National Aeronautics and Space Administration

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

NASA/TM—2004–213605

FY 2003 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

December 2004
The NASA STI Program Office...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390
FY 2003 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama
In accordance with the NASA Space Act of 1958, the George C. Marshall Space Flight Center (MSFC) has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof. Since July 1, 1960, when MSFC was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>4</td>
</tr>
<tr>
<td>NASA CONFERENCE PUBLICATIONS</td>
<td>7</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>8</td>
</tr>
<tr>
<td>MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION</td>
<td>9</td>
</tr>
<tr>
<td>INDEX</td>
<td>57</td>
</tr>
</tbody>
</table>

Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (−195.5 °C (−320 °F) and −252.8 °C (−423 °F)) temperatures. The material evaluated was purchased to the requirements of SAE–AMS7912, “Aluminum-Beryllium Alloy, Extrusions.”

A number of recent advanced theories related to torsion properties of the space-time matrix predict the existence of an interaction between classically spinning objects. Indeed, some experimental data suggest that spinning magnetic bodies discernibly interact with Earth’s natural fields. If a rotating body modifies the geometry of space-time, then nuclear spins could be used for detection. Thus, assuming a spinning body induces a torsion field, a sensor based on the giant magnetoresistance effect would detect local changes. Experimentally, spinning a brass wheel shielded from Earth’s magnetic field showed no measurable change in signals; without shielding, a Faraday disc phenomenon was observed. Unexpected experimental measurements from the nonaxial Faraday disc configuration were recorded, and a theoretical model was derived to explain them.

A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million.

Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic “bungee” cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars, as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO–1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the
thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

TM—2003–212501

The goal of this effort was to develop a digital motor controller using field programmable gate arrays (FPGAs). This is a more rugged approach than a conventional microprocessor digital controller. FPGAs typically have higher radiation tolerance than both the microprocessor and memory required for a conventional digital controller. Furthermore, FPGAs can typically operate at higher speeds. (While speed is usually not an issue for motor controllers, it can be for other system controllers.) Other than motor power, only a 3.3-V digital power supply was used in the controller; no analog bias supplies were used. Since most of the circuit was implemented in the FPGA, no additional parts were needed other than the power transistors to drive the motor. The benefits that FPGAs provide over conventional designs—lower power and fewer parts—allow for smaller packaging and reduced weight and cost.

TM—2003–212502

This effort demonstrates that health management can be taken to the component level for electromechanical systems. The same techniques can be applied to take any health management system to the component level, based on the practicality of the implementation for that particular system. This effort allows various logic schemes to be implemented for the identification and management of failures. By taking health management to the component level, integrated vehicle health management systems can be enhanced by protecting box-level avionics from being shut down in order to isolate a failed computer.

TM—2003–212503

In order to help identify contamination found on bonding surfaces, optical surfaces, or other items, the Materials Contamination Team of the Materials, Processes, and Manufacturing Department at Marshall Space Flight Center (MSFC) has initiated the development of an infrared database containing MSFC process materials and residues. Process materials analyzed to date using infrared spectroscopy for transferable and extractable contamination have included gloves, wiper cloths, solvents, bagging materials, etc. Significant findings included silicone contamination on several gloves and observations of extractables from the majority of materials tested.

TM—2003–212633

To determine composite material properties’ effects from processing variables, a 3 factorial designed experiment with two replicates was conducted. The factors were cure method (oven versus autoclave), layup (hand versus tape-laying machine), and thickness (8 versus 52 ply). Four material systems were tested: AS4/3501–6, IM7/8551–7, IM7/F655 bismaleimide (BMI), and shear tests on IM7/F584. Material properties were G_{12}, v_{12}, E_{1C}, and E_{2C}. Since the samples were necessarily nonstandard, strengths, though recorded, cannot be considered valid. Void content was also compared.

Autoclave curing helped material properties for the low modulus fiber material but showed little benefit for higher stiffness fibers. The number of plies was very important for epoxy composites but not for the BMI. E_1 was generally unaffected by any factor.

Particularly high void content did correlate to reduced properties. Autoclave curing reduced void content over oven curing but a moderate amount of voids, <1 percent void content, did not correlate with material properties.

Oven cures and hand layups can produce high-quality parts. Part thickness of epoxy composites is important, though cure optimization may improve performance. Significant variations can be caused by processing and it is important that test coupons always reflect the layup and processes of the final part.

TM—2003–212635

This Technical Memorandum lists the significant publications and presentations of the Science Directorate during the period January 1–December 31, 2002. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional
journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in the report should be directed to Dr. A.F. Whitaker (SD01, 256–544–2481) or one of the authors.

TM—2003–212636 July 2003

Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc., which deposits a fine line of semimolten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment.

The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

TM—2003–212690 August 2003

The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement, and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

TM—2003–212692 August 2003

The objective of this investigation was to examine the relationship between irradiation level (proton dose), microstructure, and stress levels in chemical vapor-deposited diamond and polysilicon films using cross-sectioned specimens. However, the emphasis was placed on the diamond specimen because diamond holds much promise for use in advanced technologies. The use of protons allows not only the study of the charged particle that may cause the most microstructural damage in Earth-orbit microelectromechanical systems (MEMS) devices, but also allows the study of relatively deeply buried damage inside the diamond material. Using protons allows these studies without having to resort to megaelectronvolt implant energies that may create extensive damage due to the high energy that is needed for the implantation process. Since MEMS devices operating in space will not have an opportunity to reverse radiation damage via annealing, only nonannealed specimens were investigated. The following three high spatial resolution techniques were used to examine these relationships: (1) Scanning electron microscopy, (2) micro-Raman spectroscopy, and (3) micro x-ray diffraction.
A simple power law model consisting of a single spectral index, α_1, is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10^{13} eV, with a transition at the knee energy, E_k, to a steeper spectral index $\alpha_2 > \alpha_1$ above E_k. The maximum likelihood (ML) procedure was developed for estimating the single parameter α_1 of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (P1) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible.

While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum-detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are attained in practice are investigated.

The ML technique is then extended to estimate spectra information from an arbitrary number of astrophysics data sets produced by vastly different science instruments. This theory and its successful implementation will facilitate the interpretation of spectral information from multiple astrophysics missions and thereby permit the derivation of superior spectral parameter estimates based on the combination of data sets.

Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts.

Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation-driven magnetohydrodynamic (MHD) electrical power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation-driven MHD generator concepts. The hydrogen-oxygen-fired driver was a 90-cm-long stainless steel tube having a 4.5-cm-square internal cross section and a short Schelkin spiral near the head-end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol spray prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of $A^*/A_1=1/10$ and an area expansion ratio of $A_3/A^*=3.2$ (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5-cm active length), which was inserted into a 0.6-T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head-end pressure and time-resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10^{12} cm$^{-3}$ at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

Fillets are one of the most common design features in structures. Proper finite element modeling of these fillets can frequently be problematic though. If the ratio of the fillet radius to the wall thickness is relatively large, the fillet cannot be ignored because it contributes significantly to structural stiffness, and although the most appropriate element for modeling the structure in general may be the plate element, geometric representation of the fillets requires the use of solid elements. This problem is the motivation for the development of a method that uses “bridge” plate elements connecting the tangent points of the fillet to accurately represent its stiffness and mass. The methodology equates the rotational deflection at the tangent point, derived from the proposed bridge system, with an analytical solution of the fillet itself to generate a pseudo Young’s Modulus and thickness for use in the bridge plates. The method was tested on a typical filleted structure, with the bridge method yielding modal analysis results as accurate as a high-fidelity solid model when compared to modal test but with a 90-percent reduction in number of degrees of freedom. This capability could prove extremely useful in design, dynamic, deflection, and preliminary stress analysis, and optimization.
Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number \((R_m)\), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires \(R_m >> 1\), and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

TP—2003–212342 March 2003

Flightweight Carbon Nanotube Magnet Technology.

Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

TP—2003–212634 July 2003

The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science, and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team’s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launchsite processing, on-orbit exposure, return, and refurbishment, if required. Contamination is a concern in the Space Shuttle with sensitive bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft, such as the Hubble Space Telescope and Chandra X-Ray Observatory.

The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develops and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for process materials as well as outgassing and optical compatibility test results for specific environments.
The 2002 Microgravity Materials Science Conference was held June 25–26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the COoperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. The proceedings on this CD–ROM are comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

The 2002 NASA Aerospace Battery Workshop was held November 19–21, 2002, at the Marshall Space Flight Center, Huntsville, Alabama. This document contains the proceedings of the 35th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 19–21, 2002. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, lithium-ion, nickel-metal hydride, lithium-sulfur, lithium-iron disulfide, and silver-zinc technologies.
The purpose of this report is to provide the reader with a readily accessible reference volume and history for the Integrated In-Space Transportation Plan (IISTP) phase I effort. This report was prepared by Gray Research, Inc., as a partial fulfillment of the Integrated Technology Assessment Center subcontract No. 4400037135 in support of the IISTP phase I effort within the In-Space Investment Area of the Advanced Space Transportation Program managed at Marshall Space Flight Center, Huntsville, Alabama. Much of the data used in the preparation of this report was taken from analyses, briefings, and reports prepared by the vast number of dedicated engineers and scientists who participated in the IISTP phase I effort. The opinions and ideas expressed in this report are solely those of the authors and do not necessarily reflect those of NASA in whole or in part.

For the 38th consecutive year, a NASA Faculty Fellowship Program was conducted at Marshall Space Flight Center (MSFC). The program was conducted by The University of Alabama and MSFC May 28–August 2, 2002. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA Centers, was sponsored by the University Affairs Office, NASA Headquarters, Washington, DC. The basic objectives of the program, which is in its 38th year of operation nationally, are to: (1) Further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of the participants’ institutions, and (4) contribute to the research objectives of the NASA Centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA MSFC colleague. This CD is a compilation of Fellows’ reports on their research during the summer of 2002.

A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the NGST program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high-fidelity spatial resolution. It is applicable to all detector geometries, including monolithic charged-coupled devices (CCDs), active pixel sensors (APS), and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

A model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition, results of the model will be completed to cover a wide range of potential space systems.

An experiment on the Microelectronics and Photonics Test Bed (MPTB) was testing field programmable gate arrays using spot shields to extend the life of some of the devices being tested. It was expected that the unshielded parts would fail from a total ionizing dose (TID) and yet the opposite occurred. The data show that the devices failing from the TID effects are those with the spot shields attached. This effort is to determine the mechanism by which the environment is interacting with the high-Z material to enhance the TID in these field programmable gate arrays.
ABBAS, M.M. SD50
CRAVEN, P.D. SD50
SPANN, J.F. SD50
TANKOSIC, D. UAH
LECLAIR, A. UAH
WITHEROW, W.K. SD50
CAMATE, R. UAB
GERAKINES, P. UAB

ADAMS, J.H. SD46
BERAT, C. LPSC
LEBRUM, D. LPSC
MONTANET, F. LPSC

ADAMS, J.H. SD50
HOOVER, R.B. SD50
IMURA, S. National Institute of Polar Research
MITSKEVICH, I.N. Institute of Microbiology
NAGANUMA, T. Hiroshima University
POGLAZOVA, M.N. Institute of Microbiology

ADAMS, J.H. SD50
KOUZNETSOV, E. UAH

ADAMS, M.L. SD50
ADAMS, M.L. SD50
ELSNER, R.F. SD50
KOUVELIOTOU, C. SD50
PETEL, S.K. SD50
PREECE, R.D. SD50
STRONG, C. SD50
WILSON, C.A. SD50
WOODS, P.M. SD50

Using the Chandra Project to Communicate With Underdeveloped Constituencies—Abstract Only. For presentation at the Meeting on Communicating Astronomy to the Public, Washington, DC, October 1–3, 2003.

