HNO₃, N₂O₅ and ClONO₂ Enhancements after the October-November 2003 Solar Proton Events

M. López-Puertas, B. Funke, S. Gil-López
Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain

T. von Clarmann, G. P. Stiller, M. Höpfner, S. Kellmann,
G. Mengistu Tsidu, H. Fischer
Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe
und Universität Karlsruhe, Karlsruhe, Germany

C. H. Jackman
NASA Goddard Space Flight Center, USA

M. López-Puertas, B. Funke, S. Gil-López, Instituto de Astrofísica de Andalucía (CSIC),
Apartado Postal 3004, 18080 Granada, Spain. (puertas@iaa.es)

T. von Clarmann, G. P. Stiller, M. Höpfner, S. Kellmann, G. Mengistu Tsidu, H. Fischer,
Forschungszentrum Karlsruhe und Universität Karlsruhe, Institut für Meteorologie und Kli-
maforschung, Postfach 3640, 76021 Karlsruhe, Germany.

C. H. Jackman, NASA Goddard Space Flight Center, Code 916, Greenbelt, MD 20771, USA
Abstract.

The large solar storm in October–November 2003 produced enormous amounts of high-energy protons which reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (ENVISAT) was observing the atmosphere in the 6–68 km altitude range. MIPAS observed significant enhancements of the NOy components HNO$_3$, N$_2$O$_5$, and ClONO$_2$ in the Northern polar stratosphere after the intense solar proton events. Two distinct HNO$_3$ enhancements were observed. An instantaneous increase of 1–2 ppbv was observed immediately after the SPEs and is attributed to gas-phase chemistry: NO$_2$ + OH + M \rightarrow HNO$_3$ + M, accelerated by SPE-produced excess OH. A very large second increase of 1–5 ppbv started around 10 November and lasted until the end of December. It is attributed to NO$_x$ (NO+NO$_2$) produced in the mesosphere during the major SPEs in late October/early November and then transported downwards during November and December, partially converted to N$_2$O$_5$ in the upper stratosphere, which finally formed HNO$_3$ via ion cluster reactions. N$_2$O$_5$ was observed to increase by 0.1–0.4 ppbv 1–3 days after the major SPEs and reached down to 30 km altitude. A second, more pronounced N$_2$O$_5$ enhancement of up to 1.2 ppbv at 40 km appeared about 12–13 days after the major SPEs. With a delay of 1–2 days after the major SPEs ClONO$_2$ increased by up to 0.4 ppbv (40%) at 32 km altitude. NO$_x$ enhancements in the Southern hemisphere were generally less pronounced.
1. Introduction

Solar proton events (SPEs) have important effects on the composition of the stratosphere and mesosphere in the polar regions (see, e.g., Jackman and McPeters [2004] for a recent review).

Models predict that, besides perturbations of NO\textsubscript{x} (NO+NO\textsubscript{2}), also other NO\textsubscript{x} species as, for example, nitric acid (HNO\textsubscript{3}), dinitrogen pentoxide (N\textsubscript{2}O\textsubscript{5}) and chlorine nitrate (ClONO\textsubscript{2}), should be enhanced in the stratosphere after strong solar proton events [Solomon et al., 1981; Brasseur and Solomon, 1986; Solomon et al., 1999; Jackman and McPeters, 2004]. These species are part of the reservoir of the reactive nitrogen oxides in the stratosphere. They are photo-chemically linked among themselves and with NO and NO\textsubscript{2}, and hence play a very important role in the processes controlling the ozone abundance [see, e.g., Solomon, 1999]. It is therefore important to know their distributions in the stratosphere as well as to understand their sources and sinks. Enhancements in these species are predicted to occur after SPEs because of the increase in NO\textsubscript{x}, and also through catalytic cycles involving ion chemistry in the absence of sunlight.

During late October and early November 2003, three active solar regions produced solar flares and solar energetic particles of extremely high intensity, the fourth largest event observed in the past forty years [Jackman et al., 2005a,b]. Some of the Geostationary Operational Environmental Satellite (GOES)-11 instruments measured very large and energetic proton fluxes ([http://sec.noaa.gov/Data/goes.html; see also Fig. 1 in López-Puertas et al. 2005]), which can penetrate the atmosphere down to the lower stratosphere in the polar regions [Jackman et al., 2005a,b].
Global changes in many NO\textsubscript{y} species were observed by MIPAS over both the North and South poles. While in a companion paper [López-Puertas et al., 2005], we discuss perturbations in NO, NO\textsubscript{2}, and O\textsubscript{3}, we focus here on the alterations observed in HNO\textsubscript{3}, N\textsubscript{2}O\textsubscript{5} and ClONO\textsubscript{2} abundances during and after the major SPEs of this period, from 25 October to 14 November 2003. To our best knowledge, these measurements constitute the first experimental evidence of enhancements in these NO\textsubscript{y} species caused by solar proton events. Only Orsolini et al. [2005] has very recently reported HNO\textsubscript{3} enhancements also using MIPAS measurements. HNO\textsubscript{3} enhancements have also been reported by Kawa et al. [1995], de Zafra et al., [1997], and Santee et al. [2004], but not in the context of SPEs. This paper is focused on the description of the changes of those species and discusses possible processes originating the changes. In subsequent studies, the data set presented here is intended to be used for sensitivity studies with chemical transport models in order to better quantify the relative importance of the various reaction pathways.

