Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

Gopalakishna M. Rao, Karen Stewart, Syed Ameen1, and Peter K. Banfield2
NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

1Muniz Engineering Inc., Greenbelt, Maryland 20771
2Capitol College, Laurel, Maryland 20708
Contents

• Background
• Battery Description
• Testing
 – Qualification (Environmental)/Acceptance
• Integration and Testing
• Conclusions
Mission Overview

- ST-5 is a New Technology Mission to further investigation of Space Weather and validation of new technologies
 - Lithium-Ion battery, cold gas micro-thruster, variable emittance coatings, ultra low power logic, miniature transponder, autonomous ground system software
- Scheduled to launch in February 2006 from Vandenberg AFB
- Polar elliptical, Sun synchronous orbit
- Octagonal spinning satellite
- 3 satellite constellation
- Use of triple junction GaAs solar cells at 28% efficiency
- 8.4 V (low voltage compared to nominal 28 V) power bus
Battery Specific Requirements

- Battery Voltage Limits:
 - Maximum End-of-Charge Voltage 8.4 V
 - Minimum End-of-Discharge Voltage 6.0 V
- Battery Capacity (C): 7.5 Ah
- Battery Energy: 54 Wh
- Minimum Voltage after Peak Load: 6.0 V
- Battery Self Discharge: <=8% per month
- Charge retention after 72 hrs of open circuit > 98% x C
- Charge Management:
 - Constant current charge (C/5) to voltage clamp at the battery level
- Charge Capability: Max charge 1C
- Impedance: 90 mΩ
Mission Specific Requirements

- Orbit:
 - Polar elliptical orbit, sun synchronous
 - 2.27 hrs Orbit (seasonal eclipses up to 22 minutes)

- Mission Phases:
 - Storage: 3 Years
 - Ground Test: 100 cycles
 - Mission Life: 3 months requirement with a goal of 6 months

- Thermal: -10 to 40°C

- Charge / Discharge
 - Ground: 3 years, 100 cycles @ 100% DoD
 - Flight: (Approximately six months) 400 cycles @ 60% DoD

- Max. Discharge load: 12 W

- Discharge Capability: 12 W for 22 mins and 14 W for 15 mins during eclipse season
Battery Description

- AEA Technology plc. assembled battery using twelve individual SONY 18650 1.5 Ah cells
- Arranged in a S-P system topology
- 6 parallel strings, each containing 2 cells in series
- 2 cells in series string provide battery voltage (6 to 8.4 V)
- 6 parallel strings provide 7.5 Ah capacity when discharged at 3.75 A to 6 V at 20°C
- Four thermistors for temperature telemetry
 - 3 on different cell locations, 1 on baseplate
- One multi-pin connector
 - To combine power and signal, and to save mass
Battery Mechanical Design

- Tray assembly using two sheets of Glass Fiber Reinforced Plastic (GFRP)
- Isotropic high strength, electrical isolator & low density material
- Cells are bonded into counter bored holes using REDUX adhesive
- Provides a structure that is highly rigid, high bending resistance
- Shear rigidity provided by cross bracing using thin aluminium sheet
- Mechanical interface through lower GFRP tray and 4 titanium feet

Dimensions: 12.4 cm x 6.3 cm x 8.6 cm
Mass: 0.643 Kg
Battery Mechanical Design, continued

- Cells reversed in orientation to make string using nickel shim tab
- Interconnects between cells pre-formed (provides stress relief)
- Four separate spot welds using robotic spot welder.
- Wiring brought through holes in upper tray and assembled into loom
- Electrical connector attached to upper tray using heli-coiled threaded holes
Battery Materials

- Cells: Nickel Plated Steel
- Top / bottom plates: Glass Fiber Reinforced Plastic (GFRP)
- Side / end plates: Aluminum Alloy
- Mounting bush: Titanium
- Tags & Bonding Strips: Nickel
- 26 pin Connector: ITT Cannon (GFE)
- Thermistors: Yellow Stone International (GFE)
- Fasteners: M3 - M2.5 Stainless Steel
- Adhesive: Redux
Battery Materials, continued

- All battery parts, materials and processes have been validated/qualified by AEA Technology on space missions such as PROBA, STRV, MARS Express, Beagle.

- Most of the materials meet the outgassing requirement Total Mass Loss < 1.0%, Collectable Volatile Condensed Materials < 0.1%, generally specified for space battery hardware.

- Nonmagnetic materials will be used for all components with the exception of the SONY cell cases which are nickel plated steel.

