FY 2003 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

December 2004
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390
FY 2003 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center • MSFC, Alabama 35812

December 2004
In accordance with the NASA Space Act of 1958, the George C. Marshall Space Flight Center (MSFC) has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when MSFC was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”
TABLE OF CONTENTS

NASA TECHNICAL MEMORANDA ... 1
NASA TECHNICAL PUBLICATIONS .. 4
NASA CONFERENCE PUBLICATIONS .. 7
NASA CONTRACTOR REPORTS ... 8
MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION 9
INDEX .. 57
TM—2002–212049 October 2002

Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (–195.5 °C (–320 °F) and –252.8 °C (–423 °F)) temperatures. The material evaluated was purchased to the requirements of SAE–AMS7912, “Aluminum-Beryllium Alloy, Extrusions.”

TM—2003–212286 February 2003

A number of recent advanced theories related to torsion properties of the space-time matrix predict the existence of an interaction between classically spinning objects. Indeed, some experimental data suggest that spinning magnetic bodies discernibly interact with Earth’s natural fields. If a rotating body modifies the geometry of space-time, then nuclear spins could be used for detection. Thus, assuming a spinning body induces a torsion field, a sensor based on the giant magnetoresistance effect would detect local changes. Experimentally, spinning a brass wheel shielded from Earth’s magnetic field showed no measurable change in signals; without shielding, a Faraday disc phenomenon was observed. Unexpected experimental measurements from the nonaxial Faraday disc configuration were recorded, and a theoretical model was derived to explain them.

TM—2003–212345 April 2003
Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA. R.E. Boothe. Materials, Processes, and Manufacturing Department, Engineering Directorate.

This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane’s (TCA’s) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

TM—2003–212500 June 2003

A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the
thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

TM—2003–212501 June 2003

The goal of this effort was to develop a digital motor controller using field programmable gate arrays (FPGAs). This is a more rugged approach than a conventional microprocessor digital controller. FPGAs typically have higher radiation tolerance than both the microprocessor and memory required for a conventional digital controller. Furthermore, FPGAs can typically operate at higher speeds. (While speed is usually not an issue for motor controllers, it can be for other system controllers.) Other than motor power, only a 3.3-V digital power supply was used in the controller; no analog bias supplies were used. Since most of the circuit was implemented in the FPGA, no additional parts were needed other than the power transis tors to drive the motor. The benefits that FPGAs provide over conventional designs—lower power and fewer parts—allow for smaller packaging and reduced weight and cost.

TM—2003–212502 June 2003

This effort demonstrates that health management can be taken to the component level for electromechanical systems. The same techniques can be applied to take any health management system to the component level, based on the practicality of the implementation for that particular system. This effort allows various logic schemes to be implemented for the identification and management of failures. By taking health management to the component level, integrated vehicle health management systems can be enhanced by protecting box-level avionics from being shut down in order to isolate a failed computer.

TM—2003–212503 June 2003

In order to help identify contamination found on bonding surfaces, optical surfaces, or other items, the Materials Contamination Team of the Materials, Processes, and Manufacturing Department at Marshall Space Flight Center (MSFC) has initiated the development of an infrared database containing MSFC process materials and residues. Process materials analyzed to date using infrared spectroscopy for transferable and extractable contamination have included gloves, wiper cloths, solvents, bagging materials, etc. Significant findings included silicone contamination on several gloves and observations of extractables from the majority of materials tested.

TM—2003–212633 July 2003

To determine composite material properties’ effects from processing variables, a 3 factorial designed experiment with two replicates was conducted. The factors were cure method (oven versus autoclave), layup (hand versus tape-laying machine), and thickness (8 versus 52 ply). Four material systems were tested: AS4/3501–6, IM7/8551–7, IM7/F655 bismaleimide (BMI), and shear tests on IM7/F584. Material properties were G_{12}, v_{12}, E_{1C}, and E_{2C}. Since the samples were necessarily nonstandard, strengths, though recorded, cannot be considered valid. Void content was also compared.

Autoclave curing helped material properties for the low modulus fiber material but showed little benefit for higher stiffness fibers. The number of plies was very important for epoxy composites but not for the BMI. E_1 was generally unaffected by any factor.

Particularly high void content did correlate to reduced properties. Autoclave curing reduced void content over oven curing but a moderate amount of voids, <1 percent void content, did not correlate with material properties.

Oven cures and hand layups can produce high-quality parts. Part thickness of epoxy composites is important, though cure optimization may improve performance. Significant variations can be caused by processing and it is important that test coupons always reflect the layup and processes of the final part.

This Technical Memorandum lists the significant publications and presentations of the Science Directorate during the period January 1–December 31, 2002. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional
journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in the report should be directed to Dr. A.F. Whitaker (SD01, 256–544–2481) or one of the authors.

TM—2003–212636

June 2003

Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc., which deposits a fine line of semimolten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment.

The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

TM—2003–212690

August 2003

The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement, and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

TM—2003–212692

August 2003

The objective of this investigation was to examine the relationship between irradiation level (proton dose), microstructure, and stress levels in chemical vapor-deposited diamond and polysilicon films using cross-sectioned specimens. However, the emphasis was placed on the diamond specimen because diamond holds much promise for use in advanced technologies. The use of protons allows not only the study of the charged particle that may cause the most microstructural damage in Earth-orbit microelectromechanical systems (MEMS) devices, but also allows the study of relatively deeply buried damage inside the diamond material. Using protons allows these studies without having to resort to megaelectronvolt implant energies that may create extensive damage due to the high energy that is needed for the implantation process. Since MEMS devices operating in space will not have an opportunity to reverse radiation damage via annealing, only nonannealed specimens were investigated. The following three high spatial resolution techniques were used to examine these relationships: (1) Scanning electron microscopy, (2) micro-Raman spectroscopy, and (3) micro x-ray diffraction.

A simple power law model consisting of a single spectral index, α_1, is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10^{13} eV, with a transition at the knee energy, E_k, to a steeper spectral index $\alpha_2 > \alpha_1$ above E_k. The maximum likelihood (ML) procedure was developed for estimating the single parameter α_1 of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (P1) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible.

While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum-detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are attained in practice are investigated.

The ML technique is then extended to estimate spectra information from an arbitrary number of astrophysics data sets produced by vastly different science instruments. This theory and its successful implementation will facilitate the interpretation of spectral information from multiple astrophysics missions and thereby permit the derivation of superior spectral parameter estimates based on the combination of data sets.

Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts.

Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.
MHD accelerator. The heat-sink and higher expansion ratios are expected to greatly improve scaling, improved seeding techniques, higher magnetic fields, constraint on expansion with the available magnet. Increased interaction; i.e., low flow velocity, due to an inherent physical spray prior to ignition by electrical spark. The driver exhausted to atmospheric pressure and seeded with a CsOH/methanol reaction: I. Performance Analysis and Design. R.J. Litchford, J.E. Jones, C.C. Dobson, J.W. Cole, B.R. Thompson,* D.H. Plemmons,** and M.W. Turner.*** Advanced Space Transportation Program Office, Space Transportation Directorate, *TMET, **Plemmons Consulting, and ***The University of Alabama in Huntsville.

The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation-driven magnetohydrodynamic (MHD) electrical power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation-driven MHD generator concepts. The hydrogen-oxygen-fired driver was a 90-cm-long stainless steel tube having a 4.5-cm-square internal cross section and a short Schelkin spiral near the head-end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol spray prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of $A_1/A_2=1/10$ and an area expansion ratio of $A_3/A_4=3.2$ (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5-cm active length), which was inserted into a 0.6-T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head-end pressure and time-resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10^{12} cm^{-3} at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

Fillets are one of the most common design features in structures. Proper finite element modeling of these fillets can frequently be problematic though. If the ratio of the fillet radius to the wall thickness is relatively large, the fillet cannot be ignored because it contributes significantly to structural stiffness, and although the most appropriate element for modeling the structure in general may be the plate element, geometric representation of the fillets requires the use of solid elements. This problem is the motivation for the development of a method that uses “bridge” plate elements connecting the tangent points of the fillet to accurately represent its stiffness and mass. The methodology equates the rotational deflection at the tangent point, derived from the proposed bridge system, with an analytical solution of the fillet itself to generate a pseudo Young’s Modulus and thickness for use in the bridge plates. The method was tested on a typical filleted structure, with the bridge method yielding modal analysis results as accurate as a high-fidelity solid model when compared to modal test but with a 90-percent reduction in number of degrees of freedom. This capability could prove extremely useful in design, dynamic, deflection, and preliminary stress analysis, and optimization.
Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number \(R_m \), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires \(R_m \gg 1 \), and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

TP—2003–212342 March 2003
Flightweight Carbon Nanotube Magnet Technology.

Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of lightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

TP—2003–212634 July 2003

The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science, and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team’s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launchsite processing, on-orbit exposure, return, and refurbishment, if required. Contamination is a concern in the Space Shuttle with sensitive bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft, such as the Hubble Space Telescope and Chandra X-Ray Observatory.

The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develops and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for process materials as well as outgassing and optical compatibility test results for specific environments.
February 2003

The 2002 Microgravity Materials Science Conference was held June 25–26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the COoperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. The proceedings on this CD-ROM are comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

April 2003

This document contains the proceedings of the 35th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 19–21, 2002. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind.

The subjects covered included nickel-hydrogen, lithium-ion, nickel-metal hydride, lithium-sulfur, lithium-iron disulfide, and silver-zinc technologies.
A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the NGST program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high-fidelity spatial resolution. It is applicable to all detector geometries, including monolithic charged-coupled devices (CCDs), active pixel sensors (APS), and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

A model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition, results of the model will be completed to cover a wide range of potential space systems.

An experiment on the Microelectronics and Photonics Test Bed (MPTB) was testing field programmable gate arrays using spot shields to extend the life of some of the devices being tested. It was expected that the unshielded parts would fail from a total ionizing dose (TID) and yet the opposite occurred. The data show that the devices failing from the TID effects are those with the spot shields attached. This effort is to determine the mechanism by which the environment is interacting with the high-Z material to enhance the TID in these field programmable gate arrays.
ABDULLA, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
LECLAIR, A. UAH
WITHEROW, W.K. SD50
CAMATE, R. UAB
GERAKINES, P. UAB

ABBAS, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
WITHEROW, W.K. SD50
LECLAIR, A. UAH
WEST, E.A. SD50
SHELDON, R. UAH

ABDULLA, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
LECLAIR, A. UAH
WEST, E.A. SD50
SHELDON, R. UAH
GALLAGHER, D.L. Auburn University

ADAMS, J.H. SD46
ADAMS, J.H. SD50
BERAT, C. LPSC
LEBRUM, D. LPSC
MONTANET, F. LPSC

ADAMS, J.H. SD50
HOOVER, R.B. SD50
IMURA, S. National Institute of Polar Research
MITTSKEVICH, I.N. Institute of Microbiology
NAGANUMA, T. Hiroshima University
POGLAZOVA, M.N. Institute of Microbiology
IVANOV, M.V. Institute of Microbiology

ADAMS, J.H. SD50
HOOVER, R.B. SD50
IMURA, S. National Institute of Polar Research
MITTSKEVICH, I.N. Institute of Microbiology
NAGANUMA, T. Hiroshima University
POGLAZOVA, M.N. Institute of Microbiology
IVANOV, M.V. Institute of Microbiology
ADAMS, M.L. SD50
ELSNER, R.F. SD50
KOUVELIOTOU, C. SD50
 Patel, S.K. SD50
PREECE, R.D. SD50
STRONG, C. SD50
WILSON, C.A. SD50
WOODS, P.M. SD50

Using the Chandra Project to Communicate With Underdeveloped Constituencies—Abstract Only. For presentation at the Meeting on Communicating Astronomy to the Public, Washington, DC, October 1–3, 2003.

ADAMS, M.L. SD50
GALLAGHER, D.L. SD50
KOCZOR, R.J. SD50

ADAMS, M.L. SD50
GALLAGHER, D.L. SD50
WHITT, A. SD50

ADAMS, M.L. SD50
PHILLIPS, T. SD50
WHITT, A. SD50

ADAMS, R.B. TD03
STATHAM, G. ERC, Inc.
HOPKINS, R. TD03
CHAPMAN, J. TD03
WHITE, S. ERC, Inc.