ADAMS, M.L. SD50
GALLAGHER, D.L. SD50
KOCZOR, R.J. SD50

ADAMS, M.L. SD50
GALLAGHER, D.L. SD50
WHITT, A. SD50

ADAMS, M.L. SD50
PHILLIPS, T. SD50
WHITT, A. SD50

ADAMS, R.B. TD03
STATHAM, G. ERC, Inc.
HOPKINS, R. TD03
CHAPMAN, J. TD03
WHITE, S. ERC, Inc.
BONOMETTI, J. TD03
ALEXANDER, R. TD03
FINCHER, S. TD03
POLSGROVE, T. TD03
KALKSTEIN, M. TD03

Ahn, H.S. University of Maryland
ADAMS, J.H. SD50
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
AHN, H.S. University of Maryland
ADAMS, J.H. SD50
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
COX, M. SD50
ELLISON, S.B. Louisiana State University
FAZLEY, A.R. Southern University
GANEL, O. University of Maryland

AHN, H.S. University of Maryland
ADAMS, J.H. SD50
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
COX, M. SD50
ELLISON, S.B. Louisiana State University
FAZLEY, A.R. Southern University
GANEL, O. University of Maryland

ANILKUMAR, A.V. SD46
GRUGEL, R.N. SD46
LEE, C.P. SD46
BHOWMICK, J. SD46
WANG, T.G. SD46

ARAKERE, N.K. University of Florida
KNUDSEN, E.C. University of Florida
DUKE, G. ED22
BATTISTA, G. ED22
SWANSON, G.R. ED22

ARUMUGAM, M. Western Michigan University
LAM, N. Louisiana State University
EMERSON, C. Western Michigan University
QUATTROCHI, D.A. SD60

AVANOV, L.A. SD50
CHANDLER, M.O. SD50
SMIRNOV, V.N. SD50
VAISBERG, O.L. SD50

BAGGETT, R.M. TD15
JOHNSON, L. TD15
WERCINSKI, P. NASA Headquarters

BALLARD, R.O. TD51

BARLOW, D.A. UAH
BAIRD, J.K. UAH
SU, C.-H. SD46

BARNES, C.L. SD40
SNELL, E.H. BAE Systems
KUNDROT, C.E. SD40

BASHINDZHAGYAN, G.L. Moscow State University
BASHINDZHAGYAN, P. Moscow State University
BARANOVA, N. Moscow State University
CHRISTL, M.J. SD50
CHILINGARIAN, A. Yerevan Physics Institute
CHURPIN, I. Joint Institute for Nuclear Research
DERRICKSON, J. SD50

EGOROV, N. Research Institute of Materials Science

BASSO, S. Osservatorio Astronomico di Brera
BRUNI, R.J. Harvard
CITERIO, O. Osservatorio Astronomico di Brera
ENGELHAUPT, D. UAH
GHIGO, M. Osservatorio Astronomico di Brera
GORENSTIEN, P. Harvard
MAZZOLENI, F. Osservatorio Astronomico di Brera
O’DELL, S.L. SD50
PARESCHI, G. Osservatorio Astronomico di Brera
RAMSEY, B.D. SD50

BASHINDZHAGYAN, P. Moscow State University
BARANOVA, N. Moscow State University
CHRISTL, M.J. SD50
EGOROV, N. Research Institute of Materials Science

BALLARD, R.O. TD51

BARROW, D.A. UAH
BAIRD, J.K. UAH
SU, C.-H. SD46

BARNES, C.L. SD40
SNELL, E.H. BAE Systems
KUNDROT, C.E. SD40

BARRET, C. TD40

Nuclear Electric Propulsion for Outer Space Missions—Abstract Only. For presentation at the Society of Women Engineers Conference, Birmingham, AL, October 9–11, 2003.

BASHINDZHAGYAN, G.L. Moscow State University
BASHINDZHAGYAN, P. Moscow State University
BARANOVA, N. Moscow State University
CHRISTL, M.J. SD50
CHILINGARIAN, A. Yerevan Physics Institute
CHURPIN, I. Joint Institute for Nuclear Research
DERRICKSON, J. SD50

EGOROV, N. Research Institute of Materials Science

BASHINDZHAGYAN, G.L. Moscow State University
BASHINDZHAGYAN, P. Moscow State University
BARANOVA, N. Moscow State University
CHRISTL, M.J. SD50
CHILINGARIAN, A. Yerevan Physics Institute
CHURPIN, I. Joint Institute for Nuclear Research
DERRICKSON, J. SD50

EGOROV, N. Research Institute of Materials Science

BAUGHER, C.R. SD41

BECKER, W.E. Max Planck Institute
SWARTZ, D.A. USRA
PAVLOV, G.G. Penn State University
ELSNER, R.F. SD50
GRINDLAY, J. Harvard-Smithsonian

MIGNANI, R. European Southern Observatory
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Company</th>
<th>Industry/Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENNANT, A.F.</td>
<td>SD50</td>
<td>Jacobs Sverdrup</td>
</tr>
<tr>
<td>BACKER, D.</td>
<td>University of California</td>
<td>Jacobs Sverdrup</td>
</tr>
<tr>
<td>WEISSKOPF, M.C.</td>
<td>SD50</td>
<td>Jacobs Sverdrup</td>
</tr>
<tr>
<td>BEMPORAD, A.</td>
<td>SD50</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>ROMOLI, M.</td>
<td>SD50</td>
<td>Penn State University</td>
</tr>
<tr>
<td>SUESS, S.T.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>BEMPORAD, A.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>POLETTI, G.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>SUESS, S.T.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>KO, Y.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>PARENTI, S.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>RILEY, P.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>ROMOLI, M.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>ZURBUCHEN, T.</td>
<td>SD50</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>BERNHARDSDOTTER, E.</td>
<td>SD46</td>
<td>Aeronautical Systems, Inc.</td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td>SD46</td>
<td>Penn State University</td>
</tr>
<tr>
<td>BEST, S.</td>
<td>FD41</td>
<td>Penn State University</td>
</tr>
<tr>
<td>NICHOLS, K.F.</td>
<td>FD41</td>
<td>Penn State University</td>
</tr>
<tr>
<td>BRADFORD, R.N.</td>
<td>FD41</td>
<td>Penn State University</td>
</tr>
<tr>
<td>BJORKMAN, G.</td>
<td>Lockheed Martin</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>CANTRELL, M.</td>
<td>Lockheed Martin</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>CARTER, R.R.</td>
<td>ED33</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>BΕLVINS, J.A.</td>
<td>TD40</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>GOSTOWSKI, R.</td>
<td>TD40</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>CHIANESE, S.</td>
<td>TD40</td>
<td>Lockheed Martin</td>
</tr>
</tbody>
</table>
BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60

BOCCIPPIO, D.J. SD60
Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2003.

BOECK, W.L. Niagara University
JACOBSON, A.R. Los Alamos National Laboratory
CHRISTIAN, H.J. SD60
GOODMAN, S.J. SD60

BORDELON, W.J., JR. TD07
FROST, A.L. TD07
REED, D.K. TD07

BORGSTAHL, G. SD46
LOVELACE, J. SD46
SNELL, E.H. SD46
BELLAMY, H. SD46

BOUVIER, C. Lockheed Martin
RUSSELL, S.S. ED32
WALKER, J.L. ED32
WILKERSON, C. ED32

BRADFORD, R.N. FD40

BRADFORD, R.N. FD40
REDMAN, S. UAH

BRADFORD, R.N. FD40
WELCH, C.L. FD40

BRADFORD, R.N. FD40
REDMAN, S. UAH

BRAZEL, A.J. Arizona State University
QUATTROCHI, D.A. SD60

BROWN, R.J. Lockheed Martin
SCHNEIDER, J. Lockheed Martin
HARTLEY, P. Lockheed Martin
RUSSELL, C. MP
LAWLESS, K. MP
JONES, C. MP

BROWN, R.J. Lockheed Martin
SCHNEIDER, J. Lockheed Martin
HARTLEY, P. Lockheed Martin
RUSSELL, C. MP
LAWLESS, K. MP
JONES, C. MP

BUECHLER, D.E. UAH
MACH, D.M. UAH
BLAKESLEE, R.J. SD60

CALVIGNAC, J. Northrop Grumman
DANG, L. Northrop Grumman
TRAMEL, T.L. TD07
PASEUR, L. TD07

CAMPBELL, J.W. FD02
PHIPPS, C. FD02
SMALLEY, L. UAH
REILY, J.C. UAH
BOCCIO, D. City University of NY

CAMPBELL, J.W. FD02
SMALLEY, L. UAH
BOCCIO, D. City University of NY

CARPENTER, D.L. Stanford University
BELL, R.F. Stanford University
INAN, U.S. Stanford University
BENSON, R.F. Goddard Space Flight Center
REINISCH, B.W. University of Massachusetts
GALLAGHER, D.L. SD50

CARTER, L. FD21
O'CONNER, E. Hamilton Sundstrand
SNOWDON, D. Hamilton Sundstrand

CASAS, J. SD10
NALL, M. SD10

Enabling Sustainable Exploration Through the Commercial Development of Space—Abstract Only. For presentation at the 54th International Astronautical Congress, Bremen, Germany, September 29–October 3, 2003.

CHAKRABARTI, S. TD40
MARTIN, J.J. TD40
PEARSON, J.B. TD40
LEWIS, R.A. R. Lewis Co.

COE, M.J. Southampton University
HAIGH, N.J. Southampton University
WILSON, C.A. SD50
NEGUERUELA, I. SAX SDC

COLE, J.W. TD40

COLE, J.W. TD40

COOKE, W.J. ED44
SUGGS, R.M. ED44

CRAVEN, P.D. SD50
ABBAS, M.M. SD50
TANKOSIC, D. UAH
SPANN, J.F. SD50

CREECH, S.D. VS20

CROEULL, A. Technische Universitat
LANTZSCH, R. Technische Universitat
KITANOV, S. Technische Universitat
SALK, N. SD46
SZOFRAN, F.R. SD46
TEGETMEIER, A. Kristallographisches Institute

BHAT, B. ED33

CURRERI, P.A. SD46

CURRERI, P.A. SD46

CUTTEN, D.R. SD60
JARZEMBSKI, M.A. SD60
SRIVASTAVA, V. USRA
PUESCHEL, R.F. USRA
HOWARD, S.D. USRA
MCCAUL, E.W., JR. USRA

DAVIS, J.M. SD50
MOORE, R.L. SD50
HATHAWAY, D.H. SD50

DAVIS, S. UP50
ENGLER, L. Morgan Research
FISHER, M.F. UP50
DUMBACHER, D.L. UP01
BOSWELL, B. ISC

DAVIS, S.E. ED36
WISE, H.L. ICRC

DING, R.J. ED33

DOBSON, C. TD40
HRBUD, I. ERC, Inc.

DOBSON, C. TD40
JONES, J.E. TD40
CHAVERS, D.G. TD40

DORNEY, D.J. TD64
Design and Analysis of Turbomachinery for Space Applications—Presentation. For presentation at the Seminars at Wright-Patterson Air Force Base, OH, and at Wright State University, Dayton, OH, October 4, 2002.

DORNEY, D.J. TD64
GRIFFIN, L.W. TD64
HUBER, F.W. Riverbend Design Services
SONDAK, D.L. Boston University

DORNEY, D.J. TD64
GRIFFIN, L.W. TD64
HUBER, F.W. Riverbend Design Services
SONDAK, D.L. Boston University

DORNEY, D.J. TD64
GRIFFIN, L.W. TD64
SONDAK, D. Boston University

DORNEY, D.J. TD64
MARCU, B. Boeing-Rocketdyne

TRAN, K. Boeing-Rocketdyne
SARGENT, S. Boeing-Rocketdyne

DORNEY, D.J. TD64
ROTHEMERL, J. TD64
Shuttle Main Propulsion System LH2 Feed Line and Inducer Simulations—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.

DORNEY, D.J. TD64
ROTHEMERL, J. TD64
SONDAK, D.L. Boston University
Development Status of the Phantom Code for Turbomachinery—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Birmingham, AL, April 22–24, 2003.

DORNEY, S.M. TD64
DRAKE, B.G. Johnson Space Center
COOKE, D.R. Johnson Space Center
KOS, L.D. TD30
NASA Exploration Team (NExT) In-Space Transportation Overview—Presentation. For presentation at the 51st JANNAF Propulsion Meeting, Lake Buena Vista, FL, November 18–21, 2002.

DRESSLER, G.A. Northrop Grumman
MATUZAK, L.W. Northrop Grumman
STEPHENSON, D.D. TD04

DUKEMAN, G. TD54
Enhancements to an Atmospheric Ascent Guidance Algorithm—Final Paper. For presentation at the AIAA...