2. MIPAS data

Details about the satellite orbit, the instrument, and the observation scenario are given in the companion paper López-Puertas et al. [2005]. MIPAS measured limb radiance spectra with high spectral resolution (0.05 cm-1), in a wide spectral range (4.1 to 14.7 \textmu m), thus offering the opportunity to infer abundances of many species, including those of HNO\textsubscript{3}, N\textsubscript{2}O\textsubscript{5}, and ClONO\textsubscript{2}, analyzed here. The retrieval of these species was performed with the IMK-IAA data processor [von Clarmann et al., 2003a]. Details of the retrieval approach are given in Clarmann et al. [2003a]. In the following we summarize aspects relevant to the retrieval of HNO\textsubscript{3}, N\textsubscript{2}O\textsubscript{5} and ClONO\textsubscript{2}.
Details of the retrieval of HNO$_3$ are described by Megistu Tsidu et al. [2005]. HNO$_3$ was retrieved from its infrared emission originating from its ν_5 and $2\nu_9$ bands in the 10–56 km region with a vertical resolution of about 3.5 km. Noise errors are smaller than 10% below about 35 km increasing up to about 50% at 45 km. Errors in ancillary information are of similar magnitude to the noise errors and are dominated by the uncertainties in the spectroscopic data and in pointing information.

The retrieval method and characteristics of N$_2$O$_5$ inverted from MIPAS are described by Megistu Tsidu et al. [2004]. N$_2$O$_5$ is retrieved from its infrared emission in the ν_{12} band in the spectral range from 1239–1236 cm$^{-1}$. The vertical resolution is 4 km at 30–40 km, and 6–8 km below 30 km and at 40–50 km. The noise error is better than 5% in the altitude range of 10–35 km while steadily rising to above 40% at 50 km for unperturbed conditions, but better in our case. The systematic errors are within 10–30% at 20–35 km and increase up to 50% outside this region.

The retrieval of ClONO$_2$ from MIPAS spectra has been described by Höpfner et al. [2004]. ClONO$_2$ has been retrieved from the infrared emission in the Q branch of its ν_4 band in the 779.5–781.0 cm$^{-1}$ spectral region. It is derived in the 15–40 km region with a vertical resolution varying from 3.5 km below 30 km and steadily increasing to 7 km at 40 km. Noise error is better than 10% below 30 km and below 15% at other altitudes. The systematic errors are between 3–9% and are dominated by spectroscopic uncertainties.

IMK-IAA MIPAS data of 25 October to 14 November have been used in this work, including nearly 10,000 elevation scans. In addition, the off-line (reprocessed) MIPAS data (version 4.61) for HNO$_3$ vmr profiles for the arctic polar winters of 2002–2003 and 2003–2004 were used since, contrary to the episode-based scientific MIPAS-IMK-IAA data,
these data were available for a longer period. For more details on the data sets and the improvements of the IMK-IAA data with respect to ESA operational MIPAS data set see Sec. 2 in the companion paper of López-Puertas et al. [2005].

3. HNO₃ Enhancement

Figure 1 shows the temporal evolution of the HNO₃ distribution at a potential temperature level of Θ = 1000 K for the period of 27 October to 14 November 2003, i.e., from the day before the major solar proton event (SPE) to about two weeks after (see Fig. 1 in López-Puertas et al. [2005]). The effects on HNO₃ abundances are clearly seen. The enhancement commences on 29 October, just after the major SPE (see Fig. 1 in López-Puertas et al. [2005]), and it is centered around the North geomagnetic pole. The maximum HNO₃ abundance is reached on 30 October when values above 4 ppbv are observed. This represents enhancements of ~2 ppbv, that is, a 100% increase. HNO₃ abundances remain at high values until around 3–4 November (significant SPEs occurred until 2 November) and then slowly decline with time.

Although the changes in HNO₃ are well correlated in time with the occurrence of SPEs, thus suggesting they were caused by the SPEs, the evolution of the incipiently formed polar vortex was checked with MIPAS CH₄ data in order to discard that abrupt changes in its evolution caused the HNO₃ perturbations. No evidence of a sudden change in the polar vortex on 29 October or close days is observed in the CH₄ fields [see, also, López-Puertas et al., 2005]. Hence we conclude that the changes observed in HNO₃ are caused by the advents of SPEs.