AHMED, R. ED23
JOHNSTON, A.S. ED23
GARRISON, J.C. ED23
GAINES, J.L. ED23
WAGGONER, J.D. ED23

Boon JH. SD50

Bashindzhagyan, G.L. Moscow State University
Batkov, K.E. Moscow State University

Ahmad, S. UAH

Ahn, H.S. University of Maryland
ADAMS, J.H. SD50
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
FAZLEY, A.R. Southern University
GANEL, O. SD50
GUNASINGHA, R.M. Southern University
GUZIK, T.G. Louisiana State University
For presentation at the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003.

ALBARADO, T. University of Louisiana
HOLLERMAN, A. University of Louisiana
EDWARDS, D.L. ED31
HUBBS, W. ED31
SEMMEL, C. Qualis Corporation

ALBYN, K. ED31
EDWARDS, D.L. ED31
ALRED, J. Boeing

ALLEN, P.A. ED22
AGGARWAL, P.K. ED22
SWANSON, G.R. ED22

ALLEN, P.A. ED22
WILSON, C.D. Tennessee Technological University

ALOOR, S. University of Texas
NOWAK, B. Sandia National Laboratories
VARGAS, R. University of Texas
MCCLURE, J.C. University of Texas
MURR, L.E. University of Texas
NUNES, A.C., JR. ED30

AHN, H.S. University of Maryland
ADAMS, J.H. SD50
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
COX, M. SD50
ELLISON, S.B. Louisiana State University
FAZLEY, A.R. Southern University
GANEL, O. University of Maryland

ANILKUMAR, A.V. SD46
GRUGEL, R.N. SD46
LEE, C.P. SD46
BHOMWICK, J. SD46
WANG, T.G. SD46

ARAKERE, N.K. University of Florida
KNUDSEN, E.C. University of Florida
DUKE, G. ED22
BATTISTA, G. ED22
SWANSON, G.R. ED22

ARUMUGAM, M. Western Michigan University
LAM, N. Louisiana State University
EMERSON, C. Western Michigan University
QUATTROCHI, D.A. SD60

AVANOY, L.A. 	SD50
CHANDLER, M.O. 	SD50
SMIRNOV, V.N. 	SD50
VAISBERG, O.L. 	SD50

BAGGETT, R.M. 	TD15
JOHNSON, L. 	TD15
WERCINSKI, P. 	NASA Headquarters

BALLARD, R.O. 	TD51

BARLOW, D.A. 	UAH
BAIRD, J.K. 	UAH
SU, C.-H. 	SD46

BARNES, C.L. 	SD40
SNELL, E.H. 	BAE Systems
KUNDROT, C.E. 	SD40

BARRET, C. 	TD40

Nuclear Electric Propulsion for Outer Space Missions—Abstract Only. For presentation at the Society of Women Engineers Conference, Birmingham, AL, October 9–11, 2003.

BASHINDZHAGYAN, G.L. 	Moscow State University
ADAMS, J.H. 	SD50

BAUGHER, C.R. 	SD41

TENNANT, A.F. SD50 BLACKWELL, W.C. Jacobs Sverdrup
BACKER, D. University of California MINOW, J.I. Jacobs Sverdrup
WEISSKOPF, M.C. SD50 SMITH, S. Jacobs Sverdrup
Chandra X-Ray Observatory Observations of the Globular

BEMPORAD, A. SD50 BLAKESLEE, R.J. SD60
POLETTO, G. SD50 BAILEY, J.C. Raytheon
ROMOLI, M. SD50 PINTO, O. INPE
SUSS, S.T. SD50 ATHAYDE, A. INMET
Preliminary Analysis of a CME Observed by SOHO and
Ulysses Experiments—Abstract Only. For publication in

BEMPORAD, A. SD50 WEIDMAN, C.D. University of Arizona
POLETTO, G. SD50 The Rondonia Lightning Detection Network: Network
SUSS, S.T. SD50 Description Science Objectives, Data Processing/Archival
KO, Y. SD50 Methodology, and Results—Abstract Only. For presenta-
PARENTI, S. SD50 tion at the International Conference on Atmospheric Elec-
ROMOLI, M. SD50
ZURBUCHEN, T. SD50
Temporal Evolution of a Streamer Complex: Coronal and
In Situ Plasma Parameters—Abstract Only. For publication

BERNHARDSDOTTERT, E. SD46 BLAKESLEE, R.J. SD60
GARRIOTT, O. SD46 CROSKEY, C.L. Penn State University
PUSEY, M.L. SD46 DESCH, M.D. Goddard Space Flight Center
NG, J.D. SD46 FARRELL, W.M. Goddard Space Flight Center
Two Strategies for Microbial Production of an Industrial
Enzyme-Alpha-Amylase—Abstract Only. For presentation
at Student Research Day, The University of Alabama in
Huntsville, Huntsville, AL, April 11, 2003.

BEST, S. FD41 BLEVINS, J.A. TD40
NICHOLS, K.F. FD41 GOSTOWSKI, R. TD40
BRADFORD, R.N. FD41 CHIANESE, S. Penn State University
Utilization of Internet Protocol-Based Voice Systems
in Remote Payload Operations—Viewgraphs Only. For
presentation at the Ground System Architectures Work-
shop, Manhattan Beach, CA, March 4–6, 2003.

BJORKMAN, G. Lockheed Martin BLEVINS, J.A. TD40
CANTRELL, M. Lockheed Martin RODGERS, S.L. TD40
CARTER, R.R. ED33 Propulsion Research at the Propulsion Research Center of
the NASA Marshall Space Flight Center—Abstract Only.
For presentation at the 54th International Astronautical

BOCCIPPIO, D.J. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2003.

BUECHLER, D.E. UAH
MACH, D.M. UAH
BLAKESLEE, R.J. SD60

CALVIGNAC, J. Northrop Grumman
DANG, L. Northrop Grumman
TRAMEL, T.L. TD07
PASEUR, L. TD07

CAMPBELL, J.W. FD02
PHIPPS, C. FD02
SMALLEY, L. UAH
REILY, J.C. UAH
BOCCIO, D. City University of NY

CAMPBELL, J.W. FD02
SMALLEY, L. UAH
BOCCIO, D. City University of NY

CARMER, D.L. Stanford University
BEL, R.F. Stanford University
INAN, U.S. Stanford University
BENSON, R.F. Goddard Space Flight Center
REINISCH, B.W. University of Massachusetts
GALLAGHER, D.L. SD50

CARMER, P.K. SD46
SEBILLE, L. SD46
BOLES, W. Middle Tennessee State University
CHADWELL, M. University of South Alabama
SCHWARZ, L. UAH

CARRASQUILLO, R. FD21

CARTER, L. FD21
O’CONNOR, E. Hamilton Sundstrand
SNOWDON, D. Hamilton Sundstrand

CASAS, J. SD10
NALL, M. SD10

Enabling Sustainable Exploration Through the Commercial Development of Space—Abstract Only. For presentation at the 54th International Astronautical Congress, Bremen, Germany, September 29–October 3, 2003.

CHAKRABARTI, S. TD40
MARTIN, J.J. TD40
PEARSON, J.B. TD40
LEWIS, R.A. R. Lewis Co.

CHANDLER, M.O. SD50
AVANOV, L.A. SD50

CHANDLER, M.O. SD50
MOORE, T.E. SD50

CHANG, J. Max Planck Institute
SCHEIDT, W.K.H. Max Planck Institute
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHRISTL, M.J. SD50
FAZLEY, A.R. Southern University
GANEL, O. University of Maryland
GUNASINGHA, R.M. Southern University

CHAVERS, D.G. TD40

CHAVERS, D.G. TD40
IRVINE, C. TD40
CHANG-DIAZ, F.R. JSC
SQUIRE, J.P. Muniz Engineering

CHOUDHARY, D.P. SD50
MOORE, R.L. SD50

CHRISTENSON, R.L. TD61
NELSON, M.A. TD51
BUTAS, J.P. TD53

CHRISTIAN, H.J. SD60

CIPELLETI, L. SD46
PRASAD, V. SD46
DINSMORE, A. SD46
SEGRE, P.N. SD46
WEITZ, D.A. SD46
TRAPPE, V. SD46

CISZAK, E. UAH
DOMINIAK, P.M. SD46

CISZAK, E. UAH
DOMINIAK, P.M. SD46

KOROTCHKINA, L.G. SUNY at Buffalo
DOMINIAK, P.M. SD46
SIDHU, S. SUNY at Buffalo
PATEL, M.S. SUNY at Buffalo
COE, M.J. Southampton University
HAIGH, N.J. Southampton University
WILSON, C.A. SD50
NEGUERUELA, I. SAX SDC

COLE, J.W. TD40

COLE, J.W. TD40

COOKE, W.J. ED44
SUGGS, R.M. ED44

CRAVEN, P.D. SD50
ABBAS, M.M. SD50
TANKOSIC, D. UAH
SPANN, J.F. SD50

CUTTEN, D.R. SD60
JARZEMBSKI, M.A. SD60
SRIVASTAVA, V. USRA
PUESCHEL, R.F. USRA
HOWARD, S.D. USRA
MCCAUL, E.W., JR. USRA

CREECH, S.D. VS20

DAVIS, S. UP50
ENGRLER, L. Morgan Research
FISHER, M.F. UP50
DUMBACHER, D.L. UP01
BOSWELL, B. ISC

DAVIS, S.E. ED36
WISE, H.L. ICRC
DING, R.J.

DOBSON, C.
HRBUD, I.

DOBSON, C.
JONES, J.E.
CHAVERS, D.G.

DORNEY, D.J.
Design and Analysis of Turbomachinery for Space Applications—Presentation. For presentation at the Seminars at Wright-Patterson Air Force Base, OH, and at Wright State University, Dayton, OH, October 4, 2002.

DORNEY, D.J.
GRIFFIN, L.W.
HUBER, F.W.
SONDAK, D.L.

DORNEY, D.J.
GRIFFIN, L.W.
HUBER, F.W.
SONDAK, D.L.

DORNEY, D.J.
GRIFFIN, L.W.
SONDAK, D.L.

DORNEY, S.M.

DRAKE, B.G.
COOKE, D.R.
KOS, L.D.
NASA Exploration Team (NExT) In-Space Transportation Overview—Presentation. For presentation at the 51st JANNAF Propulsion Meeting, Lake Buena Vista, FL, November 18–21, 2002.

DRESSLER, G.A.
MATUZAK, L.W.
STEPHENSON, D.D.

DUKEMAN, G.
Enhancements to an Atmospheric Ascent Guidance Algorithm—Final Paper. For presentation at the AIAA

DUMBACHER, D.L. UP01

DUMBACHER, D.L. UP40

DUMBACHER, D.L. UP01

EDWARDS, D.L. ED31
GRAY, P.A. ED31
NEHLS, M.K. ED31
WERTZ, G. ED31
HUBBS, W. ED31
HOPPE, D. ED31
STANALAND, T. University of Louisiana
HOLLERMAN, A. University of Louisiana

EDWARDS, D.L. ED31
HUBBS, W. ED31
STANALAND, T. University of Louisiana
HOLLERMAN, A. University of Louisiana
ALTSTATT, R. ED44

EDWARDS, D.L. ED31
HUBBS, W. ED31
STANALAND, T. University of Louisiana
HOLLERMAN, A. University of Louisiana
SEMMLER, C. Qualis Corporation

EFFINGER, M. ED34
BESHEARS, R. ED34
HUFNAGLE, D. ED34
WALKER, J.L. ED34
RUSSELL, S.S. ED34
STOWELL, B. Lockheed Martin
MYERS, D. Lockheed Martin

ELAM, S.K. TD61
HOLMES, R. SD42
MCKECHNIE, T. Plasma Processes, Inc.
HICKMAN, R. Plasma Processes, Inc.
PICKENS, T. Plasma Processes, Inc.

ELSNER, R.F. SD50
GLADSTONE, R. Southwest Research Institute
WAITE, H. University of Michigan
LUGAZ, N. University of Michigan
MAJED, T. University of Michigan
FORD, P. MIT
HOWELL, R. University of Wyoming
CRAENS, T. University of Kansas
GRODENT, D. University of Liege

ELSNER, R.F. SD50
GLADSTONE, R. Southwest Research Institute
WAITE, H. University of Michigan
MAJED, T. University of Michigan
FORD, P. MIT
GRODENT, D. University of Liege
ET AL.
EMRICH, W.J., JR. TD40

ENGBERG, R.C. ED27

ESKRIDGE, R. TD40
MARTIN, A.K. TD40
LEE, M. TD40
SMITH, J.W. TD40
KOELFGEN, S.J. UAH
The Plasmoid Thruster Experiment (PTX)—Abstract and Charts. For presentation at the Advanced Space Propulsion Workshop, Huntsville, AL, April 15–17, 2003.