DUMBACHER, D.L. UP01

DUMBACHER, D.L. UP40

DUMBACHER, D.L. UP01

EDWARDS, D.L. ED31
GRAY, P.A. ED31
NEHLS, M.K. ED31
WERTZ, G. ED31
HUBBS, W. ED31
HOPPE, D. ED31
STANALAND, T. University of Louisiana
HOLLERMAN, A. University of Louisiana

EDWARDS, D.L. ED31
HUBBS, W. ED31
STANALAND, T. University of Louisiana
HOLLERMAN, A. University of Louisiana
ALTSTATT, R. ED44

EDWARDS, D.L. ED31
HUBBS, W. ED31
STANALAND, T. University of Louisiana
HOLLERMAN, A. University of Louisiana
SEMMEL, C. Qualis Corporation

EFFINGER, M. ED34
BESHEARS, R. ED34
HUFNAGLE, D. ED34
WALKER, J.L. ED34
RUSSELL, S.S. ED34
STOWELL, B. Lockheed Martin
MYERS, D. Lockheed Martin

ELAM, S.K. TD61
HOLMES, R. SD42
MCKECHNIE, T. Plasma Processes, Inc.
HICKMAN, R. Plasma Processes, Inc.
PICKENS, T. Plasma Processes, Inc.

ELSNER, R.F. SD50
GLADSTONE, R. Southwest Research Institute
WAITE, H. University of Michigan
LUGAZ, N. University of Michigan
MAJEED, T. University of Michigan
FORD, P. MIT
HOWELL, R. University of Wyoming
CRAVENS, T. University of Kansas
GRODENT, D. University of Liege

ELSNER, R.F. SD50
GLADSTONE, R. Southwest Research Institute
WAITE, H. University of Michigan
MAJEED, T. University of Michigan
FORD, P. MIT
GRODENT, D. University of Liege
ET AL.
EMRICH, W.J., JR. TD40

ENGBERG, R.C. ED27

ESKRIDGE, R. TD40
MARTIN, A.K. TD40
LEE, M. TD40
SMITH, J.W. TD40
KOELFGEN, S.J. UAH
The Plasmoid Thruster Experiment (PTX)—Abstract and Charts. For presentation at the Advanced Space Propulsion Workshop, Huntsville, AL, April 15–17, 2003.

ESTES, M.G. USRA
QUATTROCHI, D.A. SD60
STASIKA, E. Intl. City/County Mgmt. Association

EVANS, J.P. Yale University
SMITH, R. Yale University
OGLESBY, R.J. SD60
Simulation of the Climate of Southwest Asia With a Regional Model—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 5–10, 2002.

EVANS, S.W. ED44

FALCONER, D.A. SD50
MOORE, R.L. SD50
GARY, G.A. SD50

FALCONER, D.A. SD50
MOORE, R.L. SD50
GARY, G.A. SD50

FALCONER, D.A. UAH
MOORE, R.L. SD50
GARY, G.A. SD50
HAGYARD, M.J. SD50

FALCONER, D.A. SD50
MOORE, R.L. SD50
PORTER, J.G. SD50
HATHAWAY, D.H. SD50

FARRELL, W.M. Goddard Space Flight Center
GOLDBERG, R.A. Goddard Space Flight Center
BLAKESLEE, R.J. SD60
DESH, M.D. Goddard Space Flight Center
HOUSER, J.G. Goddard Space Flight Center
MITCHELL, J.D. Penn State University
CROSKEY, C.L. Penn State University
MACH, D.M. UAH
BAILEY, J.C. Raytheon

FAZLEY, A.R. Southern University
ADAMS, J.H. SD50
AHN, E.J. SD50
BASHINDZHAGYAN, G. SD50
CASE, G. SD50
CHANG, J. SD50
CHRISTL, M.J. SD50
ELLISON, S.B. SD50
FAZLEY, A.R. Southern University
GANEL, O. SD50
GOULD, R. SD50
Detection of High-Energy Cosmic Rays With the Advanced Thin Ionization Calorimeter, ATIC—Abstract Only. For...

FAZLEY, A.R. Southern University
GUNASINGHA, R.M. Southern University
ADAMS, J.H. SD50
AHN, E.J. Seoul National University
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
CASE, G. Louisiana State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
ELLISON, S.B. Louisiana State University

FENG, Y.X. SD50
TENNANT, A.F. SD50
ZHANG, S.N. SD50

FERREE, D.S. SD46
MALONE, C.C. SD46
KARR, L.J. SD46

FIKES, J.C. FD02
HENLEY, M.W. FD02
MANKINS, J.C. FD02
HOWELL, J.T. FD02
FORK, R.L. FD02
COLE, S.T. FD02
SKINNER, M. FD02

FINCKENOR, M.M. ED31
VAUGHN, J.A. ED31
WATTS, E.W. Qualis Corporation

GILLIES, D.C. SD40
CARPENTER, P.K. SD40
ENGEL, H.P. SD40

GLASGOW, S. ED26
KITTREDGE, K. ED26

GODFROY, T.J. TD40
BRAGG-SITTON, S.M. University of Michigan

GOGUS, E. SD50
FINGER, M.H. SD50
KOUVELITOU, C. SD50
WOODS, P.M. SD50
PATEL, S.K. SD50
RUPEN, M. SD50
SWANK, H.H. SD50
MARKWARDT, C.B. SD50

GOODMAN, S.J. SD60
LAPENTA, W.M. SD60

GOLDSTEIN, J. Rice University
SPASOJEVIC, M. STAR Laboratory
REIFF, P. Rice University
SANDEL, B.R. University of Arizona
FORRESTER, T.T. University of Arizona
GALLAGHER, D.L. SD50

GOSTOWSKI, R. TD40

GRAY, P.A. ICRC
NEHLS, M.K. ED31
EDWARDS, D.L. ED31
CARRUTH, M.R., JR. ED31

GRANT, J. SD72
KAUL, R.K. SD72
MYERS, G. SD72
SHARMA, A. Alabama A&M University

GREENE, W.D. TD53
THAMES, M.P. TD53
POLSGROVE, R.H. TD51

GREENE, W.D. TD53
THAMES, M.P. TD53
POLSGROVE, R.H. TD51
GREINER, J. Astrophysikalisches Inst.
KLOSE, S. Thuringer Landesstern
ZH, A. Thuringer Landesstern
SCHWARTZ, R. Astrophysikalisches Inst.
HARTMAN, D.H. Clemson University
MASETTI, M. Istituto di Astrofisica
STECKLUM, B. Thuringer Landesstern
LAMER, G. Astrophysikalisches Inst.
KOUVELIOTOU, C. SD50

GRIFIN, L.W. TD64
MSFC Turbomachinery Fluid Dynamics Roadmap—Presentation. For presentation at the MSFC Spring Workshop on Fluids, Birmingham, AL, April 22–24, 2003.

GRIFIN, L.W. TD64
DORNEY, D.J. TD64
HUBER, F.W. Riverbend Design Serv.

GRUBBS, R. MSFC
HDTV From the International Space Station—Charts Only. For presentation at the University of South Florida Seminar, Tampa, FL, March 28, 2003.
GRUGEL, R.N. SD46
ANILKUMAR, A.V. Vanderbilt University
LEE, C.P. SD46

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. ESI

GRUGEL, R.N. SD46
ANILKUMAR, A.V. SD46
LEE, C.P. SD46

GUBAREV, M. USRA
RAMSEY, B.D. SD50
APPLE, J. SD50

GUBAREV, M. USRA
RAMSEY, B.D. SD50
KESTER, T. SD70
ENGLHAUPT, D. UAH
SPEEGLE, C.O. Raytheon ITSS
MARTIN, G. ERC, Inc.

GUERRA, M. University of Texas, El Paso
SCHMIDT, C. University of Texas, El Paso
MCCLURE, J.C. University of Texas, El Paso
MURR, L.E. University of Texas, El Paso
NUNES, A.C., JR. ED33

GUIDOS, M. TD53
SEYMOUR, D. ERC, Inc./TD53

GUZIK, T.G. Louisiana State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
FAZLEY, A.R. Southern University
GANEL, O. SD50
GRANGER, D. Louisiana State University
GUNASINGHA, R.M. Southern University

GWALTNEY, D.A. ED17
FERGUSON, M.I. Jet Propulsion Laboratory

GWALTNEY, D.A. ED17
FERGUSON, M.I. Jet Propulsion Laboratory

Hardware Evolution of Analog Speed Controllers for a DC Motor—Presentation. For presentation at the Genetic and Evolutionary Computation Conference, Chicago, IL, July 12–16, 2003.

GWALTNEY, D.A. ED17
FERGUSON, M.I. ED17

GWALTNEY, D.A. ED17

STEINCAMP, J. ED17

CORDER, E. ED17

KING, K. ED17

FERGUSON, M.I. Jet Propulsion Laboratory

DUTTON, K. Madison Research Corporation

HAGYARD, M.J. SD50

PEVTSOV, A.A. National Solar Observatory

BLEHM, Z. Montana State University

SMITH, J.E. SD50

HAGYARD, M.J. SD50

PEVTSOV, A.A. National Solar Observatory

CANFIELD, R.C. Montana State University

BLEHM, Z. Montana State University

SMITH, J.E. SD50

HAKKILA, J. College of Charleston

GIBLIN, T.W. College of Charleston

ROIGER, R.J. Mankato State University

HAGLIN, D.J. Mankato State University

PACIESAS, W.S. UAH

MEEGAN, C.A. SD50

HANSON, J.M. TD54

HARMON, B.A. SD50

WILSON, C.A. SD50

FISHMAN, G.J. SD50

CONNAUGHTON, V. UAH

HENZE, W. UAH

PACIESAS, W.S. UAH

FINGER, M.H. SD50

MCCOLLOUGH, M.L. SD50

SAHI, M. SD50

ET AL.

HARRIS, D. TD05

BILLE, M. Booz Allen Hamilton

REED, L. Booz Allen Hamilton

HASSAN, N. Virginia Polytechnic Institute

SONG, X. Virginia Polytechnic Institute

THOMPSON, J.E. Virginia Polytechnic Institute

LOOS, A.C. Virginia Polytechnic Institute

BATRA, R.C. Virginia Polytechnic Institute

HULCHER, A.B. ED34

HATHAWAY, D.H. SD50

HATHAWAY, D.H. SD50

NANDY, D. SD50

WILSON, R.M. SD50

REICHMAN, E.J. SD50

HEDAYAT, A. TD52

BAILEY, J.W. Sverdrup

HASTINGS, L.J. Alpha Technology, Inc.

FLACHBART, R.H. TD52

HEDAYAT, A. TD52

BAILEY, J.W. Sverdrup
<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
<th>Paper Title</th>
<th>Conference/Abstract Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLACHBART, R.H.</td>
<td>TD52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLT, K.A.</td>
<td>TD52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDERSON, M.I.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASTRO-TIRADO, A.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIKES, J.C.</td>
<td>FD02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOWELL, J.T.</td>
<td>FD02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANKINS, J.C.</td>
<td>NASA Headquarters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOFFMAN, F.</td>
<td>Oak Ridge National Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OGLESBY, R.J.</td>
<td>SD60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARGROVE, W.W.</td>
<td>Oak Ridge National Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERIKSON, D.</td>
<td>Oak Ridge National Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANKINS, J.C.</td>
<td>NASA Headquarters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTTER, S.</td>
<td>Boeing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOWELL, J.T.</td>
<td>FD02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLLADAY, J.</td>
<td>FD23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTTER, S.</td>
<td>Boeing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLLADAY, J.</td>
<td>FD23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLMEN, L.W.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAKAHASHI, Y.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZUCCARO, A.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMB, D.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITALO, K.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOPADO, A.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISSAM, S.A.</td>
<td>TD62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOWER, M.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HJORST, J.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLELMAN, J.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLLER, P.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYNBO, J.P.U.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOOSLEY, S.E.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOUVELITOU, C.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANVIR, N.R.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUSSAIN, S.A.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOWERS, M.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUSSAIN, S.A.</td>
<td>SD50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOWERS, M.</td>
<td>UAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONACO, L.</td>
<td>Morgan Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARNES, C.L.</td>
<td>USRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPEARING, S.</td>
<td>Morgan Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JENKINS, A.</td>
<td>Morgan Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOHNSON, T.</td>
<td>Micro Craft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAYER, D.</td>
<td>ASRI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elasticity and Strength of Biomacromolecular Crystals—
Lysozyme—Abstract Only. For publication in Physical

Spirochaeta Americana Sp. Nov., A New Haloalkaliphilic,
Obligately Anaerobic Spirochete Isolated From Soda
Mono Lake in California—Abstract Only. For publication
in the International Journal of Systematic and Evolutionary
Microbiology, 2002.