- All EEE parts supplied to AEA from GSFC.
Testing - Qualification/Acceptance

Physical Measurements
- Mass Measurement
- Visual Inspection
- Mechanical ICD Verification
- Electrical ICD Verification
- Temp Sensor Check

Initial Functional
- Visual Electrolyte Leak Check
- Continuity Check
- Isolation Resistance Check
- Bonding Check
- AEA Standard Capacity at 20°C

Launch Environment
- Low sine sweep
- High sine sweep
- Random vibration
- Electrical ICD Verification
- Temp Sensor Check
- Bonding Check
- Isolation Resistance Check
- AEA Standard Capacity at 20°C

Thermal Vacuum
- Soak Test
- Performance characterization
- Bonding Check
- Isolation Resistance Check
- AEA Standard Capacity at 20°C

Final Functional
- GSFC Capacity measurement at 20°C
- GSFC Charge Retention Test
- GSFC Peak Load Test
- GSFC Capacity measurement at -10, 40 & 20°C
- Electrical ICD Verification
- Temp Sensor Check

Identical flow of tests for both Qualification & Acceptance program, testing at appropriate levels.
Testing - Qualification/Acceptance Data

<table>
<thead>
<tr>
<th>Physical & Functional Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Dimension: L x W x H (cm)</td>
</tr>
<tr>
<td>Battery Voltage (0%SoC)</td>
</tr>
<tr>
<td>Electrolyte Leak Check</td>
</tr>
<tr>
<td>Isolation</td>
</tr>
<tr>
<td>Bonding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermistor Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH01</td>
</tr>
<tr>
<td>2.50 KΩ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Capacity Measurement

<table>
<thead>
<tr>
<th>AEA SCM (C/10 Discharge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM #1 (Pre-Vibration)</td>
</tr>
<tr>
<td>8.56 Ah</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GSFC SCM (C/2 Discharge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st 20°C</td>
</tr>
<tr>
<td>7.67 Ah</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Vibration Test

<table>
<thead>
<tr>
<th>Axis</th>
<th>Resonance</th>
<th>Peak G<sub>rms</sub></th>
<th>Q Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>974 Hz</td>
<td>33.8 g</td>
<td>10.9</td>
</tr>
<tr>
<td>Y</td>
<td>1034 Hz</td>
<td>27.6 g</td>
<td>6.4</td>
</tr>
<tr>
<td>Z</td>
<td>> 2000 Hz</td>
<td>14.2 g</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Peak Load Test

| EoD V | > 7V |

Thermal Vacuum Test

<table>
<thead>
<tr>
<th>Thermal Cycle Test</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Thermal Cycles</td>
<td>3</td>
</tr>
<tr>
<td>Max. Temperature</td>
<td>40°C</td>
</tr>
<tr>
<td>Min. Temperature</td>
<td>-10°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Cycle Test</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Performance Cycles</td>
<td>3</td>
</tr>
<tr>
<td>Temperature</td>
<td>Cycle 1</td>
</tr>
<tr>
<td>40°C</td>
<td>8.07 V</td>
</tr>
<tr>
<td>-10°C</td>
<td>7.86 V</td>
</tr>
</tbody>
</table>

Residual Gas Analyzer (RGA) Monitor (leak check)
- Mass Number Range: 1 to 100
- Electrolyte Trace: No

Final Functional Test

Charge Retention	98.14%
Electolyte Leak Check	No leak
Isolation	> 100 MΩ
Bonding	22.3 mΩ
Battery Voltage (0%SoC)	5.71 V

<table>
<thead>
<tr>
<th>Thermistor Resistance</th>
<th>TH01</th>
<th>TH02</th>
<th>TH03</th>
<th>TH04</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.34 kΩ</td>
<td>2.33 kΩ</td>
<td>2.31 kΩ</td>
<td>2.32 kΩ</td>
</tr>
</tbody>
</table>
Testing - Qualification (Environmental)
Integration and Testing

- Comprehensive Performance Check
- Temperature Performance
Integration and Testing - Comprehensive Performance Check

- Wiring verification and voltage measurements
- Capacity check
- Mission orbit cycles with typical loads (Room Temp)
- Magnetics Testing
- I&T batteries used on spacecraft through environmental testing
- Flight batteries integrated just prior to launch
Integration and Testing - Temperature Performance

- To meet the peak load demand
 - Small solar ray area restricted by spacecraft size constraint
- Temperature excursion between -10 to 20°C
 - Determine the available capacity at the lower temperature and between the temperature excursion
- Capacity
 - 1.5 A charge rate, with 8.4 V clamp and less than 100 mA taper current
 - 1.5 A discharge rate, down to 6 V
- Develop an in-orbit Charge Management and Mission Planning
Integration and Testing - Temperature Performance - data
Integration and Testing - Temperature
Performance - data

BATTERY CAPACITY

Discharge Capacity (Ah)

Open Circuit Voltage (V)

7.95 8 8.05 8.1 8.15 8.2 8.25 8.3 8.35 8.4
Conclusions

- AEA Technology plc. Built, Qualification/Acceptance Tested and Delivered six (6) ST-5 batteries to GSFC
- Integration and Testing progressing toward the scheduled February 2006 launch
- As expected nominal performance at 20°C and above, and lower capacity below 20°C
 - Available capacity strongly influenced by the predischarge temperature exposure history
- Development of an in-orbit Charge Management and Mission Planning using the Integration and Test data is in progress