ESTES, M.G. USRA
QUATTROCHI, D.A. SD60
STASIKA, E. Intl. City/County Mgmt. Association

EVANS, J.P. Yale University
SMITH, R. Yale University
OGLESBY, R.J. SD60
Simulation of the Climate of Southwest Asia With a Regional Model—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 5–10, 2002.

EVANS, S.W. ED44

FALCONER, D.A. SD50
MOORE, R.L. SD50
GARY, G.A. SD50

FARRELL, W.M. Goddard Space Flight Center
GOLDBERG, R.A. Goddard Space Flight Center
BLAKESLEE, R.J. SD60
DESH, M.D. Goddard Space Flight Center
HOUER, J.G. Goddard Space Flight Center
MITCHELL, J.D. Penn State University
CROSKY, C.L. Penn State University
MACH, D.M. UAH
BAILEY, J.C. Raytheon

FAZLEY, A.R. Southern University
ADAMS, J.H. SD50
AHN, E.J. SD50
BASHINDZHAGYAN, G. SD50
CASE, G. SD50
CHANG, J. SD50
CHRIST, M.J. SD50
ELLISON, S.B. SD50
GANEL, O. SD50
GOULD, R. SD50
Detection of High-Energy Cosmic Rays With the Advanced Thin Ionization Calorimeter, ATIC—Abstract Only. For

FAZLEY, A.R. Southern University
GUNASINGHA, R.M. Southern University
ADAMS, J.H. SD50
AHN, E.J. Seoul National University
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
CASE, G. Louisiana State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
ELLISON, S.B. Louisiana State University
FENG, Y.X. SD50
TENNANT, A.F. SD50
ZHANG, S.N. SD50

FORK, R.L. CARRINGTON, C.K. UAH
WALKER, W.W. UAH
COLE, S.T. UAH
GREEN, J.A. UAH
LAYCOCK, R.L. UAH

FRAZIER, D.O. GLICKSMAN, M.E. Rensselaer Polytechnic Institute
MCNULTY, I. Argonne National Laboratory
RICHMOND, R.C. SD46
EHRET, C.F. General Chronobiomics

FINCKENOR, M.M. ED31
VAUGHN, J.A. ED31
WATTS, E.W. Qualis Corporation

FRIGO, S.P. Northern Arizona University
MCNULTY, I. Argonne National Laboratory
RICHMOND, R.C. SD46
EHRET, C.F. General Chronobiomics

Photoabsorption Study of Bacillus Megaterium, DNA, and Related Biological Materials in the Phosphorus K-Edge

GALLAGHER, D.L. SD50

GALLAGHER, D.L. SD50
ADRIAN, M.L. SD50
PEREZ, J. SD50
SANDEL, B.R. SD50

GAMWELL, W.R. ED33
MCGILL, P.B. ED33

GARBE, G.P. TD05
MONTGOMERY, E.E., IV TD05

GARY, G.A. SD50

GARY, G.A. SD50

GASKIN, J. SD50
RICHARDSON, G.A. SD50
MITCHELL, S. SD50
SHARMA, D. SD50
RAMSEY, B.D. SD50
SELLER, P. SD50

GASKIN, J. SD50
SHARMA, D. SD50
RAMSEY, B.D. SD50

GASKIN, J. SD50
SHARMA, D. SD50
RAMSEY, B.D. SD50

GERRISH, H.P., JR. TD40

GERRISH, H.P., JR. TD40

GEVEDEN, R.D. DD01

GEVEDEN, R. SD30
MAY, T. SD31
GILLIES, D.C. SD40
CARPENTER, P.K. SD40
ENGEL, H.P. SD40

GLASGOW, S. ED26
KITTREDGE, K. ED26

GODFROY, T.J. TD40
BRAGG-SITTON, S.M. University of Michigan
VAN DYKE, M.V. TD40

GOGUS, E. SD50
FINGER, M.H. SD50
KOVELITOU, C. SD50
WOODS, P.M. SD50
PATEL, S.K. SD50
RUPEN, M. SD50
SWANK, H.H. SD50
MARKWARDT, C.B. SD50
VAN DER KLIS, M. SD50

GOLDEN, B.L. Purdue University
KUNDROT, C.E. SD48

GOLDSTEIN, J. Rice University
SPASOJEVIC, M. STAR Laboratory
REIFF, P. Rice University
SANDEL, B.R. University of Arizona
FORRESTER, T.T. University of Arizona
GALLAGHER, D.L. SD50
REINISCH, B.W. University of Massachusetts

GOODMAN, S.J. SD60

GOODMAN, S.J. SD60
BLAKESLEE, R.J. SD60
CHRISTIAN, H.J. SD60
KOSHAK, W.J. SD60
BAILEY, J.C. Raytheon
HALL, J.M. Global Hydrology & Climate Center
MCCAUL, E.W., JR. Global Hydrology & Climate Center
BUECHLER, D.E. National Weather Service
DARDEN, C. National Weather Service
BURKS, J. National Weather Service

GORTI, S. SD46
FORSYTHE, E.L. USRA
LAXSON, N. USRA
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. USRA
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. USRA
PUSEY, M.L. SD46
Modeling Tetragonal Lysozyme Crystal Growth Rates—Abstract Only. For presentation at the American

GOSTOWSKI, R. TD40

GRANT, J. SD72
KAUL, R.K. SD72
MYERS, G. SD72
SHARMA, A. Alabama A&M University

GRANT, J. SD72
KAUL, R.K. SD72
TAYLOR, S. SD72
JACKSON, K. SD72
MYERS, G. SD72
SHARMA, A. Alabama A&M University

GRANT, J. SD72
KAUL, R.K. SD72
TAYLOR, S. SD72
JACKSON, K. SD72
MYERS, G. SD72
OSEI, A. Oakwood College
SHARMA, A. Alabama A&M University

GRAY, P.A. ICRC
NEHLS, M.K. ED31
EDWARDS, D.L. ED31
CARRUTH, M.R., JR. ED31

GREENE, W.D. TD53
THAMES, M.P. TD53
POLSEROVE, R.H. TD51

GREINER, J. Astrophysikalisches Inst.
KLOSE, S. Thuringer Landesstern
SAVVATO, M. Astrophysikalisches Inst.
ZEH, A. Thuringer Landesstern
SCHWARTZ, R. Astrophysikalisches Inst.
HARTMAN, D.H. Clemson University
MASETTI, N. Istituto di Astrofisica
STECKLUM, B. Thuringer Landesstern
LAMER, G. Astrophysikalisches Inst.
KOUVEIOTOU, C. SD50

GRIFFIN, L.W. TD64
MSFC Turbomachinery Fluid Dynamics Roadmap—Presentation. For presentation at the MSFC Spring Workshop on Fluids, Birmingham, AL, April 22–24, 2003.

GRIFFIN, L.W. TD64
DORNEY, D.J. TD64
HUBER, F.W. Riverbend Desig Serv.

GRUBBS, R. MSFC
HDTV From the International Space Station—Charts Only. For presentation at the University of South Florida Seminar, Tampa, FL, March 28, 2003.
GRUGEL, R.N. SD46
ANILKUMAR, A.V. Vanderbilt University
LEE, C.P. SD46

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. ESI

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. SD46

GUBAREV, M. USRA
RAMSEY, B.D. SD50
APPLE, J. SD50

GUBAREV, M. USRA
RAMSEY, B.D. SD50
KESTER, T. SD70
ENGELHAUPT, D. UAH
SPEEGLE, C.O. Raytheon ITSS
MARTIN, G. ERC, Inc.
GWALTNEY, D.A.
STEINCAMP, J.
CORDER, E.
KING, K.
FERGUSON, M.I.

Jet Propulsion Laboratory

DUTTON, K.
Madison Research Corporation

HAGYARD, M.J.
PEVTSOV, A.A.
BLEHM, Z.
SMITH, J.E.

National Solar Observatory
Montana State University

HAGYARD, M.J.
PEVTSOV, A.A.
CANFIELD, R.C.
BLEHM, Z.
SMITH, J.E.

Montana State University

HAKKILA, J.
GIBLIN, T.W.
ROIGER, R.J.
HAGLIN, D.J.
PACIESAS, W.S.
MEEGAN, C.A.

College of Charleston
Mankato State University
Mankato State University
UAH
SD50

HANSON, J.M.

TD54

HARMON, B.A.
WILSON, C.A.
FISHMAN, G.J.
CONNAUGHTON, V.
HENZE, W.
PACIESAS, W.S.
FINGER, M.H.
MCCOLLOUGH, M.L.
SAHI, M.

SD50

HARRIS, D.
BILL, M.
REED, L.

Booz Allen Hamilton
Booz Allen Hamilton

HASSAN, N.
SONG, X.
THOMPSON, J.E.
LOOS, A.C.
BATRA, R.C.
HULCHER, A.B.

Virginia Polytechnic Institute
ED34

HATHAWAY, D.H.

SD50

HATHAWAY, D.H.
NAKAYAMA, D.
WILSON, R.M.
REICHMAN, E.J.

SD50

SD50

SD50

HEDAYAT, A.
BAILEY, J.W.
HASTINGS, L.J.

TD52

Sverdrup
Alpha Technology, Inc.

HASTINGS, L.J. Alpha Technology, Inc.
FLACHBART, R.H. TD52
HOLT, K.A. TD52

HENLEY, M.W. Boeing
FIKES, J.C. FD02
HOWELL, J.T. FD02
MANKINS, J.C. NASA Headquarters

HISTAM, L.W. UAH
TAKAHASHI, Y. UAH
ZUCCARO, A. UAH
LAMB, D. UAH
PITALO, K. UAH
LOPADO, A. UAH
KEYS, A.S. SD72

HOLLADAY, J. SD50
HOLLADAY, J. FD23
CHO, F. Johnson Space Center

HOLMES, A.M. UAH
MONACO, L. Morgan Research
BARNES, C.L. USRA
SPEARING, S. Morgan Research
JENKINS, A. Morgan Research
JOHNSON, T. Micro Craft
MAYER, D. ASRI
COLE, H.E. SD44

IRWIN, D. SD60
A Regional Monitoring and Visualization System for Decision Support and Disaster Management Applications for the Mesoamerican Biological Corridor and Beyond—Abstract Only. For presentation at the Central American Commission for Environment and Development Donors Conference, Paris, France, December 12, 2002.

JAAP, J. FD42
DAVIS, E. FD42

JAAP, J. FD42
RICHARDSON, L. FD42
DAVIS, E. FD42

JACOBY, M.T. Schafer Corporation
GOODMAN, W.A. Schafer Corporation
STAHL, H.P. SD70
KEYS, A.S. SD72
REILY, J.C. SD74
ENG, R. SD73
HADAWAY, J.B. UAH
HOGUE, W.D. ED74
KEGLEY, J.R. ED74
ET AL.

JAKOBSSON, P. University of Copenhagen
HJORTH, J. University of Copenhagen
RAMIREZ-RUIZ, R. University of Cambridge
KOUVELIOTOU, C. NSSTC/SD50
PEDERSEN, K. University of Copenhagen
FYNO, J.P.U. University of Copenhagen
GOROSABEL, J. IAA-CSIC
WATSON, D. University of Copenhagen
ET AL.

JAMES, B. TD05
MUNK, M. TD05
MOON, S. Gray Research, Inc.

JAMES, B. TD15
MUNK, M. TD15
MOON, S. Gray Research, Inc.

JEDLOVEC, G. SD60
HAINES, S. UAH
SUGGS, R.M. SD60
BRADSHAW, T. National Weather Service
DARDEN, C. National Weather Service
BURKS, J. National Weather Service

JOHNSON, D.L. ED44
ROBERTS, B.C. ED44
VAUGHAN, W.W. UAH
JUSTUS, C.G. CSC

JOHNSON, D.L. ED44
ROBERTS, B.C. ED44
VAUGHAN, W.W. UAH
JUSTUS, C.G. CSC

JOHNSON, L. TD05
JOHNSON, L. TD05
GILCHRIST, B.E. University of Michigan
LORENZINI, E.C. Harvard-Smithsonian
STONE, N. SRS Technologies
WRIGHT, K.H., JR. SD50
Propulsive Small Expendable Deployer System (ProSEDS) Experiment: Mission Overview and Status—Final Paper.