Empirical Model of the Plasma Density in the Inner
Magnetosphere—Abstract Only. For presentation at the
COSPAR Scientific Assemblies & World Space Congress,
Advances for Space Research, Houston, TX, October 10–
19, 2002.

Turbine Aerodynamic Design System Improvements—
Presentation. For presentation at the MSFC Spring
Workshop on Fluids, Birmingham, AL, April 22–24,
2003.

NASA’s Next-Generation Launch Technology Program—
Strategy and Plans—Final Paper. For presentation at
the 54th International Astronautical Congress, Bremen,
A Regional Monitoring and Visualization System for Decision Support and Disaster Management Applications for the Mesoamerican Biological Corridor and Beyond—Abstract Only. For presentation at the Central American Commission for Environment and Development Donors Conference, Paris, France, December 12, 2002.

JOHNSON, L.
GILCHRIST, B.E.
LORENZINI, E.C.
STONE, N.
WRIGHT, K.H., JR.
Propulsive Small Expendable Deployer System (ProSEDS)
Experiment: Mission Overview and Status—Final Paper.

KAUFFMAN, B.
HARDAGE, D.
MINOR, J.

KAUFFMAN, B.
HARDAGE, D.
MINOR, J.
BARTH, J.
LABEL, K.

KAUFFMAN, B.
HARDAGE, D.
MINOR, J.
BARTH, J.
LABEL, K.

KAUL, R.K.
BARGHOUTY, A.F.
DAHCHE, H.M.

KEARNEY, M.W., III
KEARNEY, M.W., III

KELTON, K.F.
GANGOPADHYAY, A.K.
LEE, G.W.
HYERS, R.W.
ROGERS, J.R.
ROBINSON, M.B.
ET AL.

Just Being on the Internet is Old News!—Abstract Only. For presentation at the Fall Meeting of the ADP Council of the Southeastern States, Biloxi, MS, October 22–24, 2003.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institution</th>
<th>Paper/Conference/Abstract Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN DYKE, M.V.</td>
<td>TD40</td>
<td>V AN DYKE, M.V.</td>
</tr>
<tr>
<td>GODFROY, T.J.</td>
<td>TD40</td>
<td>MARTIN, J.J.</td>
</tr>
<tr>
<td>MARTIN, J.J.</td>
<td>TD40</td>
<td>BRAGG-SITTON, S.M.</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOSHAK, W.J.</td>
<td>SD60</td>
<td>Analytic Solution to the Problem of Aircraft Electric Field Mill Calibration—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2003.</td>
</tr>
<tr>
<td>KOSHAK, W.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>SD60</td>
<td>Chicago State University</td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>HALL, J.M.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>KRIDER, E.P.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BATEMAN, M.G.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BOCCIPPIO, D.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>KOSHAK, W.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>HALL, J.M.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>KRIDER, E.P.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BATEMAN, M.G.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BOCCIPPIO, D.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>KOSHAK, W.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>SOLAKIEWICZ, R.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>HALL, J.M.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>KRIDER, E.P.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BATEMAN, M.G.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>BOCCIPPIO, D.J.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>LAPELTI, M.A.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>EICHLER, D.</td>
<td>SD60</td>
<td></td>
</tr>
<tr>
<td>WOODS, P.M.</td>
<td>SD60</td>
<td></td>
</tr>
</tbody>
</table>

LAROQUE, S.J. SD50
JOY, M. SD50
CARLSTROM, J.E. SD50
EBELING, H. SD50
BONAMENTE, M. SD50
DAWSON, K.S. SD50
EDGE, A. SD50
HOLZAPFEL, W.L. SD50
PATEL, S.K. ET AL.

Lee, J.A. ED33
Lee, J.K. UAH
GARY, G.A. SD50
NEWMAN, T.S. UAH

LEIMKUEHLER, T.O. Honeywell, Inc.
LUKENS, C. Honeywell, Inc.
REEVES, D.R. Boeing
HOLT, J.M. ED25

LEIMKUEHLER, T.O. Honeywell, Inc.
SPELBRING, C. Honeywell, Inc.
REEVES, D.R. Boeing
HOLT, J.M. ED25

LESLIE, F.W. SD46
RAMACHANDRAN, N. BAE Systems
LEVAN, G.Y. Spherix, Inc.

MILLER, J.D. University of Southern California
STRAAT, P.A. Retired
HOOVER, R.B. SD50

LEIMKUEHLER, T.O. Honeywell, Inc.
SPELBRING, C. Honeywell, Inc.
REEVES, D.R. Boeing
HOLT, J.M. ED25

LEHOCZKY, S.L.

LIN, B.
ZHU, S.
BAN, H.
LI, C.
SCRIPA, R.N.
SU, C.-H.
LEHOCZKY, S.L.

LITCHFORD, R.J.

LO, C.P.
QUATTROCHI, D.A.

LORENZINI, E.C.
WELYZN, K.J.
COSMO, M.L.

LOVELACE, J.
BELAMY, H.
SNELL, E.H.

LITCHFORD, R.J.
COLE, J.W.
RODGERS, S.L.
SACKHEIM, R.

MACH, D.
BLAKESLEE, R.J.
BALEY, J.C.
FARRELL, W.M.
GOLDBERG, R.A.
DESch, M.D.
HOUSER, J.G.
Preliminary Optical and Electric Field Pulse Statistics From Storm Overflights During the Altus Cumulus Electrification Study—Abstract Only. For presentation at the International Conference on Atmospheric Electricity, Versailles, France, June 9–13, 2003.

MAJUMDAR, A.K.

MAJUMDAR, A.K.
FLACHBART, R.H.

MAJUMDAR, A.K.
STEADMAN, T.
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines—Abstract Only. For presentation at the 33rd International Conference
MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40
CHOUEIRI, E.Y. Princeton University

MARSHALL, H. SD50
TENNANT, A.F. SD50
GRANT, C. SD50
HITCHCOCK, A. SD50
O’DELL, S.L. SD50
PLUCINSKY, P. SD50

MARSHALL, S. Rocky Mountain College
OGLESBY, R.J. SD60
DROBOT, S. University of Colorado
ANDERSON, M. University of Nebraska
Simulating Snow Over Sea Ice in Climate Models—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2002.

LEWIS, R.A. R. Lewis Company
FANT, W.E. Cortez III
Overview of the High-Performance Antiproton Trap (HiPAT) Experiment—Presentation. For presentation at the 17th International Conference on the Applications of Accelerators in Research and Industry, Denton, TX, November 12–16, 2002.

MARTIN, J.J. TD40
LEWIS, R.A. R. Lewis Co.
CHAKRABARTI, S. TD40
PEARSON, J.B. TD40
FANT, W.E. Cortez III

MARTIN, J.J. TD40
LEWIS, R.A. TD40
SIMS, W.H. TD40
CHAKRABARTI, S. TD40
FANT, W.E. TD40
MCDONALD, S. TD40

MARTIN, J.J. TD40
LEWIS, R.A. TD40
PEARSON, J.B. TD40
SIMS, W.H. TD40
CHAKRABARTI, S. TD40
FANT, W.E. TD40
MCDONALD, S. TD40

MARTIN, J.J. TD40
LEWIS, R.A. TD40
STANOJEV, B. TD40

MARTINEZ-GALARCE, D.S. SD50
WALKER, A.B.C. SD50
BARBEE, T.W., II SD50
HOOVER, R.B. SD50

MAXWELL, T.G. FD42

MAZURUK, K. SD46

MAZURUK, K. SD46
GRUGEL, R.N. SD46

MCCAUL, E.W., JR. USRA
BUECHLER, D.E. UAH
GOODMAN, S.J. SD60
CAMMARATA, M. National Weather Service

MCCAUL, E.W., JR. USRA
GOODMAN, S.J. SD60
BUECHLER, D.E. UAH
BLAKESLEE, R.J. SD60

MELLEN, D.P. ED41
GARCIA, D. ED41
VAUGHAN, W.W. UAH

MELTON, T. FD32
ONKEN, J. FD32

MIERNIK, J.H. ERC, Inc.
TROLINGER, J.D. MetroLaser, Inc.
LACKEY, J.D. TD64
SONDAK, D.L. Boston University

the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9, 2003.

Mikhelides, I.G. SAIC
Mandell, M.J. SAIC
Kuharshi, R.A. SAIC
Davis, D.A. SAIC
Gardner, B.M. SAIC
Minor, J. ED03

Mitrofanov, I.G. SD50
Anfimov, D.S. SD50
Briggs, M.S. SD50
Fishman, G.J. SD50
Kippen, R.M. SD50
Litvak, M.L. SD50
Meegan, C.A. SD50
Paciesas, W.S. SD50
Preece, R.D. SD50
Sanin, A.B. SD50

Montgomery, E.E., IV TD15
Garbe, G.P. TD15
Heaton, A.F. TD15

Moore, R.L. SD50
Davis, J.M. SD50
Hathaway, D.H. SD50

Morriss, C.I. TD40

Morriss, C.I. TD40

Morriss, C.I. TD40

Morriss, C.I. TD40

Murdock, K. Hamilton Sundstrand
Perry, J.L. FD21
Smith, F. FD21

Nall, M. SD10

Commercial Research Results From the International Space Station—Abstract Only. For presentation at the 41st AIAA Aerospace Science Meeting and Exhibit, Reno, NV, January 6–9, 2003.

Nesman, T.E. TD50

Shuttle Fuel Feedliner Cracking—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.
NETTLES, A.T.

NETTLES, A.T.

NEWTON, R.L.

NGUYEN, H.H. MARTIN, M.A.

NICHOLS, J. TYGIELSKI, P. URQUIDI, R. STANGELAND, M.L.

NICHOLS, K.F. BEST, S. SCHNEIDER, L.

NIEDERMeyer, M.

NIELSEN, A.D. PUSEY, M.L. FUGLSANG, C.C.
Roskilde University SD48 NovoZymes A/S

WESTH, P.
Roskilde University

KOIDE, S. SD50
SHIBATA, K. SD50
KUODH, T. SD50
SOL, H. SD50
FISHMAN, G.J. SD50

O’DELL, S.L. SD50
BAKER, M. SD50
CONTENT, D. SD50
FREEMAN, M. SD50
GLENN, P. SD50
GUBAREV, M. SD50
HAIR, J. SD50
JONES, W. SD50

OCHOA, O. Texas A&M University
JIANG, J. Texas A&M University
PUTNAM, D. Texas A&M University
LO, Z. Texas A&M University
ELLIS, A. Texas A&M University

OLIVER, S.T. ED33
SELVIDGE, S. ED33
WATWOOD, M.C. ERC, Inc.

PANDER, T.C. Princeton University
MOSER, D.P. Pacific Northwest National Lab
PFFNFN, S.M. University of Tennessee
FREDRICKSON, J.K. Pacific Northwest National Lab
BROCKMAN, F.J. Pacific Northwest National Lab
PHELPS, T.J. Oak Ridge National Lab
WHITE, D.C. University of Tennessee

Peacock, A. University of Tennessee
HOOVER, R.B. SD50
ET AL.

OSBORNE, R. ERC, Inc.
WEHRMEYER, J. Vanderbilt University
TRINH, H.P. TD61

OSTROGORSKY, A. Rensselaer Polytechnic Institute
MARI, C. Rensselaer Polytechnic Institute
CHURILOV, A. Rensselaer Polytechnic Institute
VOLZ, M.P. SD46
BONNER, W.A. Crystalloids Inc.
SPIVEY, R.A. Tec-Masters, Inc.
SMITH, G.A. UAH

PANDEY, A.B. Pratt & Whitney
SHAH, S. UP30
SHADOAN, M. UP30

PANDEY, A.B. Pratt & Whitney
SHAH, S. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S. UP30
SHADOAN, M. UP30

PARK, O.Y. ATK Thiokol Propulsion
LAWRENCE, T.W. ED34

PATEL, S.K. SD50
KOUVEliOTou, C. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
KINGS, A. SD50
UBERTIINI, P. SD50
WINKLER, C. SD50
COURVOISIER, T. SD50
VAN DER KLIS, M. SD50
ET AL.

