The NASA STI Program Office…in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results…even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390
FY 2003 Scientific and Technical Reports, Articles, Papers, and Presentations

Compiled by
B.A. Fowler
Marshall Space Flight Center, Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

December 2004
FOREWORD

In accordance with the NASA Space Act of 1958, the George C. Marshall Space Flight Center (MSFC) has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when MSFC was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TECHNICAL MEMORANDA</td>
<td>1</td>
</tr>
<tr>
<td>NASA TECHNICAL PUBLICATIONS</td>
<td>4</td>
</tr>
<tr>
<td>NASA CONFERENCE PUBLICATIONS</td>
<td>7</td>
</tr>
<tr>
<td>NASA CONTRACTOR REPORTS</td>
<td>8</td>
</tr>
<tr>
<td>MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION</td>
<td>9</td>
</tr>
<tr>
<td>INDEX</td>
<td>57</td>
</tr>
</tbody>
</table>
TM—2002–212049 October 2002

Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (–195.5 °C (–320 °F) and –252.8 °C (–423 °F)) temperatures. The material evaluated was purchased to the requirements of SAE–AMS7912, “Aluminum-Beryllium Alloy, Extrusions."

TM—2003–212286 February 2003

A number of recent advanced theories related to torsion properties of the space-time matrix predict the existence of an interaction between classically spinning objects. Indeed, some experimental data suggest that spinning magnetic bodies discernibly interact with Earth’s natural fields. If a rotating body modifies the geometry of space-time, then nuclear spins could be used for detection. Thus, assuming a spinning body induces a torsion field, a sensor based on the giant magnetoresistance effect would detect local changes. Experimentally, spinning a brass wheel shielded from Earth’s magnetic field showed no measurable change in signals; without shielding, a Faraday disc phenomenon was observed. Unexpected experimental measurements from the nonaxial Faraday disc configuration were recorded, and a theoretical model was derived to explain them.

TM—2003–212345 April 2003
Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA. R.E. Boothe. Materials, Processes, and Manufacturing Department, Engineering Directorate.

This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane’s (TCA’s) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

TM—2003–212500 June 2003

A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the

TM—2002–212049 October 2002

Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (–195.5 °C (–320 °F) and −252.8 °C (−423 °F)) temperatures. The material evaluated was purchased to the requirements of SAE–AMS7912, “Aluminum-Beryllium Alloy, Extrusions."

TM—2003–212286 February 2003

A number of recent advanced theories related to torsion properties of the space-time matrix predict the existence of an interaction between classically spinning objects. Indeed, some experimental data suggest that spinning magnetic bodies discernibly interact with Earth’s natural fields. If a rotating body modifies the geometry of space-time, then nuclear spins could be used for detection. Thus, assuming a spinning body induces a torsion field, a sensor based on the giant magnetoresistance effect would detect local changes. Experimentally, spinning a brass wheel shielded from Earth’s magnetic field showed no measurable change in signals; without shielding, a Faraday disc phenomenon was observed. Unexpected experimental measurements from the nonaxial Faraday disc configuration were recorded, and a theoretical model was derived to explain them.

TM—2003–212345 April 2003
Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA. R.E. Boothe. Materials, Processes, and Manufacturing Department, Engineering Directorate.

This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane’s (TCA’s) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

TM—2003–212500 June 2003

A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the
thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

TM—2003–212501 June 2003

The goal of this effort was to develop a digital motor controller using field programmable gate arrays (FPGAs). This is a more rugged approach than a conventional microprocessor digital controller. FPGAs typically have higher radiation tolerance than both the microprocessor and memory required for a conventional digital controller. Furthermore, FPGAs can typically operate at higher speeds. (While speed is usually not an issue for motor controllers, it can be for other system controllers.) Other than motor power, only a 3.3-V digital power supply was used in the controller; no analog bias supplies were used. Since most of the circuit was implemented in the FPGA, no additional parts were needed other than the power transistors to drive the motor. The benefits that FPGAs provide over conventional designs—lower power and fewer parts—allow for smaller packaging and reduced weight and cost.

TM—2003–212502 June 2003

This effort demonstrates that health management can be taken to the component level for electromechanical systems. The same techniques can be applied to take any health management system to the component level, based on the practicality of the implementation for that particular system. This effort allows various logic schemes to be implemented for the identification and management of failures. By taking health management to the component level, integrated vehicle health management systems can be enhanced by protecting box-level avionics from being shut down in order to isolate a failed computer.

TM—2003–212503 June 2003

In order to help identify contamination found on bonding surfaces, optical surfaces, or other items, the Materials Contamination Team of the Materials, Processes, and Manufacturing Department at Marshall Space Flight Center (MSFC) has initiated the development of an infrared database containing MSFC process materials and residues. Process materials analyzed to date using infrared spectroscopy for transferable and extractable contamination have included gloves, wiper cloths, solvents, bagging materials, etc. Significant findings included silicone contamination on several gloves and observations of extractables from the majority of materials tested.

TM—2003–212633 July 2003

To determine composite material properties’ effects from processing variables, a 3 factorial designed experiment with two replicates was conducted. The factors were cure method (oven versus autoclave), layup (hand versus tape-laying machine), and thickness (8 versus 52 ply). Four material systems were tested: AS4/3501–6, IM7/8551–7, IM7/F655 bismaleimide (BMI), and shear tests on IM7/F584. Material properties were G_{12}, v_{12}, E_1^C, and E_2^C. Since the samples were necessarily nonstandard, strengths, though recorded, cannot be considered valid. Void content was also compared.

Autoclave curing helped material properties for the low modulus fiber material but showed little benefit for higher stiffness fibers. The number of plies was very important for epoxy composites but not for the BMI. E_1 was generally unaffected by any factor.

Particularly high void content did correlate to reduced properties. Autoclave curing reduced void content over oven curing but a moderate amount of voids, <1 percent void content, did not correlate with material properties.

Oven cures and hand layups can produce high-quality parts. Part thickness of epoxy composites is important, though cure optimization may improve performance. Significant variations can be caused by processing and it is important that test coupons always reflect the layup and processes of the final part.