JOY, M. SD50
LAROQUE, S.J. SD50
BONAMENTE, M. SD50
CARLSTROM, J.E. SD50
DAWSON, K.S. SD50

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A. Computer Sciences Corporation
JOHNSON, D.L. ED44

JUSTUS, C.G. Computer Sciences Corporation
DUVALL, A. Computer Sciences Corporation
JOHNSON, D.L. ED44

KEARNEY, M.W., III FD40

KELTON, K.F. SD46
GANGOPADHYAY, A.K. SD46
LEE, G.W. SD46
HYERS, R.W. SD46
ROGERS, J.R. SD46
ROBINSON, M.B. SD46
ET AL.
KEPHART, R. UAH
JUDGE, R.A. UAH
SNELL, E.H. SD46
VAN DER WOERD, M.J. SD46

KEYS, A.S. SD72
CROW, R.W. Sensing Strategies, Inc.
ASHLEY, P.R. U.S. Army Aviation

KHAZANOV, G.V. SD50

KHAZANOV, G.V. SD50
DELAMERE, P.A. University of Colorado
KABIN, K. University of Alberta
LINDE, T.J. University of Chicago
KRIVORUTSKY, E. UAH

KHAZANOV, G.V. SD50
GAMAYUNOV, K.V. University of Alaska, Fairbanks
JORDANOVA, V.K. University of New Hampshire

KHAZANOV, G.V. SD50
KABIN, K. SD50
DELAMERE, P.A. SD50

KHAZANOV, G.V. SD50
KRIVORUTSKY, E. SD50
GAMAYUNOV, K.V. SD50
AVANOVA, N.A. SD50

KHAZANOV, G.V. SD50
LIEMOHN, M.W. University of Michigan
NEWMAN, T.S. UAH
FOK, M.-C. Goddard Space Flight Center
RIDLEY, A.J. University of Michigan

KHAZANOV, G.V. SD50
SINGH, N. UAH
KRIVORUTSKY, E. UAH

KOELBL, T.G. ED13
PONCHAK, D. GRC
LAMARCHE, T. Rannoch Corporation

KOELFGEN, S.J. UAH
HAWK, C.W. UAH
ESKRIDGE, R. TD40
SMITH, J.W. TD40
 MARTIN, A.K. TD40
HOUTS, M. TD40
VAN DYKE, M.V. TD40
GODFROY, T.J. TD40
MARTIN, J.J. TD40
BRAGG-SITTON, S.M. TD40
ET AL.

KOSHAK, W.J. SD60
Analytic Solution to the Problem of Aircraft Electric Field Mill Calibration—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2003.

KOSHAK, W.J. SD60

KOSHAK, W.J. SD60
SOLAKIEWICZ, R.J. Chicago State University
BLAKESLEE, R.J. SD60
GOODMAN, S.J. SD60
CHRISTIAN, H.J. SD60
HALL, J.M. SD60
BAILEY, J.C. SD60
KRIDER, E.P. SD60
BATEMAN, M.G. SD60
BOCCIPPIO, D.J. SD60

KOSHAK, W.J. SD60
SOLAKIEWICZ, R.J. SD60
BLAKESLEE, R.J. SD60
GOODMAN, S.J. SD60
CHRISTIAN, H.J. SD60
HALL, J.M. SD60
BAILEY, J.C. SD60
KRIDER, E.P. SD60
BATEMAN, M.G. SD60
BOCCIPPIO, D.J. SD60

KOUVELIOTOU, C. SD50
EICHLER, D. Ben-Gurion University
WOODS, P.M. USRA
LYUBARSKY, Y. USRA
PATEL, S.K. SD50
GOGUS, E. USRA/Sabanci University
VAN DER KLIS, M. University of Amsterdam
TENNANT, A.F. SD50
WACHTER, S. SIRTFT Science Center/Caltech

KUNDROT, C.E. SD40

KUNDROT, C.E. SD40

LAMONTIA, M.A. Accudyne Systems, Inc.
GRUBER, M.B. Accudyne Systems, Inc.
FUNCK, S.B. Accudyne Systems, Inc.
WAIBEL, B.J. Accudyne Systems, Inc.
COPE, R.D. Accudyne Systems, Inc.
HULCHER, A.B. ED34

LAPENTA, W.M. SD60
WOHLMAN, R. UAH
BRADSHAW, T. National Weather Service
BURKS, J. National Weather Service
JEDLOVEC, G. SD60
GOODMAN, S.J. SD60
DARDEN, C. National Weather Service
MEYER, P. SD60

KOUVELIOTOU, C. SD50
EICHLER, D. Ben-Gurion University
WOODS, P.M. USRA
LYUBARSKY, Y. USRA
PATEL, S.K. SD50
GOGUS, E. USRA/Sabanci University
VAN DER KLIS, M. University of Amsterdam
TENNANT, A.F. SD50
WACHTER, S. SIRTFT Science Center/Caltech

KUNDROT, C.E. SD40

KUNDROT, C.E. SD40

LAROQUE, S.J. SD50
JOY, M. SD50
CARLSTROM, J.E. SD50
EBELING, H. SD50
BONAMANTE, M. SD50
DAWSON, K.S. SD50
EDGE, A. SD50
HOLZAPFEL, W.L. SD50
PATEL, S.K. SD50
ET AL.

LASZAR, J. TD62

LASZAR, J. TD62
SHAH, S. ED33
KASHALIKAR, U. Foster-Miller, Inc.
ROZENOYER, B. Foster-Miller, Inc.

LAW, B.C. Mississippi State University
HUDSON, S.T. Mississippi State University
STEEL, W.G. Mississippi State University
BUZZELL, J.C. TD51
HUGHES, M.S. Stennis Space Center

LAWRENCE, T.W. ED30

LEE, J.A. ED33
LEE, J.K. UAH
GARY, G.A. SD50
NEWMAN, T.S. UAH

LEIMKUEHLER, T.O. Honeywell, Inc.
LUKENS, C. Honeywell, Inc.
REEVES, D.R. Boeing
HOLT, J.M. ED25

LEIMKUEHLER, T.O. Honeywell, Inc.
SPELBRING, C. Honeywell, Inc.
REEVES, D.R. Boeing
HOLT, J.M. ED25

LESLIE, F.W. SD46
RAMACHANDRAN, N. BAE Systems

LEVIN, G.V. Spherix, Inc.
MILLER, J.D. University of Southern California
STRAAT, P.A. Retired
HOOVER, R.B. SD50

LEHOCZKY, S.L. SD46

LIN, B. UAB
ZHU, S. SD46
BAN, H. UAB
LI, C. UAB
SCRIPA, R.N. UAB
SU, C.-H. SD46
LEHOCZKY, S.L. SD46

LITCHFORD, R.J. TD40

LITCHFORD, R.J. TD40
COLE, J.W. TD40
RODGERS, S.L. TD40
SACKHEIM, R. DA01

LO, C.P. University of Georgia
QUATTROCHI, D.A. SD60

LORENZINI, E.C. Harvard-Smithsonian
WELYZN, K.J. TD55
COSMO, M.L. Harvard-Smithsonian

LOVELACE, J. SD46
BELLAMY, H. SD46
SNELL, E.H. SD46

BORGSTAHL, G. SD46

LU, H. USRA
ROBERTSON, F.R. SD60

MACH, D. UAH
BLAKESLEE, R.J. SD60
BALEY, J.C. Raytheon ITSS
FARRELL, W.M. Goddard Space Flight Center
GOLDBERG, R.A. Goddard Space Flight Center
DESCH, M.D. Goddard Space Flight Center
HOUSER, J.G. Goddard Space Flight Center
Preliminary Optical and Electric Field Pulse Statistics From Storm Overflights During the Altus Cumulus Electrification Study—Abstract Only. For presentation at the International Conference on Atmospheric Electricity, Versailles, France, June 9–13, 2003.

MACLEOD, T.C. SD22
HO, F.D. UAH

MAJUMDAR, A.K. ED25

MAJUMDAR, A.K. ED25
FLACHBART, R.H. ED25

MAJUMDAR, A.K. ED25
STEADMAN, T. Jacobs Sverdrup
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines—Abstract Only. For presentation at the 33rd International Conference

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40
CHOUEIRI, E.Y. Princeton University

MARSHALL, H. SD50
TENNANT, A.F. SD50
GRANT, C. SD50
HITCHCOCK, A. SD50
O’DELL, S.L. SD50
PLUCINSKY, P. SD50

MARSHALL, S. Rocky Mountain College
OGLESBY, R.J. SD60
DROBOT, S. University of Colorado
ANDERSON, M. University of Nebraska
Simulating Snow Over Sea Ice in Climate Models—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2002.

MARTIN, J.J. TD40
LEWIS, R.A. R. Lewis Company
FANT, W.E. Cortez III
Overview of the High-Performance Antiproton Trap (HiPAT) Experiment—Presentation. For presentation at the 17th International Conference on the Applications of Accelerators in Research and Industry, Denton, TX, November 12–16, 2002.

MARTIN, J.J. TD40
LEWIS, R.A. R. Lewis Co.
CHAKRABARTI, S. TD40
SIMS, W.H. TD40
PEARSON, J.B. TD40
FANT, W.E. Cortez III

MARTIN, J.J. TD40
LEWIS, R.A. TD40
SIMS, W.H. TD40
CHAKRABARTI, S. TD40
FANT, W.E. TD40
MCDONALD, S. TD40

MARTIN, J.J. TD40
LEWIS, R.A. TD40
SIMS, W.H. TD40
CHAKRABARTI, S. TD40
FANT, W.E. TD40
MCDONALD, S. TD40

MARTIN, J.J. TD40
LEWIS, R.A. TD40
STANOJEV, B. TD40

MARTINEZ-GALARCE, D.S. SD50
WALKER, A.B.C. SD50
BARBEE, T.W., II SD50
HOOVER, R.B. SD50

MAXWELL, T.G. FD42

MAZURUK, K. SD46

MAZURUK, K. SD46
GRUGEL, R.N. SD46

MCCAUL, E.W., JR. USRA
BUECHLER, D.E. UAH
GOODMAN, S.J. SD60
CAMMARATA, M. National Weather Service

MCCAUL, E.W., JR. USRA
GOODMAN, S.J. SD60
BUECHLER, D.E. UAH
BLAKESLEE, R.J. SD60

MELENDEZ, M. University of Texas, El Paso
TANG, W. University of South Carolina
MCCLURE, J.C. University of Texas, El Paso
NUNES, A.C., JR. ED30
MURR, L.E. University of Texas, El Paso

MELEN, D.P. ED41
GARCIA, D. ED41
VAUGHAN, W.W. UAH

MELTON, T. FD32
ONKEN, J. FD32

MERKLE, C.L. UT Space Institute
SANKARAN, V. UT Space Institute
DORNEY, D.J. TD64
SONDAK, D.L. Boston University

the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9, 2003.

MIKELLIDES, I.G. SAIC
MANDELL, M.J. SAIC
KUHARSKI, R.A. SAIC
DAVIS, D.A. SAIC
GARDNER, B.M. SAIC
MINOR, J. ED03

MITROFANOV, I.G. SD50
ANFIMOV, D.S. SD50
BRIGGS, M.S. SD50
FISHMAN, G.J. SD50
KIPPEN, R.M. SD50
LITVAK, M.L. SD50
MEEGAN, C.A. SD50
PACIESAS, W.S. SD50
PREECE, R.D. SD50
SANIN, A.B. SD50

MONELL, D. VS30
MATHIAS, D. Ames Research Center
REUTHER, J. Ames Research Center
GARN, M. Langley Research Center

MONTGOMERY, E.E., IV TD15
GARBE, G.P. TD15
HEATON, A.F. TD15

MOORE, R.L. SD50
DAVIS, J.M. SD50
HATHAWAY, D.H. SD50

MOORE, R.L. SD50
FALCONER, D.A. SD50
PORTER, J.G. SD50
HATHAWAY, D.H. SD50

MORRIS, C.I. TD40

MORRIS, C.I. TD40

MORRIS, C.I. TD40

MORRIS, C.I. TD40

MURDOCH, K. Hamilton Sundstrand
PERRY, J.L. FD21
SMITH, F. FD21

NALL, M. SD10

Commercial Research Results From the International Space Station—Abstract Only. For presentation at the 41st AIAA Aerospace Science Meeting and Exhibit, Reno, NV, January 6–9, 2003.

NESMAN, T.E. TD63

Shuttle Fuel Feedliner Cracking—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Conference/Location</th>
<th>Title/Abstract/Poster Presentation</th>
</tr>
</thead>
</table>
KOIDE, S.
SHIBATA, K.
KUDOH, T.
SOL, H.
FISHMAN, G.J.