PATTON, B.W. TD40
HOLLOWAY, J.P. University of Michigan

PEARSON, J.B. TD40
SIMS, W.H. TD40

PECK, J.A. ED21
MAHADEVAN, S. Vanderbilt University

PERRY, J.L. FD21

PEVTSOV, A.A. SD50
HAGYARD, M.J. SD50
BLEHM, Z. SD50
SMITH, J.E. SD50
CANFIELD, R.C. SD50
SAKURAI, T. SD50

PIKUTA, E.V. SD50
HOOVER, R.B. SD50
MARSIC, D. UAH
BEI, A.K. UAB
GARRIOTT, O. UAH
PIKUTA, E.V. SD50
HOOVER, R.B. SD50
MARSIC, D. University of Georgia
WHITMAN, W.B. University of Georgia
TANG, J. American Type Culture
KRADER, P. American Type Culture

PLATT, M.J. Concepts NREC
MARSH, M. TD61

PLATT, M.J. Concepts NREC
YU, M.M. Concepts NREC
MARSH, M. TD61

POLSGROVE, T. TD30

MSFC MXER Tether Study—Interim Report—Charts. For presentation at the Advanced Space Propulsion Workshop, Huntsville, AL, April 15–17, 2003.

PORTER, J.G. SD50
WEST, E.A. SD50
DAVIS, J.M. SD50
GARY, G.A. SD50
NOBLE, M.W. SD50
THOMAS, R.J. Goddard Space Flight Center
RABIN, D.M. Goddard Space Flight Center
UITENBROEK, H. NSO

PRINCE, F.A. VS20

PUSEY, M.L. SD46

PUSEY, M.L. SD46
DOWELL, J. UAH
GAVIRA-GALLARDO, J.A. UAH
NG, J.D. UAH

PUSEY, M.L. SD46
GORTI, S. SD46
FORSYTHE, E.L. USRA

PUSEY, M.L. SD46
VAN DER WOERD, M.J. USRA
FERREE, D.S. USRA

QUINN, J.E. TD51

RAMACHANDRAN, N. USRA
LESLIE, F.W. SD46

RAMACHANDRAN, N. BAE/SD46
LESLIE, F.W. SD46

RAMACHANDRAN, N. USRA
LESLIE, F.W. SD46

RAMACHANDRAN, N. BAE/SD46
MAJUMDAR, A.K. ED25
MCDANIELS, D.M. TD63
STEWART, E. ED25

RAMSEY, B.D. SD50
BASSO, S. Osservatorio Astronomico di Brera
BRUNI, R.J. Harvard-Smithsonian
CITERIO, O. Osservatorio Astronomico di Brera
ENGELHAUPT, D. UAH
GHIGO, M. Osservatorio Astronomico di Brera
GORENSTIEN, P. Harvard-Smithsonian
MAZZOLENI, F. Osservatorio Astronomico di Brera
O’DELL, S.L. SD50
SPEEGLE, C.O. Raytheon ITSS

RAMSEY, B.D. SD50
GUBAREV, M. SD70
APPLE, J. SD50

RAMSEY, B.D. SD50
SPEEGLE, C.O. Raytheon ITSS
GASKIN, J. UAH
SHARMA, D. SD50
ENGELHAUPT, D. UAH

RAMSEY, B.D. SD50
GUBAREV, M. SD70
APPLE, J. SD50
ENGELHAUPT, D. UAH
SPEEGLE, C.O. Raytheon ITSS
GREEN, J.L. SD50
SONG, P. SD50
FUING, S.F. SD50
VASYLIUNAS, V.W. SD50
GALLAGHER, D.L. SD50
Sandel, B.R. SD50

CHUNG, T.J. SD50

RICHMOND, R.C. SD46

RICHMOND, R.C. SD46
CRUZ, A. SD46
JANSEN, H. SD46
BORS, K. SD46
A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk—

RITCHIE, S. University of Alabama
HOLLADAY, J. FD23
CLARK, D. FD24
HOLT, J.M. ED25

ROBERTSON, F.R. SD60

ROBERTSON, F.R. SD60
FITZJARRALD, D.E. SD60
KUMMEROW, C.D. Colorado State University

ROBERTSON, T. TD40
NORLEY, G.D.

ROCKER, M. TD64
NESMAN, T.E. TD63
HULKA, J.R. TD61
DOUGHERTY, N.S. TD63/ERC

ROCKER, M. TD64
WEST, J.S. TD62

RODERS, S.L. TD40
REISZ, A. Al Reisz Engineering Engines for the Cosmos—Extended Abstract. For publication in Mechanical Engineering, October/November 2002.

ROE, F.D. ED19
HOWARD, R.T. ED19
MURPHY, L. ED19

ROEVER, D. SD46
ACHARI, A. SD46
MANAVALAN, P. Genzyme Corp.
EDMUNDS, T. Genzyme Corp.
SCOTT, D.L. Harvard Med School

ROGERS, J.R. SD46
Materials Science Research in the Microgravity Department of the Marshall Space Flight Center—Abstract Only. For presentation at the Kiwanas Club, Huntsville, AL, December 5, 2002.

ROGERS, M. Luna Innovations, Inc.
SCRIBBEN, E. Virginia Polytechnic Institute
BAIRD, D. Virginia Polytechnic Institute
HULCHER, A.B. ED34

ROGERS, M. Luna Innovations, Inc.
STEVENSON, P. Luna Innovations, Inc.
SCRIBBEN, E. Virginia Polytechnic Institute
BAIRD, D. Virginia Polytechnic Institute
HULCHER, A.B. ED34

ROTHERMEL, J. TD64
DORNEY, D.J. TD64
DORNEY, S.M. TD64

ROTHERMEL, J. TD64
DORNEY, S.M. TD64
DORNEY, D.J. TD64

CFD-Based Design of Turbopump Inlet Duct for Reduced Dynamic Loads—Final Paper. For presentation at the Thermal and Fluids Analysis Workshop, Norfolk, VA, August 18–22, 2003.

RUF, J.H. TD64
HAGEMANN, G. Astrium, Germany
IMMICH, H. Astrium, Germany

RUF, J.H. TD64
MCDANIELS, D.M. TD64

RUSSELL, S.S. ED32
WALKER, J.L. ED32
LANSING, M.D. ED32

Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing—Abstract Only.

For presentation at the ASNT Fall Conference and Quality Testing Show, Pittsburgh, PA, October 13–17, 2003.

SACKHEIM, R. DA01

In-Space Propulsion—Where We Stand and What’s Next—Final Paper. For presentation at the Tenth International Workshop on Combustion and Propulsion, Lerci, La Spezia, Italy, September 21–25, 2003.

SACKHEIM, R. DA01
CIKANEK, H.A. GRC
BEAURAIN, A. Snecma Moteurs
SOUCHIER, A. Snecma Moteurs
MORAVIE, M. Snecma Propulsion Solide

SAFIE, F.M. UP10
DANIEL, C. UP10
KALIA, P. Raytheon ITSS

SALVAIL, P.G. ED33
CARTER, R.R. ED33

SCHLAGHECK, R.A. SD41

SCHNEIDER, J.A. Mississippi State University
NUNES, A.C., JR. ED30

SCHNEIDER, M. FD41

SCHNEIDER, M. FD41

SCHNEIDER, T. ED31
VAUGHN, J.A. ED31
CARRUTH, M.R., JR. ED30
MIKELIDES, I.G. SAIC
JONGEWARD, G.A. SAIC
PETERSON, T. Glenn Research Center
KERSLAKE, T.W. Glenn Research Center
SNYDER, D. Glenn Research Center
FERGUSON, D. Glenn Research Center
HOSKINS, A. Aerojet

SCHNELL, A.R. Tennessee Technological University
TINKER, M.L. ED21

SCHOENFIELD, M.P. New Mexico St. University
TINKER, M.L. ED21

SCHOFFSTOLL, D.L. TD53

SCOTT, D.M. USRA
FINGER, M.H. USRA
WILSON, C.A. SD50

SEGRE, P.N. SD46

SELVIDGE, S. ED33
WATWOOD, M.C. ERC

SEVER, T.L. SD60

SEVER, T.L. SD60

SHAH, S. ED33
WELLS, D. ED33
WAGNER, J. Langley Research Center
BABEL, H. Boeing

SHARP, J.R. ED26
KITTREDGE, K. ED26
SCHUNK, R.G. ED26

SHEEHY, J.A. TD40
<table>
<thead>
<tr>
<th>Author</th>
<th>Institution</th>
<th>Title</th>
<th>Venue/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEVER, T.L.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONYERS, L.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLEDD, A.M.</td>
<td>FD31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANFORD, T.M.</td>
<td>FD31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, G.</td>
<td>International Space Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMITH, K.A.</td>
<td>Raytheon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNELLGROVE, L.M.</td>
<td>TD63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIFFIN, L.W.</td>
<td>TD64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIEJA, J.P.</td>
<td>TD74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SONDACK, D.L.</td>
<td>Boston University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOZEN, M.</td>
<td>Embry-Riddle Aeronautical University</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SULLIVAN, D.G. Auburn University
SHAW, J.N. Auburn University
MASK, P.L. Auburn University
RICKMAN, D. SD60
LUVALL, J.C. SD60
WERSINGER, J.M. Auburn University

SULLIVAN, D.G. Auburn University
SHAW, J.N. Auburn University
RICKMAN, D. SD60
MASK, P.L. Auburn University
WERSINGER, J.M. Auburn University
LUVALL, J.C. SD60

SWIFT, W.R. ED44
SUGGS, R.M. ED44
MEACHEM, T. ED44
COOKE, W.J. ED44

SWINGLE, M. University of South Alabama
HONKANEN, R. University of South Alabama
CISZAK, E. SD46

TAKAHASHI, K. Johns Hopkins University
DENTON, R.E. Dartmouth College
GALLAGHER, D.L. SD50

THOMAS, L. UP10
KITTREDGE, S. UP10

THOMPSON, A.N. SD60
SHAW, J.N. SD60
MASK, P.L. SD60
TOUCHTON, J.T. SD60
RICKMAN, D. SD60

THOMPSON, M.S. UAH
PAKHOMOV, A.V. UAH
HERREN, K.A. SD71

TREVINO, L.C. ED14
OLCMEN, S. UAH
POLITES, M. UAH

TRINH, H.P. TD61
BULLARD, B. TD61
KOPICZ, C. TD61
MICHAELS, S. ERC, Inc.
TROLINGER, J.D. MetroLaser
L’ESPERANCE, D. MetroLaser
RANGEL, R. University of California
COIMBRA, C. University of Hawaii
WITHEROW, W.K. SD46

TRINH, H.P. TD61
EARLY, J. Los Alamos National Laboratory
OSBORNE, R. ERC, Inc.

TRINH, H.P. TD61
EARLY, J. Los Alamos National Laboratory
OSBORNE, R. ERC, Inc.
TUCKER, J. Southern Research Institute
DASPIIT, G. Southern Research Institute
STALLCUP, M. SD71
PRESSON, J. SD71
NEIN, M. UAH

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAPILA, N. University of Florida
SHYY, W. University of Florida

Plasma Interactions With a Negative Biased Electrodynamic Tether—Abstract Only. For presentation at the 8th Spacecraft Charging Technology Conference, Huntsville, AL, October 20–24, 2003.

NASA’s National Center for Advanced Manufacturing—Abstract Only. For presentation at the SAE Aerospace Manufacturing Technology Conference, Montreal, PQ, Canada, September 8–12, 2003.

Microcrack Quantification in Composite Materials by a Neural Network Analysis of Ultrasound Spectral Data—Abstract Only. For presentation at the ASNT Fall Conference and Quality Testing Show, Pittsburgh, PA, October 13–17, 2003.