This Technical Memorandum lists the significant publications and presentations of the Science Directorate during the period January 1–December 31, 2002. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Most of the articles listed under Open Literature have appeared in refereed professional
journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. Questions or requests for additional information about the entries in the report should be directed to Dr. A.F. Whitaker (SD01, 256-544-2481) or one of the authors.

TM—2003–212636

Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc., which deposits a fine line of semimolten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment.

The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.

TM—2003–212690

The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement, and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

TM—2003–212692

The objective of this investigation was to examine the relationship between irradiation level (proton dose), microstructure, and stress levels in chemical vapor-deposited diamond and polysilicon films using cross-sectioned specimens. However, the emphasis was placed on the diamond specimen because diamond holds much promise for use in advanced technologies. The use of protons allows not only the study of the charged particle that may cause the most microstructural damage in Earth-orbit microelectromechanical systems (MEMS) devices, but also allows the study of relatively deeply buried damage inside the diamond material. Using protons allows these studies without having to resort to megaelectronvolt implant energies that may create extensive damage due to the high energy that is needed for the implantation process. Since MEMS devices operating in space will not have an opportunity to reverse radiation damage via annealing, only nonannealed specimens were investigated. The following three high spatial resolution techniques were used to examine these relationships: (1) Scanning electron microscopy, (2) micro-Raman spectroscopy, and (3) micro x-ray diffraction.
A simple power law model consisting of a single spectral index, α_1, is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10^{13} eV, with a transition at the knee energy, E_k, to a steeper spectral index $\alpha_2 > \alpha_1$ above E_k. The maximum likelihood (ML) procedure was developed for estimating the single parameter α_1 of a simple power law energy spectrum and generalized to estimate the three spectral parameters of the broken power law energy spectrum from simulated detector responses and real cosmic-ray data. The statistical properties of the ML estimator were investigated and shown to have the three desirable properties: (P1) consistency (asymptotically unbiased), (P2) efficiency (asymptotically attains the Cramer-Rao minimum variance bound), and (P3) asymptotically normally distributed, under a wide range of potential detector response functions. Attainment of these properties necessarily implies that the ML estimation procedure provides the best unbiased estimator possible.

While simulation studies can easily determine if a given estimation procedure provides an unbiased estimate of the spectra information, and whether or not the estimator is approximately normally distributed, attainment of the Cramer-Rao bound (CRB) can only be ascertained by calculating the CRB for an assumed energy spectrum-detector response function combination, which can be quite formidable in practice. However, the effort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efficiency of competing estimation techniques and, furthermore, provides a stopping rule in the search for the best unbiased estimator. Consequently, the CRB for both the simple and broken power law energy spectra are derived herein and the conditions under which they are attained in practice are investigated.

The ML technique is then extended to estimate spectra information from an arbitrary number of astrophysics data sets produced by vastly different science instruments. This theory and its successful implementation will facilitate the interpretation of spectral information from multiple astrophysics missions and thereby permit the derivation of superior spectral parameter estimates based on the combination of data sets.

Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts.

Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation-driven magnetohydrodynamic (MHD) electrical power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation-driven MHD generator concepts. The hydrogen-oxygen-fired driver was a 90-cm-long stainless steel tube having a 4.5-cm-square internal cross section and a short Schelkin spiral near the head-end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol spray prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of $A^*/A_e = 1/10$ and an area expansion ratio of $A_e/A^* = 3.2$ (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5-cm active length), which was inserted into a 0.6-T permanent magnet assembly. Initial experiments verified proper driver operation with and without the nozzle attachment, and head-end pressure and time-resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10^{12} cm$^{-3}$ at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel consumption of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment, a 1.5-MW$_e$ Aerotherm arc heater is used to drive a 2-MW$_e$ MHD accelerator. The heat-sink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

Fillets are one of the most common design features in structures. Proper finite element modeling of these fillets can frequently be problematic though. If the ratio of the fillet radius to the wall thickness is relatively large, the fillet cannot be ignored because it contributes significantly to structural stiffness, and although the most appropriate element for modeling the structure in general may be the plate element, geometric representation of the fillets requires the use of solid elements. This problem is the motivation for the development of a method that uses “bridge” plate elements connecting the tangent points of the fillet to accurately represent its stiffness and mass. The methodology equates the rotational deflection at the tangent point, derived from the proposed bridge system, with an analytical solution of the fillet itself to generate a pseudo Young’s Modulus and thickness for use in the bridge plates. The method was tested on a typical filleted structure, with the bridge method yielding modal analysis results as accurate as a high-fidelity solid model when compared to modal test but with a 90-percent reduction in number of degrees of freedom. This capability could prove extremely useful in design, dynamic, deflection, and preliminary stress analysis, and optimization.
Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number \((R_m) \), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires \(R_m \gg 1 \), and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

TP—2003–212342

March 2003

Flightweight Carbon Nanotube Magnet Technology.

Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

TP—2003–212634

July 2003

The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science, and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the *International Space Station*. The Materials Contamination Team’s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launchsite processing, on-orbit exposure, return, and refurbishment, if required. Contamination is a concern in the Space Shuttle with sensitive bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft, such as the Hubble Space Telescope and Chandra X-Ray Observatory.

The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develops and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for process materials as well as outgassing and optical compatibility test results for specific environments.
The 2002 Microgravity Materials Science Conference was held June 25–26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the COoperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. The proceedings on this CD-ROM are comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

This document contains the proceedings of the 35th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 19–21, 2002. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind.

The subjects covered included nickel-hydrogen, lithium-ion, nickel-metal hydride, lithium-sulfur, lithium-iron disulfide, and silver-zinc technologies.
A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the NGST program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high-fidelity spatial resolution. It is applicable to all detector geometries, including monolithic charged-coupled devices (CCDs), active pixel sensors (APS), and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

CR—2003–212637 August 2003

A model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition, results of the model will be completed to cover a wide range of potential space systems.

CR—2003–212638 August 2003

An experiment on the Microelectronics and Photonics Test Bed (MPTB) was testing field programmable gate arrays using spot shields to extend the life of some of the devices being tested. It was expected that the unshielded parts would fail from a total ionizing dose (TID) and yet the opposite occurred. The data show that the devices failing from the TID effects are those with the spot shields attached. This effort is to determine the mechanism by which the environment is interacting with the high-Z material to enhance the TID in these field programmable gate arrays.

ADAMS, J.H. SD46

ADAMS, J.H. SD50

BERAT, C. LPSC
LEBRUM, D. LPSC
MONTANET, F. LPSC

ADAMS, J.H. SD50

CHRIStL, M.J. SD50

ADAMS, J.H. SD50

HOwELL, L.W., JR. SD50

ADAMS, J.H. SD50

KOuZNtSOV, E. UAH

ADAMS, J.H. SD50

AGASAnO, M. SD50

AGASA Results and EUSO—Abstract Only. For presentation at the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003.

ADAMS, M.L. SD50

ADAMS, M.L. SD50
ELSNER, R.F. SD50
KOUVELIOTOU, C. SD50
PATEL, S.K. SD50
PREECE, R.D. SD50
STRONG, C. SD50
WILSON, C.A. SD50
WOODS, P.M. SD50

Using the Chandra Project to Communicate With Underdeveloped Constituencies—Abstract Only. For presentation at the Meeting on Communicating Astronomy to the Public, Washington, DC, October 1–3, 2003.

ADAMS, M.L. SD50
GALLAGHER, D.L. SD50
KOCZOR, R.J. SD50

ADAMS, M.L. SD50
GALLAGHER, D.L. SD50
WHITT, A. SD50

ADAMS, M.L. SD50
PHILLIPS, T. SD50
WHITT, A. SD50

ADAMS, R.B. TD03
STATHAM, G. ERC, Inc.
HOPKINS, R. TD03
CHAPMAN, J. TD03
WHITE, S. ERC, Inc.
BONOMETTI, J. TD03
ALEXANDER, R. TD03
FINCHER, S. TD03
POLSGROVE, T. TD03
KALKSTEIN, M. TD03

ADAMS, R.B. TD03
STATHAM, G. ERC, Inc.
HOPKINS, R. TD03
CHAPMAN, J. TD03
WHITE, S. ERC, Inc.
BONOMETTI, J. TD03
ALEXANDER, R. TD03
FINCHER, S. TD03
POLSGROVE, T. TD03
KALKSTEIN, M. TD03

CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
FAZLEY, A.R. Southern University
GANEL, O. SD50
GUNASINGHA, R.M. Southern University
GUZIK, T.G. Louisiana State University
For presentation at the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003.

ALBARADO, T. University of Louisiana
HOLLERMAN, A. University of Louisiana
EDWARDS, D.L. ED31
HUBBS, W. ED31
SEMMEL, C. Qualis Corporation

ALBYN, K. ED31
EDWARDS, D.L. ED31
ALRED, J. Boeing

ALLEN, P.A. ED22
AGGARWAL, P.K. ED22
SWANSON, G.R. ED22

ALLEN, P.A. ED22
WILSON, C.D. Tennessee Technological University

ALOOR, S. University of Texas
NOWAK, B. Sandia National Laboratories
VARGAS, R. University of Texas
MCCLURE, J.C. University of Texas
MURR, L.E. University of Texas
NUNES, A.C., JR. ED30

AVANOV, L.A. SD50
CHANDLER, M.O. SD50
SMIRNOV, V.N. SD50
VAISBERG, O.L. SD50

BAGGETT, R.M. TD15
JOHNSON, L. TD15
WERCINSKI, P. NASA Headquarters

BALLARD, R.O. TD51

BARLOW, D.A. UAH
BAIRD, J.K. UAH
SU, C.-H. SD46

BARNES, C.L. SD40
SNELL, E.H. BAE Systems
KUNDROT, C.E. SD40

BARRET, C. TD40

Nuclear Electric Propulsion for Outer Space Missions—Abstract Only. For presentation at the Society of Women Engineers Conference, Birmingham, AL, October 9–11, 2003.

BASHINDZHAGYAN, G.L. Moscow State University
ADAMS, J.H. SD50
BASHINDZHAGYAN, P. Moscow State University
BARANOVA, N. Moscow State University
CHRISTL, M.J. SD50
CHILINGARIAN, A. Yerevan Physics Institute
CHURPIN, I. Joint Institute for Nuclear Research
DERRICKSON, J. SD50
EGOROV, N. Research Institute of Material Science

BASHINDZHAGYAN, G.L. Moscow State University
ADAMS, J.H. SD50
BASHINDZHAGYAN, P. Moscow State University
BARANOVA, N. Moscow State University
CHRISTL, M.J. SD50
CHILINGARIAN, A. Yerevan Physics Institute
CHURPIN, I. Joint Institute for Nuclear Research
DERRICKSON, J. SD50
EGOROV, N. Research Institute of Materials Science

BAUGHER, C.R. SD41

BECKER, W.E. Max Planck Institute
SWARTZ, D.A. USRA
PAVLov, G.G. Penn State University
ELSNER, R.F. SD50
GRINDLAY, J. Harvard-Smithsonian
MIGNANI, R. European Southern Observatory
TENNANT, A.F. SD50
BACKER, D. University of California
WEISSKOPF, M.C. SD50
Chandra X-Ray Observatory Observations of the Globular
Cluster M28 and Its Millisecond Pulsar PSR B1821–
24—Abstract Only. For publication in The Astrophysical

BEMPORAD, A. SD50
POLETTO, G. SD50
ROMOLI, M. SD50
SUSS, S.T. SD50
Preliminary Analysis of a CME Observed by SOHO and
Ulysses Experiments—Abstract Only. For publication in

BERNHARDSDOTTER, E. SD46
GARRIOTT, O. SD46
PUSEY, M.L. SD46
NG, J.D. SD46
Two Strategies for Microbial Production of an Industrial
Enzyme-Alpha-Amylase—Abstract Only. For presentation
at Student Research Day, The University of Alabama in
Huntsville, Huntsville, AL, April 11, 2003.