O’DELL, S.L.
BAKER, M.
CONTENT, D.
FREEMAN, M.
GLENN, P.
GUBAREV, M.
HAIR, J.
JONES, W.
ET AL.

OCHOA, O.
JIANG, J.
PUTNAM, D.
LO, Z.
ELLIS, A.
EFFINGER, M.

OLIVER, S.T.
SELVIDGE, S.
WATWOOD, M.C.

ONSTOTT, T.C.
MOSER, D.P.
PFIFFNER, S.M.
FREDRICKSON, J.K.
BROCKMAN, F.J.
PHELPS, T.J.
WHITE, D.C.
Princeton University
Pacific Northwest National Lab
University of Tennessee
Pacific Northwest National Lab
Pacific Northwest National Lab
Oak Ridge National Lab
University of Tennessee
PARK, O.Y. ATK Thiokol Propulsion

PATEL, S.K. SD50
KOUVELIOTOU, C. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
KINGS, A. SD50
UBERTINI, P. SD50
WINKLER, C. SD50
COURVOISIER, T. SD50
VAN DER KLIS, M. ET AL.

PATTON, B.W. TD40
HOLLOWAY, J.P. University of Michigan

PEARSON, J.B. TD40
SIMS, W.H. TD40

PECK, J.A. ED21
MAHADEVAN, S. Vanderbilt University

PERRY, J.L. FD21
COLE, H.E. Boeing
CRAMBLITT, E.L. Boeing
Pikuta, E.V. PIKUTA, E.V. SD50
Hoover, R.B. HOOVER, R.B. SD50
Marsic, D. MARSIC, D. UAH
Whitman, W.B. WHITMAN, W.B. University of Georgia
Tang, J. TANG, J. American Type Culture
Krader, P. KRADER, P. American Type Culture

Platt, M.J. PLATT, M.J. Concepts NREC
Marsh, M. MARSH, M. TD61

Platt, M.J. PLATT, M.J. Concepts NREC
Yu, M.M. YU, M.M. Concepts NREC
Marsh, M. MARSH, M. TD61

Polsgrove, T. POLSGROVE, T. TD30
MSFC MXER Tether Study—Interim Report—Charts. For presentation at the Advanced Space Propulsion Workshop, Huntsville, AL, April 15–17, 2003.

Porter, J.G. PORTER, J.G. SD50
West, E.A. WEST, E.A. SD50
Davis, J.M. DAVIS, J.M. SD50
Gary, G.A. GARY, G.A. SD50
Noble, M.W. NOBLE, M.W. SD50
Thomas, R.J. THOMAS, R.J. Goddard Space Flight Center
Rabin, D.M. RABIN, D.M. Goddard Space Flight Center
Uitenbroek, H. UITENBROEK, H. NSO

Prince, F.A. PRINCE, F.A. VS20

Pusey, M.L. PUSEY, M.L. SD46

Dowell, J. DOWELL, J. UAH
Gavira-Gallardo, J.A. GAVIRA-GALLARDO, J.A. UAH
Ng, J.D. NG, J.D. UAH

Van Der Woerd, M.J. VAN DER WOERD, M.J. USRA
Ferree, D.S. FERREE, D.S. USRA

Quinn, J.E. QUINN, J.E. TD51

Ramachandran, N. RAMACHANDRAN, N. USRA
Leslie, F.W. LESLIE, F.W. SD46

Ramachandran, N. RAMACHANDRAN, N. BAE/SD46
Leslie, F.W. LESLIE, F.W. SD46
RAMACHANDRAN, N. USRA
LESLIE, F.W. SD46

RAMACHANDRAN, N. BAE/SD46
MAJUMDAR, A.K. ED25
MCDANIELS, D.M. TD63
STEWART, E. ED25

RAMSEY, B.D. SD50
BASSO, S. Osservatorio Astronomico di Brera
BRUNI, R.J. Harvard-Smithsonian
CITERIO, O. Osservatorio Astronomico di Brera
ENGELHAUPT, D. UAH
GHIIGO, M. Osservatorio Astronomico di Brera
GORENSTIEN, P. Harvard-Smithsonian
MAZZOLENI, F. Osservatorio Astronomico di Brera
O’DELL, S.L. SD50
SPEEGLE, C.O. Raytheon ITSS

RAMSEY, B.D. SD50
ELSNER, R.F. SD50
ENGELHAUPT, D. UAH
GUBAREV, M. USRA
KOLODZIEJCZAK, J. SD50
MARTIN, G. ERC, Inc.
O’DELL, S.L. SD50
SPEEGLE, C.O. Raytheon ITSS
WEISSKOPF, M.C. SD50

RAMSEY, B.D. SD50
GASKIN, J. SD50
SHARMA, D. SD50
SELLER, P. Rutherford Appleton Laboratory

RAMSEY, B.D. SD50
GUBAREV, M. SD70
APPLE, J. SD50

RAMSEY, B.D. SD50
SPEEGLE, C.O. Raytheon ITSS
GASKIN, J. UAH
SHARMA, D. SD50
ENGELHAUPT, D. UAH

RAMSEY, B.D. SD50
GUBAREV, M. SD50
APPLE, J. SD50
GASKIN, J. UAH
SHARMA, D. SD50
ENGELHAUPT, D. UAH
SPEEGLE, C.O. Raytheon ITSS
GASKIN, J. UAH
SHARMA, D. SD50
ENGELHAUPT, D. UAH
SPEEGLE, C.O. Raytheon ITSS
GASKIN, J. UAH
SHARMA, D. SD50
ENGELHAUPT, D. UAH

CHUNG, T.J. SD50

RICHMOND, R.C. SD46

RICHMOND, R.C. SD46
CRUZ, A. SD46
JANSEN, H. SD46
BORS, K. SD46
A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk—

RITCHIE, S. University of Alabama
HOLLADAY, J. FD23
CLARK, D. FD24
HOLT, J.M. ED25

ROBERTSON, F.R. SD60
FITZJARRALD, D.E. SD60
KUMMEROW, C.D. Colorado State University

ROBERTSON, T. NORLEY, G.D.

ROCKER, M. NESMAN, T.E. HULKA, J.R.

ROCKER, M. WEST, J.S.

ROGERS, M. Luna Innovations, Inc.
STEVENSON, P. Luna Innovations, Inc.
SCRIBBEN, E. Virginia Polytechnic Institute
BAIRD, D. Virginia Polytechnic Institute
HULCHER, A.B. ED34

ROTHELMEL, J. TD64
DORNEY, D.J. TD64
DORNEY, S.M. TD64

ROTHELMEL, J. TD64
DORNEY, S.M. TD64
DORNEY, D.J. TD64

CFD-Based Design of Turbopump Inlet Duct for Reduced Dynamic Loads—Final Paper. For presentation at the Thermal and Fluids Analysis Workshop, Norfolk, VA, August 18–22, 2003.

RUF, J.H. TD64
HAGEMANN, G. Astrium, Germany
IMMICH, H. Astrium, Germany

RUF, J.H. TD64
MCDANIELS, D.M. TD64

RUSSELL, S.S. ED32
WALKER, J.L. ED32
LANSING, M.D. ED32

Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing—Abstract Only.

For presentation at the ASNT Fall Conference and Quality Testing Show, Pittsburgh, PA, October 13–17, 2003.

SACKHEIM, R. DA01

In-Space Propulsion—Where We Stand and What’s Next—Final Paper. For presentation at the Tenth International Workshop on Combustion and Propulsion, Lerici, La Spezia, Italy, September 21–25, 2003.

SACKHEIM, R. DA01
CIKANEK, H.A. GRC
BEAURAIN, A. Snecma Moteurs
SOUCHIER, A. Snecma Moteurs
MORAVIE, M. Snecma Propulsion Solide

SAFIE, F.M. UP10
DANIEL, C. UP10
KALIA, P. Raytheon ITSS

SALVAL, P.G. ED33

SCHLAGHECK, R.A. SD41

SCHNEIDER, J.A. ED30

Mississippi State University
NUNES, A.C., JR. ED30

SCHNEIDER, M. FD41

SCHNEIDER, M. FD41

SCHNEIDER, T. ED31
VAUGHN, J.A. ED31
CARRUTH, M.R., JR. ED30
MIKELIDES, I.G. SAIC
JONGEWARD, G.A. SAIC
PETERSON, T. Glenn Research Center
KERSLAKE, T.W. Glenn Research Center
SNYDER, D. Glenn Research Center
FERGUSON, D. Glenn Research Center
HOSKINS, A. Aerojet

SCHNELL, A.R. Tennessee Technological University
TINKER, M.L. ED21

SCHOENFELD, M.P. New Mexico St. University
TINKER, M.L. ED21

SCHOFFSTOLL, D.L. TD53

SCOTT, D.M. USRA
FINGER, M.H. USRA
WILSON, C.A. SD50

SEGRE, P.N. SD46

SELVIDGE, S. ED33
WATWOOD, M.C. ERC

SEVER, T.L. SD60

SEVER, T.L. SD60
IRWIN, D. SD60

SHAH, S. ED33
WELLS, D. ED33
WAGNER, J. Langley Research Center
BABEL, H. Boeing

SHARP, J.R. ED26
KITTREDGE, K. ED26
SCHUNK, R.G. ED26

SHEEHY, J.A. TD40
<table>
<thead>
<tr>
<th>Name</th>
<th>ED/SD/FP</th>
<th>Institution/Division</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEVER, T.L.</td>
<td>SD60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONYERS, L.</td>
<td>SD60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANFORD, T.M.</td>
<td>FD31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEY, R.B.</td>
<td>FD31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, K.A.</td>
<td>Raytheon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNELLGROVE, L.M.</td>
<td>TD63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIFFIN, L.W.</td>
<td>TD64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIEJA, J.P.</td>
<td>TD74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SONDAR, D.L.</td>
<td>Boston University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOZEN, M.</td>
<td>Embry-Riddle Aeronautical University</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STAHLM, H.P. SD70

STATHAM, G. TD40

WHITE, S. TD40

ADAMS, R.B. TD40

THIO, Y.C.F. TD40

ALEXANDER, R. TD40

FINCHER, S. TD40

PHILIPS, A. TD40

POLSGROVE, T. TD40

SULLIVAN, D.G. Auburn University
SHAW, J.N. Auburn University
MASK, P.L. Auburn University
RICKMAN, D. SD60
LUVALL, J.C. SD60
WERSINGER, J.M. Auburn University

SULLIVAN, D.G. Auburn University
SHAW, J.N. Auburn University
RICKMAN, D. SD60
MASK, P.L. Auburn University
WERSINGER, J.M. Auburn University
LUVALL, J.C. SD60

SWIFT, W.R. ED44
SUGGS, R.M. ED44
MEACHEM, T. ED44

THOMAS, D. VS01
SMITH, C. UP10
SAFIE, F.M. UP10
KITTREDGE, S. UP10

TAKAHASHI, Y. UAH
HILLMAN, L.W. UAH
ZUCCARO, A. UAH
ADAMS, J.H. SD50
CLINE, D. University of California

TAYLOR, J. Austin Peay State
RAKOZY, J. ED10
STEINCAMP, J. ED10
MATLOFF, G.L. Bangs/Matloff Aerospace

TAYLOR, T. Teledyne Brown Engineering
MOTON, T.T. Teledyne Brown Engineering
ROBINSON, D. Teledyne Brown Engineering
ANDING, R.C. Teledyne Brown Engineering

MONTGOMERY, E.E., IV TD05

THOMAS, D. VS01
SMITH, C. UP10

THOMAS, D. VS01
SMITH, C. UP10
THOMAS, L. UP10
KITTREDGE, S. UP10

THOMPSON, A.N. SD60
SHAW, J.N. SD60
MASK, P.L. SD60
TOUCHTON, J.T. SD60
RICKMAN, D. SD60

THOMPSON, M.S. UAH
PAKHOMOV, A.V. UAH
HERREN, K.A. SD71

TREVINO, L.C. ED14
OLCMEN, S. UAH
POLITES, M. UAH

TRINH, H.P. TD61
BULLARD, B. TD61
KOPICZ, C. TD61
MICHAELS, S. U.S. Army Missile Command

TRINH, H.P. TD61
EARLY, J. Los Alamos National Laboratory
OSBORNE, R. ERC, Inc.