WEFEL, J.P. Louisiana State University
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
COX, M. SD50
ELLISON, S.B. Louisiana State University
FAZLEY, A.R. Southern University

WEIR, J.M. ED19
WELLS, B.E. ED19

WEISSKOPF, M.C. SD50

WEISSKOPF, M.C. SD50

WU, K. University College London
TENNANT, A.F. SD50
SWARTZ, D.A. USRA

WELCH, A.C. AD42

International Space Station Laboratory “Destiny” Hardware Move From MSFC to KSC—Final Paper. For presentation at the Society of Logistics Engineers 38th Annual International Conference and Exhibition, Huntsville, AL, August 10–14, 2003.

WELCH, C.L. FD30

WELCH, C.L. FD42

WERT, M.J. SD46
HOFMEISTER, W.H. SD46
BAYUZICK, R.J. SD46
ROGERS, J.R. SD46
RATHZ, T.J. SD46
FOUNTAIN, G. SD46
HYERS, R.W. SD46

WEST, J.S. TD64
ROthermel, J. TD64

Application of the Loci-Based CFD Code Chem at MSFC: Preliminary Results—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.

WEST, J.S. TD64
TUCKER, P.K. TD64
WILLIAMS, R.W. TD64

WHITAKER, A.F. SD46
CURRERI, P.A. SD46
SMITH, T.R. SD46

WHITE, C.E. TD01
GUIDOS, M. TD01
GREENE, W.D. TD01

WHORTON, M.S. TD54

WINGARD, C.D. ED34

WRIGHT, K.H., JR. SD50
DUTTON, K. Madison Research Corporation
MARTINEZ, N. SD22
SMITH, D. ED17
STONE, N.H. SRS Technologies

WRIGHT, K.H., JR. UAH
STONE, N.H. SRS Technologies
GILCHRIST, B.E. University of Michigan
VAUGHN, I. SD50
GARBE, G. SD50

WRIGHT, M.D. CD40

WRIGHT, S.A. Sandia National Laboratories
LIPINSKI, R.J. Sandia National Laboratories
GODFROY, T.J. TD40
BRAGG-SITTON, S.M. TD40
VAN DYKE, M.V. TD40

WU, J. University of California
WALUKIEWICZ, W. Lawrence Berkeley National Lab
YU, K.M. Lawrence Berkeley National Lab
SHAN, W. Lawrence Berkeley National Lab
AGER, J.W. Lawrence Berkeley National Lab
HALLER, E.E. Lawrence Berkeley National Lab
MIOTKOWSKI, A.K. Purdue University
SU, C.-H. SD46

WUCHERER, E.J. Aerojet
COOK, T. Aerojet
STIEFEL, M. Aerojet
HUMPHRIES, R. MP01
PARKER, J. Kennedy Space Center

XENOFOSS, G. TD62
FORBES, J. TD62
FARROW, J. TD62
WILLIAMS, R.W. TD64
TYLER, T. TD63
SARGENT, S. Boeing-Rocketdyne
MOHAROS, J. Boeing-Rocketdyne

YAMIAUCHI, Y. SD50
MOORE, R.L. SD50
SUSS, S.T. SD50
WANG, H. SD50
SAKURAI, T. SD50

YESILYURT, S. SD46
MOTAKEF, S. SD46
GRUGEL, R.N. SD46
MAZURUK, K. SD46

YOUNG, R.B. SD46
BRIDGE, K. SD46

Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For presentation at the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003.

INDEX

TECHNICAL MEMORANDA

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENNETT, K.E.</td>
<td>2</td>
</tr>
<tr>
<td>BOOTHE, R.E.</td>
<td>1, 2</td>
</tr>
<tr>
<td>BURNS, H.D.</td>
<td>2</td>
</tr>
<tr>
<td>COOPER, K.G.</td>
<td>3</td>
</tr>
<tr>
<td>FINCKENOR, J.L.</td>
<td>2</td>
</tr>
<tr>
<td>GAMWELL, W.R.</td>
<td>1</td>
</tr>
<tr>
<td>GLASGOW, S.D.</td>
<td>1</td>
</tr>
<tr>
<td>GRIFFIN, M.R.</td>
<td>3</td>
</tr>
<tr>
<td>GRUGEL, R.N.</td>
<td>1</td>
</tr>
<tr>
<td>KING, K.D.</td>
<td>2</td>
</tr>
<tr>
<td>KITTREDGE, K.B.</td>
<td>1</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>1</td>
</tr>
<tr>
<td>NEWTON, R.L.</td>
<td>3</td>
</tr>
<tr>
<td>PICKETT, R.D.</td>
<td>2</td>
</tr>
<tr>
<td>SMITH, K.</td>
<td>3</td>
</tr>
<tr>
<td>SUMMERS, F.G.</td>
<td>2</td>
</tr>
<tr>
<td>TINKER, M.L.</td>
<td>1</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>1</td>
</tr>
<tr>
<td>WATSON, G.L.</td>
<td>3</td>
</tr>
</tbody>
</table>

TECHNICAL PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBYN, K.C.</td>
<td>6</td>
</tr>
<tr>
<td>BOOTHE, R.E.</td>
<td>6</td>
</tr>
<tr>
<td>BROWN, A.M.</td>
<td>4, 5</td>
</tr>
<tr>
<td>BURNS, H.D.</td>
<td>6</td>
</tr>
<tr>
<td>CHANDRASEKHAR, V.</td>
<td>6</td>
</tr>
<tr>
<td>CHAPMAN, J.N.</td>
<td>5, 6</td>
</tr>
<tr>
<td>COLE, J.W.</td>
<td>5</td>
</tr>
<tr>
<td>DIKIN, D.A.</td>
<td>6</td>
</tr>
<tr>
<td>DOBSON, C.C.</td>
<td>5</td>
</tr>
<tr>
<td>EDWARDS, D.L.</td>
<td>4</td>
</tr>
<tr>
<td>FINCHUM, C.A.</td>
<td>6</td>
</tr>
<tr>
<td>FINCKENOR, M.M.</td>
<td>4, 6</td>
</tr>
<tr>
<td>HAWK, C.W.</td>
<td>5</td>
</tr>
<tr>
<td>HOPPE, D.T.</td>
<td>4</td>
</tr>
<tr>
<td>HOVATER, M.A.</td>
<td>4</td>
</tr>
<tr>
<td>HOWELL, L.W.</td>
<td>4</td>
</tr>
</tbody>
</table>

JONES, J.E. ... 5
LINEBERRY, C.W. .. 5
LINEBERRY, J.T. .. 5
LITCHFORD, R.J. .. 5, 6
MCGHEE, D.S. .. 4
PLEMMONS, D.H. .. 5
RUOFF, R.S. ... 6
SCHMIDT, H.J. ... 5, 6
SCHNEIDER, T.A. .. 4
SEUGLING, R.M. ... 5
THOMPSON, B.R. ... 5
TURNER, M.W. ... 5

VAUGHN, J.A. ... 4

CONFERENCE PUBLICATIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENNETT, N.</td>
<td>7</td>
</tr>
<tr>
<td>BREWER, J.C.</td>
<td>7</td>
</tr>
<tr>
<td>GILLIES, D.</td>
<td>7</td>
</tr>
<tr>
<td>MCCAULEY, D.</td>
<td>7</td>
</tr>
<tr>
<td>MURPHY, K.</td>
<td>7</td>
</tr>
<tr>
<td>RAMACHANDRAN, N.</td>
<td>7</td>
</tr>
</tbody>
</table>