Figure 2a shows the time evolution of HNO₃ changes as a function of altitude during this period for the 70°N–90°N (geographic) polar cap. It is observed that the maximum
absolute change occurs at around 35 km and that significant enhancements also take place in the region between 30 to 50 km. This time series shows more clearly the correlation of HNO$_3$ abundance perturbation and the occurrence of SPEs. HNO$_3$ enhancements take place just after the SPEs. The large HNO$_3$ changes observed from 29 October through 1 November are correlated with the two large SPEs on 28 and 29 October (see Fig. 1 in López-Puertas et al. [2005]). Also the small increase in HNO$_3$ on 3 November is correlated with the large SPE occurred early on 2 November. From these days, HNO$_3$ at these altitudes (around 35 km) slowly returns to background values.

This sudden enhancement in HNO$_3$ abundance after the SPEs suggests that it is produced by gas-phase chemistry. The major gas phase reactions where HNO$_3$ is involved are:

\begin{align}
\text{NO}_2 + \text{OH} + \text{M} & \rightarrow \text{HNO}_3 + \text{M} \\
\text{HNO}_3 + \text{OH} & \rightarrow \text{NO}_3 + \text{H}_2\text{O} \\
\text{HNO}_3 + h\nu & \rightarrow \text{NO}_2 + \text{OH}.
\end{align}

Reaction 1 is the major production process. It is fast enough to produce an HNO$_3$ enhancement similar to that observed, and faster than the loss processes (reactions 2 and 2). Since loss of HNO$_3$ by reaction with OH (reaction 2) is slower than photo-dissociation, some of the HNO$_3$ enhancement could be caused by an increase of OH, NO$_2$ or both. The solar proton events can produce enhancements of both OH and NO$_2$ [see, e.g., Jackman and McPeters, 2004]. Indirect evidence of the increase in OH during this SPE through O$_3$ depletion and through enhancement of HOCl have been reported by López-Puertas et al. [2005] and von Clarmann et al. [2005], respectively. López-Puertas et al. [2005] have shown that NO$_2$ decreases by about 2–3 ppbv in the 30–40 km region on 29 and 30
October, i.e., the first two days after the major SPEs, the region and time where HNO₃ shows its major increase of about 1–2 ppbv. It then seems that at least some of the HNO₃ increase is produced through reaction 1 caused by an increase of OH in the 30-40 km region during 29 and 30 October. As a consequence of this process, NO₂ is depleted in this region and time, opposite to the enormous increase that occurs at higher altitudes and subsequent times [López-Fuertas et al., 2005].

HNO₃ might also be enhanced after SPEs through ion chemistry. Solomon et al. [1981] proposed the following pathway for producing HOₓ through ion recombination in the stratosphere,

\[
\text{O}_2^+ \cdot \text{H}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ \cdot \text{OH} + \text{O}_2 \quad (4)
\]

\[
\text{H}_3\text{O}^+ \cdot \text{OH} + \text{H}_2\text{O} \rightarrow \text{H}^+ \cdot (\text{H}_2\text{O})_2 + \text{OH} \quad (5)
\]

\[
\text{H}^+ \cdot (\text{H}_2\text{O})_2 + \text{NO}_3^- \rightarrow \text{HNO}_3 + \text{H}_2\text{O} + \text{H}_2\text{O} \quad (6)
\]

Net: \[\text{H}_2\text{O} + \text{NO}_3^- \rightarrow \text{HNO}_3 + \text{OH} \quad (7) \]

where net HNO₃ is produced under dark conditions. This process requires the production of NO₃⁻. The dominant process for the production of NO₃⁻ in the stratosphere is through CO₃ + NO₂ → NO₃⁻ + CO₂ [Brasseur and Solomon, 1986], which also constitutes a loss of NO₂.

Still another mechanism for producing HNO₃ involving ion chemistry was first proposed by Böhringer et al. [1983] and was applied in modeling and data analysis studies [e.g., Kawa et al. 1995; de Zafra and Smyshlyaev, 2001]. This mechanism involves N₂O₅ and is given as

\[
\text{N}_2\text{O}_5 + X^+(\text{H}_2\text{O})_n \rightarrow X^+(\text{H}_2\text{O})_{n-1}(\text{HNO}_3) + \text{HNO}_3 \quad (8)
\]
This mechanism requires HNO$_3$ to be formed at the expense of N$_2$O$_5$. Our observations indicate, however, a slow enhancement of N$_2$O$_5$ after the SPEs (see Figure 5).

Hence, the scheme above involving ion chemistry (Eqs. 4–7) and reaction 1 will both lead to HNO$_3$ production and NO$_2$ depletion, as has been observed in the 30–40 km region during the first two days after the major SPEs. Whether this ion chemistry scheme contributes significantly to HNO$_3$ enhancement or process 1 alone can explain the observed enhancement is still an open question. Production via ion cluster chemistry (Eqs. 8–10) is unlikely since the conversion from N$_2$O$_5$ to HNO$_3$ through this mechanism will take at least 2 weeks [Stiller et al., 2005]. In addition, N$_2$O$_5$ should quickly decrease, while MIPAS observed even a slow enhancement (see Sec. 5 below).