TRINH, H.P. TD61
EARLY, J. Los Alamos National Laboratory
OSBORNE, R. ERC, Inc.
TRINH, H.P. TD61
KOPICZ, C. ERC, Inc.
BULLARD, B. TD61
MICHAELS, S. U.S. Army Missile Command

TRINH, H.P. TD61
KOPICZ, C. ERC, Inc.
TROLINGER, J.D. MetroLaser
L’ESPERANCE, D. MetroLaser
RANGEL, R. University of California
COIMBRA, C. University of Hawaii
WITHEROW, W.K. SD46

TUCKER, D.S. SD71
TUCKER, J. Southern Research Institute
DASPT, G. Southern Research Institute
STALLCUP, M. SD71
PRESSON, J. SD71
NEIN, M. UAH

TUCKER, D.S. SD70
ETHRIDGE, E.C. SD70
SMITH, G.A. UAH
WORKMAN, G. UAH

TUCKER, D.S. SD71
NETTLES, A.T. SD71
CAGLE, H. SD71

TURNER, S.G. UP40

TURNER, S.G. UP40

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida
VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida
VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida

Ion Velocity Distributions Within LLBL and Their Possible Implication to Multiple Reconnections—Abstract Only. For publication in Annales Geophysicae, 2003.

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida
VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida
VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida
VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida

Plasma Interactions With a Negative Biased Electrodynamic Tether—Abstract Only. For presentation at the 8th Spacecraft Charging Technology Conference, Huntsville, AL, October 20–24, 2003.

WEFEL, J.P. Louisiana State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHRISTL, M.J. SD50
COX, M. SD50
ELLISON, S.B. Louisiana State University
FAZLEY, A.R. Southern University

WEIR, J.M. ED19
WELLS, B.E. ED19

WEISSKOPF, M.C. SD50

WEISSKOPF, M.C. SD50

O’DELL, S.L. SD50
PAERELS, F. Columbia University
ELSNER, R.F. SD50
BECKER, W.E. Max Planck Institute
TENNANT, A.F. SD50
SWARTZ, D.A. USRA

WEISSKOPF, M.C. SD50

WU, K. University College London
TENNANT, A.F. SD50
SWARTZ, D.A. USRA

WELCH, A.C. AD42

International Space Station Laboratory “Destiny” Hardware Move From MSFC to KSC—Final Paper. For presentation at the Society of Logistics Engineers 38th Annual International Conference and Exhibition, Huntsville, AL, August 10–14, 2003.

WELCH, C.L. FD30

WELCH, C.L.

WERT, M.J.
HOFMEISTER, W.H.
BAYUZICK, R.J.
ROGERS, J.R.
RATHZ, T.J.
FOUNTAIN, G.
HYERS, R.W.

WEST, J.S.
ORTHMERL, J.
Application of the Loci-Based CFD Code Chem at MSFC: Preliminary Results—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.

WEST, J.S.
TUCKER, P.K.
WILLIAMS, R.W.

WHITAKER, A.F.
CURREI, P.A.
SMITH, T.R.

WHITE, C.E.
GUIDOS, M.
GREENE, W.D.

WHORTON, M.S.
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINGARD, C.D.</td>
<td>ED34</td>
</tr>
<tr>
<td>WRIGHT, K.H., JR.</td>
<td>SD50</td>
</tr>
<tr>
<td>DUTTON, K.</td>
<td>Madison Research Corporation</td>
</tr>
<tr>
<td>MARTINEZ, N.</td>
<td>SD22</td>
</tr>
<tr>
<td>SMITH, D.</td>
<td>ED17</td>
</tr>
<tr>
<td>STONE, N.H.</td>
<td>SRS Technologies</td>
</tr>
<tr>
<td>WRIGHT, K.H., JR.</td>
<td>UAH</td>
</tr>
<tr>
<td>STONE, N.H.</td>
<td>SRS Technologies</td>
</tr>
<tr>
<td>GILCHRIST, B.E.</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>VAUGHN, J.</td>
<td>SD50</td>
</tr>
<tr>
<td>GARBE, G.</td>
<td>SD50</td>
</tr>
<tr>
<td>WRIGHT, M.D.</td>
<td>CD40</td>
</tr>
<tr>
<td>WRIGHT, S.A.</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>LIPINSKI, R.J.</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>GODFROY, T.J.</td>
<td>TD40</td>
</tr>
<tr>
<td>BRAGG-SITTON, S.M.</td>
<td>TD40</td>
</tr>
<tr>
<td>VAN DYKE, M.V.</td>
<td>TD40</td>
</tr>
<tr>
<td>YU, J.</td>
<td>University of California</td>
</tr>
<tr>
<td>WALUKIEWICZ, W.</td>
<td>Lawrence Berkeley National Lab</td>
</tr>
<tr>
<td>SHAN, W.</td>
<td>Lawrence Berkeley National Lab</td>
</tr>
<tr>
<td>AGER, J.W.</td>
<td>Lawrence Berkeley National Lab</td>
</tr>
<tr>
<td>HALLER, E.E.</td>
<td>Lawrence Berkeley National Lab</td>
</tr>
<tr>
<td>MIOTKOWSKI, A.K.</td>
<td>Purdue University</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>SD46</td>
</tr>
<tr>
<td>WUCHERER, E.J.</td>
<td>Aerojet</td>
</tr>
<tr>
<td>COOK, T.</td>
<td>Aerojet</td>
</tr>
<tr>
<td>STIEFEL, M.</td>
<td>Aerojet</td>
</tr>
<tr>
<td>HUMPHRIES, R.</td>
<td>MP01</td>
</tr>
<tr>
<td>PARKER, J.</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>XENOFOSS, G.</td>
<td>TD62</td>
</tr>
<tr>
<td>FORBES, J.</td>
<td>TD62</td>
</tr>
<tr>
<td>FARROW, J.</td>
<td>TD62</td>
</tr>
<tr>
<td>WILLIAMS, R.W.</td>
<td>TD64</td>
</tr>
<tr>
<td>TYLER, T.</td>
<td>TD63</td>
</tr>
<tr>
<td>SARGENT, S.</td>
<td>Boeing-Rocketdyne</td>
</tr>
<tr>
<td>MOHAROS, J.</td>
<td>Boeing-Rocketdyne</td>
</tr>
<tr>
<td>YAMAIUCHI, Y.</td>
<td>SD50</td>
</tr>
<tr>
<td>MOORE, R.L.</td>
<td>SD50</td>
</tr>
<tr>
<td>SUSS, S.T.</td>
<td>SD50</td>
</tr>
<tr>
<td>WANG, H.</td>
<td>SD50</td>
</tr>
<tr>
<td>SAKURAI, T.</td>
<td>SD50</td>
</tr>
<tr>
<td>YESILYURT, S.</td>
<td>SD46</td>
</tr>
<tr>
<td>MOTEKAF, S.</td>
<td>SD46</td>
</tr>
<tr>
<td>GRUGEL, R.N.</td>
<td>SD46</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>SD46</td>
</tr>
<tr>
<td>YOUNG, R.B.</td>
<td>SD46</td>
</tr>
<tr>
<td>BRIDGE, K.</td>
<td>SD46</td>
</tr>
</tbody>
</table>

Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For presentation at the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003.

Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For publication in Nuclear Instruments and Methods, 2003.
INDEX

TECHNICAL MEMORANDA

BENNETT, K.E. ... 2
BOOTHE, R.E. ... 1, 2
BURNS, H.D. ... 2
COOPER, K.G. .. 3
FINCKENOR, J.L. .. 2
GAMWELL, W.R. .. 1
GLASGOW, S.D. .. 1
GRIFFIN, M.R. .. 3
GRUGEL, R.N. .. 1
KING, K.D. ... 2
KITTREDGE, K.B. .. 1
MAZURUK, K. ... 1
NEWTON, R.L. ... 3
PICKETT, R.D. ... 2
SMITH, K. ... 3
SUMMERS, F.G. ... 2
TINKER, M.L. ... 1
VOLZ, M.P. ... 1
WATSON, G.L. ... 3

TECHNICAL PUBLICATIONS

ALBYN, K.C. ... 6
BOOTHE, R.E. ... 6
BROWN, A.M. ... 4, 5
BURNS, H.D. ... 6
CHANDRASEKHAR, V. ... 6
CHAPMAN, J.N. ... 5, 6
COLE, J.W. ... 5
DIKIN, D.A. ... 6
DOBSON, C.C. ... 5
EDWARDS, D.L. ... 4
FINCHUM, C.A. ... 6
FINCKENOR, M.M. ... 4, 6
HAWK, C.W. ... 5
HOPPE, D.T. ... 4
HOVATER, M.A. ... 4
HOWELL, L.W. ... 4
JONES, J.E. ... 5
LINEBERRY, C.W. ... 5
LINEBERRY, J.T. ... 5
LITCHFORD, R.J. ... 5, 6
MCGHEE, D.S. ... 4
PLEMMONS, D.H. ... 5
RUOFF, R.S. ... 6
SCHMIDT, H.J. ... 5, 6
SCHNEIDER, T.A. ... 4
SEUGLING, R.M. ... 5
THOMPSON, B.R. ... 5
TURNER, M.W. ... 5
VAUGHN, J.A. ... 4

CONFERENCE PUBLICATIONS

BENNETT, N. ... 7
BREWER, J.C. ... 7
GILLIES, D. ... 7
MCCAULEY, D. ... 7
MURPHY, K. ... 7
RAMACHANDRAN, N. ... 7

CONTRACTOR REPORTS

BLAND, J. ... 8
CRAIN, S.H. ... 8
EBERLE, B. ... 8
FARRIS, B. ... 8
FREEMAN, L.M. ... 8
GORDON, T. ... 8
KARR, C.L. ... 8
KARR, G. ... 8
LOOPER, M.D. ... 8
MAZUR, J.E. ... 8
NASH-STEVenson, S.K. ... 8
NEGAST, B. ... 8
PICKEL, J.C. ... 8
RANTANEN, R. ... 8
WOODCOCK, G. ... 8