CONTRACTOR REPORTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLAND, J.</td>
<td>8</td>
</tr>
<tr>
<td>CRAIN, S.H.</td>
<td>8</td>
</tr>
<tr>
<td>EBERLE, B.</td>
<td>8</td>
</tr>
<tr>
<td>FARRIS, B.</td>
<td>8</td>
</tr>
<tr>
<td>FREEMAN, L.M.</td>
<td>8</td>
</tr>
<tr>
<td>GORDON, T.</td>
<td>8</td>
</tr>
<tr>
<td>KARR, C.L.</td>
<td>8</td>
</tr>
<tr>
<td>KARR, G.</td>
<td>8</td>
</tr>
<tr>
<td>LOOPER, M.D.</td>
<td>8</td>
</tr>
<tr>
<td>MAZUR, J.E.</td>
<td>8</td>
</tr>
<tr>
<td>NASH-STEVENSON, S.K.</td>
<td>8</td>
</tr>
<tr>
<td>NEGAST, B.</td>
<td>8</td>
</tr>
<tr>
<td>PICKEL, J.C.</td>
<td>8</td>
</tr>
<tr>
<td>RANTANEN, R.</td>
<td>8</td>
</tr>
<tr>
<td>WOODCOCK, G.</td>
<td>8</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>ABBAS, M.M.</td>
<td>9, 17</td>
</tr>
<tr>
<td>ABEL, T.</td>
<td>47</td>
</tr>
<tr>
<td>ABYZOV, S.S.</td>
<td>9</td>
</tr>
<tr>
<td>ACHARI, A.</td>
<td>43</td>
</tr>
<tr>
<td>ADAMO, C.</td>
<td>9</td>
</tr>
<tr>
<td>ADAMS, D.E.</td>
<td>9</td>
</tr>
<tr>
<td>ADAMS, J.H.</td>
<td>9, 10</td>
</tr>
<tr>
<td>ADAMS, M.L.</td>
<td>9, 10</td>
</tr>
<tr>
<td>ADAMS, R.B.</td>
<td>10, 47</td>
</tr>
<tr>
<td>ADRIAN, M.L.</td>
<td>10, 22</td>
</tr>
<tr>
<td>AGER, J.W.</td>
<td>54</td>
</tr>
<tr>
<td>AGGARWAL, P.K.</td>
<td>11</td>
</tr>
<tr>
<td>AHMED, R.</td>
<td>10</td>
</tr>
<tr>
<td>AHN, E.J.</td>
<td>20, 21</td>
</tr>
<tr>
<td>AHN, H.S.</td>
<td>10, 11, 16, 21, 25, 52, 55</td>
</tr>
<tr>
<td>ALBARADO, T.</td>
<td>11</td>
</tr>
<tr>
<td>ALBYN, K.</td>
<td>11</td>
</tr>
<tr>
<td>ALEXANDER, R.</td>
<td>10, 47</td>
</tr>
<tr>
<td>ALLEN, P.A.</td>
<td>11</td>
</tr>
<tr>
<td>ALOOR, S.</td>
<td>11</td>
</tr>
<tr>
<td>ALRED, J.</td>
<td>11</td>
</tr>
<tr>
<td>ALTSTATT, R.</td>
<td>19</td>
</tr>
<tr>
<td>ANDERSON, M.</td>
<td>35</td>
</tr>
<tr>
<td>ANDERSON, M.I.</td>
<td>27</td>
</tr>
<tr>
<td>ANDING, R.C.</td>
<td>48</td>
</tr>
<tr>
<td>ANFIMOV, D.S.</td>
<td>37</td>
</tr>
<tr>
<td>ANILKUMAR, A.V.</td>
<td>11, 25</td>
</tr>
<tr>
<td>APPLE, J.</td>
<td>25, 42</td>
</tr>
<tr>
<td>ARAKERE, N.K.</td>
<td>11</td>
</tr>
<tr>
<td>ARUMUGAM, M.</td>
<td>11</td>
</tr>
<tr>
<td>ARVES, J.</td>
<td>47</td>
</tr>
<tr>
<td>ASHLEY, P.R.</td>
<td>31</td>
</tr>
<tr>
<td>ATHAYDE, A.</td>
<td>13</td>
</tr>
<tr>
<td>AVANOV, L.A.</td>
<td>10, 12, 16, 31, 50</td>
</tr>
<tr>
<td>BABEL, H.</td>
<td>45</td>
</tr>
<tr>
<td>BACKER, D.</td>
<td>13, 52</td>
</tr>
<tr>
<td>BAGGETT, R.M.</td>
<td>12</td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>13, 20, 23, 32, 34, 36</td>
</tr>
<tr>
<td>BAILEY, J.W.</td>
<td>26</td>
</tr>
<tr>
<td>Baird, D.</td>
<td>43, 44</td>
</tr>
<tr>
<td>Baird, J.K.</td>
<td>12</td>
</tr>
<tr>
<td>Baker, M.</td>
<td>39</td>
</tr>
<tr>
<td>Ballard, R.O.</td>
<td>12</td>
</tr>
<tr>
<td>Ban, H.</td>
<td>33, 34</td>
</tr>
<tr>
<td>Baranova, N.</td>
<td>12</td>
</tr>
<tr>
<td>Barbée, T.W., II</td>
<td>36</td>
</tr>
<tr>
<td>Barghouty, A.F.</td>
<td>30</td>
</tr>
<tr>
<td>Barlow, D.A.</td>
<td>12</td>
</tr>
<tr>
<td>Barnes, C.L.</td>
<td>12, 27</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>12</td>
</tr>
<tr>
<td>Barth, J.</td>
<td>30</td>
</tr>
<tr>
<td>Bashindzhagyan, G.L.</td>
<td>10, 11, 12, 16, 20, 21, 25, 52, 55</td>
</tr>
<tr>
<td>Bashindzhagyan, P.</td>
<td>12</td>
</tr>
<tr>
<td>Basso, S.</td>
<td>12, 42</td>
</tr>
<tr>
<td>Bateman, M.G.</td>
<td>32, 36</td>
</tr>
<tr>
<td>Batkov, K.E.</td>
<td>10, 11, 16, 52, 55</td>
</tr>
<tr>
<td>Batra, R.C.</td>
<td>26</td>
</tr>
<tr>
<td>Battista, G.</td>
<td>11</td>
</tr>
<tr>
<td>Baugher, C.R.</td>
<td>12</td>
</tr>
<tr>
<td>Bayuzick, R.J.</td>
<td>53</td>
</tr>
<tr>
<td>Beaurain, A.</td>
<td>44</td>
</tr>
<tr>
<td>Becker, W.E.</td>
<td>12, 52</td>
</tr>
<tr>
<td>Beji, A.K.</td>
<td>28, 40</td>
</tr>
<tr>
<td>Bell, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>Bellamy, H.</td>
<td>14, 34</td>
</tr>
<tr>
<td>Belloni, T.</td>
<td>53</td>
</tr>
<tr>
<td>Bemporad, A.</td>
<td>13</td>
</tr>
<tr>
<td>Benson, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>Berat, C.</td>
<td>9</td>
</tr>
<tr>
<td>Bernhardsdotter, E.</td>
<td>13</td>
</tr>
<tr>
<td>Beshiers, R.</td>
<td>19</td>
</tr>
<tr>
<td>Best, S.</td>
<td>13, 38</td>
</tr>
<tr>
<td>Bhardwaj, A.</td>
<td>19</td>
</tr>
<tr>
<td>Bhat, B.</td>
<td>17</td>
</tr>
<tr>
<td>Bhowmick, J.</td>
<td>11</td>
</tr>
<tr>
<td>Bille, M.</td>
<td>26</td>
</tr>
<tr>
<td>Bjorkman, G.</td>
<td>13</td>
</tr>
<tr>
<td>Blackwell, W.C.</td>
<td>13, 51</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>13, 15, 20, 23, 32, 34, 36</td>
</tr>
<tr>
<td>Blehm, Z.</td>
<td>26, 40</td>
</tr>
<tr>
<td>Blevins, J.A.</td>
<td>13</td>
</tr>
<tr>
<td>Boccio, D.</td>
<td>15</td>
</tr>
<tr>
<td>Boccippio, D.J.</td>
<td>14, 32, 36</td>
</tr>
<tr>
<td>Boeck, W.L.</td>
<td>14</td>
</tr>
<tr>
<td>Boles, W.</td>
<td>15</td>
</tr>
<tr>
<td>Bonamente, M.</td>
<td>30, 33</td>
</tr>
<tr>
<td>Bonner, W.A.</td>
<td>39</td>
</tr>
<tr>
<td>Bonometti, J.</td>
<td>10</td>
</tr>
<tr>
<td>Book, M.L.</td>
<td>28</td>
</tr>
<tr>
<td>Bordeleon, W.J., JR.</td>
<td>14</td>
</tr>
<tr>
<td>Name</td>
<td>Page Range</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>MOTON, T.T.</td>
<td>48</td>
</tr>
<tr>
<td>MUNK, M.</td>
<td>29</td>
</tr>
<tr>
<td>MURDOCH, K.</td>
<td>37</td>
</tr>
<tr>
<td>MURPHY, L.</td>
<td>43</td>
</tr>
<tr>
<td>MURR, L.E.</td>
<td>11, 25, 36</td>
</tr>
<tr>
<td>MYERS, D.</td>
<td>19</td>
</tr>
<tr>
<td>MYERS, G.</td>
<td>24</td>
</tr>
<tr>
<td>NAGANO, M.</td>
<td>9</td>
</tr>
<tr>
<td>NAGANUMA, T.</td>
<td>9</td>
</tr>
<tr>
<td>NALL, M.</td>
<td>15, 37</td>
</tr>
<tr>
<td>NANDY, D.</td>
<td>26</td>
</tr>
<tr>
<td>NEGUERUELA, I.</td>
<td>17</td>
</tr>
<tr>
<td>NEHLS, M.K.</td>
<td>19, 24</td>
</tr>
<tr>
<td>NEIN, M.</td>
<td>50</td>
</tr>
<tr>
<td>NELSON, M.A.</td>
<td>16</td>
</tr>
<tr>
<td>NESMAN, T.E.</td>
<td>37, 43, 55</td>
</tr>
<tr>
<td>NETTLES, A.T.</td>
<td>38, 50</td>
</tr>
<tr>
<td>NEWMAN, T.S.</td>
<td>31, 33</td>
</tr>
<tr>
<td>NEWTON, R.L.</td>
<td>38</td>
</tr>
<tr>
<td>NG, J.D.</td>
<td>13, 41</td>
</tr>
<tr>
<td>NGUYEN, D.</td>
<td>47</td>
</tr>
<tr>
<td>NGUYEN, H.H.</td>
<td>38</td>
</tr>
<tr>
<td>NICHOLS, J.</td>
<td>38</td>
</tr>
<tr>
<td>NICHOLS, K.F.</td>
<td>13, 38</td>
</tr>
<tr>
<td>NIEDERMEYER, M.</td>
<td>38</td>
</tr>
<tr>
<td>NIELSEN, A.D.</td>
<td>38</td>
</tr>
<tr>
<td>NISHIKAWA, K.</td>
<td>38</td>
</tr>
<tr>
<td>NOBLE, M.W.</td>
<td>41</td>
</tr>
<tr>
<td>NORLEY, G.D.</td>
<td>43</td>
</tr>
<tr>
<td>NOWAK, B.</td>
<td>11</td>
</tr>
<tr>
<td>NSUMEI, P.</td>
<td>28</td>
</tr>
<tr>
<td>NUNES, A.C., JR.</td>
<td>11, 25, 36, 44</td>
</tr>
<tr>
<td>O’CONNOR, E.</td>
<td>15</td>
</tr>
<tr>
<td>O’DELL, S.L.</td>
<td>12, 13, 35, 39, 42, 51, 52</td>
</tr>
<tr>
<td>OCHOA, O.</td>
<td>39</td>
</tr>
<tr>
<td>OGLESBY, R.J.</td>
<td>20, 27, 35</td>
</tr>
<tr>
<td>OKUMURA, Y.</td>
<td>43</td>
</tr>
<tr>
<td>OLCMEN, S.</td>
<td>49</td>
</tr>
<tr>
<td>OLIVER, S.T.</td>
<td>39</td>
</tr>
<tr>
<td>ONKEN, J.</td>
<td>36</td>
</tr>
<tr>
<td>ONSTOTT, T.C.</td>
<td>39</td>
</tr>
<tr>
<td>ORRELL, J.</td>
<td>9</td>
</tr>
<tr>
<td>OSBORNE, R.</td>
<td>39, 49</td>
</tr>
<tr>
<td>OESEI, A.</td>
<td>24</td>
</tr>
<tr>
<td>OSTROGORSKY, A.</td>
<td>39, 47</td>
</tr>
<tr>
<td>PACIESAS, W.S.</td>
<td>26, 37</td>
</tr>
<tr>
<td>PAERELS, F.</td>
<td>52</td>
</tr>
<tr>
<td>PAKHOMOV, A.V.</td>
<td>49</td>
</tr>
<tr>
<td>PALOSZ, W.</td>
<td>51</td>
</tr>
<tr>
<td>PANDEY, A.B.</td>
<td>39</td>
</tr>
<tr>
<td>PAPILA, N.</td>
<td>50</td>
</tr>
<tr>
<td>PARENTI, S.</td>
<td>13</td>
</tr>
<tr>
<td>PARESCHI, G.</td>
<td>12</td>
</tr>
<tr>
<td>PARK, O.Y.</td>
<td>40, 47</td>
</tr>
<tr>
<td>PARKER, J.</td>
<td>54</td>
</tr>
<tr>
<td>PASEUR, L.</td>
<td>15</td>
</tr>
<tr>
<td>PATEL, M.S.</td>
<td>16</td>
</tr>
<tr>
<td>PATEL, S.K.</td>
<td>10, 23, 32, 33, 40, 53</td>
</tr>
<tr>
<td>PATTON, B.W.</td>
<td>10, 40</td>
</tr>
<tr>
<td>PAVLOV, G.G.</td>
<td>12, 52</td>
</tr>
<tr>
<td>PEACOCK, A.</td>
<td>39</td>
</tr>
<tr>
<td>PEARCE, J.B.</td>
<td>15, 35, 40</td>
</tr>
<tr>
<td>PECK, J.A.</td>
<td>40</td>
</tr>
<tr>
<td>PEDERSEN, K.</td>
<td>29</td>
</tr>
<tr>