Once HNO$_3$ is produced just after the SPEs, it is expected to only slowly decrease. The major HNO$_3$ loss occurs through photolysis (reaction 3) but this is rather slow (photolysis lifetime is about one week for noontime mid-latitude conditions) and most of the 70–90°N (geographic) polar cap is in the dark during this period. The smaller enhancement on 7 November could be due to dynamical effects or non-uniform sampling, since the time series for the CO vmr also shows a significant decrease at this day (see Fig. 4f in López-Puertas et al. [2005]).

Changes in HNO$_3$ just after the major SPEs and in the subsequent days are also observed below 30 km with a maximum change around 25 km. The surface plot at a potential temperature level of Θ=625 K (~25 km) (Fig. 3) shows a rather good spatial correlation with the enhancement at Θ=1000 K (~35 km) (Fig. 1), at least during the first days after
LÓPEZ-PUERTAS ET AL.: NO_x ENHANCEMENTS AFTER SOLAR PROTON EVENTS

the major SPEs, suggesting that these changes are caused by the SPEs. A comparison of HNO₃ in this period inside the vortex with the values measured by MIPAS in the previous winter, when no significant SPEs had appeared, is shown in Figs. 4b and 4c. The enhancement over the 2002-2003 winter just after the SPEs is very clear at the 1500 K (~42 km), 1250 K (~38 km), and 1000 K (~35 km) potential temperatures, the latter persisting at least until the end of December. At the 775 K level (~30 km) a small increase is also seen after the SPEs, although only lasting a few days. At lower altitudes, 625 K (~25 km), we observe an increase just after the solar storms and HNO₃ vmrs remaining always larger than in the previous winter at least until the end of December. Current models estimate that most energetic protons do not have energy enough to penetrate below 30 km [Jackman et al., 2005b]. Also the temporal evolution at 625 K is rather different from that at 1000 K. We cannot unambiguously show that the changes at the 625 K level are caused by the SPEs.

The changes observed in NO_x and O₃ in the Southern hemisphere are much smaller than in the Northern hemisphere [López-Puertas et al., 2005]. We would then expect also smaller changes, if any, in the NO_x species studied here. Figure 2b shows the temporal evolution for HNO₃ in the Southern hemisphere. The major change is observed in the region between 27 and 40 km. An inspection of the surface plots at these altitudes has shown that the polar vortex was very weak and at least part of the enhancement observed between 25 and 35 km are due to intrusion of HNO₃-rich air from mid-latitudes. Thus, maximum changes due to SPEs are around 0.2 ppbv and confined to above ~35 km, which are much smaller than those observed in the Northern hemisphere.
4. Mid-term HNO$_3$ Enhancements

Enhancements in HNO$_3$ from late November 2003 to 7–8 January 2004 in the Northern polar region from MIPAS near-real time data have been reported by Orsolini et al. [2005]. In this section we describe the in-vortex HNO$_3$ measured by MIPAS during the post-SPE Arctic winter 2003–2004 (November 2003 to March 2004) and compare with the previous 2002–2003 arctic winter, when no significant SPEs took place. In this study we discuss the instantaneous increase of HNO$_3$ in the context of the whole winter, and compare the HNO$_3$ development with the previous Northern winter 2002–2003.

Figures 4b and c show the time series for in-vortex Northern hemisphere abundances of HNO$_3$ (b and c) as measured by MIPAS (off-line data, version 4.61). The time series for in-vortex NO$_2$ [shown in López-Puertas et al., 2005] was adapted here to show the strong correlation between NO$_2$ and HNO$_3$. The vortex was assumed as the region where the equivalent latitudes were greater than 65°. For more details on these calculations, see Sec. 5 in López-Puertas et al. [2005]. The sudden increase in HNO$_3$ on 29 October, following the major SPEs, is apparent at potential temperature levels from 1500 K down to 1000 K. At lower levels a small increase is also noted. As explained in the previous section, this sudden increased is mainly produced by gas-phase chemistry, which is fast enough to produce an HNO$_3$ enhancement on a time-scale of 1 or 2 days after the immediate enhancement of OH produced by the SPEs. NO$_2$ is also quickly enhanced after the major SPEs by local production. It is produced after N$_2$ is dissociated by the charged particles, N reacts with O$_2$ to form NO which then produces NO$_2$ through the catalytic destruction of O$_3$ (see, e.g. Jackman and McPeters [2004]) (see López-Puertas et al. [2005] for more details on the NO$_2$ enhancements).
We observe, after some decrease during November at the 1250 K and 1500 K levels, a further significant enhancement in HNO$_3$ at essentially all levels, during the second half of November and December with maxima around 10 Dec, 16 Dec, and 30 Dec for θ levels of 1500 K, 1250 K, and 1000 K, respectively. Orsolini et al. [2005] have studied these enhancements and their correlations with NO$_2$ and the A_p index and suggested that they were caused by energetic particles that induced a direct production of NO$_x$ in the upper stratosphere. From Figures 4 we note a correlation between the maxima in HNO$_3$ at the different θ levels (1500, 1250, and 1000 K) and those in NO$_2$ but shifted approximately by about 2 weeks (maxima in NO$_2$ at those levels took place around 23 Nov, 1 Dec, and 18 Dec; while those in HNO$_3$ around 10 Dec, 16 Dec, and 30 Dec). This is the estimated time needed for producing HNO$_3$ from N$_2$O$_5$ through the ion cluster reactions (Eqs. 8-10) [Stiller et al., 2005]. The maximum at 1500 K that appeared around 28 Nov is not correlated to any of the two minor SPEs taking place on 20–23 Nov and 3–5 Dec. This seems more an apparent maximum caused by the lower abundances measured during 1–8 Dec in the continuous increase of HNO$_3$ from early November until mid-December. These lower values are likely produced by dynamically-induced changes in the descending NO$_x$ or by excursions of the vortex to illuminated regions. We therefore think that the major part of these exceptionally high HNO$_3$ enhancements taking place between around 8 Nov until the end of December have their origin in the NO$_x$ produced in the mesosphere during the major SPEs in late Oct/early Nov, which was then transported downwards through Nov and Dec, partially converted into N$_2$O$_5$ in the upper stratosphere, and afterwards into HNO$_3$ by heterogeneous ion-cluster reactions. The direct formation of HNO$_3$ in this period, e.g., locally by gas-phase chemistry triggered by the smaller SPEs that took place
on 20–23 Nov and on 3–5 Dec, does not seem plausible: First, no instantaneous response to these minor SPEs over a wide altitude range was observed, in contrast to the Oct/Nov SPEs. Secondly, these SPEs were much weaker and fluxes of protons with energy below 10 MeV (that penetrate only down to 60 km) were two orders of magnitude smaller, and those with energy enough to penetrate into the upper stratosphere, e.g. 30–100 MeV [Jackman and McPeters, 2004] were only negligibly enhanced [http://sec.noaa.gov/Data/goes.html].

Starting around 10 December, and depending on the altitude level, we see that the enhancements abruptly drop down (particularly at 1500 and 1250 K). These are in very close correlation with the decline in NO2 enhancements and seem to be caused by the major stratospheric warming that took place at that time [see, e.g., Angell et al., 2004; Manney et al., 2005].

In the period from mid-February until the end of March NO2 increased extraordinarily. HNO3, however, is not significantly enhanced at high altitudes (1500-1000 K). At this time substantial parts of the polar vortex were no longer in darkness, which is required to produce HNO3 from NOx with heterogeneous ion-cluster chemistry. This seems to be the reason for the absence of HNO3 enhancements even though extraordinary high amounts of NOx were present (see Stiller et al. [2005] for more details).

At lower levels, 775 K and 625 K, we also observe much larger in-vortex HNO3 values than in the previous winter after mid-November (775 K) and early December (625 K), extending to the end of the winter in late March. These differences are not expected to be caused by the SPEs nor by particle precipitation. Manney et al. [2005] have reported (Fig. 1) that the area with temperatures below the NAT (nitric acid trihydrate) formation temperature at the 50 hPa level (~20 km) was much larger in the 2002-2003 NH arctic
winter than in 2003-2004. Polar Stratospheric Cloud (PSC) formation obviously was much weaker in 2003–2004, then sequestration of HNO₃ in the PSCs was smaller, and that would explain the higher mid-stratospheric HNO₃ abundances.

5. N₂O₅ Enhancement

Nitrogen pentoxide (N₂O₅) has also been observed to be affected by the solar proton events of October-November 2003. Figure 5 shows the temporal evolution for this species in the NH polar cap. The increase of N₂O₅ abundance follows just after the SPE but, contrary to HNO₃, it increases slowly, reaching its maximum towards the end of this period. The maximum enhancement is located at around 40 km in the whole period and varies with time from 0.5 (29 Oct) to 1.2 ppbv (14 Nov), about 20 to 60% of the pre-storm value, which is well above the N₂O₅ precision of ~0.5–1% for the mean profiles shown here [Mengistu Tsidu et al., 2004]. The late occurrence of the maximum enhancement was expected on the basis of the currently known chemistry. N₂O₅ is expected to increase after the NOₓ enhancement, but the subsequent partial conversion of NO₂ to N₂O₅ through

\[\text{NO}_2 + \text{NO}_3 + M \rightarrow \text{N}_2\text{O}_5 + M \]

takes several days. However it is expected from model calculations that the maximum change should appear around 7–8 November, about one week before the observed one. Hence, the actual development of the enhancement is not completely clear, although it seems that dynamics played a significant role (see below) in its evolution.

N₂O₅ enhancements are visible in the surface distributions. Figs. Figs. 6 and 7 show the N₂O₅ distributions at potential temperature levels of Θ=1000 K and 1500 K (approximately 35 and 40 km), respectively. Focussing on Θ=1000 K, we note the emergence
of a large increase in N_2O_5 around the North pole on 29 October, just after the major SPEs, which is rather large until 2-3 November, which then disappears, but emerges again on 12 November. Its distribution at $\Theta=1500$ K (Fig. 7) also shows an enhancement in N_2O_5 near the North pole on 29 October, although more incipient than at $\Theta=1000$ K. This enhancement increases slowly during the first four to five days, continues on (or slightly decreases) until 8-9 November, and then it quickly rises on 9-10 November to reach large values in the following days. It looks like there are two distinct enhancements, one appearing early after the major SPEs and penetrating deep in the stratosphere; and a second one, larger, appearing about 12-13 days after.

The first enhancement is consistent with those observed for HNO$_3$ and HOCI (see von Clarmann et al. [2005] for the latter). The data suggest that an increase in OH is produced, giving rise to an HNO$_3$ enhancement and an NO$_2$ depletion. The larger amount of HNO$_3$ in the presence of OH under dark conditions would lead to an increase in NO$_3$ and hence in N_2O_5.

The second enhancement seems to be caused by a slow subsidence of NO$_x$-rich air after 8 November since it appears earlier at higher altitudes ($\Theta=1500$ K), and about 3-4 days later at $\Theta=1000$ K. This is also noted in Fig. 5 where the N_2O_5 enhancement at 35-40 km steadily increases with time on 10-14 November, and is consistent with the NO$_x$ subsidence shown in our companion paper [López-Puertas et al., 2005].

Some small enhancements have been observed for N_2O_5 in the Southern polar cap. An enhancement of 0.07 ppbv is observed in the nighttime profiles between 60-70°S at altitudes of 40-45 km on 29 and 30 October. In this polar cap there is only a small fraction of nighttime profiles compared to those in daytime. Hence, the small changes observed in
the SH are in consonance with theoretical expectations since the formed NO$_3$, required to produce N$_2$O$_5$ (reaction 11), is very short-lived in the illuminated SH polar cap.

6. ClONO$_2$ Enhancement

Following the chain of chemical processes, a larger abundance of NO$_2$ would also produce an enhancement in ClONO$_2$ through the reaction

$$\text{ClO} + \text{NO}_2 + \text{M} \rightarrow \text{ClONO}_2 + \text{M}$$ \hspace{1cm} (12)

[see, e.g., Brasseur and Solomon, 1986; Solomon, 1999; Jackman et al., 2000]. MIPAS observations have confirmed these predictions, in particular in the NH polar stratosphere where ClONO$_2$ is largely enhanced (Fig. 8). The maximum enhancement of ClONO$_2$ is centered in a layer around 32 km with values of 0.4 ppbv, about 40%. This change is significant since the estimated random error in the daily mean profiles used in Fig. 8 is \sim0.5% [Höpfner et al., 2004]. The increase in ClONO$_2$ is slightly delayed by 1–2 days with respect to the major SPEs. This enhancement is consistent with the observed decrease in NO$_2$ by about 2–3 ppbv in the 30–40 km region on 29 and 30 October [see López-Puertas et al., 2005]. These enhancements are, qualitatively, in agreement with known chemical processes [see Clarmann et al., 2005].

To show ClONO$_2$ enhancements in more detail, we have plotted its surface series close to the altitude where it is more enhanced, 850 K (\sim32 km) (Fig. 9). ClONO$_2$ starts enhancing significantly on 29 October but its maximum is reached a few days later, consistent with the time series plot (Fig. 8). We note that during the first three days after the major SPEs, it is enhanced at latitudes lower than \sim80°N, but not over the North pole. This is consistent with the observed NO$_2$ depletion at these altitudes and times at lati-
tudes very close to the North pole, as discussed above. For this reason the enhancement during the first few days is smaller. In the following days, the ClONO$_2$ enhancements extend over all latitudes north of \sim60°N. These enhancements in ClONO$_2$ also reflect the interference with the chlorine-induced catalytic ozone loss [Jackman and McPeters, 2004; von Clarmann et al., 2005].

In the Southern hemisphere, the changes observed are very small. The maximum enhancements are about 0.1 ppbv in the nighttime profiles between 60–70°S at 25–30 km on 31 October. This is in consonance with a much smaller NO$_2$ enhancement observed in the Austral hemisphere particularly below about 40 km.

7. Summary and Conclusions

We have shown in this paper significant enhancements in HNO$_3$, N$_2$O$_5$ and ClONO$_2$ in the polar stratosphere produced after the intense solar proton events (SPEs) which occurred in October-November 2003. The measurements of these species were taken by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (ENVISAT). To our best knowledge, these represent the first simultaneous observations of changes in all these NO$_x$ species produced by SPEs. Only Orsolini et al. [2005] have recently reported HNO$_3$ enhancements also using MIPAS measurements.