57
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBAS, M.M.</td>
<td>9, 17</td>
</tr>
<tr>
<td>ABEL, T.</td>
<td>47</td>
</tr>
<tr>
<td>ABYZOV, S.S.</td>
<td>9</td>
</tr>
<tr>
<td>ACHARI, A.</td>
<td>43</td>
</tr>
<tr>
<td>ADAMO, C.</td>
<td>9</td>
</tr>
<tr>
<td>ADAMS, D.E.</td>
<td>9</td>
</tr>
<tr>
<td>ADAMS, J.H.</td>
<td>9, 10</td>
</tr>
<tr>
<td>ADAMS, R.B.</td>
<td>10, 47</td>
</tr>
<tr>
<td>ADRIAN, M.L.</td>
<td>10, 22</td>
</tr>
<tr>
<td>AGER, J.W.</td>
<td>54</td>
</tr>
<tr>
<td>AGGARWAL, P.K.</td>
<td>11</td>
</tr>
<tr>
<td>AHMED, R.</td>
<td>10</td>
</tr>
<tr>
<td>AHN, E.J.</td>
<td>20, 21</td>
</tr>
<tr>
<td>AHN, H.S.</td>
<td>10, 11, 16, 21, 25, 52, 55</td>
</tr>
<tr>
<td>ALBARADO, T.</td>
<td>11</td>
</tr>
<tr>
<td>ALBYN, K.</td>
<td>11</td>
</tr>
<tr>
<td>ALEXANDER, R.</td>
<td>10, 47</td>
</tr>
<tr>
<td>ALLEN, P.A.</td>
<td>11</td>
</tr>
<tr>
<td>ALOOR, S.</td>
<td>11</td>
</tr>
<tr>
<td>ALRED, J.</td>
<td>11</td>
</tr>
<tr>
<td>ALTSTATT, R.</td>
<td>19</td>
</tr>
<tr>
<td>ANDERSON, M.</td>
<td>35</td>
</tr>
<tr>
<td>ANDERSON, M.I.</td>
<td>27</td>
</tr>
<tr>
<td>ANDING, R.C.</td>
<td>48</td>
</tr>
<tr>
<td>ANFIMOVA, D.S.</td>
<td>37</td>
</tr>
<tr>
<td>ANILKUMAR, A.V.</td>
<td>11, 25</td>
</tr>
<tr>
<td>APPLE, J.</td>
<td>25, 42</td>
</tr>
<tr>
<td>ARAKERE, N.K.</td>
<td>11</td>
</tr>
<tr>
<td>ARUMUGAM, M.</td>
<td>11</td>
</tr>
<tr>
<td>ARVES, J.</td>
<td>47</td>
</tr>
<tr>
<td>ASHLEY, P.R.</td>
<td>31</td>
</tr>
<tr>
<td>ATHAYDE, A.</td>
<td>13</td>
</tr>
<tr>
<td>AVANOVA, L.A.</td>
<td>10, 12, 16, 31, 50</td>
</tr>
<tr>
<td>BABEL, H.</td>
<td>45</td>
</tr>
<tr>
<td>BACKER, D.</td>
<td>13, 52</td>
</tr>
<tr>
<td>BAGGETT, R.M.</td>
<td>12</td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>13, 20, 23, 32, 34, 36</td>
</tr>
<tr>
<td>BAILEY, J.W.</td>
<td>26</td>
</tr>
<tr>
<td>Baird, D.</td>
<td>43, 44</td>
</tr>
<tr>
<td>Baird, J.K.</td>
<td>12</td>
</tr>
<tr>
<td>Baker, M.</td>
<td>39</td>
</tr>
<tr>
<td>BALLARD, R.O.</td>
<td>12</td>
</tr>
<tr>
<td>Ban, H.</td>
<td>33, 34</td>
</tr>
<tr>
<td>Baranova, N.</td>
<td>12</td>
</tr>
<tr>
<td>Barbee, T.W., II</td>
<td>36</td>
</tr>
<tr>
<td>Barghouty, A.F.</td>
<td>30</td>
</tr>
<tr>
<td>Barlow, D.A.</td>
<td>12</td>
</tr>
<tr>
<td>Barnes, C.L.</td>
<td>12, 27</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>12</td>
</tr>
<tr>
<td>Barth, J.</td>
<td>30</td>
</tr>
<tr>
<td>B resolvedZHAYAN, G.L.</td>
<td>10, 11, 12, 16, 20, 21, 25, 52, 55</td>
</tr>
<tr>
<td>B resolvedZHAYAN, P.</td>
<td>12</td>
</tr>
<tr>
<td>Basso, S.</td>
<td>12, 42</td>
</tr>
<tr>
<td>Bateman, M.G.</td>
<td>32, 36</td>
</tr>
<tr>
<td>Batkov, K.E.</td>
<td>10, 11, 16, 52, 55</td>
</tr>
<tr>
<td>Batra, R.C.</td>
<td>26</td>
</tr>
<tr>
<td>Battista, G.</td>
<td>11</td>
</tr>
<tr>
<td>Baugher, C.R.</td>
<td>12</td>
</tr>
<tr>
<td>Bayuzick, R.J.</td>
<td>53</td>
</tr>
<tr>
<td>Beaurain, A.</td>
<td>44</td>
</tr>
<tr>
<td>Becker, W.E.</td>
<td>12, 52</td>
</tr>
<tr>
<td>Beji, A.K.</td>
<td>28, 40</td>
</tr>
<tr>
<td>Bell, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>Bellamy, H.</td>
<td>14, 34</td>
</tr>
<tr>
<td>Belloni, T.</td>
<td>53</td>
</tr>
<tr>
<td>Bemporad, A.</td>
<td>13</td>
</tr>
<tr>
<td>Benson, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>Berat, C.</td>
<td>9</td>
</tr>
<tr>
<td>Bernhardsdotter, E.</td>
<td>13</td>
</tr>
<tr>
<td>Beshers, R.</td>
<td>19</td>
</tr>
<tr>
<td>Best, S.</td>
<td>13, 38</td>
</tr>
<tr>
<td>Bhardwaj, A.</td>
<td>19</td>
</tr>
<tr>
<td>Bhat, B.</td>
<td>17</td>
</tr>
<tr>
<td>Bhowmick, J.</td>
<td>11</td>
</tr>
<tr>
<td>Bille, M.</td>
<td>26</td>
</tr>
<tr>
<td>Bjorkman, G.</td>
<td>13</td>
</tr>
<tr>
<td>Blackwell, W.C.</td>
<td>13, 51</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>13, 15, 20, 23, 32, 34, 36</td>
</tr>
<tr>
<td>Blehm, Z.</td>
<td>26, 40</td>
</tr>
<tr>
<td>Blevins, J.A.</td>
<td>13</td>
</tr>
<tr>
<td>Boccio, D.</td>
<td>15</td>
</tr>
<tr>
<td>Boccippio, D.J.</td>
<td>14, 32, 36</td>
</tr>
<tr>
<td>Boeck, W.L.</td>
<td>14</td>
</tr>
<tr>
<td>Boles, W.</td>
<td>15</td>
</tr>
<tr>
<td>Bonamente, M.</td>
<td>30, 33</td>
</tr>
<tr>
<td>Bonner, W.A.</td>
<td>39</td>
</tr>
<tr>
<td>Bonometti, J.</td>
<td>10</td>
</tr>
<tr>
<td>Book, M.L.</td>
<td>28</td>
</tr>
<tr>
<td>Bordelon, W.J., Jr.</td>
<td>14</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>PREECE, R.D.</td>
<td>10, 37, 38</td>
</tr>
<tr>
<td>PRESSON, J.</td>
<td>50</td>
</tr>
<tr>
<td>PRINCE, F.A.</td>
<td>41</td>
</tr>
<tr>
<td>PUESCHEL, R.F.</td>
<td>17</td>
</tr>
<tr>
<td>PULONE, L.</td>
<td>52</td>
</tr>
<tr>
<td>PUSEY, M.A.</td>
<td>13, 23, 38, 41</td>
</tr>
<tr>
<td>PUTNAM, D.</td>
<td>39</td>
</tr>
<tr>
<td>QUATTROCHI, D.A.</td>
<td>11, 14, 20, 32, 34</td>
</tr>
<tr>
<td>QUINN, J.E.</td>
<td>41</td>
</tr>
<tr>
<td>RABIN, D.M.</td>
<td>41</td>
</tr>
<tr>
<td>RAKOZY, J.</td>
<td>48</td>
</tr>
<tr>
<td>RAMACHANDRAN, N.</td>
<td>33, 41, 42</td>
</tr>
<tr>
<td>RAMIREZ-RUIZ, R.</td>
<td>29</td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td>12, 22, 25, 42</td>
</tr>
<tr>
<td>RANGEL, R.</td>
<td>49</td>
</tr>
<tr>
<td>RATHZ, T.J.</td>
<td>30, 53</td>
</tr>
<tr>
<td>REDMAN, S.</td>
<td>14</td>
</tr>
<tr>
<td>REED, D.K.</td>
<td>14</td>
</tr>
<tr>
<td>REED, L.</td>
<td>26</td>
</tr>
<tr>
<td>REEVES, D.R.</td>
<td>33</td>
</tr>
<tr>
<td>REICHMAN, E.J.</td>
<td>26</td>
</tr>
<tr>
<td>REIFF, P.</td>
<td>23</td>
</tr>
<tr>
<td>REILY, J.C.</td>
<td>15, 29</td>
</tr>
<tr>
<td>REINISCH, B.W.</td>
<td>15, 23, 28, 42</td>
</tr>
<tr>
<td>REISZ, A.</td>
<td>43</td>
</tr>
<tr>
<td>RENNO, N.</td>
<td>13</td>
</tr>
<tr>
<td>REUTHER, J.</td>
<td>37</td>
</tr>
<tr>
<td>REYNOLDS, D.W.</td>
<td>46</td>
</tr>
<tr>
<td>RICHARDSON, G.A.</td>
<td>22, 38, 42</td>
</tr>
<tr>
<td>RICHARDSON, L.</td>
<td>29</td>
</tr>
<tr>
<td>RICHMOND, R.C.</td>
<td>21, 42</td>
</tr>
<tr>
<td>RICKMAN, D.</td>
<td>47, 48, 49</td>
</tr>
<tr>
<td>RIDLEY, A.J.</td>
<td>31</td>
</tr>
<tr>
<td>RILEY, P.</td>
<td>13</td>
</tr>
<tr>
<td>RITCHIE, S.</td>
<td>43</td>
</tr>
<tr>
<td>ROBERTS, B.C.</td>
<td>27, 29</td>
</tr>
<tr>
<td>ROBERTSON, F.R.</td>
<td>34, 43</td>
</tr>
<tr>
<td>ROBERTSON, T.</td>
<td>43</td>
</tr>
<tr>
<td>ROBINSON, D.</td>
<td>48</td>
</tr>
<tr>
<td>ROBINSON, M.B.</td>
<td>30</td>
</tr>
<tr>
<td>ROCKER, M.</td>
<td>43</td>
</tr>
<tr>
<td>RODGERS, S.L.</td>
<td>13, 34, 43</td>
</tr>
<tr>
<td>ROE, F.D.</td>
<td>43</td>
</tr>
<tr>
<td>ROEBER, D.</td>
<td>43</td>
</tr>
<tr>
<td>ROGERS, J.R.</td>
<td>21, 30, 43, 53</td>
</tr>
<tr>
<td>ROGERS, M.</td>
<td>43, 44</td>
</tr>
<tr>
<td>ROIGER, R.J.</td>
<td>26</td>
</tr>
<tr>
<td>ROMAN, M.</td>
<td>53</td>
</tr>
<tr>
<td>ROMOLI, M.</td>
<td>13</td>
</tr>
<tr>
<td>ROTHERMEL, J.</td>
<td>18, 44, 53</td>
</tr>
<tr>
<td>ROZENoyer, B.</td>
<td>33</td>
</tr>
<tr>
<td>RUF, J.H.</td>
<td>44</td>
</tr>
<tr>
<td>RUPEN, M.</td>
<td>23</td>
</tr>
<tr>
<td>RUSSELL, C.</td>
<td>14</td>
</tr>
<tr>
<td>RUSSELL, S.S.</td>
<td>14, 19, 44, 51</td>
</tr>
<tr>
<td>SACKHEIM, R.</td>
<td>34, 44</td>
</tr>
<tr>
<td>SAFIE, F.M.</td>
<td>44, 48</td>
</tr>
<tr>
<td>SAHI, M.</td>
<td>26</td>
</tr>
<tr>
<td>SAKURAI, T.</td>
<td>40, 54</td>
</tr>
<tr>
<td>SALK, N.</td>
<td>17</td>
</tr>
<tr>
<td>SALVAIL, P.</td>
<td>28, 51</td>
</tr>
<tr>
<td>SALVAIL, P.G.</td>
<td>44</td>
</tr>
<tr>
<td>SALVATO, M.</td>
<td>24</td>
</tr>
<tr>
<td>SANDEL, B.R.</td>
<td>22, 23, 42</td>
</tr>
<tr>
<td>SANIN, A.B.</td>
<td>37</td>
</tr>
<tr>
<td>SANKARAN, V.</td>
<td>36</td>
</tr>
<tr>
<td>SANTARUS, J.</td>
<td>10, 47</td>
</tr>
<tr>
<td>SARGENT, S.</td>
<td>18, 54</td>
</tr>
<tr>
<td>SCHLAGHECK, R.A.</td>
<td>44</td>
</tr>
<tr>
<td>SCHMIDT, C.</td>
<td>25</td>
</tr>
<tr>
<td>SCHMIDT, W.K.H.</td>
<td>16</td>
</tr>
<tr>
<td>SCHNEIDER, J.</td>
<td>14</td>
</tr>