<td>PEREZ, J.</td>
<td>22</td>
</tr>
<tr>
<td>PERRY, J.L.</td>
<td>37, 40</td>
</tr>
<tr>
<td>PETERS, W.</td>
<td>40</td>
</tr>
<tr>
<td>PETERSON, B.V.</td>
<td>40</td>
</tr>
<tr>
<td>PETERSON, T.</td>
<td>45</td>
</tr>
<tr>
<td>PEVTSOV, A.A.</td>
<td>26, 40</td>
</tr>
<tr>
<td>PFURFE, S.M.</td>
<td>39</td>
</tr>
<tr>
<td>PHILLE, T.J.</td>
<td>39</td>
</tr>
<tr>
<td>PHILIPS, A.</td>
<td>46, 47</td>
</tr>
<tr>
<td>PHILLIPS, T.</td>
<td>10, 50</td>
</tr>
<tr>
<td>PIPPS, C.</td>
<td>15</td>
</tr>
<tr>
<td>PICKENS, T.</td>
<td>19</td>
</tr>
<tr>
<td>PIKUTA, E.V.</td>
<td>28, 40, 41</td>
</tr>
<tr>
<td>PINTO, O.</td>
<td>13</td>
</tr>
<tr>
<td>PITALO, K.</td>
<td>27</td>
</tr>
<tr>
<td>PLATT, M.J.</td>
<td>41</td>
</tr>
<tr>
<td>PLUCINSKY, P.</td>
<td>35, 51</td>
</tr>
<tr>
<td>POGOLOVA, M.N.</td>
<td>9</td>
</tr>
<tr>
<td>POLETTO, G.</td>
<td>13</td>
</tr>
<tr>
<td>POLITES, M.</td>
<td>49</td>
</tr>
<tr>
<td>POLSGROVE, R.H.</td>
<td>24</td>
</tr>
<tr>
<td>POLSGROVE, T.</td>
<td>10, 41, 47</td>
</tr>
<tr>
<td>PONCHAK, D.</td>
<td>31</td>
</tr>
<tr>
<td>PONOMAREV-STEPNOI, N.N.</td>
<td>31</td>
</tr>
<tr>
<td>POPE, R.D.</td>
<td>36</td>
</tr>
<tr>
<td>PORTER, J.G.</td>
<td>20, 37, 41</td>
</tr>
<tr>
<td>POTTER, S.</td>
<td>27</td>
</tr>
<tr>
<td>PRASAD, V.</td>
<td>16</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SWIFT, W.R.</td>
<td>13, 48</td>
</tr>
<tr>
<td>SWINGLE, M.</td>
<td>48</td>
</tr>
<tr>
<td>SZOFRAN, F.R.</td>
<td>17, 51</td>
</tr>
<tr>
<td>TAKAHASHI, K.</td>
<td>48</td>
</tr>
<tr>
<td>TAKAHASHI, Y.</td>
<td>27, 48</td>
</tr>
<tr>
<td>TAKAI, T.</td>
<td>43</td>
</tr>
<tr>
<td>TANG, J.</td>
<td>28, 41</td>
</tr>
<tr>
<td>TANG, W.</td>
<td>36</td>
</tr>
<tr>
<td>TANKOSIC, D.</td>
<td>9, 17</td>
</tr>
<tr>
<td>TANVIR, N.R.</td>
<td>27</td>
</tr>
<tr>
<td>TAYLOR, J.</td>
<td>48</td>
</tr>
<tr>
<td>TAYLOR, S.</td>
<td>24</td>
</tr>
<tr>
<td>TAYLOR, T.</td>
<td>48</td>
</tr>
<tr>
<td>TEGETMEIER, A.</td>
<td>17</td>
</tr>
<tr>
<td>TENNANT, A.F.</td>
<td>13, 21, 32, 35, 40, 48, 52</td>
</tr>
<tr>
<td>THAMES, M.P.</td>
<td>24</td>
</tr>
<tr>
<td>THIO, Y.C.F.</td>
<td>10, 47</td>
</tr>
<tr>
<td>THOMAS, D.</td>
<td>48</td>
</tr>
<tr>
<td>THOMAS, E.</td>
<td>9</td>
</tr>
<tr>
<td>THOMAS, L.</td>
<td>49</td>
</tr>
<tr>
<td>THOMAS, M.E.</td>
<td>49</td>
</tr>
<tr>
<td>THOMAS, R.J.</td>
<td>41</td>
</tr>
<tr>
<td>THOMPSON, A.N.</td>
<td>49</td>
</tr>
<tr>
<td>THOMPSON, J.E.</td>
<td>26</td>
</tr>
<tr>
<td>THOMPSON, M.S.</td>
<td>49</td>
</tr>
<tr>
<td>TINKER, M.L.</td>
<td>45</td>
</tr>
<tr>
<td>TOUCHTON, J.T.</td>
<td>49</td>
</tr>
<tr>
<td>TRAMEL, T.L.</td>
<td>15</td>
</tr>
<tr>
<td>TRAN, K.</td>
<td>18</td>
</tr>
<tr>
<td>TRAPPE, V.</td>
<td>16</td>
</tr>
<tr>
<td>TREVINIO, L.C.</td>
<td>49</td>
</tr>
<tr>
<td>TRINH, H.P.</td>
<td>39, 49</td>
</tr>
<tr>
<td>TROLINGER, J.D.</td>
<td>36, 49</td>
</tr>
<tr>
<td>TUCKER, C.D.</td>
<td>40</td>
</tr>
<tr>
<td>TUCKER, D.S.</td>
<td>49</td>
</tr>
<tr>
<td>TUCKER, J.</td>
<td>50</td>
</tr>
<tr>
<td>TUCKER, P.K.</td>
<td>50, 53</td>
</tr>
<tr>
<td>TURNER, E.H.</td>
<td>40</td>
</tr>
<tr>
<td>TURNER, S.G.</td>
<td>50</td>
</tr>
<tr>
<td>TYGIELSKI, P.</td>
<td>38</td>
</tr>
<tr>
<td>TYLER, T.</td>
<td>54</td>
</tr>
<tr>
<td>UBERTINI, P.</td>
<td>40</td>
</tr>
<tr>
<td>UITENBROEK, H.</td>
<td>41</td>
</tr>
<tr>
<td>URQUI, R.</td>
<td>38</td>
</tr>
<tr>
<td>VAIDYANATHAN, R.</td>
<td>50</td>
</tr>
<tr>
<td>VAISBERG, O.L.</td>
<td>12, 50</td>
</tr>
<tr>
<td>VAN DER KLIS, M.</td>
<td>23, 32, 40, 53</td>
</tr>
<tr>
<td>VAN DER WOERD, M.J.</td>
<td>31, 41, 50</td>
</tr>
<tr>
<td>VAN DYKE, M.V.</td>
<td>23, 28, 32, 47, 51, 54</td>
</tr>
<tr>
<td>VARGAS, R.</td>
<td>11</td>
</tr>
<tr>
<td>VASYLIunas, V.W.</td>
<td>42</td>
</tr>
<tr>
<td>VAUGHN, W.W.</td>
<td>29, 36</td>
</tr>
<tr>
<td>VAUGHN, J.</td>
<td>54</td>
</tr>
<tr>
<td>VAUGHN, J.A.</td>
<td>21, 28, 45, 51</td>
</tr>
<tr>
<td>VICKERS, J.</td>
<td>51</td>
</tr>
<tr>
<td>VIKRAM, C.S.</td>
<td>51</td>
</tr>
<tr>
<td>VIRANI, S.</td>
<td>51</td>
</tr>
<tr>
<td>VITARIUS, P.</td>
<td>51</td>
</tr>
<tr>
<td>VOLZ, M.P.</td>
<td>39, 51</td>
</tr>
<tr>
<td>VON JOUANNE, R.G.</td>
<td>40</td>
</tr>
<tr>
<td>WACHTER, S.</td>
<td>32</td>
</tr>
<tr>
<td>WAGGONER, J.D.</td>
<td>10, 36</td>
</tr>
<tr>
<td>WAGNER, J.</td>
<td>45</td>
</tr>
<tr>
<td>WAIBEL, B.J.</td>
<td>32</td>
</tr>
<tr>
<td>WAITE, H.</td>
<td>19</td>
</tr>
<tr>
<td>WALKER, A.B.C.</td>
<td>36</td>
</tr>
<tr>
<td>WALKER, J.L.</td>
<td>14, 19, 44, 51</td>
</tr>
<tr>
<td>WALKER, J.S.</td>
<td>51</td>
</tr>
<tr>
<td>WALKER, W.W.</td>
<td>21</td>
</tr>
<tr>
<td>WALKER, W.W.</td>
<td>21</td>
</tr>
<tr>
<td>WALUKIEWICZ, W.</td>
<td>54</td>
</tr>
<tr>
<td>WANG, H.</td>
<td>54</td>
</tr>
<tr>
<td>WANG, T.-S.</td>
<td>51</td>
</tr>
<tr>
<td>WANG, T.G.</td>
<td>11</td>
</tr>
<tr>
<td>WATSON, D.</td>
<td>29</td>
</tr>
<tr>
<td>WATSON, M.</td>
<td>55</td>
</tr>
<tr>
<td>WATTS, E.W.</td>
<td>21</td>
</tr>
<tr>
<td>WATEWOOD, M.C.</td>
<td>39, 45</td>
</tr>
<tr>
<td>WEFELE, J.P.</td>
<td>52</td>
</tr>
<tr>
<td>WEHRMEYER, J.</td>
<td>39</td>
</tr>
<tr>
<td>WEIDMAN, C.D.</td>
<td>13</td>
</tr>
<tr>
<td>WEIR, J.M.</td>
<td>52</td>
</tr>
<tr>
<td>WEISSKOPF, M.C.</td>
<td>13, 42, 52</td>
</tr>
<tr>
<td>WEITZ, D.A.</td>
<td>16</td>
</tr>
<tr>
<td>WELCH, A.C.</td>
<td>52</td>
</tr>
<tr>
<td>WELCH, C.L.</td>
<td>14, 52, 53</td>
</tr>
<tr>
<td>WELLS, B.E.</td>
<td>52</td>
</tr>
<tr>
<td>WELLS, D.</td>
<td>45</td>
</tr>
<tr>
<td>WELZYN, K.J.</td>
<td>34, 51</td>
</tr>
<tr>
<td>WERCINSKI, P.</td>
<td>12</td>
</tr>
<tr>
<td>WERSINGER, J.M.</td>
<td>47, 48</td>
</tr>
<tr>
<td>WERT, M.J.</td>
<td>53</td>
</tr>
<tr>
<td>WERTZ, G.</td>
<td>19</td>
</tr>
<tr>
<td>Name</td>
<td>References</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>WEST, E.A.</td>
<td>9, 41</td>
</tr>
<tr>
<td>WEST, J.S.</td>
<td>43, 53</td>
</tr>
<tr>
<td>WESTH, P.</td>
<td>38</td>
</tr>
<tr>
<td>WHITAKER, A.F.</td>
<td>53</td>
</tr>
<tr>
<td>WHITE, C.E.</td>
<td>53</td>
</tr>
<tr>
<td>WHITE, D.C.</td>
<td>39</td>
</tr>
<tr>
<td>WHITE, S.</td>
<td>10, 47</td>
</tr>
<tr>
<td>WHITMAN, W.B.</td>
<td>28, 41</td>
</tr>
<tr>
<td>WHITT, A.</td>
<td>10</td>
</tr>
<tr>
<td>WHORTON, M.S.</td>
<td>53</td>
</tr>
<tr>
<td>WIEY, P.</td>
<td>53</td>
</tr>
<tr>
<td>WILEY, J.</td>
<td>51</td>
</tr>
<tr>
<td>WILKERSO, C.</td>
<td>14</td>
</tr>
<tr>
<td>WILLIAMS, E.</td>
<td>28</td>
</tr>
<tr>
<td>WILLIAMS, R.W.</td>
<td>22, 51, 53, 54</td>
</tr>
<tr>
<td>WILSON, C.A.</td>
<td>10, 17, 26, 45, 53</td>
</tr>
<tr>
<td>WILSON, C.D.</td>
<td>11</td>
</tr>
<tr>
<td>WILSON, J.</td>
<td>53</td>
</tr>
<tr>
<td>WILSON, R.M.</td>
<td>26</td>
</tr>
<tr>
<td>WINGARD, C.D.</td>
<td>54</td>
</tr>
<tr>
<td>WINKLER, C.</td>
<td>40</td>
</tr>
<tr>
<td>WISE, H.L.</td>
<td>17</td>
</tr>
<tr>
<td>WITHEROW, W.K.</td>
<td>9, 21, 28, 49, 51</td>
</tr>
<tr>
<td>WOHLMAN, R.</td>
<td>32</td>
</tr>
<tr>
<td>WOODS, P.M.</td>
<td>10, 23, 32, 40</td>
</tr>
<tr>
<td>WOOSLEY, S.E.</td>
<td>27</td>
</tr>
<tr>
<td>WORKMAN, G.</td>
<td>50</td>
</tr>
<tr>
<td>WRIGHT, K.H., JR.</td>
<td>30, 54</td>
</tr>
<tr>
<td>WRIGHT, M.D.</td>
<td>54</td>
</tr>
<tr>
<td>WRIGHT, S.A.</td>
<td>54</td>
</tr>
<tr>
<td>WU, J.</td>
<td>54</td>
</tr>
<tr>
<td>WU, K.</td>
<td>48, 52</td>
</tr>
<tr>
<td>WUCHERER, E.J.</td>
<td>54</td>
</tr>
<tr>
<td>XENOFOS, G.</td>
<td>54</td>
</tr>
<tr>
<td>YAMAUCHI, Y.</td>
<td>54</td>
</tr>
<tr>
<td>YARLAGADDA, S.</td>
<td>50</td>
</tr>
<tr>
<td>YESILYURT, S.</td>
<td>54</td>
</tr>
<tr>
<td>YOUNG, R.B.</td>
<td>54</td>
</tr>
<tr>
<td>YU, K.M.</td>
<td>54</td>
</tr>
<tr>
<td>YU, M.M.</td>
<td>41</td>
</tr>
<tr>
<td>ZATSEPIN, V.I.</td>
<td>55</td>
</tr>
<tr>
<td>ZEH, A.</td>
<td>24</td>
</tr>
<tr>
<td>ZHANG, S.N.</td>
<td>21</td>
</tr>
<tr>
<td>ZHU, S.</td>
<td>33, 34, 55</td>
</tr>
<tr>
<td>ZOLADZ, T.F.</td>
<td>47, 55</td>
</tr>
<tr>
<td>ZUCCARO, A.</td>
<td>27, 48</td>
</tr>
<tr>
<td>ZURBUCHE, T.</td>
<td>13</td>
</tr>
</tbody>
</table>
This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by Marshall Space Flight Center (MSFC) personnel in FY 2003. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390