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage with a 180° Turn

Experiment of Park et al (1996)

Glenn-HT Computation by Rigby, 1998

Glenn Research Center
TURBINE BRANCH at Lewis Field
Glenn-HT Internal Cooling Passage Modeling
(Rotating Channel with 180° turn & ribs)

Normalized Sherwood No.

Experiment of Park et al (1996)

Glenn-HT Computation

Glenn Research Center
TURBINE BRANCH

at Lewis Field
Glenn-HT 3D heat transfer computations compared to experimental data near the turn in a complex turbine blade trailing edge cooling passage.

Computation used a grid of 4.5 million cells and was run using 32 processors on an SGI Origin Cluster.
Glenn-HT Simulation of AFRL Flow Control Test

Low Pressure Turbine (LPT) Blade tested at Air Force Research Lab (AFRL)
- Low Reynolds and Mach numbers
- Boundary Layer separation on the suction side.
- Vortex generator jets (VGJ) on the blade surface induce vortices in the boundary layer upstream of the separation zone, re-energizing the boundary layer and making it resistant to separation.

Glenn-HT code run with and without the VGJ
- Excellent agreement with experiment.

Glenn Research Center
TURBINE BRANCH
at Lewis Field
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

Future Direction

- Unsteady vs Quasi-Steady
- Conjugate Heat Transfer Analysis
- Turbulence Model Improvements
- Automated Topology Generation

Glenn Research Center
TURBINE BRANCH at Lewis Field
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

SUMMARY

• Glenn-HT History
• Glenn-HT Capabilities
• Glenn-HT Sample Validation Cases
• Glenn-HT Future Direction

Glenn Research Center
TURBINE BRANCH

at Lewis Field