<tr>
<td>SCHNEIDER, J.A.</td>
<td>44</td>
</tr>
<tr>
<td>SCHNEIDER, L.</td>
<td>38</td>
</tr>
<tr>
<td>SCHNEIDER, M.</td>
<td>45</td>
</tr>
<tr>
<td>SCHNEIDER, T.</td>
<td>28, 45</td>
</tr>
<tr>
<td>SCHNELL, A.R.</td>
<td>45</td>
</tr>
<tr>
<td>SCHOENFELD, M.P.</td>
<td>45</td>
</tr>
<tr>
<td>SCHOFFSTOLL, D.L.</td>
<td>45</td>
</tr>
<tr>
<td>SCHUNK, R.G.</td>
<td>45</td>
</tr>
<tr>
<td>SCHWARTZ, D.</td>
<td>51</td>
</tr>
<tr>
<td>SCHWARTZ, R.</td>
<td>24</td>
</tr>
<tr>
<td>SCHWARZ, L.</td>
<td>15</td>
</tr>
<tr>
<td>SCOTT, D.L.</td>
<td>43</td>
</tr>
<tr>
<td>SCOTT, D.M.</td>
<td>45</td>
</tr>
<tr>
<td>SCRIBBEN, E.</td>
<td>43, 44</td>
</tr>
<tr>
<td>SCRIPA, R.N.</td>
<td>33, 34</td>
</tr>
<tr>
<td>SEBILLE, L.</td>
<td>15</td>
</tr>
<tr>
<td>SEGRE, P.N.</td>
<td>16, 45</td>
</tr>
<tr>
<td>SELLER, P.</td>
<td>22, 42</td>
</tr>
<tr>
<td>SELVIDGE, S.</td>
<td>39, 45</td>
</tr>
<tr>
<td>SEMMEL, C.</td>
<td>11, 19</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SEVER, T.L.</td>
<td>45, 46</td>
</tr>
<tr>
<td>SEYMOUR, D.</td>
<td>25</td>
</tr>
<tr>
<td>SHADOAN, M.</td>
<td>39</td>
</tr>
<tr>
<td>SHAH, S.</td>
<td>33, 39, 45</td>
</tr>
<tr>
<td>SHAN, W.</td>
<td>54</td>
</tr>
<tr>
<td>SHARMA, A.</td>
<td>24</td>
</tr>
<tr>
<td>SHARMA, D.</td>
<td>22, 42</td>
</tr>
<tr>
<td>SHARP, J.R.</td>
<td>45</td>
</tr>
<tr>
<td>SHAW, J.N.</td>
<td>47, 48, 49</td>
</tr>
<tr>
<td>SHEEHY, J.A.</td>
<td>45</td>
</tr>
<tr>
<td>SHEETS, P.</td>
<td>46</td>
</tr>
<tr>
<td>SHELDON, R.</td>
<td>9</td>
</tr>
<tr>
<td>SHIBATA, K.</td>
<td>39</td>
</tr>
<tr>
<td>SHY, W.</td>
<td>16</td>
</tr>
<tr>
<td>SIDHU, S.</td>
<td>50</td>
</tr>
<tr>
<td>SIEJA, J.P.</td>
<td>46</td>
</tr>
<tr>
<td>SIMPSON, S.P.</td>
<td>28</td>
</tr>
<tr>
<td>SIMS, W.H.</td>
<td>35, 40</td>
</tr>
<tr>
<td>SINGH, N.</td>
<td>31</td>
</tr>
<tr>
<td>SINGHAL, S.</td>
<td>46</td>
</tr>
<tr>
<td>SKELLEY, S.</td>
<td>46</td>
</tr>
<tr>
<td>SKINNER, M.</td>
<td>21</td>
</tr>
<tr>
<td>SLEDD, A.M.</td>
<td>46</td>
</tr>
<tr>
<td>SMALLEY, L.</td>
<td>15</td>
</tr>
<tr>
<td>SMETANNIKOV, V.P.</td>
<td>31</td>
</tr>
<tr>
<td>SMIRNOV, V.N.</td>
<td>12, 50</td>
</tr>
<tr>
<td>SMITH, C.</td>
<td>48</td>
</tr>
<tr>
<td>SMITH, D.</td>
<td>54</td>
</tr>
<tr>
<td>SMITH, D.D.</td>
<td>46</td>
</tr>
<tr>
<td>SMITH, F.</td>
<td>37</td>
</tr>
<tr>
<td>SMITH, G.</td>
<td>46</td>
</tr>
<tr>
<td>SMITH, G.A.</td>
<td>39, 47, 50</td>
</tr>
<tr>
<td>SMITH, J.E.</td>
<td>26, 40</td>
</tr>
<tr>
<td>SMITH, J.W.</td>
<td>20, 31</td>
</tr>
<tr>
<td>SMITH, K.A.</td>
<td>46</td>
</tr>
<tr>
<td>SMITH, R.</td>
<td>20</td>
</tr>
<tr>
<td>SMITH, S.</td>
<td>13</td>
</tr>
<tr>
<td>SMITH, T.R.</td>
<td>53</td>
</tr>
<tr>
<td>SMITHERMAN, D.V.</td>
<td>46</td>
</tr>
<tr>
<td>SNELL, E.H.</td>
<td>12, 14, 31, 34, 50</td>
</tr>
<tr>
<td>SNEILLGROVE, L.M.</td>
<td>46</td>
</tr>
<tr>
<td>SNOWDON, D.</td>
<td>53</td>
</tr>
<tr>
<td>SNYDER, D.</td>
<td>45</td>
</tr>
<tr>
<td>SOL, H.</td>
<td>38, 39</td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>32</td>
</tr>
<tr>
<td>SOLLERMAN, J.</td>
<td>27</td>
</tr>
<tr>
<td>SOLOMON, R.</td>
<td>9</td>
</tr>
<tr>
<td>SONDAK, D.L.</td>
<td>18, 36, 46</td>
</tr>
<tr>
<td>SONG, P.</td>
<td>28, 42</td>
</tr>
<tr>
<td>SONG, X.</td>
<td>26</td>
</tr>
<tr>
<td>SOUCHIER, A.</td>
<td>44</td>
</tr>
<tr>
<td>SOZEN, M.</td>
<td>46</td>
</tr>
<tr>
<td>SPANN, J.F.</td>
<td>9, 17, 46</td>
</tr>
<tr>
<td>SPASOJEVIC, M.</td>
<td>23</td>
</tr>
<tr>
<td>SPEARING, S.</td>
<td>27</td>
</tr>
<tr>
<td>SPEEGLE, C.O.</td>
<td>25, 42</td>
</tr>
<tr>
<td>SPELBRING, C.</td>
<td>33</td>
</tr>
<tr>
<td>SPIVEY, R.A.</td>
<td>39, 47</td>
</tr>
<tr>
<td>SQUIRE, J.P.</td>
<td>16</td>
</tr>
<tr>
<td>SRIVASTAVA, V.</td>
<td>17</td>
</tr>
<tr>
<td>STAHL, H.P.</td>
<td>29, 47</td>
</tr>
<tr>
<td>STALLCUP, M.</td>
<td>50</td>
</tr>
<tr>
<td>STANGE LAND, T.</td>
<td>19</td>
</tr>
<tr>
<td>STANOJEVIC, B.</td>
<td>36</td>
</tr>
<tr>
<td>STASI, E.</td>
<td>20</td>
</tr>
<tr>
<td>STATHAM, G.</td>
<td>10, 47</td>
</tr>
<tr>
<td>STEADMAN, T.</td>
<td>34</td>
</tr>
<tr>
<td>STECKLUM, B.</td>
<td>24</td>
</tr>
<tr>
<td>STEELE, W.G.</td>
<td>33</td>
</tr>
<tr>
<td>STEEVE, B.</td>
<td>47</td>
</tr>
<tr>
<td>STEINCAMP, J.</td>
<td>26, 48</td>
</tr>
<tr>
<td>STEPHENSON, D.D.</td>
<td>18</td>
</tr>
<tr>
<td>STERLING, A.C.</td>
<td>47</td>
</tr>
<tr>
<td>STEVENSON, P.</td>
<td>44</td>
</tr>
<tr>
<td>STEWART, E.</td>
<td>42</td>
</tr>
<tr>
<td>STIEFEL, M.</td>
<td>54</td>
</tr>
<tr>
<td>STOKES, J.W.</td>
<td>47</td>
</tr>
<tr>
<td>STONE, N.H.</td>
<td>30, 54</td>
</tr>
<tr>
<td>STONEBURNER, J.C.</td>
<td>13</td>
</tr>
<tr>
<td>STORY, G.</td>
<td>47</td>
</tr>
<tr>
<td>STOWELL, B.</td>
<td>19</td>
</tr>
<tr>
<td>STRAAT, P.A.</td>
<td>33</td>
</tr>
<tr>
<td>STRONG, C.</td>
<td>10</td>
</tr>
<tr>
<td>SU, C.-H.</td>
<td>12, 33, 34, 54, 55</td>
</tr>
<tr>
<td>SUSS, S.T.</td>
<td>13, 54</td>
</tr>
<tr>
<td>SUGGS, R.M.</td>
<td>17, 29, 48</td>
</tr>
<tr>
<td>SUITS, M.W.</td>
<td>47, 51</td>
</tr>
<tr>
<td>SULLIVAN, D.G.</td>
<td>47, 48</td>
</tr>
<tr>
<td>SWANK, H.H.</td>
<td>23</td>
</tr>
<tr>
<td>SWANSON, G.R.</td>
<td>11</td>
</tr>
<tr>
<td>SWARTZ, D.A.</td>
<td>12, 48, 52</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>WITHEROW, W.K.</td>
<td>9, 41</td>
</tr>
<tr>
<td>WEST, E.A.</td>
<td></td>
</tr>
<tr>
<td>WEST, J.S.</td>
<td>43, 53</td>
</tr>
<tr>
<td>WESTH, P.</td>
<td>38</td>
</tr>
<tr>
<td>WHITAKER, A.F.</td>
<td>53</td>
</tr>
<tr>
<td>WHITE, C.E.</td>
<td>53</td>
</tr>
<tr>
<td>WHITE, D.C.</td>
<td>39</td>
</tr>
<tr>
<td>WHITE, S.</td>
<td>10, 47</td>
</tr>
<tr>
<td>WHITMAN, W.B.</td>
<td>28, 41</td>
</tr>
<tr>
<td>WHITT, A.</td>
<td>10</td>
</tr>
<tr>
<td>WHORTON, M.S.</td>
<td>53</td>
</tr>
<tr>
<td>WIELAND, P.</td>
<td>53</td>
</tr>
<tr>
<td>WILEY, J.</td>
<td>51</td>
</tr>
<tr>
<td>WILKERSON, C.</td>
<td>14</td>
</tr>
<tr>
<td>WILLIAMS, E.</td>
<td>28</td>
</tr>
<tr>
<td>WILLIAMS, R.W.</td>
<td>22, 51, 53, 54</td>
</tr>
<tr>
<td>WILSON, C.A.</td>
<td>10, 17, 26, 45, 53</td>
</tr>
<tr>
<td>WILSON, C.D.</td>
<td>11</td>
</tr>
<tr>
<td>WILSON, J.</td>
<td>53</td>
</tr>
<tr>
<td>WILSON, R.M.</td>
<td>26</td>
</tr>
<tr>
<td>WINGARD, C.D.</td>
<td>54</td>
</tr>
<tr>
<td>WINKLER, C.</td>
<td>40</td>
</tr>
<tr>
<td>WISE, H.L.</td>
<td>17</td>
</tr>
<tr>
<td>WITHEROW, W.K.</td>
<td>9, 21, 28, 49, 51</td>
</tr>
<tr>
<td>WOHLMAN, R.</td>
<td>32</td>
</tr>
<tr>
<td>WOODS, P.M.</td>
<td>10, 23, 32, 40</td>
</tr>
<tr>
<td>WOOSLEY, S.E.</td>
<td>27</td>
</tr>
<tr>
<td>WORKMAN, G.</td>
<td>50</td>
</tr>
<tr>
<td>WRIGHT, K.H., JR.</td>
<td>30, 54</td>
</tr>
<tr>
<td>WRIGHT, M.D.</td>
<td>54</td>
</tr>
<tr>
<td>WRIGHT, S.A.</td>
<td>54</td>
</tr>
<tr>
<td>WU, J.</td>
<td>54</td>
</tr>
<tr>
<td>WU, K.</td>
<td>48, 52</td>
</tr>
<tr>
<td>WUCHERER, E.J.</td>
<td>54</td>
</tr>
<tr>
<td>XENOFOS, G.</td>
<td>54</td>
</tr>
<tr>
<td>YAMAUCHI, Y.</td>
<td>54</td>
</tr>
<tr>
<td>YARLAGADDA, S.</td>
<td>50</td>
</tr>
<tr>
<td>YESILYURT, S.</td>
<td>54</td>
</tr>
<tr>
<td>YOUNG, R.B.</td>
<td>54</td>
</tr>
<tr>
<td>YU, K.M.</td>
<td>54</td>
</tr>
<tr>
<td>YU, M.M.</td>
<td>41</td>
</tr>
<tr>
<td>ZATSEPIN, V.I.</td>
<td>55</td>
</tr>
<tr>
<td>ZEH, A.</td>
<td>24</td>
</tr>
<tr>
<td>ZHANG, S.N.</td>
<td>21</td>
</tr>
<tr>
<td>ZHU, S.</td>
<td>33, 34, 55</td>
</tr>
<tr>
<td>ZOLADZ, T.F.</td>
<td>47, 55</td>
</tr>
<tr>
<td>ZUCCARO, A.</td>
<td>27, 48</td>
</tr>
<tr>
<td>ZURBUCHEH, T.</td>
<td>13</td>
</tr>
</tbody>
</table>
This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by Marshall Space Flight Center (MSFC) personnel in FY 2003. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results…even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076–1320 301–621–0390
FY 2003 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama