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PREFACE

This Memorandum Report consists of a compilation of three individual
reports, of increasing complexity, describing investigations of formation flight
of spacecraft in the vicinity of the Ly Sun-Earth libration point. The indi-
vidual reports form the following parts of this compilation:

e Introduction to the relative motion of spacecraft about the Sun-Earth
Lo Point

e Linear and quadratic modelling and solution of the relative motion

e Modelling the Perturbations — Elliptical Earth Orbit, Lunar Gravity,
Solar Radiation Pressure, Thrusters

The three parts are self-contained, with somewhat varying notation and
terminology. .

This work was funded by the Distributed Spacecraft Technology Program
at. NASA's Goddard Space Flight Center. The sponsor was Dr. Jesse Leitner
of the Mission Engineering and Systems Analysis Division.

After fairly significant literature searches, this new work (of Parts 2 and 3)
is deemed to be unique because it describes the primary perturbations to the
description of relative motion between nearby spacecraft. The effect of the
elliptical motion of the Earth about the Sun was verified to be the dominant
perturbation to the circular restricted three hody problem. Contributions
duc to lunar gravity and solar radiation pressure arc scen to have much
smaller effect.
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1 Introduction

The long-term goals of our sponsor are to develop high-fidelity equations
of motion representing orbiting spacecraft near the Sun-Earth L, point and
cquations of relative motion hetween orbiting spacecraft near the L, point.
These equations will be used to develop orbit control schemes for a constel-
lation of spacecraft near this L, point.

This report provides a starting point to the future development of high-
fidelity equations by first developing equations of motion for the circular
restricted three-body problem. Additionally, equations are derived for ana-
lytical expressions for the relative motion between spacecraft orbiting ncar
the L, point.

We follow the terminology of Hamilton's thesis [1] as we present four
scts of cquations of motion: three nonlincar sets and a lincarized sct. Their
derivations are in separate appendices. These equations were developed to
examine relative errors of the linearized and quadratic effect models with
respect to the baseline set full nonlinear equations. .

The four types of models for the circular restricted three-body problem:

o full nonlincar model of spacecraft motion with respect to the system
barycenter

e full nonlincar model of spacecraft motion with respeet to the L, point
e linearized model of spacecraft motion with respect to the L, point

o quadratic (nonlincar) model spacecraft motion with respect to the L
point.

We formed a Taylor series expansion of the nonlinear equations about
the libration point. Our linearized and quadratic models are respectively the
first- and second-order Taylor series.

The analytical expressions of relative motion are based on the solutions
to the linearized equations.

2  Problem Definition

The restricted three-body problem is a simplification to the general three-
body problem. The general three-body problem is the description of orbital



motion of three bodies. of arbitrary mass, in arbitrary orbits. The general
three-hody problem has not heen solved in closed form. “Work has focused
on simplifving the general problem. One special analytical solution--the
restricted three-body problemn has heen known since the time of Euler and
Lagrange.” [2]

“We define our problem as follows: Two bodies revolve around their cen-
ter of mass in circular orbits under the influcnce of their mutual gravitational
attraction and a third body (attracted by the previous two but not influenc-
ing their motion) moves in the plane defined by the two revolving bodies.
The restricted problem of three bodies is to describe the motion of this lhird
body.” [3]

The two revolving bodies are called the primaries. The masses m,; and
my of these bodies are arbitrary and are considered as point masses. The
mass of the third body, my, is infinitesimal and does not influence the motion
of masses myy and ney. In our problem, consider the niy mass to he a space-
craft. Also consider the sum of the mass of the Earth and its Moon to be
mq. Assuine the Earth and Moon are in circular orbit about their common
barveenter (system's center of mass). In turn, this barveenter is in circular
orbit about the Sun, which is mass m;. These four masses compose our
system: however. there are two large hodies. The larger of the large hodies
is the Sun and the swaller of the large bodies located at the Earth-Moon
barycenter (my > my).

We copv portions of Hamilton’s thesis Section 2.1 to define terminology
and coordinate systeins.

For this prelimminary analvsis, the orbits of the Moon around the Earth
and the Earth around the Sun are assumed to be circular, have a constant
angular speed, and be in the same orbital plane. (Spacecralt motions are not
restricted to the plane.) When these assumptions are niade. the restricted
three-bodyv problem hecomes the more specific circular restricted three-body
problem.

The rotating coordinate frame shown in Figure 1 is used for the devel-
opment of the cquations of motion. The origin is the system barycenter of
my and my. The first basis vector, @;, points toward the smaller bodv. The
third basis vector, as, is parallel to the orbit normal with origin at the system
baryeenter., The sceond basis vector; ay, is defined by the cross product of ay
and a; (ay = a3 x ay). These vectors form an orthogonal coordinate frame.

The position vector of the spacecraft in this rotating frame is
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Figure 1: The Three-Body Problem’s Rotating Coordinate System.

r=Xa +Yas+ Zas.
Writing vectors from the large bodies to spacecraft in the rotating frame
gives
=X+ Dl)dl +Yao + Zay

and

Ty = (/\’ - Dg)el-l + )"fLQ - ng,
where D; is the distance from the barycenter to my and Dy is the distance
from the barycenter to ms. Note that

D=D1+D2.

Use the equation for the definition of center of mass: my Dy = mal)y to
calculate the magnitudes of Dy and Dj given D:

D
D, =
1+ 2
' D
Dy, =
1+ o2
m)

~1



Define the constant angular speed of the frame about ay as

:/VG(T”‘I + ”12) '/(;("7'1'5'1111 + Megen + 7”u’\loon>
o R - D3 ’

where G is the gravitational constant. As shown in Appendix A. we
define the constant angular speed of the frame about ¢y as the two-body
mean motion w = wiy

Also define
1 = Gmy = Gy,
and
py = Gy = GUgamn + 0 agoon )-

With these definitions, we state four sets of equations that describe the
motion of the spacecraft. The derivation of these equations is shown in
respective appendices.

3 Full Nonlinear Equations for Circular Re-
stricted Three-Body Problem (relative to
barycenter)

These equations describe the spacecraft’s motion relative to the system’s
barveenter in a rotating coordinate frame. The frame rotates with a constant

angular speed.

. . . B 19} ol N — [y
YV o_ouy —uty = Y H Dy (N = D) )
i IE
Y )

V4 2wX — Y = (2)
|,r.I 3 ‘1.2 3
P o iz

7 o= - - 3

P P (3)

where [r)| and [r] are the magnitudes of the vectors i and 75, respectively.
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Figure 2: Libration Point Locations.

The initial conditions to be specified are

X(0) X(0)
Y(0) Y(0)
2(0)  Z(0).

These equations are derived in Appendix A.

By setting all time derivatives in these equations of motion to zero, five
libration points can be calculated. The location of these points depend on the
masses and distances of the bodies: however, three points, shown in Figure 2,
are alwayvs collinear with the two large bodies (Ly, Lq, L3), and the other
two points form cquilateral triangles with the two large bodies (Ly and Lsg).

The motion near the collinear libration points is always unstable due to
the existence of a positive real root of the characteristic equation for any
value of . An unperturbed object in an orbit around a collinear libration
point will move away from that point.

The four initial conditions corresponding to the in-plane motions (X-Y
plane) cannot be arbitrarily selected. This will be further explained in Sec-
tion 5. Szebehelv discusses that the selection of initial conditions at the
collincar libration points show considerable inherent instability. Even when

9
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Figure 3: Relative Position with respect to L.

initial conditions arce chosen according to the lincarized requirements. the
spacecraft orbits mavbe once or twice around Ly before moving awav. Fortu-
nately, periodic orbits may be obtained by slight modification of the initial
conditions which follow from the linearized solution. The point is that the
orbits are very sensitive to changes in the initial conditions.

4 Full Nonlinear Equations for Circular Re-
stricted Three-Body Problem (relative to
a libration point)

We continue from Hawmilton.

Motion around a collinear libration point is more easily expressed in a
local coordinate frame, shown in Figure 3. with the origin located at the
libration point of interest.

Note the vector addition

r=7To+p

where 7y has components (Xq. Yy, Zy) to define the location of the libration
point relative to the systemn barvycenter. The “07 subscript refers to any
one of the libration points. (Y, and Z;, are both zero for collinear libration
points.) Vector p has components (X, Y, Z) to specity the location of my
relative to the libration point. Using

/\' - 1\’0 + £ (4)
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be reminded that (X, Y, Z) is the spacecraft position relative to the system
barycenter. The radial direction, «, is collincar with a;, going from the Sun
(or largest body) through the libration point. The cross-track direction, z,
is parallel and in the same direction as a3, the orbit normal. The component
y is 1 the direction of as. When circular motion is assumed, the v direction
is the tangential velocity direction of the libration point around the system
barycenter. These axes form an orthogonal coordinate system. Motion in
the w-y planc is referred to as in-planc and any motion in the z direction will
be referred to as out-of-plane.

The equations below describe the spacecraft’s motion in a local coordinate
frame relative to the libration point (origin) chosen by selection of (Xg. Yo,
Zp). Unique distances corresponding to each of the five libration points exist
for each set of (Xo, Yo, Zy).

The equations below are the full, coupled, nonlinear equations of motion
for the circular restricted three-body problemn. The coordinate frame rotates
with a constant angular speed.

Equations (1) — (3) yield by simple substitution of Equations (4) — (6):

; . 5 w(Xog+z+D w(Xg+1r—D
17—2wy—w“(X0+1:) = _ll( 0 5 1) _ /2( 0 . 2)
ry 75
. : 20 (Yo + 1 15(Yg + 1
y+2wx—w"(yo+y) — _/1( 03 y) _/)( 03 y)
1 7y
s mlZo+z) (2o 2)
~ ’,‘% ,23 .

where 1y and 1y are now defined below as

V(Xo+ 2+ D)2+ (Yo +y)? + (Zo + 2)2
re = J(Xo+w— Do)+ (Yo+u)? +(Zo+2)2.

r

The initial conditions to be specified are

z(0) (0)
y(0)  5(0)
2(0)  2(0).

11




These equations are derived in Appendix B.
For the L, point, where onlv Xy # 0. the equations further simplifv.

5 Linear Equations for Circular Restricted
Three-Body Problem

- At a chosen cquilibrium point, the nonlinear, full, equations of motion can be
linearized in order to exploit standard solutions to linear equations. The lin-
car equations of motion about the local coordinate frame (origin at collincar
libration point L,) are given here:

r— 21.&']./ - ([X/\'.L' = {
yt2we—Uyyy = 0
Z— UZZZ - O,

where. evaluated at the Lq collinear libration point, where X = X, }" = 0,
Z =0

5 2/1[ 2/,[-_)
Usxle, =« R DR T N = Doy
Uyy ! = _ 1 _ M2 _
- (Xo+ D)) (Xo— Dy)?
R P . S B
B (Xo+ D)2 (X — Do)?

The initial conditions to be specified are

2(0) i(0)
y(0)  y(0)
=(0) £(0).

These equations are derived in Appendix C.

When evaluated at Ly Uxy. Uyy. and [/zz. which were formed from U7,
arce constant. The psendopotential U7 is the centrifugal plus gravitational
force potential defined as

1y, . .
U:;w"(/\2+}2)+ﬂ+/l—z

2 reoor
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and

ro= SN D2V 2
9 = \/(X— D2)2+},2+22.

The respective double-lettered subscript indicates the second derivative
of U with respect to that Icttered-variable.

The selection of initial conditions for the first-order linear model
summarizes the discussions of Szebehely [3], Farquhar [5], and Wie [4]. The
in-planc characteristic cquation of the lincarized cquations of motion about
the collinear equilibrium points is of fourth degree. Solution yields two real
roots (equal in magnitude, but opposite in sign) and two imaginary roots.
The in-plane position has a convergent mode (due to the negative real root),
a divergent mode (due to the positive real root), and an oscillatory mode.
All three collinear libration points are unstable.

The out-of-plane characteristic equation of the linearized equations of
motion about the collinear equilibriumi points is of second degree. The two
eigenvalues arc imaginary. Thus, out-of-planc motion is simply oscillatory.

For the linearized equations of motion, these authors show that a solution
to the equations can be made to contain only the oscillatory modes with
proper choice of initial conditions:

Choose
i) = (£2)y0 (7)
U(O) = —kwaI(O) (8)
where k = J%Ei—‘ and wy,, is the nondimensional frequency of the in-plane

Wy
oscillatory mode calculated from

Wey — VBI + V /6% + 3'22

A= 2= (Uxx +Uyy)/2

5‘22 = —Uxxlyy,

13




which means that once initial conditions «(0) and y(0) are sclected. the
corresponding initial velocity components cannot be chosen at will.
Althongh the choice of the z iitial conditions is arbitrary, Wie states
that choosing z(0) = z(0) = 0 and 2(0) = —y(0)w. (with w, = \/lUZZ ), the
solution further reduces to a quasi-periodic Lissajous trajectory. We will not
discuss this trajectory at this time. We just list his example initial condition.
Szebehely continues by noting Equations (7) — (8) do not hold when
higher-order terms in the function [7 are retained. Nevertheless. the set of
initial conditions given by these equations furnish the starting point of an

iteration which leads to the proper initial condition for the nonlinear case.
The closer the initial point (x(0), y(0)) is to the chosen libration point.
the better a differential correction scheme will work to furnish the initial
conditions desired for the establishment of periodic orbits in the nonlinear
problem.

The lincarization process allows only first-order tenns in the coordinates
and velocities; consequently, meaningful results must be connected with small
values of these variables. Even when the initial conditions are chosen accord-
ing to the linearized requirements, the spacecraft perform only one or two
orbits before they depart from the area. Again, periodic orbits may be ob-
tained by slight modification of the initial counditions which follow from the
linearized solution. The point is that the orbits are very sensitive to changes
in the initial conditions.

The linear model is amenable to linecar analysis methods, which ave more
tractable than nonlinear solutions. The linear model is most helpful for
preliminary control analvsis as discussed by Hamilton. The nonlinear insta-
bilities of this system must be restrained to maintain the desired periodic
orbit motion.

6 Quadratic Equations for Circular Restricted
Three-Body Problem

We went one-step beyond the linear dynamics iodel of Section 5. By further
expanding {J, we obtained a second-order model for the restricted problem.
This model should vield trajectories closer to the nonlinear model than does
the linear model.

14




y _ 3 .
F— 2wy —wlr = 24z — 53(2:172 —y? = 2%

j+ 2wt —w?y = —Ay+ 3By
P = —A:;-+3Bxz
where
1 112
A = + -
(X() + Dl)S ()(0 — Dg)j
B = a2 + H2

(Xo + D1)'/1 ()(0 — Dg)4

The initial conditions to be specified are

z(0) z(0)
y(0)  %(0)
z(0) 2(0)

These equations are derived in Appendix D.

7 Linear Relative Motion Equations for Cir-
cular Restricted Three-Body Problem

Consider the lincarized equations, with initial conditions sclected such as to
avoid exciting the divergent mode. The solution then takes the form

Tocos Ut — to) + 22 sin Q(t — o)
= | —hxosinQt — tg) + yo cos Qt — to)
zocosw(t — to) + L sinw(t — ty)

o]
I
[

where subscript 0 refers to the value at titne ¢t = ¢3. This solution can be
written as a pair of decoupled matrix equations of similar form:

x| cosQt —ty)  +sinQt — to) Zo 9)
Yy N —ksinQt —tg)  cosQ(t —tg) Yo (

} _ { cosw(t — tg) 5Sinw(t ~ to) } [ “0 ] . (10)

—wsinw(t —ty)  cosw(t — ) 20

N

.
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For notational convenience, let the vectors x and z refer, respectivelv. to
[t yTand [z 2]T. Therefore. Equations (9) and (10) may be written as

x = Apalt lo)xo (11)
z = A, to)zo, (12)
where

cos Qt — ty) —]%sin Q(f — tg)

Aeall lo) = —ksin Q(t — ty)  cos QU —ty)

is the generic state transition matrix. Because of the obvious similarity, the
relative motion solution may be developed for one of these matrix equations,
and the result applied to the other.

7.1 Relative Motion of Two Objects on Same Trajec-
tory |

Now, say that there are two objects which satisfy this set of cquations. Object
1 has the initial conditions which have been discussed, but object 2 trails
object 1 by a time delay At. Therefore,

1"_)‘(’/.) —= I'l(f — ./_\f)

with the subseript referring to the object mumber. Let the relative motion
be given hy
Ar = ry — Iy

with the initial state
A
Iy (/’()) = rg(t() + A/) =Ty.

First consider the in-plane motion of Equation (11). The in-plane motion
of objects 1 and 2 is given by

x, = Apalt lo)xg
X2 = Aralt = At to)xo.

Therefore, the relative motion 1s

Ax = [Apall ly) = Apall = AL Ly )}xo. (13)

16




Axg = Ax(to) = X19— X2
_ ,f—lklﬂ([»(), [,())X() — “41.‘-,Q(['” — A/ L())X()
= I-Apa(to — At to)]Xo-

And so,
Xg = [I —_ Ak‘gz(fo — At to)]_lAXO. (1—1)

Substituting into Equation (13),
Ax = [Ago(t.to) — Apa(t — At to)][] — Apalto — At.to)] 7 Axg.
From the properties of the state transition matrix,
Arall — AL L) = Ava(l lo)Ara(ly — AL Ly).
Thercfore,

Ax = [Agalt,te) — Aralt, to)Ara(to — A, to)]
[T — Aralte — At 1) 7HAxg
Apalt,t))[l — Apalto — At t)][I — Apalte — At )] Axg
= Apqalt,to)Axo.

The same result may be applied to Equation {12). The resulting relative
motion equations are then

Ax = Apalt. to)Axo
Az = A, (t to)Azg,

Aww

with the full matrices as given in Equations (9) and (10).

It may be preferable to present the relative motion in terms of the relative
position at the time of insertion of the second object — that is, at time to+At.
Referring to Equation (13),

Ax(to+ At) = [Aralto + At, to) — Aralto, to)]Xo
[Ara(to + At tg) — I1xo.

I

17




Following the same logic as above,
L\X() = {A;itgz(to + At, to) — ]]~1AX(f0 - At)
and so

Ax = [Apolt.tp) — Apa(t — At.1)]x
= [Anall = At to)Agalte + At do) — Apq(t — Al to)]
[Apa(ty + Ab ) — TTHAX(fg + A,
= Apalt — AL L)AX(t + Ab),

Once again, the same result applics to the out-of-plance motion, giving
Az = A, (t — At t)Az(ty + At).
Note that these results could also be written as
Ax = Ap gt to + AHAX(ly + At)
Az = A, (Lt + A)Az(ty + At).

7.2 Relative Motion With Insertion Position or Time
Error

Next, consider the possibility of an injection error for the sccond object, such
that it does not in fact have the same initial state as the first. Let xq, refer
to the in-plane state error at injection, such that

x2(to + At) = Xp + Xop.
The resulting relative state is thew, simply,
Ax = A]\._gz(/,: '[Z() + Af)(AX(fo + A[v)a — X()b)7

where Ax(tg+ At),
jection time, as discussed above. Again, the same result applies to the out-

is the nominal relative state at the second object’s in-

of-planc motion, giving

Az = Ay u(t to + At)(Az(ty ~ At), + zoy).

18




It may also he useful to examine an error in the injection tinme of the
second object. Let the time error be Aty such that

At = At,,_ + Atha

where At, refers to the nominal delay between the insertion of the first and
second objects. In this case, the in-plane state of the second object is

Xo = Apalt — Aty — Aty).
The relative state is then
Ax = [Apa(t,to) — Apalt — Aty — Aty to)]X0. (15)
At the nominal ijection time, to + At,, the relative state is
Ax(ty + Aty) = [Ara(to + Ata, tg) — Apa(to — Atp, to)]Xao. (16)
The second state transition matrix may be expanded in a Maclaurin series

about At, = 0. A first-order expansion gives

KQAL, 0
I+ Bk’gz(Atb).

O
‘Ak,SZ(tO —_ Atbato) — [ + |: O = tb :|

e

Substituting into Equation (16),
AX(t() + Atr}.) - [/L\k:Q(_t(J + Atu,: t()) - I]X() - Bk,ﬂ(Ath)x()-

Note that the first term gives the nominal relative position at the nominal
insertion time of the second object; the second term gives the error. Denote
this first term as Ax(tg + At,)q. Then,

Xg = [A};;)gg(io + At,. fo) - ]]_]AX(to + Ata)a.

Substituting into Equation (15), and again invoking the properties of the
state transition matrix,

Ax = [Apalt,to) — Aralt — At, — Oty to)]
[/\k,sz(fu =+ Atm f()) - []—1Ax(t0 + Ata.)c:.

19



= [Apall lo) = Al — Ay lo) Apa(lo — Al 1)
[(Aralto + Aty 1) = T Ax(tg = Aty),

= {Apaltoty) = Apalt = Aty to)[I — BrolAty)l}
[Arato + Aty to) — ITHAX(ty + Aty)a

= Apalt = Ao lo){Aralto + Ato,to) — T+ Bro(AD]}
[Apo(ly + Ay, ) — 17 Ax(ly + AL,

= Apall = Aty to){I — Bra(AD)[Apalty + At to) — 17"
Ax(ty + Aty)q

= Apalt = Aty ) Ax(ty + Aly),

— Apalt = My, o) Bra(AL) Aga(to + Aty to) — )7
Ax(ly 4+ At

Here, note that the first term-is again the nominal relative position. while
the second term is the resulting error.

8 Some Examples

Currently, there are four ditferent MATLAB scripts that present numerical
solutions to these models:

e full cquations of motion about L,

e linear equations of motion about L

e quadratic cquations of motion about /o

e relative notion of two objects on the saine trajectory.

\We first duplicated Hamilton's results shown in his Section 8.1.1 to check
the linear code.

For subsequent analysis, we used a consistent set physical quantities taken
from Dunham and Muhonen [G].

Let us examine the same initial conditions applied to these four numerical
solutions.  We begin near the L, cquilibrium point.  Consider displacing
the spacecraflt 10,000 ki away from Ly along only the x direction, with
7(0) = —1.127.8 km/day as defined from Equation (8) of Section 5. All
of y, #(0), 2z, and Z(0) arc zero. As noted carlier. motions in the Z-planc

20
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Figure 4: Solutions to Models Show Contrasting Fidelity.

are uncoupled from the X-Y plane; therefore, for these initial conditions, all
motions will be in the X-Y plane.

Figure 4 contrasts the differences among the three models of the equations
of motion as shown for 170 days {ncarly a full period of 178 days). The full
model does not even close on itself. For these intitial conditions the full
model diverges and the quadratic model shows very good agreement with
the full model. The lincar model does close on itself. but only represents the
actual motion for about one-quarter of an orbit. Shown on the figure is the
L, point, which is the origin, and the starting location. MATLAB’s “ode45”
solver was used, which is based on an explicit Runge-Kutta (4,5) formula.
The print interval was one day.

Continuing with the same data produced for Figure 4, we turn to Figure 5.
Here we take the component positions of the linear and quadratic models and
subtract the corresponding position of the full model. Although plotted for
22 days beyond one period, we can see how rapidly the divergence grew as
the second orbit began.
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We move on to the analytic solution of the relative motion hetween two
spacecraft. Here we used the linear solution coded from Equation (13) of
Section 7.1. See Figure 6, which shows the motion of spacecraft #2 with
respect to spacecraft #1. The calculations based on the initial conditions
discussed above were made for each spacecraft. They have the same initial
position and velocity conditions vet spacecraft #2 began one day after space-
craft #1. Eachi diamond on the figure shows the position of spacecraft #2
in steps of two days. You might consider vourself to be at the origin riding
on spacecraft #1. With a one-day delay, the position of spacecraft #2 is
plotted every two days (to offer clarity hetween plot symbols). At the orbit’s
beginning and halfway points, the relative change of position of spacecraft
#2 is less than other orbit points.
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Appendices

A Derivation‘ of the Full NonLinear Equa-
tions of Motion for the Circular Restricted
Three-Body Problem (relative to barycen-
ter)

The development of the equations of motion will follow that of Hamilton. In
our reading of his thesis to understand his work, we rederived the equations
of motion. More details are given in these respective appendixes to maintain
a record of our labors.

Returning to Figure 1, which is a rotating coordinate systeni. we find the
need to add an inertial reference fraine to define the rotation vector.

An inertial coordinate system is defined with origin at the system barycen-
ter. The orthogonal bhasis vectors fiy, ng, and Ay arc fixed. Vectors 7y and
no lie in the same plane as the rotating basis vectors ay and ay. The vector
ny is always aligned with ay. Once every revolution, n, is aligned with @,
at the same time that n, 1s aligned with dy. With respect to the inertial
coordinate frame, the two large hodies are rotating about their barvcenter
with a constant angular velocity

£ oo
=

>

~
[

where

W =

G(my +m>)
. / . v
and G is the gravitational constant.
With rotating reference axes. the calculation of the spaceeralt’s velocity
with respect to an inertial frame is
dr ar

_— = — X T
(]fln C]tu T !
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where the position vector of the spaceeraft in the rotating frame is

F=Xa+Yay+ Zas

Substitute into the calculation and collect terms

pu . . o a4y &
% :X(l]+}/d2+za3+ 0 0 w
" XY Z

7= (X = Yw)ay + (Y + Xw)ag + Zis.
With rotating reference axes, the calculation of the acceleration of vector
7 with respect to an inertial frame is

27

dr dPr
— EWXT,+0X(0XT,)+ 20X — +—
dtl i dt a dtl w

speed.

The first term is zero because the system rotates at constant angular
Substitution into the cquation yiclds

d*7 . » ., _ . o -
¥l O x (—wYay +wXan) + 20 x (Xay + Yas + Zay)
S

+ (Xa, - Yay,+ Zas)

T T
= | 0 0 wl|+ 0 0 2w|+(Xay+Var+Za)
~wY wX 0| X YV Z

F=(X = 2w0Y — X + (V + 20X — oY )ay + Zay

We associate the kinematics of ¥ with the force of gravity acting on the
system. Gravity is the only force acting on the system.

system of interest

From Newton's second law, which states that the time rate of change of
linear momentum is proportional to the force applied. For our fixed-mass

. Gmumyg_  Gmomg _
= mgr = — - ™ — - rg.
P [ro]?
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As arveminder. iy is the mass of the larger large body, my is the mass of
the smaller large body, and my is the mass of the spacecraft. Now substitute
into this expression the equations for r, 7, and 7» and separate the vector
cquation into the three componcents.

(X — 2wy — W Xay + (Y + 2wXN — WY )ay + Zay =
Gimyy
IE

Gmas . . , .. .
S[(X = Dy)ay +Yag + Zag)

(X + Dy)ay + Yo + Zas) —

Gty - X DY (X - Dy)

P P
PoowX _wry - Y Y
B
5o _;112 _/1.22
PNERTNE

From Wie [4] we note these equations of motion can also be expressed in
terms of a psendopotential {7 = U(X,Y, Z) as follows:
. ~ ol a
X =2 = - =U
3\ X
oU
(:;)}vr -
. T
Z = — =U3.
0z ¢

where the pseudopotential U, which is the centrifugal plus gravitational force

Vo2 X = Uy-

potential, is defined as

1, ... . [ .
U= (X2 ey B 2
2 " 1)

roo= \/(p\' + D)2+ Y2 27
o= (N = Do)+ Y2 22
Again, the initial conditions to be specified are

X(0)  X(0)

Y(0)  Y(0)

Z(0) - Z(0).
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B Derivation of the Full Nonlinear Equations
of Motion for the Circular Restricted Three-
Body Problem Near L,

Begin with the results of the derivation of the full nonlinear equations of
motion relative to barycenter. Equations (1)-(3):

_[.Ll(“{ + Dl) _ ,UQ(X - Dg)

.X— — 2&))', — wz_x —

i.,‘llii |7.2|3
o Y Y
V o+ 2w — WY Bt L o
|'I']|3 |7.2|3
mZ ez

7 = - -
|7'1|3 |"'2|3

Substitute using (4)—(6):

X = .IYO + x
Y = Yo+4u
Z = Z() + z,

to ohtain

m(Xot+z+Di)  p(Xo+x — Do)

(j&;o + ’L‘) - 'Zw( .,0 + y) - wz(XQ —+ 1)

[y 3 ral?
; . o oo (Yo + 1 (Yo + 1
(Yo+9) — 2w(Xo + 2) — wz(Yo + ) ! 1(“.0 3 y) - )(|.,.0|3 )
T 2
(Fo+7) = m(Zo+2)  pa(Zo+2)
CTRE WP

By definition the equilibrium point is stationary; therefore, many terms
are zero. .
)(() = O ”[‘ = 0
Yo = 0 0
Zy =0 ¢ = 0.

The equations reduce to the following:

i

_/‘LI()\,() +r+ Dl) B /,(,r_;(l\fo +x— DQ)

ré 73

=2y —w(Xo+1x) =
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(Yo +y) Yoty

.. K o 2 e o
Y + 2wid —w (y() + I/) 'V 3 3
T )
I [IJ(Z()J(‘Z) /l-‘_)(Z()‘f';’)
where 7, and ry are now defined below as

ro= \/<{\,0 + r + ])])2 -+ (y;) + ',(/)2 - (Z() + L)z
ro = J(No+ 1= Da)?+ (Yo +y)* + (Zo + 2)°

The initial conditions to he specified are

2(0) (0
y(0)  y(0)
20) 3
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C Derivation of the Linear Equations of Mo-
tion for the Circular Restricted Three-Body
Problem Near L,

We develop linear equations to have models applicable for linear analysis
methods. '

We document details not shown in Hamilton’s thesis.

We repeat the nonlinear equations for convenience.

. . oU
X —owy = =
n DX
. ) U
Y’ 9, ‘}( - 27
+ 2w B
8 ou
Z = 9z
where 1
U= -2(X2ryy+ 4 &2
2 ry s
Also

ro= SO DR Y24 22
ro = \J(X Do)+ Y2+ 22

We substitute the individual coordinates

X = Xo+=x
Y o= Yoty
AR Z()+Z
to obtain
. . U
Xo+3)—2w(Yp+1y) = —=U
( 0+ ) w( 0+IJ) X Ux
(Vo +§) - 20(ko+3) = M=y
: — 2w(. ) = — = Uy
0oTY 0 v ay b
. our
Z ,:j = pry [
(Zo+ %) 97 Uz
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Now, perform a Tavlor series expansion on these partials of U, ahout the
libration, equilibrium, point. The first two terms of this series for a function
of one variable are

[y = [(Xo) + [ (Xy).

For Uy, let f(x,y.z) = %;

Note that because the function s already a first derivative, we stop the
Taylor series at its first cerivative so we can stop the series at the quadratic
term. We have a function of three variables so the Tavlor series is modified
as follows (with Ly substituting for subscript 0 as the chosen expansion and
evaluation point) .

0 12, 0
xr,y.z) = Uy r——Uy y—1Ux z—1,
fle.y. z) xlp, T L(.)Xl.\ L2+Uay A L»)+ )Z(.YL
For Uy, let f(r.y,z) = % then
0 J 19
(r.y.z)y=Uyl, +x Uy — Uy z—Uy
Hr.y.2) vl Y YL2+£/0Y YL2+ oz 5
For Uz, let [(x,y.z) = % then
D, J 9,
(r.y,z) = Uy r—=U y—U —U
flx.y, z) zlp, + T ZL2+U'C)Y ZL,,+ 57 sz

By definition at the equilibrium point, there is no motion. Many terms
are zero.

N, = i1, =Ux|g, =0
Yi, = yr, =Uy|L, =0
Zy, = z21,=Uz]1, =0

Additionally, terms of {7y and Uy involving the partial of Z are zero be-
cause motions in the Z-direction are uncoupled from the X-Y plane motions.

Therefore
T — _,).4)(/ = .l“[;’rxx ‘Lz e :U("[YX(LQ
g=2wr = aUxylr, + yUyvy|L,
2 = :[/vzz‘Lz
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The al')ow‘.ommtions are the first-order; or linear. coupled, equations of
motion for the circular restricted three-body problem. These describe the
motion of the spacecraft relative to an equilibrium point (Xg, Y5, Zp). The
cquilibriun point rotates with a constant angular velocity.

2
w - .
—(X§ +Y5)

Ur
2 \

0 =
+ Hi + Ho
V(X + D12 +Y7 + 23 |\/(Xo— Do) + Y3 + 23

For the restricted three-body problem at Lo, the Yy and Zy ters arce zero
and the equations reduce to

T =2wy = aUxxl|L,
j+2ws = ylyyle,
i = zUzzlL,
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Retwn to the general forin of {7 as we first carry out the derivatives of

[7. then substitute for the libration point.

: 123! 42

U=2(X2+Y?)+ +
2 X+ D)2 v+ 22l (X = Da)?+ V2 + 22]

For \:
ou ou [w? o
OX T X {?“\ o ﬂ
ou | o ]
+ o5
OX _\/(/\T+[)1)2+y2+22_
au ] o ]
T ov , =
OX [\(X = D)2 + Y2+ 22
= u]z.Y
o - N2, ye2 2y -1
+/L|W[((.X +D|) L) —Z) ~:\
ou - 2 2 2\-1
+/l207 [((X — Dy) + Y+ Z7%) ~]
Emplov the differential d(u™) = nu" 'du to caleulate the last two terms
v

of the equation £5:

(XN + D) +Y?+ ZQ‘)w]

f) U [
Mox
-

1. 5 0 3 0
= /1'1(—5,)((/\ + D) YR+ 277

W((/\' + D)y =Y =27

(SS9

1 ‘
_ _{171 — (2X +2D))
2 DY 220

B (X + 1y)
JOX+ D2+ Y24 22)8

Of course this calculation is similar for the term beginning with g,. Here

assign

reo= /(X D)2+ Y? 22
ry = /(X — Dy)? ¢ Y2 4 27
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Finally
U 5 wmX+D1) (X — Dy
: =w'X — - - 3 .
oxX 3 3
Now take the second derivative using d(uv) = udv + vdu:
a2U 2 ( B 2 ) v -2 ) _3.
oxz ¥ —mﬁ[(h + D)) (X + D)2+ Y2+ 2%)72))
a - - 1A% 2 72 2y —2
—;Lzax[()& — Do) (X = Dg)? +Y* 4+ Z%)72)].
agU 2 o | 3 - V2 2 2y—2 r
= e {(,\ = D) [=5(X + D)+ Y2+ 2%)7H(2X +2D1)}
FX D)+ Y2+ 23 )
~f((x — Dy’ 4+ Y24+ 232X - 202)}

— I42 {(X —D»)
(X = D)? 4 V2 22)—%(1)}

Now reduce the terms and substitute for r; and ry
' ) 1 3(X+ D)2 1 3(X — Dy)?
LXX =W — = 5 —He |3~ ——5 |-
’.l 1 1 /2 I«z
For YV: i
al7 oo, J1Y oY
Ervaid e al
ay 7”1 7'2
and ‘ . .
- ) 1 3y? 1 3?2
y = — - = — [ - — F .
Yy =W 23 "”f ;, L2 'r% 3
For Z: )
o mZ
' vz ot i3
and o .
1 377 1 372
Uzz=—1u |5 -~ |~ te|l=5— 5|
™ L T3 T3
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If desired, evalnate these at a collincar libvation point, say L, where

X=X Y =0 2=0

. 2/11 2;“2
Uxxl,, = w’ ‘ :
_.‘<.\|1,2 + (Xo + Dy)3 * (Xg— D»)3
. 141 F2
(] o founcd u)z - 3 - ;
vl (Xo+Di)* (XNo—Dy)?
Uzl = ——tt 12
2z, (:4\/0 + 01)3 (/\»O — Dz)}
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D Derivation of Quadratic Differential Equa-
tions for Circular Restricted Motion Near
L,

We repeat the nonlinear equations for convenience:

. . oU
X -2 = 7
WY E3% (17)
y . oUu
VwX = 2= 14
+ 2wX oY (18)
N oUu
7z = — 1
57 (19)
where )
U=y 2 (20)
2 ™ )
and
r? = (X+D)*+Y*4+ 22 (21)
r? = (X=Dy)?+Y?4+ 22 (22)

The right sides of the equations of motion can be formed from differenti-
ation of Equation (20):

ou ) M1 Ory i Oy ,
e QLN o R 2
X WX AN T rax (23)
oU 2y Ha (97“1 Mo (9"]'2

~ = WY - S-S 24
ay — Y TiZoy  rPoy (24)
oU i Oy pa Oy

- = _=Z°_ - 2
0z 1'12 0z 7'22 oz ( 5)

The required derivatives of r; and 7o are formed by differentiating Equa-
tions (21) and (22):

i)?‘l X + D1

oX ™
07'1 N Y
Y on
ory Z
9z~



aTz )( _'l)j

axX ro
Ors Y
Y o
dry  Z
Z

Ecuations (23) = (25) are expanded in Tavlor series expansions about the
Lo libration point, at coordinates (X.3Y,Z) = (Xy,0.0). Let

T X — Xy
y | = Y (26)
z Z

give the displacement from L,. Denote dU/0X by Uy, and similarly for Uy
and {/z. Then. the Tavlor series through second-order in .. z are given by

U U x U x
U = U + | = + == + = z
: ¥l (ax Loy T ez
. 1 (f’)zux 2 9 x ¥ PUy | o7
20X " ov? 0z |, "~ o
L> L2 L?
PU Uy DU
: ( ,f\,j Ty + ,( ,‘X vzt = ,,‘\ e
IXOY !, 0X0Z|,, IYoz|,
) AUy Uy Uy
Uy = Uy - LT == + z
' YL, < ox -, " Ty, VT oz,
1 02(..@" ,  PUy|  ,  FUy| ,
— T z 28
3 < oxz, U T ve VT oz (28)
Puy L Dy Uy

.
Lo

— cy + €rz e ea—
oxoy', T axez|, T avaz

i, NI, Aliy
7 — I __~Z + “ 4 -
Uz [“;* ( oxX " v, ARV
| 277 D277, 27T
L (() Uz) (; Ul Oz (29)
2\ 0N, Y2 L, 0z L,
-)2{] \ 277 2 7,
- A( ,,Z,i Xy + ,0 Li Tz + —~‘d (‘ /, Y.
AXIY IXoZ|, Yoz,
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A vertical bar with subscript L, indicates evaluation at the coordinates of

the libration point.

The derivatives of U are constructed by differentiating Equations (23) -
(25). Note that higher-order derivatives of r and ry are required. These are

given by

827‘1
&ry
&Pry
22
d*ry
XY
%ry
0XozZ
9*ry
SYAIA
A?r,
oOX2
027.2
O*r,
dZ?
A?ry
0XoYy
Ary
OX0Z
3?1y

0204

1 (X+D)?

YZ

,,.23

The evaluated partial derviatives are then:

AUy
oUy

Lo

L,

244y 21ty
(Xo+ D1)?  (Xo— D)3
H1 H2

(Xo+ D) (Xp— Dy)?
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U5 _ i )
27 |, (Xo+D1)? (Xog— Da)?
Uy O Gptn
x|, (Xo+ D)t (XNo — Do)
U~ B 3 32
W] T X+ D (X~ D)
PUx 3101 3t
0Z? Lo B (.Xo+ Dp)? 7 (Xo— D)
and
f)[L _OUx|  oUy|  PUx|  9Ux
N, 9z |, az |, OXYI[ T IXZ|
_ ()2(])('; ~ &y | _ Py | _ DUy B PU, -
Nz,  ovr|, T vz,  ozr|, 907%|,

Note that, because of the continuity of the derivatives, any other derivatives
are, in fact repeats of those listed. For example,

Puy > (U
oxz X \oy

PU
ONZY

0 [oU
OXNY \0X

Py
XY’

By definition, the L, coordinates satisfy the equilibrinm condition of
Equations (17) - (19). Therefore,

Ux

1, = Uvly, = Uxl, =0
Substituting the derivatives into Bquations (27)  (29),

Ue = | 24 2411 211
A (‘\—0 -+ Dl)ii (‘Y() — [)Q)3




_§ H ; Ha2 9.2 2 2
5 [(XO+D1)4 | (XO—DQ)J (207 -y =)

Uy = (4,'2 _ H1 _ 2 .
‘ [ T (Xo+ D (Ko = D)3 ”?
. H 2
+3 * |z
(Xo+ D1) Xy - Dg)s} vy

UZ = - s - a z
(Xo+D1)® (Xo—Dy)3

. a2} H2
+ 3 ~| rz.
(Xo + Dyp)? " (Xo — D‘z)"‘] '
Define
A4 2 Hi 4 2 ‘
(Xo+D1)*  (Xo—D»)?
A H1 + H2
(X() + D1)4 ()(0 - ]—)2-),‘-

~ Then, substituting in Equations (30) - (32),

Uy = (W +24)z — 33(21?2 —y? =27

Uy = (w?— A)y+3Bay
U, = —Az+ 3Bz

(32)

Substituting into Equations (17) — (18), and using Equation (26) on the left

side, gives

3 )
F—2wy—a’r = 24x— 5B(Z.T2 —y? =27

i+ 2wi—wly = —Ay+3Buy
2 = —Az-+3Bzx->.
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1 Introduction

Some continuing long-term goals of our sponsor are to develop high-fidelity
equations of motion representing the formation flving of spacecraft near the
Sun-Earth L, point and equations describing the relative motion between
these constellation members. The equations are to be used to develop orbit
control schemes.

This is our sccond report, which continues from Part 1 1], with further
derivations of analytical expressions for the relative motion between a for-
mation of spacecraft orbiting near the Sun-Earth L, point. This research is
loosely motivated by formation flying concepts for the MicroArcsecond X-ray
Imaging Mission (MAXIM) Pathfinder.

To begin the understanding of the behavior of objects in formation near
Lo, we begin with the assmptions of a circular restricted three-body prob-
lem. In this report, we are not modeling the true eccentric orbit of the Earth
and Moon about their respective primaries and other planetarv and solar
gravitational orbit perturbations.

In this report, we present a preliminary understanding of the relative
motion between two spacecraft orbiting the chosen L, point. While com-
ponents are further identified below, we describe the motion of a typical
telescope spacecraft with respect to the central hub spacecraft of the constel-
lation. The hub is treated as the constellation’s reference point; its orbital
path about L, was examined in Part 1. The description of motion of one
telescope spacecraft with respect to the hub spacecraft can be applied to as
many telescope spacecraft as needed.

After a significant literature search, we state that what we are uniquely
contributing is a description of spacecraft in formation flight about the Sun-
Earth Lo point.

First, we list the components of the MAXIM mission. Second, we develop
the differential equations of motion for the telescope spacecraft with respect
to the hub. The resulting solution is developed using the Lindstedt-Poincaré
perturbation method to ensure periodic motion. Periodic motion of the in-
plane and out-of-plane orbit is desirable to maintain the formation. Finally,
we provide analytic solutions of relative motion. This report thus contains
the following:

o developinent of differential equations of motion for the telescope with
respect to the hub
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e deseription of the lincar telescope motion about the hub

o discussion of the preference of a halo orbit (rather than a Lissajous
orbit) of the hub about the L, point

e inclusion of linear hub motion effects upon the motion of the telescope
relative to the hub

e inclusion of quadratic hub motion effects upon the relationships be-
tween the telescope frequency and amplitude

2 Problem Definition

The current configuration of the MAXIM Pathfinder mission is depicted and
described below.

}/‘
-I |
|
|
! |
ré6 N |
~N .
N | /- )
optical -
hub \>\©
e h ~
e | ~
Ve ~N
] ~
i m
Vs F4 F3

Figure 1: Aperture Formation of MAXIM Pathfinder, Concept of June 2002.
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Seven spaceeraft shown in Figure 1 are in the same plane forming a flat
aperture. The optical hub is in the “center” of six free-flving spacecraft
(telescopes). Dashed lines do not indicate a physical connection, but rather
indicate randown radial divections listed ry through rg. The scalar length of
r ranges from 100 to 500 meters. Additionally, the six free-flying spacecraft
are loosely spaced 60° from one another.

There is also a detector spacecraft located approximately 20,000 kin and
90° out of the plane formed by the flat aperture. The entire system is in
a Sun-Earth L, orbit, which has yet to be designed. The analysis of the
detector’s orbit relative to the aperture plane was beyvond the scope of this
work.

At the beginning of this task, we were directed by the sponsor to inves-
tigate the following:

1. types and fidelity of models used to describe the relative orbits of the
seven spacecraft forming the aperture

2. relative orbits of the seven spacecraft forming the flat aperture
3. slewing motions of the flat aperture

The optics hub slews only in attitude. The entire system points all over
the sky — there is no nominal inertial orientation. Also, we may select any
distance hetween Ly and the optics hub. Additionally, the question was raised
as to whether the motions of the telescope relative to the hub be described
in cylindrical coordinates. This may be easier to describe when working with
the project astronomers.

We were unable to do all of this with the funding available for this phase
of the project. The work presented here covers the depth needed for items 1
and 2. We would need to continue to extend the development for one tele-
scope into that for six telescopes. A computer-generated visualization of the
aperture plane’s motion based on our equations of motion would be highly
useful.

We have concerns about being able to arbitrarily sclect the distance be-
tween L, and the optics hub. We suggest that the MAXIM Pathfinder mis-
sion may best work in a halo-type orbit. A halo orbit is defined when the
frequency ratio of out-of-plauce to in-planc periods is a rational nunber. The
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three-dimensional halo orbit closes on itself and is periodic, in contrast to
a Lissajous orbit in which the trajectory does not close. In particular, we
recommend a halo orbit in which the in-plane and out-of-plane periods are
cyual.

In Secction 3 we form two scts of differential equations of relative motion:
full nonlinear and truncated nonlinear equations.

In Section 4 we present an analytical solution to these equations.

In Section 5 we show simulations.

In Section 6 we summarize this report.

3 Relative Motion Differential Equations

In Part 1 of this rescarch [1], the general second order differential equations of
motion were constructed for an object near the Sun-Earth L, libration point,
using the force model of the classical circular restricted three body problem.
In this model, the Eartl is treated as being in a circular orbit about the sun,
the spacecraft mass is considered to be negligible as compared to the two
primaries, and only point-mass gravitational forces are considered.

For this svstem. depicted in Figure 2. the differential equations of motion
for an object (object /) near the Sun-Earth L, are given by

[ .”C€+D 5 .('?_ 12
o M2 ) (e i 1)4_%/2(1‘ » 2)

E 7 3

~ ) ~
P 3 - X + nTrX,
AT i P2

I."i:—

where

r, = vector from Ly to object 7
iy = solar Keplerian constant

p1y = terrestrial Keplerian constant (Earth + Moon)

pu = distance from Sun to object i
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object;

Sun Earth-
Moon %
Barycenter
>
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barycenter
Dy D,
= -l -
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Figure 2: Coordinate Axis Definition.

p2; = distance from Earth-Moon barycenter to object ¢
z. = distance from system barycenter to Lo
D, = distance from system barycenter to sun
D = distance from system barycenter to earth-moon barvcenter
X = unit vector parallel to sun-earth line of syzvgy,
pointing in sun-to-earth direction

n = terrestrial mean wotion about sun (assumed constant).

Let rj, and r; denote, respectively, the vector from Lo to the hub and to
a telescope. Therefore, if r is the vector from the hub to the telescope, the
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differential equation of motion for the telescope relative to the hubs is

i: - rl - rh
{ t: (e + D 19(x. — D: .
:—(%WL”g)l‘L-(“('g 1)+/2( ) 2)>X
P P’ a0 P’
{ ls 1 {we + D1) e — Do)\ .
’(“3+/23>rh+<“(6, 1)tz = Do)y o
M P2 P Pan” (1)

_—_— < Iy I'p ) /i < i T >
=My VT T ) e\ T ;
P Pk “ pu® puw?

1 1 . 1 1 .
~/ll((U€+D1) (—3 — 3>X—‘UQ(‘.T6—DQ) < 3 “"—‘—}> X,
P Pih P2t 2h

where now, in general, the subscripts h and ¢ refer to the hub aud telescope.

3.1 Series Expansion of Differential Equations

The differential equations of motion are now expanded in powers of the dis-
tances between L, and the hub, as well as between the hub and the telescope.
This is done with the intention ol developing an analytical solution in terms
of these quantities, useful for performing a control system analysis.

First, the inverse powers of the p magnitudes are written in terms of these
distances. If p;j, is the vector from the sun to the hub, then

puy = (e~ D% = 1,
The square of its magnitude is then given by
(=} o B;

p”l,2 - plh : pl/l
— (\Ie + Dl)2 + "hz - 2(F6 + Dl)(rh . X)
= (o + D)+ + 2(ee + D))y,

2
S I - 21
= (1.4 D)* |1+ +
(e, ) [ <.1:6—D1) Te + Dy

where 1), is the z-component of r;,. Then.

—3/2

1 1 h 2y,
- = - -1+ +
/)]hd (Te + Dy )’ Te+ Dy Te + [h
— (.(',, ‘i" U|)—3(1‘1 (,1/,)‘3/23
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where

A r 2 21
: h A
e = | —=— ) +———
U (.’U6+D1> .IE+D1

is assumed to be less than unity. Using a binomial expansion,

1 3/2\
plhs e+ Dl 3 Z ( ) k
1 <. (—3/2

N (xe + D1)? {1 i Z ( k >(‘”Lk] '

k=1

In the same fashion, for the telescope,

11
p1? (xe + D1)3

where

. 2 2
¢ é Tt 4 4T
1 Ze + Dy e + D1 ’

again assumed to be less than unity.
Now, r; may be written in terms of r,. Using

ry=r,+r,

12 = (rp +1) - (rp +71)
= 1';,2 + 724 2r, -1

Also,
Ty = T+ L.
Therefore,
' 2 224
B iy 9r/, 2y + 1)
B (;L€+D1)‘ e+ D

_ |: rp i 2z, n + 21y, n 2T
(xe+ D1)?  xo+ Dy (ke + D1)? 2+ Dy

= C1p ()11



where ‘
ATt 42,y 2x
(51 =

— 4 .
(xe + D)2 w4+ Dy

Aeain using a binomial expansion. the powers of €1, as required in Equa-
o te) 3

tion (2), are given by

€1’ = (e + 5))F

k
RN
Z <é>01((1/..}”~[

£=0
€l +Z< )Ol €1h V(-

This expression may now bhe used in Equation (2). giving

et oS () e (]

3
P (2, Py

1

I!

Therefore, for use in Equation (1).

1 1 > /2 N 0 s o
— .5: = +D 52( )Z<€>(511’(1hl‘ £ (3)

3 .
5 0
Pu Pih =1 =1
Additionally,
ry r, Ip+r Ty
q a2 - 3
M p? P’ p1u? ,
(4)

< 1 1 ) r
ry 3 ; - .
pit opud pi’
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An identical development may be used to form the following relationships
for distances involving the earth:

1 1 > 3/2 ) ( ) i
— - — = da"Cop (5
p2®  pan? - D2 3 Z ( ; E 2} 2)

=1
and
r r 1 1 r .
D S E R .
P2t P2h P2t P2on P2t
where
A Th : 2z,
€op = + :
*h (.‘L’,. - Dz) Ly — D-_)
and
2
ATE+H2r, T 2
by 2 - Ry

(Ie - DQ)Q Te — Dg.

Substituting Equations (3) (6) into Equation (1), the telescope motion
relative to the hub is then given by

= —y [(I‘;,Y + (. + /)1_)5() (L - 1, ) + L}

1 plh'j o1

1 1 r
i | (th + (e = D)%) [ — — — ) + —
2 {( ht (T 2J%) <p2t3 ch“> P2t3]

) k
ry + (re + D1)x ~3/2 o
:_“1{ (. + D) Z( k >Z<t>5l "

k=1 =1
- R . =
+ " :Dl)& ; <_2/2> {Zz(:) (i) Jleelhk—c} (7)
[ D () (5
s (V)2 (s




3.2 Magnitude Ordering

A magnitude ordering system is now cmployed in order to truncate Equa-
tion (7), prior to forming the solution. It is noted that the motion of the
system takes place on two separate distance scales. There is a large distance
scale, in which the motion of the hub about L, is deseribed, relative to the
motion of Ly within the context of the three-body problem. Then, there is a
small distance scale, in which the motion of the telescope about the hub is
described, relative to the motion of the huly about /..

Table 1: Distance Ratios and Basic Accelerations

/T 8.333 x 1077 |
i/ (xe + D1) 3971 x 1073
rr/(Te — Do) 3.980 x 107!
r/(ze + D) 3.309 x 1077
r/(x. = Da) 3.316 x 1077
(i /(e + D1)? | 5.812 x 107 kin/s?
/(. Dz) 1.775 x 1077 km/s?

For ordering puwrposes, consider the hub motion about L, to be on the
order of 600,000 kin, and the telescope motion about the hub to be on the
order of 500 m. Using the constants of Appendix A, the relative distances
are approximated bv the ratios of Table 1. In the differential equations,
these ratios scale the basic acceleration quantities which also appear in the
table. Terms involving these hasic accelerations scaled by 1, /(. + D)) and
ra/(xe — Do) are now designated as being of order 1: terms involving the
basic accelerations scaled by r/(x, + D1) and r/(x, — Do) are designated as
heing of order 3.

Retaining terins in Equation (7) only through order 3, substantial algebra
gives the truncated differential equations as

F=A[-r+ 3zx]
+ B [3xry + 3xpr + (31, - v — 1500,,)%]
+ (_7[(31‘,1 -1 — 15z, + %(mz — 52L"h2)1“

15 EAY
?)(Q'Ihrll r—T7x Ih "[7]711.2))(]7
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where

H1 H2
A= , , 9
(Ie + Dl)\i * (Ie - D?)d ( )

H H2
B = 10
(.l've'+ D])*1 + (.’Ee, — D2)4 ( )
C = o) N M2 (11)

(Ie + Dy)® (e — DQ)S.

Note that this truncation includes terms which are linear in the coordinates
of r and no more than cubic in the coordinates of ry. Terms involving A,
B, and (' are, respectively, of orders 3, 4, and 5; lower order terins do not
appear.

The acceleration vector ¥ may be written relative to a rotating coordinate
system which rotates at the constant angular rate n about the z-axis normal
to the ecliptic, and with the 2 direction as previously defined. This gives

i—2ny —n’z
F=| ij+2ni—n’y
z

where the columm vector notation is used to indicate the zyz vector compo-
nents.

3.3 Linear Telescope Motion about the Hub

Consider now the lincar motion of the telescope about the hub. From Equa-
tion (8), the linear differential equations are given by

r=Al-r+3zx],
or, in component form,

& —2ny — (n® + 2A)x
§+2ne—(n*— Ay | =0. (12)
Z+ Az

As would be expected, these differential equations take exactly the same
form as the linearized hub equations discussed in [1], with the same funda-
mental frequencies; the same solution approach may be followed. Clearly, the
out-of-planc motion in the 2 direction is decoupled from the notion in the
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ry plane. The z equation describes simple hannonic motion. with a solution
that may be written as
z = A, sin(vt + ).

where v? = A.
Following the standard linear analysis, the in-plane motion is assumed to
exhibit a solution of the form

x a |
1y N .
Accordingly, the fourth-degree characteristic equation for s is

st— (A =208 — (n? = 24)(4A —n?) = 0. (13)

Keeping in mind the relative magnitudes of n (= 0.0172 rad/day) and A (=~
0.0012 rad/day), the solution to this equation has four distinet roots. One
root is positive real, aud corresponds to a divergent mode:

sa=\/% — n>4 \/(é — 2?2+ (n?+2A)(A = n?).
A second, negative real, root corresponds to a convergent mode:
S¢c = —S4.

The remaining two roots are a purely imaginary conjugate pair. correspond-
ing to oscillatory motion with natural frequency A given by

(ST

M=—d 4?4+ \/(% —n?)2 + (n? + 2A)(A — n?).

Each mode shape is described by the eigenvector associated with the corre-
sponding eigenvalue s.

As in the analysis of [1], periodic motion occurs if the in-planc initial
conditions are selected so as to excite only the oscillatory linear modes. From
the solution of the eigenvalue problem. placing this requirement upon the
initial conditions gives

. A
#(0) = Zy(0)

y(0) = —kAx(0).




where
B M+ n?+24
2w

Under this relationship among the initial conditions, the complete linear
solution for the telescope motion about the hub may now be written in the
form

k

= — A, cos( Mt + &)
kA sin(At + @)

z = Agsin(vl + ).

@ 8
I

3.4 Halo Telescope Motion

It is desired that the constellation of telescope spacecraft remain in approx-
imately the same specified plane over the few days’ duration required for
observations. To achieve this orientation, a halo-type orbit of the telescopes
about the hub is sclected. Such an orbit provides periodic motion in the
aperture plane, with the out-of-ecliptic-plane fundamental frequency equal
to A, the fundamental frequency of the zy-planar motion.

In order to do this, the inclusion of higher-order forces is used to ad-
just the out-of-plane fundamental frequency. Consider the z-component of
Equation (8): '

= —Az

+ B(3xz)p + 3zxp)

+ C(—lQ;L‘:rhzh + 3yynzp — Bz + %zyh") + %zth).
Recall that A = 12, and define A such that

A=)\ -2
Then, this differential equation may be written as
54+ X2 = Az + B(3xm, + 3za)
+ C’(—l?:‘[‘.lf},,,?h, + 3yy/, Zho— 62£/,,2 + %:yhz + %Z:hz) .

Here, the magnitude of A allows the term Az to be treated as a higher

order term, grouped with the terms containing the coefficient C'. Using this
formulation, the linear solution now becomes

2= A.sin(\t + 1),
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with the same fundamental period as the in-plane motion.
Together with the & and y components of Equation (8), the system dif-
ferential equations are

&= 2ny — nx = —24x
+ B(—6xxy + 3yyn + 32z) (14a)
+ (12002 = 129w, — 12205, — 6o — 6a2,%)

i+ 2ni — nly = —Ay
+ B(3xyn + 3yxp) (14b)

+ C(=12zzpyn + %y!/h2 + 3zypzp — Gyan” + %yzhz)
54 0%2 = Az + B3z, + 3z215)
+ Cv(~121’1'/151. + 3yynzn — 6z, + Sz + 3221,2)_

(14c)

4 Lindstedt-Poincaré Development

The analytical solution to the expanded equations of motion of Equations (14)
is now developed using a modified version of the Lindstedt-Poincaré method.
This method provides for the sequential solution of a system of differential
equations, ordered by magnitude of the terms, while simultaneously placing
restrictions on the initial conditions, in order to ensure periodic motion. In
this development, the equations are expanded through third order in the
small quantities, which is defined as terms that are at most lincar in the
motion of the telescope relative to the hub. and quadratic in the motion of
the hub relative to L.

Introduce the non-linear frequency terms hy series expansion, and change
the independent variable from t to 7, where

T = wl

and
;,u:]_-l-u)1+u;;.2—+—~-- R

assumed to be an asvmptotic series, is used to scale the linear frequency.
Using primes to denote differentiation with respect to 7, the left side of
Equations (14) become

) .
w2 — 2eny’ — nir

3 2
wy" + 2wnx’ —n’y
w2 4+ N2z
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Reeall that the forcing terms in the differential Equations (8) are ordered
such that the terms involving A, B, and C are, respectively, of orders 3, 4,
and 5. Now, for notational convenience, these terms are reordered as orders 1,
2, and 3. The solution vector is assutned to take the form of an asymptotic
series, such that »
n+argt+ryt---

Yty tys+---

Q-+ 2+ 3

where the ordering by subscript is consistent with the reordering of the terms
of the differential equations; the order of a given termn is specified by the
subscript.

This expansion is then substituted into the differential equations of Equa-
tions (14), and terms collected by order. The resulting first-order equations
for x;, vy, and z;, are given by

£ = 20y — (n? - 2A)
Yy~ 2nzh + (A—nP)y; | =0, (15)
Zi’ + )\222

& =
!

Note that these equations are identical in form to the linear equations of
Equation (12), with A replacing v in the z component equation.

The second order equations contain contributions from the motion of the
hub about Ls. As shown by Richardson [2], the hub inotion relative to L,
may also be expressed in a series form:

€y, Lih + Lo + -
Yo | = | ih T y2n + -
2hp 21t 2on + -

In the second order equations, only x4, yis, and zy, are included; at third
order, the 2h terms contribute as well.

The sccond order equations for #y, 3o, and 23, containing terins which are
linear in the position of the hub, are then

ay — 2nyh — (n® + 24 )
vy + 2zl + (A —nPy, | =
2 4+ A%z
—2wi(z] — ny}) — 6Bxyx, + 3B(y1vinh + z1218)
—2w1 (Y] +nxl) + 3B(z1y1n + 11 T18) . (16)
—2wiz + 3B(r1z10 + 21718)




Here. the telescope motion terms on the right side are now assumed to be
known from the solution to the linear equations.

Next, the third order equations for r4, ys, and z3. containng terms linear
in the 25 hab position terms and quadratic in the 1A terms, are
w2y — (0 + 24y =

2 (w — nyh) — 2uwa() —nyy) — wia .

+ 3B(yoyis + 2271n — 2T2T1h — 281220 T 1Y T Z12an) (172)

4 6C[a, (223, — Y2 — Shh) = 20Ty~ 2201 21h)
1t

iy - 2nxl 4+ (A = n3yy =
— 2w (yh + nay) — 2en(y) +nry) — Wiyl

. (17hH
+ 3B(Toy1n + Yolin + T1l2n + Y1Top) ) )

+3C [—4:171-’1'1/1!]1/1 + ('Qflffh + %yfh, + %th) + Zlylhlm]
2 4 Nz =

— 2wzl — (2ws +wi)z + Az

+ 3Bz + mmlp + Ly Zap i)

+ 3¢ [-—4_51.1;”,‘:”,, + Yy + (“-'2.’.L"‘]2h -+ %y%h + %Vf,,)} .

(17¢)

Again, the right side terms are assumed to be kuown from the lower order
solutions.

Note that the left side terms at each order take an identical form. There-
fore, a particular solution may formed for a general periodic forcing function.
That solution may then be applied to cach of the actual forcing terms, and
the complete solution given by superposition. Higher order homogeneous
solutions are not required, as they are identical in form to the terms of the
linear sohition, and thus are already present in the complete solution.

Accordingly. consider the general case of the forced systewn, given by

2" = 2ny — (n? 4+ 2A)x Acos(qgr + )
Y =2’ —(A—n*y | = | Bsin(gr + gy . (18)
2"+ A Fsin(pr + )

This vector is representative of all forcing terins which occur, where ¢ and
3

p arc integers. Next, following the method of undetermined coefficients, the

particular solution 1s assumed to take the form

T R, cos(qr + 6)
y | = | Rysin(qr +6)
> R.sin(pr + )
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Substituting into the general system of Equation (18), and solving for the
solution amplitudes,

B ongB — A(g* + n? — 4)
ot 4 (A —2n2) g2 — (A — n2)(n? + 24)
ngA - B(g® + n? + 24)

R, = , 19
Y g 4 (A - 2n2)g? — (A — n?)(n? + 24) (19)

R - F
“z T _A—{z—_—];

Note that the denominator of R, and R, is, in fact, the characteristic equa-
tion of the linear system, as seen in Equation (13), where s? has been replaced
by —¢?. Thercefore, upon examination of this particular solution, cither g or p
equaling A corresponds to the resonance condition. In that case, the forcing
function has the same frequency as the homogeneous solution, and so the
particular solution must instead have an amplitude which is sccular in 7.
However, in order for the solution to be bounded for all 7, such secular terms
may not appear. Therefore, restrictions are placed on the solution, such that
secular terms do not arise.

For the case that p = A, it is required that F = 0. For ¢ = A, the
general x and y-component differential equations are combined into a single
fourth-order differential equation:

" — (A =2 — (A =P+ 2M0)x =
[2nBg + (A = n? — ¢*) Al cos(qT + 6). (20)
It is then required that the forcing amplitude be zero. giving '

mBy+ (A—n? —¢HA=0. (21)

4.1 Order 1

The solution to the first order system of Equation (15) is once again given
by

I — Ay cos(AT + @)
y | = | kAgsin(AT+¢) |, (22)
Z| Azsin(AT + )

LOf course, the equations could instead be combined into a 3"’ equation, which would
give a different formn of the required relationship. However, under the condition that g
satisty the characteristic equation. the two relationslips are equivalent.
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where here the solution is taken as a function of 7.

4.2 Order 2

Here, in the second order equations, as previously mentioned, &y, vy, and
z1p, appear. Again from the earlier analysis, the linear hub solution may be
written as

L1k —Azn cos(Ant + o)
Yk = Af/‘ll_]] Sill()\hf + Oh) . (23)
Z1h Azpsin(vpt + )

Also, the hub frequencies A, and v, mav be written using a nonlinear asymnp-
totic frequency scaling function wy, where

w/1:1+wl}1+w211“—"'-

As already seen, the linear hub frequency is the same as that of the telescope;
therefore A\, = Awy, and v, = vwy. For now, also assume that wy), = wy.

Typically, a Lindstedt-Poincaré analysis is emploved for autonomous sys-
tems. Here. however, the forcing function is an explicit function of time,
arising from the assumed solution for the hub motion. In the linear hub
solution of Equation (23), the independent variable ¢ must now be written
i ters of 7. as

t=17/w
-
14+ wy w4+
ZT(l—wl—wg-i-u,-'ngr--').

Then, in the hub solution.

/\h[ = )\u)ht
ML+ wy +wop + )t

/\(1+w1+wzh+~”)(1~u1—»ug+w12+~-)/‘

= /\(1 + Wy, —u‘d2+"')7.

f

Define the second order contribution to this frequency correction as

Au)g = Wop — Wy,
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giving
At = A1+ Awy + -+ )7,

Similarly, for the out of plane frequency,

Vhtzl/h(l—wl—w2+w12+~-')7‘
:’/h(l_{t_)"“")T,

where © represents the frequency correction through order 2.
Also, write the hub phase angles ¢, and i in terms of the telescope
angles as
On = ¢+ Ag
and
Un = ¥+ A,

where A¢ and Ay represent, the offset in phase angles between the hub and
telescope motion. Substituting into the linear hub solution of Equation (23),
and retaining the frequency correction through wy and woy,

21 — Az cos(A(1 + Aws)T + ¢ + Ag)
yin | = | FAgsin(A(1 4+ Aw)r + o+ Ad) | . - (29)
Z1h Apsin(vp(l — @)1 + ¢ + Ay)

This linear hub solution and the first order telescope solution of Equa-
tion (22) are substituted into the right side of the second order telescope
equation, Equation (16). After resolving the angles, the three component
cquations arce then written as
ry = 2nyh — (0 4+ 24)xy = —2wiA(A — nk) A, cos(\T + @)

—3(1+ 5)BA,Au
cos(A (2 + Awr)T + 20 + Ap)
= 3(1 = EYBA, A cos(NAwT + AG)
+ %BJ’ICA;,;,, cos(()\ -l =) — A'l/))
- %B_/l:,/lz,,, cos((/\ +u(l =)+ 2¢ + A'qfl) |
(25a)
vy + 2nal + (A = nPya = —2w A~k + n) Ay sin(A7 + 0)
= 3BkA Ansin(A(2 4+ Aws)T + 26 + Ag)
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oy + Mzy = 2 A2 A, sin( AT + )
~ 3BA A s (A + (1 — @) 7+ 0+ v + Au)
+ %BAIAah sm( —v (1 =) +0— ¢ — A'w)
— 2BA A sin(A(2 + Awn)T + 10 + ¢ + Ag)
+ %BA:AI;L sin(Awym — ¥ + ¢ + Ad).
_ (25¢)

Within Equations (25), each term of the forcing function is treated in
the manner of the general approach given in Equations (18) and (19). First,
consider the potentially resonant terms in Equations (25a) and (25b). Using
the notation of Equation (18),

A = 2w AM(A — nk)A,
B = —2w A\(—kA + n)A,
g=A

g =a.

The condition of Equation (21), to avoid resonance terms, gives
—2u AL [20(—kA + )X + (A = n® = A (N = nk)] =

In general, this condition can only be satisfied for w; = 0. Next, cousider the
resouant-type terms in Equation (25¢). Here,

F = 2:4)1 /\2‘4:

p=2A
¥ =Y.
The condition to avoid resonance is
2w AL =0
WA 1. =
and, again, this can onlv be satisfied for w; = 0. Accordingly, w; is now

taken to be zero. Note that this requirement also gives & = wq. which will
be used from this point forward.

The particular solution to Equations (25) is then built using the method
of undetermined coefficients, as previously described. The resulting solution
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takes the form

T = po1 A Az cos(/\(Q + Awy)T + 2¢ + Aqﬁ)
+ poo A Agn cos(ANAwyT + Ad)

26a
+ pg;;.-‘le:h (‘.OS((/\ - l/h(l —_ Lu‘g))’l’ —_— A’lj)) ( )
+ pag AL AL Cos(()\ +vp(1 —wo))T + 2¢ + A'(L*)
Yo = Oo1 Az A sin( M2+ Awn)T + 20 + Aqb)
+ 099 A AL sin(AAwyT + Ad
2 Aan sin(Auy ) (26b)
+ o3 A AL \111( —vp(l — wa))T — Al/}) ’
“+ 094/ A /“h slll( /\+ I/h ]. — wz))T + )l/’ + A(/)
29 = Koy A A blll(()\ lvp{l —w)) T+ o+ ¥ + Au/)
+ /\"22/‘&-.4211 S /\ — Vh 1 - wz))T + ¢) - 'l/) — AI/') (2()())

1((
+ Koz A AL, 5111(/ (2+ Aw)T + 1+ ¢+ A¢)
+ Koa A, Ay SIn(AAwyT — ¥ + & + Ad),

where the coefficients are

3B[—2nMk(2 + Aws) + (14 £)(A2(2 + Aws)? +n? — 4)]

P 0302 + Awa)* + (A — 202)02(2 ; Awn)? — (A — n2)(n? + 24)
B 3(1 — EYB(\Awy® + n® — A)
P2 = T Awst + (A = 202)A%Dws” — (A — n2)(n? + 2A)
_ “3B((N = (1 — wp))? + = )
P = X a(l — @)  + (A — 202) (X — va (L — W,))" (A - n2)(n? 1 24)
5B((/\+I/h(1 —w))2+n?—-A) -
P2 = N — o) d + (A— 20\ + va(1 — w;)) (A= n?)(n? 1 24)
3B[—2A(2 4 Auwa)(1 + &)+ E(A3(2 + Aws)? + n® + 24)]
T T N2 1 Dan )t + (A — 20202 + Aws)? — (A — n2)(n2 + 24)
B —6n\Aws(1 - £)B
722 = MAw + (A = 202)A2Awy" — (A — n2)(n2 + 24)
- 3n(N = vp(1 —wq))B
T A= mw)) (A =20 = {1 — we))? = (A = n?)(n? + 24)
=3n(A+ v (1l —wy))
Ta4

2= A=wp(l —wa))* + (A = 202) (A + vp(1 —wa))? — (A = n?)(n?> + 2A4)
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3B

T el — w2) (2N + a1 — a2))
o 3B

2T (1 - ) (2h — (L~ )

B 3B

BT N1 Awn)(3 + Awy)

o 3B

TR - Aw)

4.3 Order 3

The solution procedure at order 3 is much the same as for order 2, with
much wmore complicated expressions. The previously determined lower order
telescope motion is substituted into Equatious (17), along with expressions
for the hub motion.

For now, the differential equations are examined only for potentially res-
onant terms — those terms in which A appears as the frequency in the 7
domain. Aunalysis of these terms will provide relatiouships between the ac-
ceptable values of A, and A,, as well as corresponding expressions for ws.
(Further research will allow the development of the actual order-3 solution
terms. )

‘ Denoting the Cartesian conponents of these potentially resonant terms
by R.. R,, and R._.

R, = {_QW/\(_/\ — k) +3C (K2 = 2)4.7 + A?)
- %B[AI/LQ(ATUgl + kogy + 2p21 + 2p42) (27a)
+ Aon (ko1 — H'z‘z)]} Ap cos(AT + 9)
R, = {ng/\(/\/ﬁ: — 1) + 2RC AL BR? = 4) + A7
— 3BAG (—hpar + kpoe — 01 + azz)}flx sin(A7 + o)
R = [2uaX? 4+ 4C (0 = 4) A + 34,

- %B(A;/LQ(P‘B — pai) — f"\.rh‘“)(ﬁzz - h”‘_)'l)) + A} A sin(AT 4 ).
(27¢)

~J
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Note that R, and R, contain A, as a factor, and R, contains A..

Now examine the conditions to avoid resonance, given by Equation (21),
and the simpler z-component condition. It is clear that the coefficients of
Equations (27) cannot satisfy these conditions with any degree of flexibility
in the oscillation amplitudes — either or both of A, and A, would be required
to be zero. Therefore, it is necessary to pursue an alternative.

-1t is possible to increase the flexibility amnong the orbital parameters by
introducing additional resonance-inducing terms. One way to do this is to
require that the hub be in a halo orbit about Ly. This means that v, = Ay,
which gives

vp(1 — we) = A(1 + Aws). (28)

Making this recquirement introduces the following additional resonant terms:

R = 3{Clecos(AT — Ay + ¢ + Ad) — cos(AT + 2t + AY — ¢ — Ag)]
+ 3 Bi(koas + Ras + 2p23) cos(AT — A + & + Ag)
+ (koay + Kog + 2pa4) cOS(AT + 200 + Avp — ¢ — A@)]}
Az A Az,

(29a)
R, = %{C’k[sin()ﬂ' + 2 + Ay — ¢ — AP) + sin( A7 — AY + & + Ad)]
+ QB[(kp% — 023) Sin(/\’“ —Av+o+ A@)
— (kpas + ogq)sin(A7 + 22 + Aih — ¢ — A@)]}
A AA

R, = %{C(A2 —4)sin(A1 + ¥ + Ay — Ag)
+ (K2 + 4) sin( A\ — ¢ — Ay + 2¢ + Ag)]
+ 2/3{(/)22 - h‘g]) Sin(/\‘T + '(//’ + AL”J — A(f)) (29(,)
— (pa1 + Koo) sS(AT — ) — AY + 2¢ + A(/))]}
AxA;rhA:h.-

It can clearly be seen that the addition of these terms introduces more flex-
ibility. In particular, note that A, appears in R.’, while it is not in R.;
similarly, 4, is introduced into the x and y direction terms.

Next, in order to allow these new terms to combine with the original
resonance terms, it is required that the phase angles match.  All in-planc
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trigonometric argnments are now required to he A7 + @1 out-of-planc argn-
ments are required to be A7+1¢». This leads to the following six relationships:

COS(AT + 2¢) + Ay — ¢ — A@) = £ cos(AT + o) (30a)
cos(AT — A + 0 + Ag) = + cos(AT + @) (30b)
sin(A7 + 2¢ + A¢ — 0 — Aop) = £sin(A7 + 9) (30c)
sin{ A1 — A + 0 + Ag) = £sin(A7 + ) (30d)
sin(AT + ¥ + Aw — Ag) = £ sin(Ar + ) (30¢)
Sin(AT — ¥ — AY + 20 + A@) = £sin(A7 + ¢) (30f)

From the hub halo motion analysis of [2]. the hub phase angles must
satisfy the relationship
Uh — On = J;
for arbitrary integer j. With this in mind, Equations (30) lead to the re-
quiremment

— g = ({+)m (31)
for arbitrary integer £.

Richardson [2] also indicates that j must be odd (1 or 3) in order to avoid
enormous hub motion amplitudes which would violate the series expansions
being emploved. Therefore, the saime assumption is made here. that j must
be odd. Applying these relationships to Equations (30) gives

cos(AT 4 20 + A — 0 — Ao) = —(=1) cos(Ar + )
cos(AT — Ay + 0 + Ao) = (—=1) cos(AT + 0)

SIN(AT 4+ 20 + Ay — 0 — Ad) = —(— 1) sin(AT — ¢)
Sin(AT — Av + ¢ + A¢) = (= 1) sin(Ar + 9)
sin(AT + ¢ — A — Ad) = (2 — j) cos(AT + )

sin(AT — ¢ — Ay + 20 + Ao) = —(2 — j) cos(AT + @).
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Using these results and angmenting Equations (27) with Equations (29),

R, = [-2@@ — nk) Ay +3CA, (K2 A% — 24,7 + 4.2
+ 3BA, [(koay + ko + 2pa1 + 2p22) Aep® + (Kot — Ka2) Asn’]
+6(=1)CA App A
+ 3(—1) B(—kos + fias + 2003 — koay — Kipy — 2p~24)A:AIhA:h]
cos(AT + @)

(32a)
R’J = [ZQ’VQ/\(/\A - n)AI + %ACA’E (31{2‘41%2 - 4A.rh2 =+ Azhg)
év‘ 2—‘"4) (o9 — T2 9
+ QBAQ: 141‘/1 ( kp_l + ]\02_ J21 + 02_) (32]))
+ %(—I)IB(kng, — 093 + kpay + 0-24)‘4;,41;1;42,1]
sin(A7 + ¢) v
R.= |:25°'2/\2Az + %CAZ (k244:ch2 — 4Arh2 -+ 3/42),2)
- %BAZ [(Pza — p21)Au® — (Kaz — /%'24)/11»1,,2] + AA,
- 6(_1)116'44.17A.'z‘l:.Azh (32(.)

-+ %(—1)£13(/)22 + a1 + Koo — H’Z])-‘firn""‘.’rh,/\:h-:l
(2 — ) (=1 cos(AT + @).

The relationship between vy, and A, given by Equation (28) may now be
used in the p, o, and & functions, changing some of their formns to

—3B(A?Awy® + n? — A)

P2 = N1Aws 1 (A — 202)\2Aws® — (A — n2)(n? + 24)
SBA(24 Awy)t 4+ 0? — A)
P20 = 552 Dws)® + (A — 20902(2 + Daon)® — (A — n2)(n2 + 24)
_ —3nAAwL B

7B = MAwy + (A = 202)A2Aws? — (A — n2)(n? 4 24)
s | —30M(2 + Awn) B

M2+ Aw)t + (A= 20222+ Awy)? — (A —n2)(n? + 24)

3B '

Kor =

2A2(1 4+ Aws)(3 + Awn)
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For use in the equations at third order, the p, o, and & functions need only
be expanded through linear terms in Aws. When linearized, the functions
become

pa1 = 2 B{[=8nkX — (2 + )4\ + n” — A4)]
+ [—3(8A7 + A — 20”) N [=8nkA + (24 A7) (4N + n? — A4)]
+ 4 (=nkX+ (24 K2)N) ] Aws )

paz = n?+24)
A
= 29a
3B
P27 5002 + 24)
A

= [23a
pas = 5 B{(4N +n® = )
— IN6A +8(n® — AN+ (A — n?)(3n” + A)]Awn}
= P21a + pPrapBws
oo = EB{[~2nA(2 + k%) + k(4N + n® = 24)]
+ [N+ A= 20N =200 (2 + A7) + R(EA + 0+ 24))]
+ (=nA2+ k) + 4k')\2)]Aw2}
2 Torg + Ta1p Ay
3mAAw, (2 ~ k4B

7 (A —n?2)(n?+24)
= TaapAws
AnAAwy 13
Oo3 =
2T A=) (n? +24)
EN

= oo Awy
Tog = —HAB{2 = LB +4(A = 20902 — (02 — ) (n? + 240)]Awy)

/

= 04 T TappAwy

S




Ka1 = al;; (3 - -lsz)
Ka1a + FarpAws
3B
222

Koy =

= K22q
B
Koy — a} (5 - '—'IA’LUQ)
K.93q + h'23bA(d2
3B
272

Koy =

K23a.

where
d =16 + 4(A — 20)\? — (A — n?)(n® + 24).

The subscripts b and a respectively denote those terms involving and not
involving Aws.

Keeping this in mind, and recalling that Aw, is defined as the difference
between wap, and wsy, Equations (32) may be written in the form

Re = (0 A, + appwa Ay + ang A, + agwe AL) cos(AT + ¢)

Ry = (,BlaA:c + ,BUJUJQAx + ,(32(,/4; + }321,’.1)244:) Sill(AT + CD)
R. = (M1aAz + Ywsdy + Yoahs + YopwaA:)(2 — 5)(=1) cos(AT + o),

where the «, 3, and 7 coefficients are functions of constants and the the hub
solution parameters wap, Azr, and A,,. Using a tilde to indicate substitution
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of wop, for Aws, these functions are
Giq = 3¢ (szvl::;lz2 - 2"41‘/12 + ‘;\zllz)
+ }B {(A'U‘:’J + koo + 2091 + 2p32) Agn” + (K21 — h"azz)rlzhz]
a1y = —2M(A — nk) = 3B [(koay + kosa, + 2p210) Asn” + Korp A ]

gy = (= 1) 4C + B(—koys + ka3 + 2p33 — koa — v2a = 2p24)] A Aan
Qop = ~3(=1) B(—kowg + fasp — kooap — 2pagp) Aun Azn

Bia = 3RC 3R Apy® = 4407 + A42.°) + EBAL  (—kpay + kpay — o1 + 022)
Sy =20 Ak —n) + %B’A_,;,_")(A:pgw + o1 — Toap)

B = %(—])1’3(‘/\7053 — a3~ kpay + o24) Aun A

Bap = 3(=1) B(oasy, — kpaiy — 0245) Aen Az

Ya = (1) —6C + %B(/)}z + pa1 + Koo — Ka1)| A Ak

Yip = 2(=1) B(Karp — parp) denAun

o =3[ (A = 140 +344%)

+28 [(pas — pa) Aui® — (35 — ) Ap] | = A
Yop = 2A7 + %B (/)24b-"‘zh,2 + h"'z:abAn;h.z) :
(33)

Recall that the conditions to avoid resonance are as specified by Equa-
tion (21) and by the requirement that the z component of the resonant forcing
function have zero amplitude. Here, these requirenients now take the form

r_)fL(_/BlaA_r + 31()@'2,41 + ‘32,14*'1; - ngwg/\:)/\
+(4 - n® — /\2)(\()'[(1;41 + apwa Ay F g A, o d,) =0 (34)

and

Yla A+ "/]],L:.‘g.”\_,- + ";’Q,,y,"‘: -+ "/‘2(,(,02."’"; = (). (35)

Equation (34) may be written in the form

gluAa; - g[b“-‘".)‘q.r + <211111z + C‘wa"ZAz =0, (36)
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where

Cra = 20010+ (A =1 = )\?)

Caa = 2082 ) + (A ~ 1 — A?)ag,
Cip = 208 + (4 —n — May
Cop = 2nBp A+ (A —n — >\7)Oc 2h-

Qg

(37

Equations (35) and (36) provide two equations in the three variables A,,
A., and w,. However, a third relationship may be introduced. Consider the
order-1 solution of Equation (22). Using the frequency and phase relation-
ships of this section gives

1 — Az cos(AT + @)
nwo| = kA, sin(AT -+ @)
1 (2 - j)(——l)fAz cos(AT + ¢)

with j either 1 or 3, and £ either 0 or 1. This part of the solution corresponds’

"to the case where the aperture plane maintains a roll angle £ about the y-
axis. The range of this roll angle is related to the integers 7 and € in the
fashion shown in Table 2

Table 2: Relationship of Aperture Plane Roll Angle to ¢ and j

jl¢] §

T10] (0,7/2)
1{1](—7/2.0)
310 (—7/2.0)
3011 (0,7/2).

Therefore, the ratio (2—3)(—1)4,) /A, may be taken as an approximation
to tan €. Let n represent A,/A,. Assuming A, to be nonzero, Equations (35)
and (36) may be written in terms of 1 as

Ma + Y162 + Y2a7) + Yopw2n = 0. (38)
and

(.-lu. + Clhw‘l + CZ(L” + CZ’;w').n =0 (39)
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These two equations may be solved simultanconsly for wy and 1. The
combination of the equations leads to a quadratic, with two sets of solutions
for w, and 7. Depending on the hub motion amplitudes, the solutions for
i correspond to approximate aperture plane roll angles [rom —7/2 to /2.
The solution for ws is then

—-B+ VB2 —4AC

why = = \ 40
: S — (40)
where
A = 1o — Y26C1p
B — A/lu,C‘Zb + "/thQu - A\V"}u.C]h - “/2’!C11L
— I
C = %a62a — 72aC1a-
and the corresponding 9 1s
Clu + clhu”? Tl + Yo
)= — . =— : (41)
Coq + Cape Yoa T Yopw'a

In tur, cach valuc of 1 is associated with an infinite set of (A, .A.) pairs,
each of which is, in turn, associated with a set of initial conditions for the
relative telescope motion.

A rule of thumb mayv be developed in order to bound the sclection of A,
and A, Examining the solution to the linear telescope equations, given by
Equation (22), it can be seen that the approximate maximum distance of a
telescope from the hub is

. = max(V/ A2+ A RAY (42)
= A, max(\/1 -2 k). (43)

Therefore, if the maximum distance is required to be no greater than a dis-
tance dya, Ay may be selected such that

‘4 . (1111 ax

. < :
ST omax(y/1+ 0% k)

and then A. = nA,.




4.4 Solution Summary

The solution is now constructed hy adding Equations (22) and (26), and using
the frequency and phase angle relationships of Section 4.3. This combined
solution through order 2 is then

= —A, cos(AT + cb)
+ (p21AzAzn — /)24A:A:h(—l)£) cos{A(2 + Awsq)T + oy + ) (44a)
+ (pr2AsAsh + pa3Az A (=1)") cos(AAwaT + ¢ — @)
y = kAzsin(AT + @)
+ (o ArAgh — 024 A, A5 (=1)") sin(M2 ~ Awz)T + ¢ + ¢)  (44b)
+ (02245 Aun — Ung:;qzh(—l)E) SiIN(AAwaT + 0f, — @)
z = [(-1)'A, cos(AT + o)
+ (Fa1AsAch + Koy A A (—1)1) cos(M2 + Awa)T + ¢y + 0)
— (H.QQAZAZ/-L + 524A2A$;,_(—1)E) cos(AAwyT + @p, — (p)] (2-17),
(44c)

where 7 = (1 + wqt). The coefficients are as given following Equations (26),
with the modifications which follow Equations (32).

5 Simulation

5.1 Implementation Procedure

Various representations of the telescope equations of motion were coded in
MATLAB to examine the differences among the solutions. Some of the results
are presented in this section. The motions of the hub and only one telescope
were sitmulated because of programming and interpretation simplicity at this
point. In the future, a visualization could be developed based on selection of
initial conditions and results from the simulations.

The sclection of the initial state is not arbitrary because the resulting
uncontrolled orbit path is likely to be unsatisfactory. The solutions of these
models show that the hub’s trajectory diverges from a closed, periodic orbit
in typically 150 to 200 days. Exploration of initial conditions has been a time
consuming portion of this research.
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Additionally, the uncontrolled telescope motion will diverge from the
nearby reference path about the hub.

Difficulties in finding initial conditions that produced useful trajectories
motivated short duration thme frames. Asswine that as the aperture plane
orbits the Lo point, a typical observation will last only a few days. before
reorienting the plane to observe some other target. By simulating runs of 20
days duration, swmall diverging motions from the nowinal halo motion were
maintained.

The baseline solution is the numerical integration of the full ecquations
of the hub subtracted from that of the telescope, as shown in Equation (1).
In essence, there are two separate vehicles orbiting the L, point with very
similar initial conditions. The slight differences in initial conditions are due
to the placement of the telescope with respect to the hub.

One cannot arbitrarilv specifv initial hub and telescope positions for either
the full, or the truncated nonlinear moclel, or the analytical model, and obtain
closed or nearly closed orbits about the L, point.

To begin the process. implement the lengthy algorithms shown in Sec-
tion 4.3

e begin with a selection of A,j,, the amplitude of the motion along the
z-axis of the hub with respect to L.

e use a consistent set of physical quantities taken from Dunham and
Muhounen [3] for the constants used in computing 4, B. (' of Equa-
tions (8) and for A and k

e compute the a. 3. v terms of Equations (33)

e compute the ¢ terms from Equations (37)

e solve for both of the wy solutions from Equation (40)

e maintain two solutions for n (Equation (41)) based on two w, terms

e then A. = nA, vields two choices

Tahle 3 shows three combinations of amplitude selection, selectious of 7.
and the results of calculations based on these selections. The application
of Equation (G-1) from Richardson 2} constrains the A, corresponding to
the selected A.j,. (This equation is plotted in Richardson’s Figure H-1.)
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Table 3: Summary
and Orientation

of Inputs and Resulting Values Used to Select Orhit Size

Ayn Aen | 7 wa” wo T n- nt & & AT AT

(k) (km} {deg) {deg) () (km)
280,667 550,459 ] -0.29211 -0.29185 161G 16147 -5R.18 -HR.23 80.58 0.08073
230,667 550,459 | 3 | -0.29211 -0.29185 1.6115 1.6147 58.18 58.23 80.58 0.08073
227,219 250,000 | 1 | -0.26069 -0.11043 | 0.45009 3.9851 -24.23  -753.92 22.50 0.1993
227,219  250.000 | 3 | -0.26069 -0.11043 { 0.450090 3.9851 24.23 75.92 22.50 0.1993
211,126 1,000 { 1 | -0.23166 -0.07373 | 0.00178 905.98 | -0.1020 -89.94 | 0.08902 45.30
211,126 1.000 | 3 | -0.23166 -0.07373 | 0.00178 903.98 0.1020 89.94 | 0.08%02 45.30

The amplitude of the hub motion along the z-axis was first chosen aud then
the amplitude of the hub motion along the z-axis is constrained by this
relationship, which assures halo orbit solution via correct frequency selection.

The choice of 4., of 550,459 km is the largest z-value that can be selected
and yield real roots for wy. An intermediate value of 250,000 km and a very
small value of 1,000 km were also selected for presentation. The appendix
shows the results of many calculations of this example.

There are only two acceptable choices for j, which controls the sign on
the z-position equation. The selection of j = 1 corresponds to a left roll
orientation of the aperture plane; the sclection of j = 3 corresponds to a
right roll: This table shows the results of calculations based on fixing ¢ = 1
and A, = 50m. (Results for ¥ = 0 are not shown because the 5 values would
be negative in Table 3 and lead to negative values of A..)

Because the equation for wy admits two roots, these two values are carried
forward to see their effects upon the calculation for n. The superscripts —
aud + refer to the sign on the square root in cach solution. Two values arce
calculated for 5 and, in turn, two values of the arctangent of 1 to vield the
approximate aperture plane roll angle, .

The resulting magnitudes of the 1 terms, and their corresponding angle
values should be highlighted. As stated above, the large value of A,y is
associated with the case in which the two roots for wy approach a single
double root. Accordingly, the resulting values of 1, £, and A, are also nearly
identical.

For the intermediate value of A,;, the we values are different. The roll
angles, of the two solutions, are quite different. Finally, at the simallest
value of A,;, the w, solutions are quite different. The roll angles of the two
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solutions arc at extreme vahues hased on 17, the halo plane is nearly in
the ecliptic (z-y) plane and based on 7, the halo plane is nearly in the y-z
plane.

Because the wser can sclect either AL, or the desired roll orientation,
the user does not have control over the combination of halo plane size and
orientation. When considering the roll orientation of the aperture plane,
from —n/2 to 7/2, the user should realize that three months later, the orbit
will have moved about the Sun such that the initial roll angle appears as a
pitch rotation. This offers some orientation flexibility.

Again, the user does not have total control over hub position and. of
course, the aperture plane location with respect to Ls.

Continue with the implementation of these algorithims:

e compute the p. g. & terms on pages 76 — 77
e compute the analvtical expressions of Equations (44)

Equations (44) are the analytical expressions for the motion of the tele-
scope with respect to the hub. By taking the derivatives of these equations,
one can compute the full state as a function of time. These equations may
be used by trajectorv control designers.

Also at t = 0, Equations (44) may be used to determine the initial state
for use by two comparison solutions requiring numerical integration:

e Solution of Equation (1) — full nonlinear equations of motion of the
telescope with respeet to the ab

e Solution of Equation (8) - truncated. to second order in the distance of
the hub from I, nonlinecar equations of motion of the telescope with
respect to the hub

5.2 Simulation to Compare Results of Models

Here is an example that compares the results of the three solution methods
for calculating the motion of the telescope with respect to the hub.

“Full” refers to the numerical integration of the separate cquations of
motion for the telescope and the hub, each spacecraft with respect to Ly, and
then subtracting the hub motion from that of the telescope. This represents
the implementation of Equation (1).




Table 4: Initial Conditions of Telescope With Respect to Hub Resulting From
Analytical Solution

2(0) | — 64.7796 m
y(0) 0.0 m
2(0) 26.4452 m
+(0) 0.0 m/day
y(0) 4.4205 m/day
£(0) 0.0 m/day

“Truncated” refers to the numerical integration of the truncated equa-
tions of motion for the telescope with respect to the hub. This represents
the implawmentation of Equation (8) with the terms that have a subscript A
referring to the linear expressions for the motion of the hub. The linear hub
solution is given by Equation (23), which was further simplified to give a
halo orbit setting both frequencies to the same value and setting both phase
angles to zero. :

The initial conditions for both the full and truncated numerical integra-
tions are obtained from the calculation, at £ = 0, of the analytical solution.

“Analytical” refers to the second order solution, which is an explicit func-
tion of time, given by Equations (44). :

From the intermediate case of Table 3, select the out-of-plane hub am-
plitude from the L. point to be 250,000 km (A,5). Using Equation (G-1) of
Richardson [2], the resulting value of A, is 227,219.42 km. Sclect the row
with 7 = 1 or 3, corresponding to the desired aperture roll direction. The
roll direction is implemented in the solution via Equation (44c). The roll
angle direction is also indicated in Table 2. Remembering that Table 3 was
computed using ¢ = 1, choose j =1 for a negative roll or choose j = 3 for a
positive roll. In this simulation, j = 3.

Sclect the initial amplitude between the hub and the telescope to be
A, = 50 m, along the z-axis. The A,™ choice initially gives the telescope a
linear amplitude of 22.5 m away from the hub along the z-axis.

The analytical solution was first evaluated at ¢ = 0 to obtain the initial
conditions (of the telescope relative to the hub, Table 4) for the full and
truncated solutions.

The initial conditions for the hub are listed in Table 5 with the equations

85



Table 5: Initial Conditions of Hub With Respect to Sun-Earth L, Point

w1 (0) 227.219.42 km
yi(0) 0.00 kin
2,(0) 250,000.00 km

@ 0.00 rad

On 0.00 rad
i4,(0) (A/K)yn(0) kim/day
7 (0) —kAz,(0) km/day
2,00) | —(2 = j)NA L sin(¢hy,) km/day

for &, y, and Z reproduced here for convenience. These were given earlier in
Section 3.3.

The complete initial conditions for the telescope with respect to the La
point are given helow:

7, (0) = 2,(0) + 2(0)
y,(0) = yn(0) + y(0)
2,(0) = 2,(0) + 2(0)
14(0) = 2x(0) + (0)
%:(0) = 9(0) + 5(0)
3(0) = £,(0) + 2(0)

The following plots show the small differences among the three solution
types over a 20-day duration. The plots show the telescope motion with re-
spect to the hub. The origin of the coordinate system represents the position
of the hul. Scales are expanded for the x and = positions.

Returning to the discussion that began in the introduction to Section 5.1,
we note that over 5 davs each solution yields almost the same result. The
analytical solution is quite accurate for trajectory control analysis. We as-
sume that as the aperture plane orbits the L, point. a typical chservation
will last only a few days, before reorienting the plane to observe some other
target. By shmulating runs of 20 days duration, we can see small diverging
motions from the reference numerical solution.

In Figure 3, observe that both the full and truncated solutions are essen-
tially the same. Considering the scale of the axis labeled “x position”, the
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analytical expression is close to the other solutions over 5 days. The curve

labeled “Trune C=07 shows that when the lowest order tern of the truncated
solution is set equal to zero. the effects are not significant in the a-direction.

In Figure 4, observe that all solutions are essentially the same for the
scale shown.

In Figure 5, we see that both the full and truncated solutions are essen-
tially the same. The analvtical solution stays close to these solutions over
5 davs. Remember the truncated solution has all of terms A, B, and C in-
cluded. The highlight is the curve labeled “Trunc C=0" showing nearly the
same result as the analvtical solution. Now the importance of the “C” term
is evident. It indicates that a more complete analytic solution would include
higher order terms.

6 Summary
This report details the preliminary work describing the formation flving be-

tween spacecraft near the Sun-Earth Ly libration point, beginning with the
circular restricted three-hody problem for the hub motion about L.
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The halo orbit was specificd as a desirable aperture planc orbit, instead
of a Lissajous orbit, because it is periodic. Additionally, over a one or two
day ohservation period, the spacecraft telescopes of the aperture plane will
minimally separate due to natural motions.

The analytical solution, Equations (44), for the motion of a typical tele-
scope relative to the hub is presented, including terms which are linear in the
hub motion. We anticipate feedback from our sponsor concerning the utility
of these equations for use in orbit control system design.

We developed a full non-linear solution of hub motion, with respect to
Lo, subtracted from telescope motion, with respect to L, as a reference
trajectory.

We developed a truncated non-linear solution to the telescope motion
with respect to the hub.  Both the non-linear model and the truncated model
are solved by numerical integration.

All three models produce trajectories that diverge from a closed path over
‘the course of one orbit (roughly 200 days). We compared the three models
over a shorter duration of 20 days expecting that a science observation would
be on the order of a few days. before reorienting the aperture planc.

The analytical solution algorithm is quite lengthy. One example was
presented and used to compare the accuracy of the solution compared to the
reference trajectory. Over 5 days, the analytical solution is very close to the
reference trajectory.
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Appendices

A Constant

Parameters

Table 6: Physical Constants [3]

(| 132,712.440,017.987 km3 /s?
Lta 403,503.236 km?/s?
n | 0.199106385 x107% rad/s

Table 8: Constants Specific to Sun-Earth L, Point [2]

Table 7: 4Derived Constants
151,105,099.094445 km

454.84086785372 km
149,597,415.850132 km

Te
Dy
D,

£, | -14.82882087 1/(DU%-TU?)
€y | 1.673691389 1/(DU%-TU?)
5; | -0.7444513767 1/(DU-TU?)
59 | 0.1250471558 1/(DU-TU?)
DU | 1.507683382 x 10° km
TU | 58.13235527 days

Richardson’s algorithm ([2], page 2-31) for computing A, given Ay and

for computing woy are

given here:
0LAZ, +0,AZ, + A =0

e A2 A2
wWhip = 51/11.,1 + 5211;,1
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These are the modifications used to dimensionalize Richardson’™s algo-
rithms:

Aun = DU/ (=(o( A/ DU)2 — ATU?) /€,
whyp, = -5'1(A;,;/,/DL-7)2 + 89 (/‘4;/,/[)(/)2

Where in Table 8. the constants “DU” refers to distance unit and “TU”
refers to time unit.




Table 9: Computed Values and Cocfficients

A 1.16605228517927 x 1073 1/day?
B 5.84853993419721 x 107'% 1/(km-day?)
C 3.86667873919725 x 10716 1/(km?-day?)
A 3.53850956958284 x 10~? rad/day
k 3.18712225987377 .
2 1.16605228517927 x 103 rad/day?
A 8.60527122236636 x 107° 1/day?
d 2.56733055729898 x 107> 1/day?
pa1a | 1.13887100881492 x 107% 1/km
pawy | —6.40826960245161 x 1077 1/km
P22a | —2.72318375685819 x 107¢ 1/kin
P29b 0 1/km
Pz | —3.33815613931628 x 10~7 1/km
P23b 0 1/km
paaa | 1.41409729921967 x 10~7 1/km
pasp | —1.21027861225803 x 1077 1/km
0914 6.51772783060505 x 10~ 1/km
oo | —7.61518233174130 x 1077 1/km
924 0 1/km
o2 | —3.81021051605070 x 1078 1/km
0930 0 1/km
o3 | -4.67066447286556 x 1077 1/km
Oo1q | —8.32024709778584 x 10™% 1/km
o4 | 1.30305530510727 x 1077 1/km
Kola | 2.33548302511691 x 10~7 1/km
Koy | —3.11397736682255 x 1077 1/km
Koo | 7.00644907535074 x 1077 1/km
Kaap 0 1/km
Kage | 2.33048302511691 x 1077 1/km
Koy | —3.11397736682255 x 1077 1/kmn
Kaga | 7.00644907535074 x 1077 1/km
Kagp 0 1/km
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Part 3: Modelling the Perturbations
— Elliptical Earth Orbit, Lunar
Gravity, Solar Radiation Pressure,
Thrusters
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1 Introduction and Problem Definition

Some continuing long-term goals of our sponsor are to develop high-fidelity
equations of motion representing the formation flying of a spacecraft con-
stellation near the Sun-Earth Loy point and equations describing the relative
motion between these constellation members.

This is our third report, which continues from Part 1 [1] and Part 2 [2].
In this report, we further the work of Part 2 hy developing the elliptical
restricted three-body problem from the previous work with the circular re-
stricted three-body problem. Additionally, this new work includes the force
perturbations of lunar gravitation, solar radiation. and spacecraft thrusters.
The effects of the elliptical orbit of the Earth-Moon system about the sun
and the force perturbations are incorporated as additive perturbations to the
circular restricted three-body problem.

This work builds from the previously developed circular restricted three-
body problem formulation. The familiarity of the formulations gained from
Part 2 is maintained here. We present the development of the full nonlinear
baseline model, which includes these perturbations:

e begin with circular restricted three-body problem

e then adding terms describing the elliptical orbit of Earth around the
sun

e then adding terms describing the moon’s motion about Earth
e then adding terms incorporating the force due to solar radiation
e finally adding terms for spacecraft thrust

We identify the magnitude of the contribution of cach pertwbation to
the solution, in order to help determine when it should be included in the
computations. We identify substantial modeling uncertainties. In addition
to identifying the magnitudes of the effects of the included perturbations, we
identify the magnitudes of what is dropped in the truncation process.

- The development continues with the expanded form of the full nonlinear
baseline to sufficiently high order such as to capture the relevant contribu-
tions to the model. The presentation of the perturbations is organized in
similar fashion to the baseline presentation so the reader can easily compare
and contrast the models.



This research is loosely motivated by formation flying concepts for the
MicroAresecond X-ray Imaging Mission (MAXIM) Pathfinder. A concept
configuration of the MAXIN mission is depicted and described below.

”
-I 1
[
I
! |
re N |
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N | /- %)
optical -
hub \>®
7 ~
Vs I ~
e ~
M - [
rs r4 r3

Figure 1: Aperture Formation of MAXIM Pathfinder. Concept of June 2002.

Seven spacecraft shown in Figure 1 are in the same plane forming a flat
aperture. The optical hub is in the “center” of six free-flving spacecraft
(telescopes). Dashed lines do not indicate a material connection, but rather
indicate random radial directions listed r, through r4. The scalar length of
1 ranges from 100 to 500 meters. Additionally, the six free-flying spacecraft
are loosely spaced 60° from one another.

There is also a detector spacecraft located approximately 20,000 km and
90° out of the planc formed by the flat aperture. The entire systeni is in a
Sun-Earth Ly orbit. which has vet to be designed by the mission team. The
analysis of the detector’s orbit relative to the aperture plane is bey ond the
scope of this work.
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In Section 2.1, we present the circular restricted three-hody problem’s
equations of motion. the coordinate frame that describes the motion, and
define terms used in the formulation.

In cach scction helow, as appropriate, we explain thie cffects of those terns
retained and dropped from the derivation in the course of the truncation
process.

o In Section 2.2, we present the elliptical restricted three-body problem,
which is used as the bascline for the subsequent developnient.

e In Section 2.3, we incorporate the effects of the lunar gravity.
o In Section 2.4, we incorporate the effects of the solar radiation pressure.

e In Section 2.5, we incorporate the terms used to include spacecraft
thrusters.

e In Section 2.6, we consolidate the equations into one location. There
is further discussion to compare the relative magnituce of the terms so
that they may be turned on or off.

o In Section 3.1, we present the expanded form of the circular full non-
linear baseline.

o In Section 3.2, we present the derivation of the expanded forin of the
elliptical full nonlinear baseline.

e In Section 3.3, we incorporate the effects of the lunar gravity.

e In Section 3.4, we consolidate the equations into one location. There
is further discussion to compare the relative magnitude of the terms so
that they may be turned on or off.

Because there is no expansion of the forces from solar radiation pressure
and spacecraft thrust. the contributions presented in Sections 2.4 and 2.5 are
merely restated in Section 3.4. '

One important measurement of the hub-telescope concept is knowledge
of the distance between the spacecraft to within millimeters or even smaller.
However, while many of the equations of motion presented in Sections 2 and 3
have terms that require numerical values which are listed in readily available
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publications, some valies of the needed physical parameters are given to a
number of significant figures with uncertainties in their knowledge or mea-
surement. A certain value may be defined one way inn one text and a different
way in another text. This will produce different results in the munerical cal-
culations. Examples of these uncertainties applicable to the equations in this
report are shown in Section 4. Some discussion is provided indicating the
impact to the siimulation results due to differences in the calenlations.

Section 5 sunmmarizes the results of Appendix A. which contains a detailed
discussion of the sensitivity of the relative motion to small errors in the
assumed position of the hub.

Appendix B fulfills a request by the sponsor to minimally address relative
motion at the L, point of the Earth-Moon system.

Appendix C explains the eclipse geometry and corresponding shadow
model used in the application of solar radiation pressure.
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2 Equations of Motion

2.1 Circular Restricted Three-Body Problem

In Parts 1 and 2 of this research (1. 2|, the generallsecond order differential
equations of motion were constructed for an object near the Sun-Earth L,
libration point, using the force model of the classical circular restricted three-
body problem. In this model, Earth is treated as being in a circular orbit
about the sun, the spaceeraft mass is considered to be negligible as compared
to the two primaries, and only point-mass gravitational forces are considered.

A
A
y
object i
Pri i P2 ri
Sun Earth-Moon Ly %
, X
(0] Barycenter
<>
haN system
barycenter
D1 D
™ e >
Xe _

Figure 2: Coordinate Axis Definition

For this system, depicted in Figure 2, the differential equations of motion
for an object (object ) near the Sun-Earth L, are given by

. : - D o(t, — D N 5
foo ( ey AL23> - (m(ret D) palz. : 2)) ek,
Pii Pai Pri P2 ‘
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where

r; = vector from L, to object ¢

i = solar Keplerian constant

1, = terrestrial Keplerian constant (Earth + Moon)
p1; = distance from Sun to object ¢

= distance from Earth-Moon barycenter to object ¢
= distance from system barycenter to Lo

distance from systein baryeenter to Sun

, = distance from system barycenter to Earth-Moon barycenter

bt |p ; r:(:z §
I

= unit vector parallel to Sun-Earth line of syzvgy,
pointing in Sun-to-Earth direction

n = terrestrial mean motion about Sun (assumed constant).

The coordinate frame of Figure 2 is a rotating reference frame with origin
O at the system barycenter. The z-axis points along the Sun-Earth line of
syzyey and the z-axis is parallel to the systemn angular momentmn: the y-axis
completes the dextral coordinate system.

Let r, and r, denote. respectively. the vector from L, to the hub and to
a telescope. Therefore, if r is the vector from the hub to the telescope, the
differential equation of motion for the telescope relative to the hub is

F =1 —T1
B I fr ) falze + D1)  po(xe — Do)\
- 7)—17 + —5 |0 3 + 3 X
t Pt Pit Pt
o . p (e + D) po(we — D)\
o o) T e T )T 0
1h P2h Pin P2n J

[ < ry ry ) " ( Iy Ty >
=\ — — [ O
P’ P1n° poi? pan’

— ,ul(l'e + Dl) <_1_ — -1—> X — /12(;136 — Dz) ( ! — ! > )2,

1’ Pin3 P pon?

where now, in general, the subscripts h and ¢ refer to the hub and telescope.
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2.2 Elliptical Restricted Three-Body Problem

The extension to Equation (1) is now developed for the case of the elliptical
restricted three-body problem. First, it is necessary to locate the point which
is analogous to the libration point Ly in the circular restricted problem. As
wotlld he expected, such a point exists; as the Sun-Earth distance varies, the
location of the point oscillates along the z-axis.

2.2.1 Elliptical Problem Libration Point Analog

Say that there is an elliptical analog to the L, point and that its position
relative to the (assumed inertial) system barycenter is given by

Re = 7eX + yey + 2.2

Letting f refer to the true anomaly of Earth’s orbit about the sun, the
coordinate system has angular velocity

w. = [z,

which now is considered to be varying throughout the year. Differentiating
R.,

. ie—‘fye . i‘e_fye'—zfye—f:zl‘e
Re= 1| 9o+ fre |, Re= | e+ fre+2fTe — fPye
Ze Ze

where the column vector notation is used to indicate the xyz vector compo-
nents.

The Newtonian gravitational force per unit mass acting on an object at
this point is given by

[ m(ze+ Di)  pa(ve— D) ]
e’ 96>
F,/m = Y Y |
r1€3 7’263
..ll'lze _ Haze
-~ 7‘163 7'263 J
where

rie = (Te + D)X +yey + 222 and Poe = (Zo — Da)% + Ye§ + 2o
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and Dy and D, now refer to the time-varying locations of Sun and Earth
along the line of syzvgy.

Clearly, as in the circular restricted case. the z equation is decoupled,
and admits a solution z, = 0. If, as anticipated, the desived solution involves
ye = 0, the o and y components of the force-acceleration equation beconie:

X, — faet— 12 g
e 4ole (.’L'(. n D1)2 (.L‘,; _ D2>2
~~ : 1d, .
Vo fr.+ 2 1. = ——(x2f) = 0.
yiJwet 2t ;L‘edf(r /)

. 9 .
From the y-component equation, 1, f is therefore constant. However, con-
servation of the Sun-Earth two-body angular momentum per unit mass h,
gives

o
D*f =h,

where D is the varving Sun-Earth distance D, + Dy, Of course, unlike the
casce of the circular restricted problem, this distance varies throughout the
year. Substitution for f in the y-component equation gives

Te\2

— | = counstaunt.

D

For later convenience, define this constant in terms of the constant . such

that o D2
(5) - <"’+ D2>

Taking the positive root, this gives the definition of v as
A Te — ])2
j I
In the case of the Sun-Earth system, - is approximately 0.01007824; x,
varies between 1.486 x 10% and 1.536 x 10% kin throughout the course of the

year.

|1

2.2.2 Relative Motion Equation Derivation

Let R; denote the position vector from the systemn barycenter (point O) to
spacecraft m;. Referring again to Figure 2.




As above, the coordinate system has angular velocity
we = fZ
Differentiating R,
R, = X + [y + 1
Ri = (Bc — f22)% + (2f 7. + fro)y + i

The distance x,. and its time derivatives may be written in terms of the
varying Sun-Earth distance D and its derivatives, using the following defini-
tions of the constants v and p, and the associated relationships:

; — D
ﬂ/é te 2 /)_é-'“—2 Dy=pD
D I
X+ D :
y1=2 1-p="" Dy =(1-p)D,
D Iz
where
(=t + pa.
Then,
re =D + Dy
=(y+1-pD

le:(7+1_p)D

This gives the acceleration vector R, as
Ri=(y+1=p)(D— D)+ (v +1-p)2fD+ D)y +i.  (2)

Siwilarly, two-body relationships may be used to write D and D in terms
of f and f. Using the two-body equations of motion for the sun (could use
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Earth):

Rl - —D])A(
= —pDx
w, = [z

R, = —pD%x — pfDy
Ry = (—pD + pf*D)x + (—=2pfD — pf D)y
= p(f*D - D)% — p(fD+2fD)y

M2

= D'}X

(two-body force)

This gives the component equations

N > = Ho
X:p(f*D—-D)= D2
~ i ;o P d 2,
y:—plfD+2fD)= “Ddl D*f) =0.
which vield
p-jp=-12
/ D
26D+ [D=0.

Substituting into Equation (2). the acceleration becomes

5 Hoo
R'j = _(“/ +1 - /))/)—-Djz‘X +r;
, Moo M
= [_(“f -+ 1)'[72‘ + ﬁ} X —I;
L My 132 N .
= {—(7 + 1)—D2 - i.f———DJ X+ 1.
Introducing the two-body forces,
2 Sy M /ler _ 1 2
= | —{"y l—"“*"—"—‘ X+1‘7-:~— L — .. 3
R7 [ (’7 + )Dg l'l D2 4 p]i:iph /)r_)j'i p_.l (O)

Note that the explicit appearance of the time derivatives of f has now been
removed. ‘
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Next, the vectors py; and p,, may be written as

P = ('T‘e + Dl)i +r; Pa; = (1’6 - DQ))AC +1;

=(v+1)DX+r; and =yD%x +1;.
Substituting into Equation (3),
Bi=— (v + 005+ w22 %+ 1,
_ "plﬁs (v~ VD% +1,] — ;:23 [vD% ]
=~ (el g o

In the rotating frame, r; and its time derivatives are given by

&= Jus A
=YL= g S | o= | S 208 - Py
2 2'-1. Z1

Note that vectors py;, ps;, and r; are dependent upon the eccentricity
of Earth’s orbit, as is D). To avoid this dependence, redefine these vectors
relative to reference positions of Sun, Earth, and L, along the line of syzygy.
Denoting the reference distances by an overbar.

Ri = .7.765( + T,
W, = fi
Ri = f‘iey + I',

R, = — [’ ZX + [Tey + T4.

Again using the definitions of v and p, Z. = (v + 1 — p)D.
Using this form of the acceleration,

Ri= (y+1-p)(=[*%+ [3)D + 1,

, L 9 ] = 4
=_(_fi+/'_2)ri_[<ﬁ,+1) oo lpe W

put pat p1i3 P2i°

where B
py; =(y+1)Dx +r; and Py = 7DX +1;.
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Vectors r; and ¥; take the same forins as hefore. now relative to the reference
L location.
For the relative motion. let

r=r,—1,=R, - Ry.

= 1 ( ry ry ) 1t ( r; ry >
— T RLY -5 T — 2 - ., T 5
pu pind Pt pan®

. 1 1 1 1 _—
— [}Ll(“’v’ +1) <—"§ — —3> + [y ( i 3>} Dx.
P1t Pir Pt Pan'

as in Equation (1).

Thewn,

2.3 Lunar Gravitational Effects

This section discusses the lunar contribution to the telescope motion relative
to the hub. Terms corresponding to the gravitational force of the moon upon
the hub and telescope spaceeraft arc included in the relative equations of
motion (telescope relative to hub). The resulting contribution is then cast
as an additive perturbation to the elliptical restricted three-body problem
equationus, such that when the lunar motion is ignored, the contribution re-
verts to the lunar mass placed at the Earth position. The moon is treated
as a point mass.

As shown in Figure 3. let py; denote the vector from the moon to space-
craft ¢, either the hub or a telescope, and let p3 denote the lunar Keplerian
constant. The lunar force per unit mass on spacecraft 7 is then given by

P ;
~ 35 (6)
P31

Therefore, the contribution to the equations of motion of the telescope rela-

Fm, = —H3 <'ﬂji - le_’;) ) (7)

Par? £an”

tive to the hub is

where the subscripts h and t refer respectively to the hub and telescope.
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Figure 3: Cloordinate Axis Definition (including Moon)

2.4 Solar Radiation Pressure Effects

The work presented in this section and in Appendix C was prepared by Pro-
fessor David Richardson of the University of Cincinnati, under subcontract
for this project [3].

.The pressure from solar radiation imparts a tiny force on a telescope
spacecraft. Depending upon spacecraft design and distance from the sun,
the force can perturb both the spacecraft’s attitude and orbit. The force can
also be harnessed to beneficially propel the spacecraft.

We present a model to compute the force on a spacecraft, accounting for
the force reduction when the spacecraft orbits through the terrestrial shadow.

At a distance py; from the sun, the solar flux I (the irradiance) acting on
the spacecraft is given hy :

B 47TP%t,

where
L = 3.842 x 10% watts
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is the solar luminosity (total cmitted radiation).

If Ais the cross-sectional area of a spacecraft of mass m projected normal
to the spacecraft-Sun line, then the solar radiation force Iy per unit mass
acting on the spacecralt is

o CrLA 10198 x 1077CRA

s drme 2 1y A2
drmepy, mpy,

N/unit mass,

where ¢ is the speed of light and 0 < ('r < 2 is the parameter characteristic
of the reflectivity of the spacecraft surface facing the sun:

Cr =0 translucent,
C'r =1 perfectly absorbent,

Cp =2 perfectly reflective.

For trajectory motion that passes through any portion of Earth’s shadow,
the full disk of the sun will be partially obscured. In the vicinity of Lo,
this will occur at distances normal to the line of svzygy of approximately
13,420 km or less. In such cases, the force expression above must he scaled
by a “luminosity reduction factor’ o which ranges from zero (total eclipse)
to unity (full sunlight). The appropriate expression for the force per unit
mass is then written:

~1.0198 x 10""CrAc 1.0198 x 10V Cr Ao

F, ., = —— .
' mp3, Pu ml|(v - 1)DX + 1)

[(v+ 1)DX + 1] (8)

The calculation of the luminosity reduction factor. o, is presented in Ap-
pendix C.

Our solar model] did not consider the 11-vear solar cycle. or estimate daily
variations of solar flux, or the geomagnetic tail.

2.5 Spacecraft Thruster Effects

This section presents the derivation used to incorporate the effects of body-
mounted thrusters in our equations of motion.

First, we give the body-fixed acceleration components imparted by the
thrusters. These terms are calculated as shown:

Ty =Fy/m, = F,/m, % =F,/m.
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A §’b Fthrust

Figure 4: Vehicle Thrust in Body-Fixed Frame

where F,, F,, F, are the components of the thrust Fip. in the body-fixed
frame, as shown in Figure 4; m is the vehicle mass. v

Consider an arbitrary alignment of a body-fixed coordinate frame with
respect to the rotating z, y, z frame. The body-fixed xy, yp, 2 coordinate
frame has its origin at the spacecraft’s mass center.

The components of thrust expressed in the body frame must be trans-
formed into the rotating reference frame in order to correctly incorporate
these forces into the description of the motion. One way to express this
transformation is as follows:

Ty
y | =T |
2 Zh

where T is the transformation matrix formed as a combination of Euler ro-
tations.

It is somewhat easier to visualize the individual rotations by considering
the inverse rotation description, rotating instead from the rotating reference
framne to that fixed in the spacecraft:

Ty T
w |[=T7' |y
Zh z
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Figure 5(a) shows the desired orientation of the body frame with respect
to the rotating reference frame. However. by first assuming the coincident
alignment of both the hody frame and the rotating reference frame, we de-
velop the inverse transformnation matrix 77" as a combination of Euler rota-
tions through a set of Euler angles:

1. first rotate angle (¢ + f) about the z, axis as shown in Figure 5(b),
where f = f(t —tq)

2. sceond rotate angle 8 about the new orientation of the y, axds. as shown
in Figure 5(c)
3. third rotate angle ¢ about new orientation of the r), axis, as shown in

Figure 5(d)

Cowbine the sequence of rotatious as follows with a right-to-left ordering
of the rotation matrices:

1 0 —s(0)| | el ) syt f) 0
T = : ) s@ 0 | |=s(+/f) cy+f) 0
(@) (o) c(0) 0 0 1

=T (c) o Tlu—{—f

where the functions ¢ and s represent cosine and sine, respectively; the ro-
tation matrix T,7' refers to the required Buler rotation matrix about the
i-axis. Finally, the desired transformation matrix T (from the body-fixed
frame to the rotating frame) is expressed as the inverse of T

T= (TN =Tv+ HT,(0)T.(6).

These expressions premultiply the thrust force per unit mass acting upon the
telescope spacecraft.

Consider the following example that demonstrates comparable thrust and
solar forces: A 500 kg mass telescope spacecraft with a 1 mN thruster can
produce an acceleration of 15 km/day?. By choosing a solar flux reflectivity
parameter C'p; of 1.5 and placing various surface areas normal to the sun, the
spaceeraft’s acceleration due to solar radiation pressurce is shown in Table 1

Contrast these low magnitudes to accelerations due to terrestrial and so-
lar gravity (as given by Equation 5) of about 4,800 ki /day?. Of course, these
magnitudes depend upon example. One point is that both the low thrust of
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(c) 8 about yp (d) ¢ about xy

Figure 5: Frame Rotation from Body to Rotating Frames

electric propulsion and the low pressure of solar radiation produce acceler-
ations very much lower than the gravitational effects. Another important
point is that solar radiation pressure can be used for orbit control because
the force from solar radiation pressure may be comparable to that from a
thruster suite.

2.6 Summary

In this section, the force equations derived in Sections 2.1 through 2.5 are

combined. The resulting equation models the elliptical restricted three-body

problem, incorporating lunar, solar radiation, and thrust perturbations.
Combining the expressions of this section, given by Equations (4), (6),
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Table 1: Acceleration due to Solar Radiation Pressure vs. Swurface Area

Sun-Facing Solar Radiation Pressure
Surface Area Acceleration
(m?) (km/day?)
(= 3ftx 3ft) 1
100 (= 33 ftx 33 ft) 10
150 (= 40 ftx 40 ft) 15
1,000 (=100 ftx100 ft) 100

and (8), along with the thrust expressions of Scction 2.5, the differential
equations of motion of the telescope are given by:

R, = (v+1-p)(—f%+ fy)D ~i,

1 { A { = .
= — i%+l—% r; — ('\‘/4—1)/—1;%-”1 /2‘3 Dx ER3B
it 2t me 2t
— 13 p'?: Tunar
st

N 1.0198 x 10" C'rAc
m{|(v + 1) D% + 1|3
gy —s(Wy 0 0y 0 s(0)
+ {s(@) ¥ 0 0 10

0 0 1] {=s(0) 0 )

|
)
(v + 1)Dx + 1y } SRP

1 0 0
0 (@) —s(p) |t
0 .s'({,f)) ()

where v' = ¢* + f. The corresponding equations for the hub are

Riy=(v+1—=p)(—f*%+ fy)D+ 1

) L
:’“</1..+lzo>rh—{
e fan”

— i pg/; } lunar
P3h

N 1.0198 x 101" CrAc

m||(y + 1) DX + r4|]?

—

TS S o E “‘2} Dx }ER3B

[+ D% +1a]. } SRP

Combining the relative motion expressions of this section (Equations (5)
and (7)), along with the solar radiation pressure of Equation (3) and the
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thrust expressions of Section 2.5, the differential equations of relative motion
for a telescope spacecraft are given by:

f:_m<ﬁL_rh>_M(lL_rh>
pie® pu? 2 pat /)2h3
1 1 1 1 = .
e (- Y (L L) s

u mn” P2 an

— 13 <p_32 - &;—h;>
23t P3h’
1.0198 x 10Y"CrAc
Tl + DD% + rP
1.0198 x 10Y"CrAc
mll(y + 1) DX + ]

ey —s() 0 e 0 s(@f |1 0 0 | -
+ |s(¢)  oy’) 0 o 1 0 0 ofg) —s(¢)| —o==t thrust
0 0 1| |—s(8) 0 ()] |0 s(¢) c(d)

ER3B

Tunar

(v + 1) D%k + 13

}
[(y + 1)D% + 1¢ } SRP,
/

We present the following example to permit comparison of the relative
contribution of the terms to the telescope motion. The initial conditions are
listed in Table 2: they were taken from the examples discussed in Part 2 of
the research. As mentioned in that report, these values were selected so as
to excite only the oscillatory linear modes.

Figure 6 presents the solution to numerical integration of four different
force models selected from the summary equation above. The models were
applied to both the hub and telescope, and the resulting state vectors were
differenced in order to determine the position of the telescope relative to the
hub. In each case, the same force model was applied to both the hub and
telescope. Additionally, the same value of the reference distance D was used
for all foree models.

The reference solution is represented in the figure by the z-axis. This
refers to the circular restricted model case. The circular restricted model so-
Tution is obtained by including the clliptical restricted model (ER3B) terms,
but with Earth’s orbital eccentricity treated as being zero; this duplicates
the model discussed in Part 2. The other models depicted in Figure 6 rep-
resent the addition of ellipticity (ER3B), lunar, and solar radiation (SRP)
effects over 20 days. It is noted that the elliptical contribution provides the
dominant perturbation to the circular restricted solution. In this example,
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Table 2: Example Initial Conditions

hub telescope telescope
(state rel. (state rel. | (state rel.
to Ly) to L) to hub)
2(0) (km) -227.219.419 | -227,219.483 | -0.064780
y(0) (km) 0.0 0.0 0.0
z(0) (k) -250,000.000 { -249,999.974 | 0.026445
#(0) (km/day) 0.0 0.0 0.0
y(0) (kin/day) 25.625.039 25,625.044 | 0.004421
£(0) (km/day) 0.0 0.0 0.0
mass n(kg) 500 500
Fiiust (N) 0 0
sun-facing 150 150
area A (m?)

should the viewing of a scientific target be limited to no more than 10 days,
the perturbation due to the elliptical contribution is less than 1 m.

In the MAXIM or similar missions, there may or may not be an actual
hub spacecraft located at the aperture’s center. Regardless, it is necessary
to treat the hub as a central reference point for locating the positions of
tlie individual telescope spacecraft. However, unlike the gravitational forces
present. the solar radiation pressure effect upon a spacecraft with actual
mass and arca is substantial as compared to that upon a “phantom” huh.
Therefore, for purposes of the simulation, the hub “spacecraft” is treated as
having the same physical characteristics as the telescope. In this manner, the
Lub is maintained as an adequate reference for the position of the telescope.

The effects of thrusters were not simulated here, due to the vast uncer-
tainties of force (both magnitude and direction) and duration. We considered
trade studics involving thruster forces to be beyond the focus of this investi-
gation.
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Figure 6: Effects of Perturbations on Relative Distance — Full Equations
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3 Expanded Equations of Motion

3.1 Circular Restricted Three-Body Problem

In Part 2 [2], Equation (1) is expanded through termns which are linear in
the coordinates of r and no more than cubic in the coordinates of r;,. This
expansion takes the form

= Ay[—r+32%]
+ Ay [3ary, + 3zpr 4+ (3ry v — 15275 )X]
+ Ag [(Brh -r — 1hray)r, + %(7',,2 — 519
— %(Qxhrh r—Taxyt + .177‘/72))&],
where the constants .4; are given by

It v 25!
(ze+ D1)' (e = Da)*

/"11' =

Termns involving 4; are considered to be of order ¢; terms of order lower than
3 do not appear.

The acceleration vector ¥ imay be written relative to a rotating coordinate
system which rotates at the constant angular rate n about the z-axis normal
to the ecliptic, and with the x direction as previously defined. This gives

.8 Y
L= 2ny — nce

F= | ij+2nt—n?y
z

where the columin vector notation is used to indicate the ryz vector compo-
nents. ‘

3.2 Elliptical Restricted Three-Body Problem

Consider the elliptical restricted three-body equations of motion as given in
Equation (5). The right side of this sct of relative acceleration cquations may
be expanded as in Part 2 [2]. Cousider the effects of various contributions to
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the magnitude ordering scheme. For ordering puaposcs, take

p=3.04x107°
;= 1.01 x 1072

~
=

=4.0 x 107 (ryp = 600,000 km)

=3.2 x107 (r=0.5km).

= =

A rough estimate may be obtained of the contributions that the various
perturbations make to the creular restricted problem solution. Say that a
perturbing terin may be treated as modifying the linear frequencies asso-
ciated with the circular restricted problem, and consider the square of the
perturbing frequency to be roughly the magnitude of the coefficient of r in
the perturbing acceleration. (Recall from Part 1 that the linear periods in
and out of the ry-plane are approximately 177.566 days and 184.002 days,
respectively.) Then, after 90 days, the effects of the terms containing various
powers of » and 4, are given in Table 3, with effects included of roughly 20 m
and larger.

Table 3: Along-Ellipsoid Effect of Sun-Earth Perturbation on Solution (90
days)

perturbing | effect
term (m)
re 16.7
R 289.3
rep? 118.5
rrpd 47.4
repd 18.9

We recommend retaining terms which contribute down to approximately
20 m (can keep additional y; terms if convenient). Retaining the rr,® terms
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results in the expanded/tmncated differential equations

r= Ag [—'I' + JI)A(]

+ Aq [Bxr), + 3apr + (3ry - v — 1520,)X]

+ As [(31‘;1 -t — 1522,)r) ~ %(7‘1,2 - 5'1':/,,2)1"
- _5<)1hrh r— t”L‘Ch + Ty ))A(]

2
+ A [Brp(—am® = 2zpr 1y + Tray’) +

—

«uwr

((Th _srhlh )
5

+—)(—7h ry - I‘-!—tmh Lh+th r-r, —2lzaxy, ))A(]

—

Next consider the left side of the differential equation:

l—/t/—-?/J—/z
RN "/L-/ y

I —2ny— netw f’/ —2( f —ne)y — (fz - n02)1‘
= | g+ 2n.d—nly | + j7 +2(f —n Ji = (fF=nl)y | . (10)
z 0

In this expanded form, the first vector term represents the acceleration which

appears in the circular restricted problem (n. refers to the mean motion of

the circular restricted Earth orbit). The second vector term gives the per-
turbation which is added by including the elliptic restricted effects. The
perturbation term is to be expanded in terms of the eccentricity e of Earth’s
orbit (= 0.017). In keeping with the earlier magnitude ordering, it is esti-
mated that it is sufficient to retain only contributions which are linear in e
because er is approximately 8.5 m.

Say that the circular restricted problem takes D as belng the reference
value D. Then, the corresponding mean motion is n, = /L//.)‘j. Now, in
the elliptic restricted problem, the mean motion is

< /_) > 3/2
- — M.
[¢2

If D is chosen to be the semi-major axis . then n = n,.. If D = Doy =

a(l +e?/2), then »
e\ 32
n=1,1+ 5 Ne 22 1.




Expressing [ and J in terms of time.

h pa(l—e?)  na®V1—e? a\?
= — N,
D2 ‘ ( ) ’

=1 D? D

where n = \/j1/a®, as given by Kepler's third law. Using the two-body
relationship

_a(l-€?)
Cl4ecos
: 1+eco ?
f~n, (—1_%;][-) ~ n.(l + 2ecos f).

In terms of the mean anomaly £,
f=~n(l+ 2ecosf).
Differentiating,
fa —2ensint.

Using these results in the perturbing vector of Equation (10) gives

—./.:'.‘/ - 2([ — )y — (,/:2 - ”‘r‘z):[;
fx+ 2(./-' — Ne)ik — (,/.'2 —nly | =
0
—2eyn 2 sint — degn,. cos b — dean, 2 cost
2exn,2 sin € — 4ein, cos ¢ — deyn,” cos ¢
0

3.3 Lunar Gravitational Effects

Consider the lunar force given above by Equation (7).

As in the previous work, it is desired that this contribution be expressed
in terms of the position of the telescope relative to the hub. Let the vector
r again refer to the relative telescope position. Thercfore,

Pz = Pap + L. (11)

As in the earlier analysis of the effects of Sun and Earth, the contribution of
Equation (7) may be written as an expansion in terms of r and its compo-
nents. Accordingly, a similar binomial expansion development is followed as

129



that cmployed in Part 2 of the rescarch. The sqnare of the magnitude of p,,
is given by

/)5/ = Pst Pt
= P:zh +%+ 2py, -t

2
r 2
1 + < ) plh )
3n /)Sh
9 5 —3/2
’ LPqp - T
1+< ! > + p.ﬁh‘
Pih P3n

= pan 1+ 53)4’/2,

r\? 2 r
- A T Z ,
P3h P3n”

is assumed to be less than unity. Using a binomial expansion,

1 1 ( 3/2 )
RT3
P3t L k

- /)5/1

Then,

(3

par’ /)Zh

where

Using this expansion in Equation (7), and using Equation (11) to substitute

tfor py, gives
3/7 .
1+ Z 3| T H 5/)%] 3 z

Expanding through linear terms in r,

Fl'l' =

/)3/1

r a0, Pan TPy
Fm S 3 + 3,“3 3/7.5 .2h~ (12)
Psh P3h™ Psh
It is preferable to treat these terms as an additive perturbation to the

cquations of the clliptical restricted three-body problen.  Assuine that the
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baseline elliptical restricted problem contains an object with combined terres-
trial and lunar mass, located at the mean Earth-Moon barycenter. Therefore,
the expansion of Equation (7) should contain the lunar contribution to this
combined mass along with terns representing the effect of the Iunar motion
about the barvcenter. Accordingly, Equation (12) may be rewritten as

r 3Py, T Py,
Fm ~ — K3 ( 3 - _); pf,>
P2n P2r” Pan”

1 1 ar P ‘
— 3T ( - ) + 3usr - <p3hp.5h _ ch/bh) ‘

¢ =4 ~
pas o’ P30° P’

(13)

Because the vector p,;, was used in the earlier analysis, it is convenient
to write py, as
p3/1, = Py, + Cem,

where r.,, refers to the lunar position relative to the mean barvcenter. The
squarc of the magnitude of pyy, is given by

P
30" = Psh - Psh

_ 2 L2 2

= P2h + Tem + Pan ~Tem

2
« Tem 2P2; Tem
= /)zh.z 1+ < ) + —-'—2'—
P2k Pah

This gives
—1/2

2
1 1 Temn 2P0, * Tem
e 1+< JH) 4 pZ/v - ¥
P3h P2n P2h P2n

Using a Legendre polynomial expansion,

11 &)
= — (7—) Pi(cos 5),

P3h P2h 0 \ P2k
where Py T
~ A o " lem
cos S = ——,
P2nTem

Expanding through terms linear in re,,.

1 1 Tor
%—<1+ ’"cosS),
P3h 2h P2h
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elving

1 ]‘ ’.em, G
— , <1 + 3] cos 5>

psn® pon® P2h

1 1 Ver )
—_— 5 <1 + 52 cos S) .
/)311'j Poh 2n

Using these representations in Equation (13),

Fm =~ —H3 < ' _ ?)p?/l,r ' p2/'>

pan® P2n”
— 3 [rp‘Zh “Tem + T PopTom T - Lo oy

= 3T+ Pop Py Pon - l’em/l)‘zh?] /P

(14)

Examining Equation (14), the form of the first term in F,, is identical
to the corresponding terrestrial term derived in the earlier work. The only
difference is that, here, the mass coefficient is g3 rather than pp. This term
represents the effect of a lunar mass collocated with the terrestrial mass;
the remainder of F,, represents the effect of the lunar motion about Earth.
The first term mav be added to the earlier work simply bv replacing
with us + 3 in the relative equations of motion for the elliptical restricted
three-body problem.

For the second term of Equation (14), the Earth-hub position vector py,
is expanded in a fashion similar to that of the earlier work. In the context of
the elliptical restricted problem using a reference location of Lo,

Pon = A/D)R( + T

where v and D are constants as previously defined. The square of the mag-
nitude of p,, is given by

pon” = Pan - Pan
= (“/D)? + I’hz + 2vDuxy,

— 2 Th > 2z h
DT+ ) o+
<'7 D ) vD

where ¢y, is the z-component of rj,. This gives

I

L/ pop = (1 + )2 /(v D).
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where

Al 2 og
vD vD

Once again, powers of this fraction are formed using binomial expansions,
1

giving
—£/2
— = 1+ .
p2h£ 7D)[ Z < ) jl

The negative powers of po, that appear in the second term of Equa-
tion (14) are then formed using the appropriate values of £ in this binomial
expansion. Expanding through lincar terms in rj, and substituting, F,, be-
comes

Fo~ —puy ( - 3 20anr .apﬂl)
P2k P2h
— 33 [(—22%em + YYem — 2Zem)X + (YTen + TYerm)¥
+ (2Tem + rczem)i] /(vD)*
— L3 [—15;c€m:vhr + 31 TeppX — 15200 2h

(15)

+ 31 - Ty, + 3(r - o) (=DxpX + 1) + 10522, 7,%

5 - A5
— 152z, — 1021y, - TopX — 157,,,1 - rhx]/(ﬂ,/D) .

Again, a rough estimate of the contributions that the various perturba-
tions make to the solution are presented. As for the inclusion of the ellipticity
in Section 3.2, the perturbing terms are treated as modifying the linear fre-
quencies. Aftm 90 days, the effects of the lunar terms containing various
powers of the relevant variables are given in Table 4, mdudmg contributions
greater than roughly 0.9 m.

Table 4: Along-Ellipsoid Effect of Lunar Perturbation on Solution (90 days)

perturbing | effect
term (m)
TV em 2.3
PP 0.6
TR em 0.9
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3.4 Summary

In this seetion, the foree equations derived in Sections 3.1 through 3.3 are
combined. The models for solar radiation pressure and thrust are repeated
here from the equation of Section 2.6 for completeness. The resulting equa-
tion models the expanded elliptical restricted three-body problem, incorpo-
rating lunar, solar radiation, and thrust perturbations.

Combining the expressions of this section, the expanded differential equa-
tions of relative motion for a telescope spacecraft are given by:

r = /413[*1" + 31‘5(] + A4 [3;1:1",, + 3xpr + (31, - ¥ — 15.z:<rh)5(]
+ A_r)[(Brh -r — 15z, + %(7',,,2 — 527
- L(2rr), T — Toarp® + .1'7‘/,,2)2] ER3B
+ A [%1‘;,,(—:1’7*;,2 —2x,r -1y, + Tra,?) + %I'(T.l‘;,,:j — 3a?)
+ 1,7(—7'h2rh v+ Tarpla, + 7o r o1y, — 21:1?.1:;13)}2]
— 3 [(—21'1-8,,1 + YYem + ZZem)X + (Ylem + TYem )V
+ (2Tem + l’Zem)Z] /(vD)*
— fig [— 150 cmtiX + 31, - ot — LD2T 1y lunar

+ 30 T + 3T v (=D X + 1) + 105280, 28X

— 15200y — 102ty - TomX — 152, - rhﬂ/(*/D)‘r’

1.0198 x 10" CrAo .

—— “H{y+ DX 41y +r SRP
m||(~v+ 1)Dx+ 1, + x| [(/ ) h } } !
1.0198 x 10" CrAc _

— (v + D) DX 41y SRP
m|l(v + DDx + 1) [(w ) 3 } h
c(w') —.s‘('u") 0 c(0) 0 s(8) 1 0 6] Fthrutt'
+ sy @y 0 0 1 0 0 clo) —s(o) = thrust
0 0 1 {=s0) 0 @] [0 s(¢) el@)| ™

where ¢ = ¢ + [.

We present the following example to permit comparison of the relative
contribution of the terms to the telescope motion. The initial conditions are
the sawe as those presented carlier in Table 2.

As in Figure 6, Figure 7 presents the solution to four different force mod-
els selected from the relative motion summary equation above. Where hub
position was required, it was obtained from separate integration of the full,

134




b
=

Distance (m)
el N <
[—] (7,3 > wn
I I
\

—
(9]

1.0
0.5
0.0
0 10 15 v 20
Time (days)
— Cir(; - (}irc+EiIiE) - VCVirlr'c+Ellri;_)r+_L_l'.|7nar i Circ+i:fllip'+7L:u'na‘1rfSolA:—)r

Figure 7: Effects of Perturbations on Relative Distance — Expanded Equa-
tions

unexpanded hub equations from Section 2.6, using the same force model as
for the relative motion.

Once again, the reference solution is represented in the figure by the a-
axis. This refers to the circular restricted model case. The other models
depicted in Figure 6 represent the addition of ellipticity (ER3B), lunar, and
solar radiation (SRP) effects over 20 days. Solar radiation is again treated as
being applied to both the telescope and to either a real or phantom spacecraft
at the hub, with the same physical characteristics as the telescope.

135



4 Modeling Uncertainties

4.1 Elliptical Restricted Three-Body Problem

Very Similar Values for Different Definitions. In computing the value
of D, the reference distance between the centers of the sun and earth, we need
to determine the mean distance between Earth’s center and the Earth—Moon
barycenter.

The astronomical unit (AU) is defined in Seidelmann [4] as the radius of
a circular orbit in which a body of negligible mass. and free of perturbations,
would revolve around the sun in 27 /k davs, where & is the Gaussian grav-
itational constant. This is slightly less than the semi-major axis of Barth’s
orbit. Begin with the distance of the AU:

AU = 149,597, 870.000 kin [4, page 700, IAU Systen]
= 149,597, 870.660 km [4, page 700, Best Estimate]
Yet compare these values with that from Dunham and Muhonen [5,
page 200!:
AU = 149,597, 870.691 ki

The mean distance from Earth to the sun also has different values:

1.0000010178 AU [4, page 700, IAU System]
1.00000105726665 AU [4. page 700, Best Estimate]

The calculation of the actual mean distance yields the following:

149,598, 022.261 kin, using the values from the [AU System

149,598, 028.825 km, using the values from the Best Estimate

Again, compare these values with that from Dunham and Muhonen [5,

page 200}:

Earth+Moon scmi-major axis = 1.000001018 AU
= 149.598.023.0 km

Dunham and Muhonen define their value as the mean distance of the
Earth+Moon barvcenter from the sun. Contrast this value to that of Seidel-
mann, who specifies this value as the mean distance of only Earth from the
sun; however, the values are very close to one another.
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We continue using these prominent resources for the cccentricity, e.

On page 700, Seidelmann gives the value of 0.016708617 for the mean
eccentricity of Earth’s orbit about the sun. On page 200, Dunham and
Mulionen give the value of 0.01670862 as the Earth+Moon's cccentricity
about the sun.

Sensitivity of D. From the above, the derived constant D depends on
two constants with different values:

D = a(l+€*/2)
= 149,618,904.49 km, using IAU System for a and Seidelmann for e
= 149,618,911.06 km, using Best Estimate for ¢ and Seidelmann for e

= 149,618,905.22 km, using Dunham and Muhonen for both a and ¢

These different values were applied in separate simulations and do not
substantially affect the analysis results.

4.2 Lunar Gravitational Effects

Description of the Lunar Motion Around Earth. The moon’s motion
around Earth is not specified by an analytical model. The motion is specified
by the software and cphemerides files provided by the JPL. For the needs of
this report, the JPL ephemerides provide the positions of Sun, Earth, and
Moon to very high precision. The JPL ephemerides are given as blocks of
Chebyshev coefficients, which, when interpolated, reproduce the original JPL
numerical integrations to within 1.5 cm.

The instructions for using the JPLEPH.200 ephemeris files state that one
calls the JPL model with the moon as the target and Earth+Moon barycenter
as reference point. Yet a comment was found within the FORTRAXN code
that the lunar state is always geocentric.
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5 Sensitivity Summary

It is recognized that the hub position knowledge is likely to be much less pre-
cise than that of the relative motion, perhaps on the order of 1 kin. There-
fore, it is useful to consider the effect of this imprecision upon the telescope’s
position relative to the hub.

Appendix A presents a detailed derivation of the variational equations
used to address the sensitivity of telescope motion to errors in knowledge of
thie hub position.

The results of the analysis clearly show that the errors in telescope posi-
tion relative to the hub. based on knowledge of hub position to 1.7 kin arce
sufficiently small that thev may be ignored.

Several sample tests of this behavior were conducted. For one test case,
the initial conditions of Table 2 were used here as a nominal set of initial
conditions for the hub and telescope.

The integration was then performed with the hub offset from its nominal
initial state by 1 km in each directional component. This was to simulate
an initial error in hub position. As seen in Figure 8. the telescope position
relative to the hub differs from the nominal case by millimeters over 40 days.

The simulation was also repeated with the initial hub position offset from
the nominal state by 17.3 km (10 ki in each direction). Figure 9 demon-
strates the roughly ten-fold increase in error over the previous example.
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Figure 8: Relative Motion Error Caused by 1.7 km Initial Hub Position Error

6 Summary and Conclusion

This report details our further work describing the formation flying between
spacccraft near the Sun-Earth L., libration point, beginning with the circular
restricted three-body problem for the hub motion about L,.

Continuing from our previous works, these analyses develop the elliptical
restricted three-body problem from previous work with circular problem. We
built on our familiarity with the circular problem to address the following as
perturbations upon the circular problem:

¢ clliptical orbit of Earth-Moon about Sun

e lunar gravitational cffects

e solar radiation pressure effects

¢ thrusters on vehicle

These were incorporated as additive perturbations to the circular re-

stricted three-body problem with expansions of varying levels of fidelity. We
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Figure 9: Relative Motion Error Caused by 17.3 km Initial Hub Position
Error

develop two forms of models of the full derivation:
¢ full nonlinear haseline
e expanded form of full nonlinear baseline to appropriate order

Seetion 2 presented the derivation of the full nonlincar baseline with the
perturbations. The equations were implemented through their coding in a
MATLAB simmulation. One example was presented using the discovery from
Part 2 of valid initial conditions that excite only oscillatory motion in the
linear modes. The results shown in Figure 6 demonstrate the dominant
perturbation due to the elliptical motion of Earth about the sun. In this
example, the perturbations due to lunar and solar radiation pressure are
negligible. Overall, the figure indicates that during the typical 5-day science
" observation of this example, these perturbations contribute less than 1 in
of relative position difference. The proposed electric propulsion should have
little trouble maintaining position.
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Scction 3 presented the expanded cireular and elliptical portions of the
full model through terms which are linear in the coordinates of the telescope
position relative to the hub and no more than cubic in the coordinates of
the hub position relative to Lp. The derivation describes the magnitude of
the various terms and why some were truncated. Additionally, the lunar
gravity model was expanded and some terms truncated due to very small
perturbations upon the motion. As before, the perturbations duc to the
elliptical motion of the Earth about the Sun are dominant. Again, lunar and
solar radiation pressure effects are negligible.

Modeling uncertainties were discussed in Section 4. One type of uncer-
taintv is that the saine listed number can bhe found to have different defini-
tions between two popular references. Calculations, of course, give slightly
different results; however, they do not substantially affect the results.

Section 5 explains the results of a longer derivation given in Appendix A.
During the 18-months of part-time work on this report, our sponsor requested
that we investigate the sensitivity of telescope motion to errors in hub posi-
tion. The analysis and simulation show that errors in the knowledge of hub
position of 1 km and 10 km (in each of the three position components) yield
millimeters of error in telescope position.

Appendix B presents a back-of-the-envelope look at the relative motion
between a hub and telescope at the Earth-Moon L2 point. Our sponsor made
a comment that future work may be redirected to this vicinity. Our work
addressed the effects of the largest contributions to the elliptical restricted
probiem. The perturbation caused by solar gravitation was found to be
negligible.

Appendix C presents a derivation of the luminosity reduction factor in
the context of the solar radiation pressure model. The luminosity reduction
factor accounts for shadowing effects due to a partial eclipse.

In conclusion, hased on earlier literature searches, we believe this new
work is unique hecause it describes the primary perturbations to the de-
scription of relative motion between nearby spacecraft. We verified that the
effects of the elliptical motion of the Earth about the Sun is the dominant
perturbation to the circular restricted three body problem. Contributions
due to lunar gravity and solar radiation pressure are nearly negligible in the
chosen examples.
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Appendices

A Sensitivity of Telescope Motion to Errors
in Hub Position |

This appendix demonstrates the low sensitivity to errors in hub position, of
the telescope motion relative to the hub. The effects of 1 km hub position
errors upon the relative telescope motion are presented. The model used is
the elliptical restricted model as presented in Section 3.2.

A.1 Derivation of Variational Equations

Consider the second-order differential equation of motion of a telescope rel-
ative to the hub, assumed to take the form of the carlier expanded and
truncated form:

r = ,43 [—I‘ + 3;135(] .
+ Ay [Bzrp + 3zpr + 31y - * ~ 15274)%]
+ A5 [(3ry, -t — 15z2,)r + 3(ra® — 5zp°)r
— L zyry v — Tz + orp?)X]
4+ Ay [%?rh(—rth — 2zpr - Ty + Tmy”) + %r(hhS ~ 3zam”)

: 2 _ o1 3vc
+ %(—V'hth v+ Tery xn + TTp°r - T — le‘l'h%)x],

where
: T
r= y 2|
= 2Ny — N eyn.2sin £ — deyn, cos £ — dexn,? cosf
Yy ¢ Yyn, ¢
F= | 4 2na—nly | + | —2ern2sinf + dein,cost — deynt cos
Z 0
) 23 12
A, =

= + ——=,
A+Dr " D
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and

r = telescope position relative to the hab
r;, = hub position relative to L,
x.y, z = Cartesian components of r
i3 = solar Keplerian constant
1z = terrestrial Keplerian constant (Earth + Moon)
D = reference Sun-Earth distance
1. = distance from system barycenter to L,
D, = distance from system barycenter to Sun
Dy = distance from system barycenter to Earth-Moon barycenter
v={(x,— Dy)/D
ne = circular restricted terrestrial mean motion
¢ = mean anomaly of Earth orbit.
The rotating coordinate system is defined to have r-axis along the Sun-Earth
line of syzygy and z-axis normal to Earth's orbit about the sun.
The vector differential equation may be written in the form

trr
Il

"

I

&« T E

The vector function f represents the acceleration relative to the rotating
frame. This function is linear in x. y, z, and their derivatives.

Say that there is a nominal solution r, associated with a nominal hub
position ry,,. It is desired to estimate the sensitivity of the relative telescope
niotion to errors in ry. which are on the order of 1 km.

Define the state vector x as

X = [ Ty z Ty z ]1
The time derivative of this state is then
X = [ roy = f.?: j:l/ .f: ] .

Referring to this vector as the function F(x,r,). the differential equation
now takes the first-order form
x = F. (106)




where the nominal solution satisfies
x, = F,. (17)

The solution x is now considered to be x,, as perturbed by an error in
rp. It is desired to examine the effect of this crror upon x. Writing x as
a linearized Maclaurin series in this error (or, equivalently, a Taylor series
about the nominal hub trajectorv) gives

X = X, + g_:; ) (rh = Tha), (18)
where - )
dr Jdx Oz
dn, Oyn O
dy Oy Oy
9z, Oyn Oz
Oz oz Oz
Ox| _ | 0mn Oyn 0= | Ay
ory, n dr It O -
Ory Oyn Oz
dy  dy Oy
% M 82},
Jz 9z 0z
l_ a_l"h— a_yl: dz dn

The subscript n refers to evaluation using the nominal trajectories; Ta, Yn,
and zp arc the Cartesian components of the hub motion relative to L.

It is the quantities of the elements of this matrix U that are of interest,
in particular, the partial derivatives of the position components. Once these
elements are determined, the effect of the hub position error upon the relative
telescope motion may be approximated by

- A - ' 1T A
dr Jdr Oz
X — Ty C—)[_h 51; (9/3}1 Th — Thn
Yy—n |~ gy— _C)i @‘ Yo = Yhn
6.7;,1 Byh ():h
5 dz dz 0Oz o
L) Low A O J, LT
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Because the components of the hub position crror are presumed to be no
greater than 1 kin, it is sufficient to examine the position partials: within
[7; they are treated as being scaled by unity to form the relative position
variations.
A Maclaurin series may be formed as well for the derivative of the state,
as
%

X = j{n + =
()l'h,

' (rh, - rhn) .

n

This derivative may instead be formed by differentiation of Equation (18),

giving
Jx
A\Yn — Thy + N
“> ( h )7) ()rh

a
dt

122

d I
X =X -+ < ()X (l‘), - r)m.) . (19)

n EE ()Th

It is assumed that the change in hub position error is of higher order than
the error itsclf. Thercfore, these two cquations indicate that

~ L (ox] (20)
mn dt drh "

The function F may also be written as a linearized series, giving

%
8rh

F=F,+ ()—F
()I'],,

| oF
ax

ox

" ATy = Thp) . (21)
()I‘},,

. (rh - I‘hn)

I

n n

recognizing the dependence of F upon r, both directly as well as indirectly
through x. Substituting Equations (19) and (21) into Equation (16), and
taking into account the nominal solution of Equation (17) as well as the
approximation of Equation (20),

d (ox|\ OF| x| _OF
i 01‘/, n N Ix " 01“,, " f)l‘}L "
. JF IF
. ( 4
([ = — ;T e 22
ox " dry, " ( )

Recall that the vector function F is linear in x, with no additive constant.
Therefore,
_OF

F- 2.
Ix

X.
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Substituting into Equation (17),
i OF
Xn =

= | - X,
ox |,

Note the similarity of this equation to the homogeneous part of Equation (22).
This indicates that any columnn of the homogeneous solution of Equation (22)
takes the form of the gencral solution of Equation (17).

A.2 Linear Equations

It may be scen that, for the purpose of determining the gross effects of hub
position error on the relative telescope motion, it is sufficient to consider
only the first-order contributions to the differential equations. Say that the
nominal solution for x is-known in the form of a Tavlor scrics. Therefore,
the homogeneous solution to Equation {22) is also known in the form of a
Taylor series, given as
2
Up = Upg + eUp1 + —2—(];12 4+

Similarly, let the nominal system matrix also be written as a Taylor series:
JF IaF 2 OF

ox o x|, 2o

_JF

. Ox

nl n2

Because the dominant terms of F are void of the components of rp, the
nonhomogeneous part of Equation (22) is of higher order, with Taylor series
JF oF 2 OF

= ¢ -
()1‘/,, ()I'/L 2 ()I‘h

n nl n2

Now, consider the particular solution to Equation (22) as taking the form of
a Taylor scrics as well. Because the nonhomogencous part of the equation
begins at order 1. so does the particular solution:
¢
Up = EUpl + —Q—Upz -+ -
Substituting these series expansions into Equation (22) gives, at order
7010,
: OF
Upg = | Uno- (23)
X n0
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As previonsly mentioned, this solution is assumed to be known from the
knowledge of the nominal motion. At order one,

OF
Ui + = Uho,
Ix

10 nl

oF

Uy = —
hl ()X

the solution to which is again assumed to be known, and

oF
(')I‘h nl'

: T
(j[)l = Q—

[7
ox

. ],1

(24)

nQ

For Equation (24), only the particular solution is required. The system ma-
trix here is the same as that of Equation (23); ters of the homogencous solu-
tion to Equation (24) are already provided in the solution to Equation (23).
It is assumed that the solutions are convergent for any given time; there-
fore, the gross contribution to the particular solution may be found from this
equation alone. Accordingly, henceforth, the matrix U is assumed to refer to
those terms through Uy, and ).

For purposes of this analysis, the order 0 terms are considered to be those
with the numerical coefficient As; order 1 terms are those with the coefhicient
Ay, Other terms, inclnding those involving the eceentricity e are treated as
higher order. For that reason, the mean motion n of Earth’s orbit may be
approximated by n..

A.3 Solution Development

The solution for each vector of the linear system is constructed in the stan-
dard fashion. Let u represent a column vector of U, and v represent the cor-
responding column of the nonhomogeneous part of Equation (22), through
the prescribed order. Then, the linear svstem takes the form

u=Au+v,

where the matrix A refers to the matrix of partial derivatives seen in Equa-
tion (23). The homogeneous solution may be constructed using standard
methods, as will be seen helow; therefore, it is necessary to develop the par-
ticulay solution to the system of differential equations given by Equation (24).

In these differential equations, the nonhomogeneous part contains trigono-
metric terms, which may be written as exponential terms with exponential
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multiplicrs equal to the characteristic multipliers of the homogencons system.
Accordingly, the particular solution is developed for the case of a single such
exponential term at a time; the solution for a number of such terms may be
constructed by superposition of the individual solutions. It is assumed that
the characteristic multipliers are distinct, as is the case for the hub-telescope
systern.

A.3.1 Non-secular Solution

First, examine the case where the nonhomogeneous vector v contains periodic
(or, equivalently, exponential) contributions with frequencies not equal to one
of the cigenvectors of the system matrix A.

Consider a general first-order nonhomogeneous linear system of differen-
tial equations given by

X = Ax + e*Me;,
where &; is the j*! system unit vector, and iQ is not one of the system
eigenvalues. The particular solution of such a system may be found using
the method of undetermined cocfficients. Say that the particular solution is
of the form
X, = be’.

where the vector b is a constant vector which is to be determined. Substi-
tuting x, into the differential equation,

iObFlnt - 4b€'iSlt + eiﬂté_
i Obe™ = . -
Equating coefficients of the exponential,
(12 — A)b = é;. (25)
As iQ) is not an eigenvalue of A, the solution may be formed as
—(; n-la
b = (i1] — A)""e;.

For the problem of interest. the non-secular particular solution is a linear

combination of particular solutions of this type, each scaled by the appropri-

ate constant coefficient found in the differential equation. In the system

1= Au+ v,
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say that the individnal contributions to the particular solution are now writ-
ten as
. nen
u, = cibie” .

where each ¢; is the appropriate scaling constant. Then. the full particular
solution is the sum of these solutions,

up = E upi.
i
Combining with the homogeneous solution, the complete solution for u is

u= Z (em” - e'“) ¢;b;.
i

Note that this solution satisfies the requirement of zero initial conditions for
the variational equations.

A.3.2 Secular Solution

Next, examine the case where the nonhomogeneous vector v contains periodic
(or exponential) contributions with frequencies equal to oune of the eigenvalues
of A In this case, a sccular solution will result.
Consider a general first-order nonhomogeneous linear system of differen-
tial equations given hy
x = Ax + (“/\"té]‘,

where ); is the i*" eigenvector of the matrix A.

The particular solution of such a system may again be found using the
method of undetermined cocfficients. Say that the particular solution is of
the form

- At
X, = (at + b)e™,

where the vectors a and b are constant vectors which are to be determined.
Substituting x, into the differential equation,

(a+ M\at + Ab)eM' = A(at + b)eMt + Ve,
Equating coefficients of ¢ and unity,

(M= Ala=0 (26)
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and
(M —A)b=—a+eé;. (27)

Equation (26) may be solved to give
a = aX;,

where x; is the i'" eigenvector of A and « is vet to be determined. Substi-

tuting into Equation (27),

(A — A)b = —ax; + &;. (28)

Next, let y; denote the ith left eigenvector of A, satisfying

yit (M —A) =0T,

The elements of y; describe the linear dependence of the rows of A1 — A.
Therefore, a sutmation of the weighted rows of Equation (28) allows the
elimination of b. This is performed by writing

OT = yiT(/\,‘[ - ‘l)b = —yiTCYXi + y-,iTéj

= —yilax; + yij,

where 1;; is the j™ element of y;. Solving for a.
Yii .
a= 2L (29)
Yit X

Let the columns of A,/ — A be given by the column vectors ¢;,. Therefore,
an n-dimensional Equation (28) may be represented as

[Cl Cy - C,,,]b:—a'xi%-éj.

Now, examine all but the j*' row of this equation:

[w]

R Py

= —GaX,

where an underbar denotes the removal of row j.
The eigenvalue )\; is assumed to be distinct. Therefore. it is possible to
arbitrarily sct the j' clement of b, b;, to unity. and solve for the remainder
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of the vector. By setting b; to unity. the contribntions associated with the
5 colummn of A\;1 — 4 may be separated from the remainder of the equation
as
Wh = —(l.)& — Cy,

where an overbar denotes the removal of column j. Because the cigenvalue is
distinct, there is no zero eigenvalue, and a single row and column have bheen
removed from A,/ — A, the remaining matrix, A/, is nonsingular. Therefore.
solving for b,

b=-3"(axi+¢). (30)

The vector b is then formed by augmenting b with the inclusion of unity as
the 7' element.
To illustrate this procedure, consider the following example:

=5 L0

Here, the exponential multiplier associated with the nonhomogeneous part
of the equation is 1, which is also an eigenvalue of the system matrix. The

=]

and the associated left eigenvector is

yi=[3 -1]"

correspouding cigenvector is

Equation (29) gives o as
3 p—
(3)(1) + (=1)(1)

Equation (30) gives the single clement vector b as

oo

b=—0/3) 3w+ 9] = 3

4

Therefore, the particular solution is




For the problem of interest. the particular solution is a lincar combination
of particular solutions of this type, each scaled by the appropriate constant
coefficient found in the differential equation. In the system

ua=Au+ v,

say that the individual contributions to the particular solution are now writ-
ten as
. Ail
Uy = C; (Q‘,—tXi + b,) e,

where ¢; is the appropriate scaling constant. Then, the full particular solution
is the sum of these solutions,

u, = E Uy
1
Combining with the homogeneous solution, the complete solution for u is

u=—et E ¢ib; + u,,.
i

Note that this solution satisfies the requirement of zero initial conditions for
the variational equations.
A 3.3 State Transition Matrix

In both the secular and non-secular cases, the exponential state transition
matrix is constructed in the usual fashion. Letting P denote the matrix of
eigenvectors of the matrix A, and A the diagonal matrix of eigenvalues, the
exponential matrix is given by

et = PAPTL

A.4 Out-of-Plane Solution

This approach is now applied to the z and z-components of Equation (22),
which arc not coupled with the in-planc components. These out-of-planc
components are

~ 0 1 000 :
. » 7 . .
(]z { —/lg 0 ] II; 5/14 ‘: z 0 x jI ’ (31)

153



where

dz  Jdx Oz
C/Y, = (‘)Ih (’)yh (9211.
“ DR PP

al‘h —@; azh

For a single vector u of U,

u= -}(1)3 (1) u+ v, (32)
where v is the appropriate nonhomogeneous column of Equation (31).

For each non-zero column v, the periodic forcing function is of frequency
which is the same or approximately the same as the natural frequency of the
system. (If higher-order frequency compensation is employed, the low-order
frequencies of the two non-zero columns will, in fact, be identical.) Therefore,
the secular response associated with cach non-zero forcing column is exam-
ined. Additionally, the non-secular response is examined for the case where
the third-column forcing function possesses the nearlv resonant frequency of
the lincar solution.

A.4.1 Secular

First consider the secular case, where v is of the form

0
v = :
Asin(v/ Azt + )
This corresponds to the first nonhomogeneous column of Equation (31). (If
the third colunm is treated as secular, it differs only by a 90° shift in phasc.)
Using exponential representation,

0 0
v =4 eimt + ‘A2 e—i\/xt ’
where A
A = 7(sin W —1cos)
and A
Ay = —z—(sin U+ icosy).
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The particular solution may now be determined using the method of Sec-
tion A.3.2, treating each of the two exponential vectors of v individually.

Using the earlier notation, let A, = iy/A3 and Ay = —i\/A3. The eigen-
vectors are

1 1
X]——{i Aa] and XQ:[__L.\/A—B],

the left eigenvectors are
i/ A T d - T
yl"—‘[L‘vg].] an yzz[—lvrlg l]
For the nonhomogeneous contribution given by ¢V4s&,, the method of un-
determined coefficients gives
1

124/ A3’
I’j = ’i\/ 4’13,

1 ?

b= | 245 VA
1

and

Therefore, this part of the particular solution is .
i 1 i
u, = A % VAs [ ¢4 | 245 VA gV Ast
1 1

In similar fashion, the part of the particular solution corresponding to
e~ "VAstg, is formed. Combining gives the full particular solution as

b 1 i)
10 Eorm T || s
up = Al —2' "_‘3 i+ 2‘13 443 (—‘,Z\/xt
1 1
L] Lo, ]
1 9 A. ; p
+ Ay R Az |4 | 243 As o~ iVAst,
2 ] .
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Referring to Section A.3.2, the behavior of the position partial derivative
over 180 days is presented in Figure 10, for a pair of fundamental values of the
phase angle. As previously mentioned, the hub position error components are
taken to be 1 km; therefore, in this and all other figures, the contributions to
the telescope motion variation is the same as the position partial derivatives
themselves.

A.4.2 Non-Secular

Next, consider the response associated with Equation (32), where the vector
v is a nearly-resonant vector of the form

Acos(wt + d)é,.

From the carlier analysis, the phase angle ¢ 1s taken as v +90°. The frequency
w is taken as the natural linear frequency of the in-plane motion. As shown
in the earlier analysis, this frequency is given by

W = 4/ 77,2 — ."1;5/2 + \/(7?,2 — 1"13/2)2 — (“l?.")‘ -+ 2//‘3)(”‘2 - "‘13')'
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For comparison, w is approximately 0.035385 rad/day, while /A3 is approx-
imately 0.034148 rad/day.
Following the method of Section A.3.1, the vector b is constructed as

(wl — A)7'é,.
The resulting position partials in the solution vector u are presented in Fig-

ure 11.

A.5 In-Plane Particular Solution

The in-plane (z and y) components of Equation (22) are now treated. These
differential equations are of the form

0 0 1 0 0 00

. 0 0 0 1 N 0 0 0

U.ty - n2 + 2Ag 0 0 m Uly + 3/—14 _'21‘ y z (33)
0 n?—A4; —-2n 0 y <z 0
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where

dr O OJu
dr h ();y h 0z h
Ay dy Dy

U= ox;, Oyn Oz
ox  Jdi 0%
dxy, E;/—;T Oz,
oy Oy Oy
Lo, op 0z

For a single vector u of U,,,

0 0 1 0
0 0 0 1 .
n? + 2A, 0 0 2n | BTV (34)

0 n?—A; —2n 0

where v is the appropriate column of the above matrix.

From the earlier analysis of the linearized circular restricted three-body
problem, the system matrix of Equation (34) has one eigenvalue correspond-
ing to a convergent solution, one corresponding to a divergent solution, and
a complex conjugate pair which corresponds to a periodic solution. In that
analysis. it was specified that the initial conditions would be selected in such
a manner as to excite only the periodic modes. Therefore, as in the previ-
ous section, it is assumed here that r and y in Equation (34) exhibit that
behavior; z has alreadv been seen to be periodic.

A.5.1 Secular

First, examine the secular solutions associated with resonant forcing vectors
7
V.
Again using the notation of Section A.3.2; consider the ecigenvalues given

by A\ = iw and Ay = —7w. The corresponding eigenvectors are
12nw —i2nw
-X —X
X, = o and Xo = :
! —2nw* 2 —2nw?
— WY 1wy
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where
Y =w + n? 4 24s;

-the left eigenvectors are
2nw(n® + 243)

(71.2 — /‘5)/\’
—2nw?

Y1

WY
and

—2nw(n? + 243)
(n* — As)x
—2nw? J '

— WY

Consider the contribution associated with the second column of Equa-
tion (33) as the vector v of Equation (34). The order 1 solutions for x and
y are of the form

3Asz = —Acos(wt + @) and 344y = kAsin(wt + ¢),

where

b X

© 2wn’
These functions may then again be written as combinations of complex ex-
pouentials.
For the nonhomogeneous contribution to v of e
by

i@, the scalar o is given

2nw?

d

where
d = w® +5(n* + As)w* — (5n% — 443)(n% + 243)w? — (n? — 43)(n* + 243)°.

The associated vector b is

dn?w?/d —ijw
2n/¢ + idnxw?/(dC)
1
—2nw?\(w? = n? + A3)/(dC) + i2nw/C

159




600 4
— phi=0

E ’E‘ -——- phi= 90 deg
£ 450 £
(=4 [
Q o
2 3
3 3
3 300 P
o c
9o 8
3 3
2 150 g
[~ C
o Q
(&) o

0 -4
0 45 90 135 180
days from epoch

-z .y

aj —- b) =—

Nyn Ay,

, ox dy .
Figure 12: — and —= with resonance
()yh dyh
where

- 2 2
(=w +n"— As.
For the contribution of e~*!é,, the scalar « is the same. and the associated
vector b is the complex conjugate.
For the contribution of e™!éy,

WY
o0=1—
d

and ,
—2n/x — idnw?/d
x2/d — fw
2nw?(w? —n? — 2A3)/d ~ i2nw/x
1

b=

For the contribution of e**&,. the resulting o and b are the complex conju-
cates of these.
Combining into the solution vector u, the resulting position partial deriva-
T

tives, in the second columm of matrix [/,,, are presented in Figures 12(a)

(.r-component) and 12(b) (y-cowpoucut).
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Next, the same procedure is followed for the first column. The solution is
constructed using the same « scalars and b vectors as above. The resulting
position partial derivatives are presented in Figures 13(a) (z-component)
and 13(b) (y-component).

Finally, the procedure is followed for the third column. If the low-order
solution for z is taken as being resonant with the system matrix, the solution
associated with the forcing function 3.44zé3 may be constructed using the
same o and b expressions as above. The resulting position partial derivatives
are presented in Figures 14(a) (z-component) and 14(b) (y-component).

A.5.2 Non-Secular

Finally, the case is treated where the uncompensated low-order solution for z
is considered to be non-resonant with the in-planc system. The third-column
forcing vector is taken to be of the form

Asin(y/ Azt + ¢)és.
Again following the method of Section A.3.1, the vector b is constructed as

((.U[ - A)_légj.
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The resulting solution vector u is presented in Figures 15(a) (2-component)
and 15(b) (y-component).

A.6 Summary

From the plots of this appendix, it is recognized that all of the small-
magnitude contributions to the solution of the variational equations are in
the millimeter range. Over 180 days, the large-magnitude contributions reach
hundreds of millimeters. However, even these contributions remain extremely
small over the first 90 days from epoch. Therefore. it is concluded that the
crrors which are induced by 1 km arrors in hub position are sufficiently small
that they may be ignored.



B Relative Motion Near Earth-Moon L, Li-
bration Point '

At the sponsor’s request, a rudimentary analysis was performed into the
approach which would be taken in an investigation of relative motion near
the Earth-Moon L, point. In this system, Earth and Moon are the pri-
mary bodies; here, the fundamental periods in and out of the zy-plane are
approximately 14.650 days and 15.275 days. respectively.

Consider the case of a hub orbiting the L, point at roughly a distance
of 30,000 km. with a telescope located 100 m from the hub. The effects of
various terms of the elliptical restricted expansion over 15 days are given in

Table 5.

Cable 5: Along-Ellipsoid Effect of Earth-Moon Perturbation on Solution (15
days)

perturbing | effect
tern (m)
Te 21.5
TR 114.1
e 8.4
T2 64.4
7y 315
M?‘],4 14.9

The effects are shown for terms which contribute to as low as approxi-
mately 10 m over the 15 days. It is noted that the largest contributions from
perturbations by Sun during this time period are on the order of less than
1 m. Perturbing forces from solar radiation pressure and spacecraft thruster
firing are on the same order as for the Sun-Earth system.
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C Calculation of Luminosity Reduction Due
to Partial Eclipse
The calculation of the luminosity reduction factor, o, is shown here. This

symbol is a variable within Equation (8), which is used to compute the force
per unit mass due to solar radiation pressure.

Figurc 16: Solar Radiation Shadowing Geometry

Figure 16 shows the shadowing geometry. In the figure, line CS is normal
to line PQ; line CD is normal to the Sun-Earth line, SE; line SO is normal
to line CO. The distance Rj is the Earth's effective obscuration radius. Dis-
tances R and Rg are the mean radii of Earth and Sun, respectively. Solar
shadowing is based on projecting 2Ry, onto line PQ.

The calculation of ¢ is a matter of the geometry of two intersecting circles.
Figure 17 shows the additional geometry and the notation used in the cal-
culation. The projection of the obhscuration disk on the plane normal to the
spacecraft-Sun line (CS) is an ellipse of negligible eccentricity. This ellipse
is very closely approximated as a circle. The comment lines in the accom-
panying FORTRAN code describes the notations used in Figures 16 and 17.
The routine calculates the solar radiation force per unit mass at any distance
greater than the Sun-Earth distance. The code also calculates the diminished
radiation force for all spacecraft trajectories that pass through any portion
of the Earth’s shadow. It is assumed that the radiation force falls off linearly
in proportion to the percentage of solar arca lost to obscuration.
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Q

obscuration disk solar disk

c=a+b=S0O

Figure 17: Earth Obscuration and Solar Disk Geometry

PROGRAM SOLRAD

IMPLICIT REAL*8(A-H,0-2)
REAL*8 LRF,MASS
COMMON/INPUTS/CR,AREA,MASS

EXAMPLE DRIVER FOR SOLAR RADIATION FORCE

CR=1.5D0
AREA=10.DO
MASS=2000.D0
SE=149597870.D0
SEE FIG 16:
WRITE(*,*) ’ INPUT CE AND CD = ~’
READ(*,%) CE,CD

CALL LRFACTOR(SE,CE,CD,LRF)
WRITE(*,*) ’ LRF = ’,LRF

CS=DSQRT (SE**2+CE**2)
CALL RFORCE(LRF,CS,F)
WRITE(*,101) F
101 FORMAT(® SOLAR RADIATION FORCE/MASS (M/S"2) = ’,1PD11.4)
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STOP
END

SUBROUTINE LRFACTOR(SE,CE,CD,LRF)
IMPLICIT REAL*8(A-H,0-Z)

REAL*8 LRF,L

DATA RS/696000.D0/

DATA RE/6378.14D0/

DATA PI/3.141592653589793D0/

LRF = LUMINOSITY REDUCTION FACTOR (OUTPUT)

FIG 16 CALCULATIONS:

RS
RE

SE
CE

CD

CS
Co
as

PS

FIG 17

RO
C

SOLAR RADIUS (KM)
EARTH RADIUS (KM)

SUN EARTH DISTANCE (KM) (INPUT)

SATELLITE TO EARTH DISTANCE (KM) (INPUT)
CE IS A PORTION OF CO.

NORMAL DISTANCE OF SATELLITE TO SUN-EARTH
LINE (KM) (INPUT) (GE ZERO)

SATELLITE TO SUN DISTANCE (KM)

SATELLITE TO SUN (THRU E) OFFSET DISTANCE (KM)
PERPENDICULAR DISTANCE OF SUN FROM CO (KM)

CO0 + 0S + C3 FORMS A RIGHT TRIANGLE WITH
HYPOTENUSE CS.

NORTHERN LIMIT OF SOLAR OSBSCURATION ALONG LINE PQ
NORMAL TO CS. PS MEASURED FROM SOLAR CENTER S.

CALCULATIONS:

RADIUS OF OBSCURATION DISK (KM)

SEPARATION BETWEEN GEOMETRIC CENTER OF SOLAR DISK
AND GEOMETRIC CENTER OF OBSCURATION DISK (KM)
SMALLA + SMALLB

50’
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QOO0

@]

. = DISTANCE FROM LINE SEGMENT C TO EITHER POINT OF
JINTERSECTION OF THE 2 DISK PERIMETERS (KM)

L#x2 = RO*¥*2 - SMALLA#%2 = R1##*2 - SMALLB**2 (RIGHT

TRIANGLES)

THETAO = DATAN(L/SMALLA)

THETA1 DATAN(L/SMALLB) )

SO SECTOR AREA SUBTENDED BY 2%«THETAQ (KM*x%2)

81 = SECTOR AREA SUBTENDED BY 2xTHETA1 (KM**2)

"ASHADOW = AREA OF INTERSECTION OF OBSCURATION DISK AND

SOLAR DISK (KM*%2)
SUNAREA = AREA OF SOLAR DISK (KM*x2)

SEE FIG 16 FOR THE FOLLOWING:

ED=DSQRT (CE#*2-CD**2)
COSINE (LAMBDA)
COSL=ED/CE
CO=SE*COSL+CE
SINE(LAMBDA)
SINL=CD/CE
0S=SE*SINL
CA=DSQRT (CE**2-RE*%2)
CS=DSQRT ( (SE+ED) **2+CD**2)
OBSCURATION OCCURS WHEN DABS(PS).LE.RS
PS=CS* (RE¥C0-0S*CA) / (CA*CO+0S*RE)
IF(PS.LT.-RS) THEN
NO ECLIPSE
LRF=1.0D0O
RETURN
ENDIF
IF(PS.GT.RS) THEN
TOTAL ECLIPSE
LRF=0.0D0O
RETURN
ENDIF

PARTIAL ECLIPSE (DABS(PS).LE.RS)
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sHoNeoNeNeo NN NeoNe N

COSINE(BETA - ALPHA)

COSBA=C0/CS
"NORTHERN" RADIUS OF OBSCURATION MEASURED FROM 0°
“NORTH" TO P ALONG LINE PQ:

S0P=0S/COSBA

RADIUSN=PS+S0OP

RO=RADIUSN

SEE FIG 17 FOR THE FOLLOWING:

C=S0P
SMALLB=(RS**2~-R0**2+C*%2) / (2.D0*C)
SMALLA=C-SMALLB

L=DSQRT (RS**2-SMALLB**2)
THETAQ=DATAN (L./SMALLA)
THETA1=DATAN (L/SMALLB)
S0=RO**2*xTHETAO
S1=RS**2+*THETA1
ASHADOW=S0+S1-C*L
SUNAREA=PI*RS**2
LRF=1.D0O-ASHADOW/SUNAREA
RETURN

END

SUBROUTINE RFORCE(LRF,CS,F)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 LRF,MASS
COMMON/INPUTS/CR,AREA,MASS

LRF = LUMINOSITY REDUCTION FACTOR (INPUT)

CS = HELIOCENTRIC DISTANCE TO NGST (KM) (INPUT)

F = SOLAR RADIATION FORCE PER UNIT MASS
(NEWTONS/KG = M/S"~2) (OUTPUT)

CR = SOLAR FLUX REFLECTION PARAMETER 0 <= CR <= 2
(INPUT THRU COMMON)
AREA = NGST AREA PROJECTED NORMAL TO SUN LINE CE
(METERS*%2)
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(INPUT THRU COMMON)
MASS = NGST MASS (KG) (INPUT THRU COMMODN)

F=1.0198D17*CR*AREA*LRF/ (1000.D0*CS) **2/MASS

RETURN
END
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D Constant Parameters

Table 6: Physical Constants [5]

gravitational parameter, w1 | 132.712,440,017.987 km? /s>
Sun alone '

gravitational parameter, ) 398,600.4415 km? /s>
Earth alone

gravitational parameter, 1) 403,503.236 km? /s?
Earth-Moon '

gravitational parameter, i3 4,902.8003 km?/s?
Moon alone

astronomical unit AU 149,597,870.691 km
mean Earth-Moon harycen- 1.000001018 AU
ter distance from Sun

eccentricity of Earth-Moon | e 0.01670862
barycenter orbit about Sun

mean motion of Earth-Moon | n | 0.199106385 x1075 rad/s
barycenter orbit about Sun

Lo distance ratio ¥ 0.01007824

Table 7: Computed Values and Coeflicients

reference Sun- D 149,618,905.218739 km

FEarth distance

gravitational Ay | 1.16556055765939 x 107% 1/day?

coefficients Ay | 5.84525170441422 x 1071 1/(km-day?)

(see page 126) As | 3.86396147244215 x 1071 1/(km>-day?)
Ag | 2.56240418152728 x 10722 1/(km3-day?)
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