Large HNO$_3$ enhancements have been observed in the Northern hemisphere polar cap (70°N-90°N) in the upper stratosphere. Two clearly separated enhancements are observed: an instantaneous increase of 1–2 ppbv following the Oct-Nov SPEs, and a very large second enhancement (1–5 ppbv depending on altitude), starting around 10 Nov and lasting until at least the end of December.
The sudden enhancement just after the SPEs seems to be mainly produced by gas-phase chemistry: $\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3 + \text{M}$, originated by the instantaneous increase in OH. HNO$_3$ might also be enhanced after SPEs through ion chemistry involving NO$_3^-$\textsuperscript{\textcircled{4}}. A smaller enhancement (of about 1 ppbv) also occurred at an altitude of \sim25 km. Although the comparison with the previous winter suggests it was caused by SPEs, it is not clear yet since the changes are within the expected climatological variability and relatively few solar protons penetrate so deep in the atmosphere.

Enhancements of HNO$_3$ just after the Oct-Nov 2003 SPEs were also observed in the Southern polar cap (70°S–90°S) (summer pole), although much smaller than in the Northern counterpart. The enhancement in the Austral polar cap took place between 30 and 40 km with maximum changes of about 0.2 ppbv.

Orsolini et al. [2005] have studied the HNO$_3$ enhancements from late November 2003 to early January 2004 and their correlations with NO$_2$ and the A_p index, and suggested that it was caused by energetic particles that induced a direct production of NO$_x$ in the upper stratosphere. From our analysis of the correlation of HNO$_3$ and NO$_2$ maxima shown here, the analysis of the origin of the NO$_2$ enhancements observed in this period presented in our companion paper [López-Puertas et al., 2005], and the analysis of HNO$_3$ enhancement during several winters of Stiller et al. [2005], we have concluded that the major part of this exceptionally high HNO$_3$ enhancement taking place between around 8 Nov until the end of December has its origin in the NO$_x$ produced in the mesosphere during the major SPEs in late Oct/early Nov, which was then transported downwards during November and December, partially converted into N$_2$O$_5$ in the upper stratosphere, and then, by heterogeneous ion-cluster reactions (Eqs. 8-10), into HNO$_3$.
The local formation of the HNO$_3$ enhancement in this period by gas-phase chemistry triggered by smaller SPEs which took place on 20–23 November and on 3–5 December does not seem plausible since no instantaneous response to these minor SPEs was observed over a wide altitude range, in contrast to the Oct/Nov SPEs. These SPEs were much weaker and unable to produce significant atmospheric changes at upper stratospheric levels.

We also observe much larger in-vortex HNO$_3$ values in 2003-2004 (Nov-March) than in the previous winter at lower altitudes, at 775 K and 625 K potential temperature levels. These differences, however, do not seem to be caused by the SPEs but to the larger area with temperatures below NAT formation temperature that took place in the 2002-2003 winter, which produced more PSCs formation and hence a larger sequestration of HNO$_3$ in the PSCs.

N$_2$O$_5$ has also been observed to be enhanced after the SPEs in the Northern polar cap but, contrary to HNO$_3$, it reached the maximum enhancement about two weeks after the SPEs. The maximum increase in N$_2$O$_5$ took place at around 40 km and varies from 0.5 to 1.2 ppbv, about 20 to 60%. The N$_2$O$_5$ surface plots reveal that two distinct enhancements appeared. One of about 0.1-0.4 ppbv occurring early after the major SPEs and penetrating deep in the stratosphere, down to 30 km; and a second one, larger, up to 1.2 ppbv, peaking around 40 km and appearing about 12–13 days after the major SPEs. The first enhancement is assigned to an increase in OH. An OH enhancement gives rise to an HNO$_3$ increase which, in the presence of OH under dark conditions, leads to an increase in NO$_3$ and then in N$_2$O$_5$. The second enhancement seems to be caused by a slow subsidence of NO$_x$-rich air after 8 November. Small enhancements (0.07 ppbv) have been observed for N$_2$O$_5$ in the Southern polar cap. This is in consonance with theoretical
expectations, since NO₃, which is required to produce N₂O₅, is very short-lived in the illuminated SH polar cap.

Finally, ClONO₂ has been observed to be increased in the Northern polar cap after the SPEs. The maximum enhancement of ClONO₂ was centered in a layer around 32 km with values of 0.4 ppbv, about 40%. The increase is slightly delayed by 1–2 days with respect to the major SPEs, which is consistent with the observed depletion in NO₂ of about 2–3 ppbv in the 30–40 km region on 29 and 30 October [López-Puertas et al., 2005]. In the Southern hemisphere, the changes observed in ClONO₂ were much smaller than in the Northern polar cap. The maximum enhancements were about 0.1 ppbv in the nighttime profiles between 60–70°S at 25–30 km on 31 October.

In summary, during the first three days after the major storm at around 35 km and at latitudes very close to the North pole, we observed that NO₂ decreased [see López-Puertas et al., 2005], ClONO₂ did not change significantly, but HNO₃, N₂O₅ and HOCl increased. The overall picture suggests that the increase in OH [see von Clarmann et al., 2005] produced the increase in HNO₃ and the decrease in NO₂. Also, larger amounts of HNO₃ in the presence of OH lead to an increase in NO₃ and hence in N₂O₅. ClONO₂ did not increase significantly in this period since the required NO₂ was even slightly smaller than before the SPEs.

Many features have been discussed on the basis of the currently known chemistry and on observations of other species as NOₓ and HOCl. The quantitative reproduction of the MIPAS observations of temporal and spatial development of the nitrogen reservoirs, reactive species, and ozone will be a challenge to chemistry transport models. New insights both in the dynamic schemes, in particular with respect to subsidence of ther-
mospheric/mesospheric air, and the chemical schemes, in particular with respect to ion cluster chemistry, are expected.

Acknowledgments. The IAA team has been supported by Spanish Ministerio de Educación y Ciencia under projects REN2001-3249/CLI and ESP2004-01556, EC FEDER funds, and by the European Community Marie Curie Host Fellowship HPMD-CT-2000-40 (SIESTA). IMK was partially supported by German projects SACADA (07ATF53) and KODYACS (07ATF43).

References

Figure 1. Northern hemisphere distributions of HNO₃ (in ppbv, parts per billion by volume) for days from October 27 to 14 November 2003 at a potential temperature (Θ) level of 1000 K (~35 km). Contours are zonally smoothed within 700 km. Individual measurements are represented by diamonds. The vortex edge is plotted with a red curve (see text for details). The geomagnetic pole is marked with a red '+' sign.
Figure 1 cont.
Figure 2. Temporal evolution of MIPAS HNO₃ abundance changes during and after the October-November 2003 solar proton events for the Northern (70°N-90°N) (a) and Southern (70°S-90°S) (b) (geographic) polar caps. Changes are shown relative to the mean profile measured on 26 October. The white band around 28 October represents lack of data due to MIPAS not observing at the time. A triangular smoothing with FWHM of 48 hours has been applied to the measurements sampled at 24 hours since daily means were affected by artefacts due to incomplete sampling. The number of profiles measured for each day varies between 400 and 900.
Figure 3. As Figure 1 but for a potential temperature level of altitude of $\Theta=625$ K (\sim25 km).
Figure 3 cont.
Figure 4.
Figure 4. Temporal evolution at selected potential temperatures of in-vortex (see text for details) Northern hemisphere abundances of NO$_2$ (a), and HNO$_3$ (b and c) for the pre-SPEs 2002–2003 and post–SPE 2003–2004 arctic winters. The major SPEs occurred on 28–30 October and 2–4 November 2003. The abundances have been smoothed with a triangle of FWHM of 48 hours and weighted by the cosine of latitude. The gap in the middle of the figures for 2003-2004 represent a period with no data available at this time. Some of the time series for NO$_2$ for 2003-2004 in the period of Oct/Jan have been displaced, as shown, for clarity. The data in this figure are from the MIPAS off-line (reprocessed) 4.61 version retrieved by ESA [Ridolfi et al., 2000; Carli et al., 2004. See Sec. 2 in the companion paper of López-Puertas et al. [2005] for more details.
Figure 5. Temporal evolution of N$_2$O$_5$ in the Northern (70°N-90°N) polar cap. See caption of Fig. 2 for more details.
Figure 6. Northern hemisphere distributions of \(\text{N}_2\text{O}_5 \) (in ppbv, parts per billion by volume) for days from 27 October to 14 November 2003 at a potential temperature (\(\Theta \)) level of 1000 K (~35 km). Contours are zonally smoothed within 700 km. Individual measurements are represented by diamonds. The vortex edge is plotted with a red curve (see text for details). The geomagnetic pole is marked with a red '+' sign.
Figure 6 cont.
Figure 7. As Figure 6 but at a potential temperature (Θ) level of 1500 K (~42 km).
Figure 7 cont.
Figure 8. Temporal evolution of ClONO\textsubscript{2} in the Northern (70°N-90°N) polar cap. See caption of Fig. 2 for more details.
Figure 9. Northern hemisphere distributions of ClONO$_2$ (in ppbv, parts per billion by volume) for days from 27 October to 14 November 2003 at a potential temperature (Θ) level of 850 K (\sim32 km). Contours are zonally smoothed within 700 km. Individual measurements are represented by diamonds. The vortex edge is plotted with a red curve (see text for details). The geomagnetic pole is marked with a red '+' sign.
Figure 9 cont.
HNO₃, N₂O₅ and ClONO₂ Enhancements after the October-November 2003 Solar Proton Events

Brief, Popular Summary of the Paper:

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the Environmental satellite (Envisat) measured very substantial enhancements in Northern polar HNO₃, N₂O₅, and ClONO₂ from October 25 to November 14, 2003, which were caused by the extremely large solar proton events during that period. The solar proton events created NOx (NO+NO₂), which then led to these substantial enhancements in other odd nitrogen (NOy) constituents in the mesosphere and stratosphere. The fourth largest period of events in the past 40 years occurred in October 28-31, 2003. Other solar proton events occurred in early November, 2003.

These were the first ever measurements of N₂O₅ and ClONO₂ changes due to solar proton events. The HNO₃ enhancements even persisted until the end of December. The measured Southern polar increases in HNO₃, N₂O₅, and ClONO₂ were smaller than those at Northern latitudes, but still were significant.