BEST, S. FD41
NICHOLS, K.F. FD41
BRADFORD, R.N. FD41
Utilization of Internet Protocol-Based Voice Systems
in Remote Payload Operations—Viewgraphs Only. For
presentation at the Ground System Architectures Work-
shop, Manhattan Beach, CA, March 4–6, 2003.

BJORKMAN, G. Lockheed Martin
CANTRELL, M. Lockheed Martin
CARTER, R.R. ED33
Self-Reacting Friction Stir Welding for Aluminum
Alloy Circumferential Weld Application—Abstract and
Presentation. For presentation at the AeroMat 2003 Con-
BOCCIPIO, D.J. SD60

BOCCIPIO, D.J. SD60

BOCCIPIO, D.J. SD60
Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2003.

BOECK, W.L. Niagara University
JACOBSON, A.R. Los Alamos National Laboratory
CHRISTIAN, H.J. SD60
GOODMAN, S.J. SD60

BORDELON, W.J., JR. TD07
FROST, A.L. TD07
REED, D.K. TD07

BORGSTAHL, G. SD46
LOVELACE, J. SD46
SNELL, E.H. SD46
BELLAMY, H. SD46

BOUVIER, C. Lockheed Martin
RUSSELL, S.S. ED32
WALKER, J.L. ED32
WILKERSON, C. ED32

BRADFORD, R.N. FD40

BRADFORD, R.N. FD40
REDMAN, S. UAH

BRADFORD, R.N. FD40
WELCH, C.L. FD40

BRADFORD, R.N. FD40
REDMAN, S. UAH

BRAZEL, A.J. Arizona State University
QUATTROCHI, D.A. SD60

BROWN, R.J. Lockheed Martin
SCHNEIDER, J. Lockheed Martin
HARTLEY, P. Lockheed Martin
RUSSELL, C. MP
LAWLESS, K. MP
JONES, C. MP
CHANDLER, M.O. SD50
AVANOV, L.A. SD50

CHANDLER, M.O. SD50
MOORE, T.E. SD50

CHANG, J. Max Planck Institute
SCHMIDT, W.K.H. Max Planck Institute
ADAMS, J.H. SD50
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
BATKOV, K.E. Moscow State University
CHRISTL, M.J. SD50
FAZLEY, A.R. Southern University
GANEL, O. University of Maryland
GUNASINGHA, R.M. Southern University

CHAUVERS, D.G. TD40

CHAUVERS, D.G. TD40
IRVINE, C. TD40
CHANG-DIAZ, F.R. JSC
SQUIRE, J.P. Muniz Engineering

CHOUHDARY, D.P. SD50
MOORE, R.L. SD50

CHRISTENSON, R.L. TD61
NELSON, M.A. TD51
BUTAS, J.P. TD53

CHRISTIAN, H.J. SD60

CIPPELETTI, L. SD46
PRASAD, V. SD46
DINSMORE, A. SD46
SEGRE, P.N. SD46
WEITZ, D.A. SD46
TRAPPE, V. SD46

CISZAK, E. UAH
DOMINIKA, P.M. SD46

CISZAK, E. UAH
DOMINIKA, P.M. SD46
COE, M.J. Southampton University
HAIGH, N.J. Southampton University
WILSON, C.A. SD50
NEGUERUELA, I. SAX SDC

COLE, J.W. TD40

COLE, J.W. TD40

COOKE, W.J. ED44
SUGGS, R.M. ED44

CRAVEN, P.D. SD50
ABBAS, M.M. SD50
TANKOSIC, D. UAH
SPANN, J.F. SD50

CREECH, S.D. VS20

CROEELL, A. Technische Universitat
LANTZSCH, R. Technische Universitat
KITANOV, S. Technische Universitat
SALK, N. SD46
SZOFRAN, F.R. SD46
TEGETMEIER, A. Kristallographisches Institute

BHAT, B. ED33

CURRERI, P.A. SD46

CURRERI, P.A. SD46

CUTTEN, D.R. SD60
JARZEMBSKI, M.A. SD60
SRIVASTAVA, V. USRA
PUESCHEL, R.F. USRA
HOWARD, S.D. USRA
MCCAUL, E.W., JR. USRA

DAVIS, J.M. SD50
MOORE, R.L. SD50
HATHAWAY, D.H. SD50

DAVIS, S. UP50
ENGLER, L. Morgan Research
FISHER, M.F. UP50
DUMBACHER, D.L. UP01
BOSWELL, B. ISC

DAVIS, S.E. ED36
WISE, H.L. ICRC
DING, R.J.

DOBSON, C.
HRBUD, I.

DOBSON, C.
JONES, J.E.
CHAVERS, D.G.

DORNEY, D.J.
Design and Analysis of Turbomachinery for Space Applications—Presentation. For presentation at the Seminars at Wright-Patterson Air Force Base, OH, and at Wright State University, Dayton, OH, October 4, 2002.

DORNEY, D.J.
GRIFFIN, L.W.
HUBER, F.W.
SONDAK, D.L.
Boston University

DORNEY, D.J.
GRIFFIN, L.W.
HUBER, F.W.
SONDAK, D.L.
Boston University

DORNEY, D.J.
GRIFFIN, L.W.
SONDAK, D.L.
Boston University

DORNEY, D.J.
MARCU, B.
Boeing-Rocketdyne
Enhancements to an Atmospheric Ascent Guidance Algorithm—Final Paper. For presentation at the AIAA

TRAN, K.
SARGENT, S.
Boeing-Rocketdyne

DORNEY, D.J.
ROThERMEL, J.
Shuttle Main Propulsion System LH\(_2\) Feed Line and Inducer Simulations—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.

DORNEY, D.J.
ROThERMEL, J.

DORNEY, D.J.
SONDAK, D.L.
Boston University

DORNEY, S.M.

DRAKE, B.G.
COOKE, D.R.
NASA Exploration Team (NExT) In-Space Transportation Overview—Presentation. For presentation at the 51st JANNAF Propulsion Meeting, Lake Buena Vista, FL, November 18–21, 2002.

DRESSLER, G.A.
MATUZAK, L.W.
Northrop Grumman

DUMBACHER, D.L. UP01

DUMBACHER, D.L. UP40

DUMBACHER, D.L. UP01

EFFINGER, M. ED34
BESHEARS, R. ED34
HUFNAGLE, D. ED34
WALKER, J.L. ED34
RUSSELL, S.S. ED34
STOWELL, B. Lockheed Martin
MYERS, D. Lockheed Martin

LUGAZ, N. University of Michigan
MAJEED, T. University of Michigan
FORD, P. MIT
HOWELL, R. University of Wyoming
CRAVENS, T. University of Kansas
GRODENT, D. University of Liege
BHARDWAJ, A. Vikram Sarabhai Space Center ET AL.
EMRICH, W.J., JR. TD40

ENGBERG, R.C. ED27

ESKRIDGE, R. TD40
MARTIN, A.K. TD40
LEE, M. TD40
SMITH, J.W. TD40
KOELFGEN, S.J. UAH
The Plasmoid Thruster Experiment (PTX)—Abstract and Charts. For presentation at the Advanced Space Propulsion Workshop, Huntsville, AL, April 15–17, 2003.

ESTES, M.G. USRA
QUATTROCHI, D.A. SD60
STASIĄK, E. Intl. City/County Mgmt. Association

EVANS, J.P. Yale University
SMITH, R. Yale University
OGLESBY, R.J. SD60
Simulation of the Climate of Southwest Asia With a Regional Model—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 5–10, 2002.

EVANS, S.W. ED44

FALCONER, D.A. SD50
MOORE, R.L. SD50
GARY, G.A. SD50

FALCONER, D.A. UAH
MOORE, R.L. SD50
GARY, G.A. SD50
HAGYARD, M.J. SD50

FALCONER, D.A. UAH
MOORE, R.L. SD50
GARY, G.A. SD50

FALCONER, D.A. SD50
MOORE, R.L. SD50
PORTER, J.G. SD50
HATHAWAY, D.H. SD50

FAZLEY, A.R. Southern University
GUNASINGHA, R.M. Southern University
ADAMS, J.H. SD50
AHN, E.J. Seoul National University
AHN, H.S. University of Maryland
BASHINDZHAGYAN, G.L. Moscow State University
CASE, G. Louisiana State University
CHANG, J. Max Planck Institute
CHRISTL, M.J. SD50
ELLISON, S.B. Louisiana State University

FENG, Y.X. SD50
TENNANT, A.F. SD50
ZHANG, S.N. SD50

FERREE, D.S. SD46
MALONE, C.C. SD46
KARR, L.J. SD46

FIKES, J.C. FD02
HENLEY, M.W. FD02
MANKINS, J.C. FD02
HOWELL, J.T. FD02
FORK, R.L. FD02
COLE, S.T. FD02
SKINNER, M. RD02

FINCKENOR, M.M. ED31
VAUGHN, J.A. ED31
WATTS, E.W. Qualis Corporation

GALLAGHER, D.L. SD50

GALLAGHER, D.L. SD50
GADIAN, M.L. SD50
PEREZ, J. SD50
ANDERSON, B.R. SD50

GAMWELL, W.R. ED33
MCGILL, P.B. ED33

GARBE, G.P. TD05
MONTGOMERY, E.E., IV TD05

GARY, G.A. SD50

GARY, G.A. SD50

GASKIN, J. SD50
RICHARDSON, G.A. SD50
MITCHELL, S. SD50
SHARMA, D. SD50
RAMSEY, B.D. SD50
SELLER, P. SD50

GASKIN, J. SD50
SHARMA, D. SD50
RAMSEY, B.D. SD50
SELLER, P. Rutherford Appleton Laboratory

GERRISH, H.P., JR. TD40

GERRISH, H.P., JR. TD40

GEVEDEN, R.D. DD01

GEVEDEN, R. SD30
MAY, T. SD31

GILLIES, D.C. SD40
CARPENTER, P.K. SD40
ENGEL, H.P. SD40

GLASGOW, S. ED26
KITTREDGE, K. ED26

GODFROY, T.J. TD40
BRAGG-SITTON, S.M. University of Michigan
VAN DYKE, M.V. TD40

GOGUS, E. SD50
FINGER, M.H. SD50
KOYELITOU, C. SD50
WOODS, P.M. SD50
PATEL, S.K. SD50
RUPEN, M. SD50
SWANK, H.H. SD50
MARKWARDT, C.B. SD50
VAN DER KLIS, M. SD50

GOLDEN, B.L. Purdue University
KUNDROT, C.E. SD48

GOLDSTEIN, J. Rice University
SPASOJEVIC, M. STAR Laboratory
REIFF, P. Rice University
SANDEL, B.R. University of Arizona
FORRESTER, T.T. University of Arizona
GALLAGHER, D.L. SD50
REINISCH, B.W. University of Massachusetts

GOODMAN, S.J. SD60
BLAKESLEE, R.J. SD60
CHRISTIAN, H.J. SD60
KOSHAK, W.J. SD60
BAILEY, J.C. Raytheon
MCALLA, E.W., JR. Global Hydrology & Climate Center
BUECHLER, D.E. National Weather Service
DARDEN, C. National Weather Service
BURKS, J. National Weather Service

GORTI, S. SD46
FORSYTHE, E.L. USRA
LAXSON, N. USRA
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. USRA
PUSEY, M.L. SD46

GORTI, S. SD46
FORSYTHE, E.L. USRA
PUSEY, M.L. SD46

Modeling Tetragonal Lysozyme Crystal Growth Rates—Abstract Only. For presentation at the American

GOSTOWSKI, R. TD40

GRANT, J. SD72
KAUL, R.K. SD72
MYERS, G. SD72
SHARMA, A. Alabama A&M University

GRANT, J. SD72
KAUL, R.K. SD72
TAYLOR, S. SD72
JACKSON, K. SD72
MYERS, G. SD72
SHARMA, A. Alabama A&M University

GRANT, J. SD72
KAUL, R.K. SD72
TAYLOR, S. SD72
JACKSON, K. SD72
MYERS, G. SD72
OSEI, A. Oakwood College
SHARMA, A. Alabama A&M University

GRANT, J. SD72
KAUL, R.K. SD72
TAYLOR, S. SD72
MYERS, G. SD72
SHARMA, A. Alabama A&M University

GRAY, P.A. ICRC
NEHLS, M.K. ED31
EDWARDS, D.L. ED31
CARRUTH, M.R., JR. ED31

GREENE, W.D. TD53
THAMES, M.P. TD53
POLSGROVE, R.H. TD51

KOUVELIOTOU, C. SD50

GRIFFIN, L.W. TD64
MSFC Turbomachinery Fluid Dynamics Roadmap—Presentation. For presentation at the MSFC Spring Workshop on Fluids, Birmingham, AL, April 22–24, 2003.

GRIFFIN, L.W. TD64
DORNEY, D.J. TD64
HUBER, F.W. Riverbend Design Serv.

GRUBBS, R. MSFC
HDTV From the International Space Station—Charts Only. For presentation at the University of South Florida Seminar, Tampa, FL, March 28, 2003.

GWALTNEY, D.A. ED17
STEINcamp, J. ED17
CORDER, E. ED17
KING, K. ED17
FERGUSON, M.I. Jet Propulsion Laboratory DUTTON, K. Madison Research Corporation

HAGYARD, M.J. SD50
PEVTSOV, A.A. National Solar Observatory BLEHM, Z. Montana State University

HAGYARD, M.J. SD50
PEVTSOV, A.A. National Solar Observatory CANFIELD, R.C. Montana State University BLEHM, Z. Montana State University

HAKKILA, J. College of Charleston GIBLIN, T.W. College of Charleston ROIGER, R.J. Mankato State University

HATHAWAY, D.H. SD50

HEDAYAT, A. Sverdrup BAILEY, J.W. Sverdrup

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Affiliation</th>
<th>Paper Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLACHBART, R.H.</td>
<td>TD52</td>
<td></td>
</tr>
<tr>
<td>HOLT, K.A.</td>
<td>TD52</td>
<td></td>
</tr>
<tr>
<td>ANDERSON, M.I.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>CASTRO-TIRADO, A.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>FIKES, J.C.</td>
<td>FD02</td>
<td></td>
</tr>
<tr>
<td>HOWELL, J.T.</td>
<td>FD02</td>
<td></td>
</tr>
<tr>
<td>MANKINS, J.C.</td>
<td>NASA Headquarters</td>
<td></td>
</tr>
<tr>
<td>HARGROVE, W.W.</td>
<td>Oak Ridge National Laboratory</td>
<td></td>
</tr>
<tr>
<td>POTTER, S.</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>HOWELL, J.T.</td>
<td>FD02</td>
<td></td>
</tr>
<tr>
<td>MANKINS, J.C.</td>
<td>NASA Headquarters</td>
<td></td>
</tr>
<tr>
<td>CHO, F.</td>
<td>Johnson Space Center</td>
<td></td>
</tr>
<tr>
<td>HOLLADAY, J.</td>
<td>FD23</td>
<td></td>
</tr>
<tr>
<td>LEAHY, F.</td>
<td>Raytheon</td>
<td></td>
</tr>
<tr>
<td>TAKAHASHI, Y.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>ZUCCARO, A.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>LAMB, D.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>PITALO, K.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>LOPADO, A.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>KEYS, A.S.</td>
<td>SD72</td>
<td></td>
</tr>
<tr>
<td>BOWER, M.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>MONACO, L.</td>
<td>Morgan Research</td>
<td></td>
</tr>
<tr>
<td>BARNES, C.L.</td>
<td>USRA</td>
<td></td>
</tr>
<tr>
<td>SPEARING, S.</td>
<td>Morgan Research</td>
<td></td>
</tr>
<tr>
<td>JENKINS, A.</td>
<td>Morgan Research</td>
<td></td>
</tr>
<tr>
<td>JOHNSON, T.</td>
<td>Micro Craft</td>
<td></td>
</tr>
<tr>
<td>MAYER, D.</td>
<td>ASRI</td>
<td></td>
</tr>
<tr>
<td>COLE, H.E.</td>
<td>SD44</td>
<td></td>
</tr>
<tr>
<td>HOLADAY, J.</td>
<td>FD23</td>
<td></td>
</tr>
<tr>
<td>HUNTCHENS, C.</td>
<td>FD21</td>
<td></td>
</tr>
<tr>
<td>DAY, G.</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>HOLLADAY, J.</td>
<td>FD23</td>
<td></td>
</tr>
<tr>
<td>LEAHY, F.</td>
<td>Raytheon</td>
<td></td>
</tr>
<tr>
<td>HJORTH, J.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>SOLLERMAN, J.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>MOLLER, P.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>FYNBO, J.P.U.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>WOOSLEY, S.E.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>KOUVELITOU, C.</td>
<td>SD50</td>
<td></td>
</tr>
<tr>
<td>TANVIR, N.R.</td>
<td>SD50</td>
<td></td>
</tr>
</tbody>
</table>
Elasticity and Strength of Biomacromolecular Crystals—
Lysozyme—Abstract Only. For publication in Physical

Spirochaeta Americana Sp. Nov., A New Haloalkaliphilic,
Obligately Anaerobic Spirochete Isolated From Soda
Mono Lake in California—Abstract Only. For publication
in the International Journal of Systematic and Evolutionary
Microbiology, 2002.

Empirical Model of the Plasma Density in the Inner
Magnetosphere—Abstract Only. For presentation at the
COSPAR Scientific Assemblies & World Space Congress,
Advances for Space Research, Houston, TX, October 10–
19, 2002.

Turbine Aerodynamic Design System Improvements—
Presentation. For presentation at the MSFC Spring
Workshop on Fluids, Birmingham, AL, April 22–24,
2003.

NASA’s Next-Generation Launch Technology Program—
Strategy and Plans—Final Paper. For presentation at
the 54th International Astronautical Congress, Bremen,
IRWIN, D.
A Regional Monitoring and Visualization System for
Decision Support and Disaster Management Applications
for the Mesoamerican Biological Corridor and Beyond—
Abstract Only. For presentation at the Central American
Commission for Environment and Development Donors

JAAP, J.
DAVIS, E.
Enabling a New Planning and Scheduling Paradigm—
Abstract Only. For presentation at the SpaceOps 2004,

JACOBY, M.T.
GOODMAN, W.A.
STAHLS, H.P.
KEYS, A.S.
REILY, J.C.
ENG, R.
HADAWAY, J.B.
HOGUE, W.D.
KEGLEY, J.R.
ET AL.
Helium Cryo Testing of a SLMS (Silicon Lightweight
Mirrors) Athermal Optical Assembly—Abstract Only. For
presentation at and publication in Proceedings of SPIE
Optical Science and Technology 48th Annual Meeting,

JAKOBS, J.
HJORTH, J.
RAMIREZ-RUIZ, R.
KOUVELIOTOU, C.
PEDERSEN, K.
FYNO, J.P.U.
GOROSABEJ, J.
WATSON, D.
ET AL.
Evidence for Filamentary Jet Structure: The Light Curve
of GRB 011211—Abstract Only. For publication in The

JAMES, B.
MUNK, M.
MOON, S.
Gray Research, Inc.
JOHNSON, L. TD05
GILCHRIST, B.E. University of Michigan
LORENZINI, E.C. Harvard-Smithsonian
STONE, N. SRS Technologies
WRIGHT, K.H., JR. SD50

KAUFFMAN, B. ED03
HARDAGE, D. ED03
MINOR, J. ED03

KAUFFMAN, B. ED03
HARDAGE, D. ED03
MINOR, J. ED03
BARTH, J. ED03
LABEL, K. ED03

KAUFFMAN, B. ED03
HARDAGE, D. ED03
MINOR, J. Goddard Space Flight Center
BARTH, J. Goddard Space Flight Center
LABEL, K. Goddard Space Flight Center

KEARNEY, M.W., III FD40

KEARNEY, M.W., III FD40
KELTON, K.F. SD46
GANGOPADHYAY, A.K. SD46
LEE, G.W. SD46
HYERS, R.W. SD46
RATHZ, T.J. SD46
ROGERS, J.R. SD46
ROBINSON, M.B. SD46
ET AL.

Just Being on the Internet is Old News!—Abstract Only. For presentation at the Fall Meeting of the ADP Council of the Southeastern States, Biloxi, MS, October 22–24, 2003.

<table>
<thead>
<tr>
<th>Name</th>
<th>SD</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>SD50</td>
<td>USRA</td>
</tr>
<tr>
<td>KOUVELIOTOU, C.</td>
<td>SD50</td>
<td>USRA</td>
</tr>
<tr>
<td>BLAKESLEE, R.J.</td>
<td>SD60</td>
<td>Chicago State University</td>
</tr>
<tr>
<td>GOODMAN, S.J.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>CHRISTIAN, H.J.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>HALL, J.M.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>BAILEY, J.C.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>KRIDER, E.P.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>BATEMAN, M.G.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>BOCCIPPIO, D.J.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>LAMONTIA, M.A.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>GRUBER, M.B.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>FUNCK, S.B.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>WAIBEL, B.J.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>COPE, R.D.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>HULCHER, A.B.</td>
<td>ED34</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>LAMONTIA, M.A.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>GRUBER, M.B.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>FUNCK, S.B.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>WAIBEL, B.J.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>COPE, R.D.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>HULCHER, A.B.</td>
<td>ED34</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>LAMONTIA, M.A.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>GRUBER, M.B.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>FUNCK, S.B.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>WAIBEL, B.J.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>COPE, R.D.</td>
<td>SD60</td>
<td>Accudyne Systems, Inc.</td>
</tr>
<tr>
<td>HULCHER, A.B.</td>
<td>ED34</td>
<td>Accudyne Systems, Inc.</td>
</tr>
</tbody>
</table>

Developing a Contoured Deposition Head for In Situ Tape Laying and Fiber Placement—Final Paper. For presentation at the SAMPE International Symposium & Exhibition, Long Beach, CA, May 11–15, 2003.

RNA Crystallization—Abstract Only. For publication in the Journal of Structural Biology, 2003.

Which Strategy for a Protein Crystallization Project?—Abstract Only. For publication in Cellular and Molecular Life Sciences, 2003.

Error Analyses of the North Alabama Lightning Mapping Array (LMA)—Abstract Only. For presentation at the International Conference on Atmospheric Electricity, Versailles, France, June 9–13, 2003.

Developing a Contoured Deposition Head for In Situ Tape Laying and Fiber Placement—Final Paper. For presentation at the SAMPE International Symposium & Exhibition, Long Beach, CA, May 11–15, 2003.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAROQUE, S.J.</td>
<td>SD50</td>
</tr>
<tr>
<td>JOY, M.</td>
<td>SD50</td>
</tr>
<tr>
<td>CARLSTROM, J.E.</td>
<td>SD50</td>
</tr>
<tr>
<td>EBEILING, H.</td>
<td>SD50</td>
</tr>
<tr>
<td>BONAMENTE, M.</td>
<td>SD50</td>
</tr>
<tr>
<td>DAWSON, K.S.</td>
<td>SD50</td>
</tr>
<tr>
<td>EDGE, A.</td>
<td>SD50</td>
</tr>
<tr>
<td>HOLZAPFEL, W.L.</td>
<td>SD50</td>
</tr>
<tr>
<td>PATEL, S.K.</td>
<td>SD50</td>
</tr>
<tr>
<td>ET AL.</td>
<td></td>
</tr>
</tbody>
</table>

Sunyaev-Zeldovich Effect Imaging of MACS Galaxy Clusters at z>0.5—Abstract Only. For publication in The Astrophysical Journal, 2002.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASZAR, J.</td>
<td>TD62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASZAR, J.</td>
<td>TD62</td>
</tr>
<tr>
<td>SHAH, S.</td>
<td>ED33</td>
</tr>
<tr>
<td>KASHALIKAR, U.</td>
<td>Foster-Miller, Inc.</td>
</tr>
<tr>
<td>ROZENOYER, B.</td>
<td>Foster-Miller, Inc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUKENS, C.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>REEVEES, D.R.</td>
<td>Boeing</td>
</tr>
<tr>
<td>HOLT, J.M.</td>
<td>ED25</td>
</tr>
</tbody>
</table>

Operational Experience With the Internal Thermal Control System Dual-Membrane Gas Trap—Final Paper.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUKENS, C.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>REEVEES, D.R.</td>
<td>Boeing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEIMKUEHLER, T.O.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>SPELBRING, C.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>REEVEES, D.R.</td>
<td>Boeing</td>
</tr>
<tr>
<td>HOLT, J.M.</td>
<td>ED25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law, B.C.</td>
<td>Mississippi State University</td>
</tr>
<tr>
<td>HUDSON, S.T.</td>
<td>Mississippi State University</td>
</tr>
<tr>
<td>STEELE, W.G.</td>
<td>Mississippi State University</td>
</tr>
<tr>
<td>BUZZELL, J.C.</td>
<td>TD51</td>
</tr>
<tr>
<td>HUGHES, M.S.</td>
<td>Stennis Space Center</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVIN, G.V.</td>
<td>Spherix, Inc.</td>
</tr>
<tr>
<td>MILLER, J.D.</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>STRAAT, P.A.</td>
<td>Retired</td>
</tr>
<tr>
<td>HOOVER, R.B.</td>
<td>SD50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>SD46</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEE, J.A.</td>
<td>ED33</td>
</tr>
<tr>
<td>LEE, J.K.</td>
<td>UAH</td>
</tr>
<tr>
<td>GARY, G.A.</td>
<td>SD50</td>
</tr>
<tr>
<td>NEWMAN, T.S.</td>
<td>UAH</td>
</tr>
</tbody>
</table>

Cast Aluminum Alloy for High-Temperature Applications—Abstract Only. For presentation at the TMS 132nd Annual Meeting and Exhibition, San Diego, CA, March 2–6, 2003.

<table>
<thead>
<tr>
<th>Authors</th>
<th>SD46</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEE, J.A.</td>
<td>ED33</td>
</tr>
<tr>
<td>LEE, J.K.</td>
<td>UAH</td>
</tr>
<tr>
<td>GARY, G.A.</td>
<td>SD50</td>
</tr>
<tr>
<td>NEWMAN, T.S.</td>
<td>UAH</td>
</tr>
</tbody>
</table>

Operational Experience With the Internal Thermal Control System Dual-Membrane Gas Trap—Final Paper.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUKENS, C.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>REEVEES, D.R.</td>
<td>Boeing</td>
</tr>
<tr>
<td>HOLT, J.M.</td>
<td>ED25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEIMKUEHLER, T.O.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>SPELBRING, C.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>REEVEES, D.R.</td>
<td>Boeing</td>
</tr>
<tr>
<td>HOLT, J.M.</td>
<td>ED25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEIMKUEHLER, T.O.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>SPELBRING, C.</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>REEVEES, D.R.</td>
<td>Boeing</td>
</tr>
<tr>
<td>HOLT, J.M.</td>
<td>ED25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVIN, G.V.</td>
<td>Spherix, Inc.</td>
</tr>
<tr>
<td>MILLER, J.D.</td>
<td>University of Southern California</td>
</tr>
<tr>
<td>STRAAT, P.A.</td>
<td>Retired</td>
</tr>
<tr>
<td>HOOVER, R.B.</td>
<td>SD50</td>
</tr>
</tbody>
</table>

LEHOCZKY, S.L. SD46

LIN, B. UAB
ZHU, S. SD46
BAN, H. UAB
LI, C. UAB
SCRIPA, R.N. UAB
SU, C.-H. SD46
LEHOCZKY, S.L. SD46

LITCHFORD, R.J. TD40

LITCHFORD, R.J. TD40
COLE, J.W. TD40
RODGERS, S.L. TD40
SACKHEIM, R. DA01

LO, C.P. University of Georgia
QUATTROCHI, D.A. SD60

LORENZINI, E.C. Harvard-Smithsonian
WELYZN, K.J. TD55
COSMO, M.L. Harvard-Smithsonian

LOVELACE, J. SD46
BELLAMY, H. SD46
SNELL, E.H. SD46
MACLONE, A.K. ED25

MAJUMDAR, A.K. ED25
FLACHBART, R.H. ED25

MAJUMDAR, A.K. ED25
STEADMAN, T. Jacobs Sverdrup
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines—Abstract Only. For presentation at the 33rd International Conference

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40

MARKUSIC, T.E. TD40

MARKUSIC, T.E. Princeton University TD40

MARSHALL, H. SD50
TENNANT, A.F. SD50
GRANT, C. SD50
HITCHCOCK, A. SD50
O’DELL, S.L. SD50
PLUCINSKY, P. SD50

MARSHALL, S. Rocky Mountain College
OGLESBY, R.J. SD60
DROBOT, S. University of Colorado
ANDERSON, M. University of Nebraska
Simulating Snow Over Sea Ice in Climate Models—Abstract Only. For presentation at the American Geophysical Union Fall Meeting, San Francisco, CA, December 8–12, 2002.

MARTIN, J.J. TD40
LEWIS, R.A. R. Lewis Company
CHAKRABARTI, S. TD40
PEARSON, J.B. TD40
SIMS, W.H. TD40
FANT, W.E. Cortez III
Overview of the High-Performance Antiproton Trap (HiPAT) Experiment—Presentation. For presentation at the 17th International Conference on the Applications of Accelerators in Research and Industry, Denton, TX, November 12–16, 2002.

MARTIN, J.J. TD40
LEWIS, R.A. R. Lewis Co.
CHAKRABARTI, S. TD40
PEARSON, J.B. TD40
SIMS, W.H. TD40
FANT, W.E. Cortez III

MARTIN, J.J. TD40
LEWIS, R.A. TD40
PEARSON, J.B. TD40
SIMS, W.H. TD40
CHAKRABARTI, S. TD40
FANT, W.E. TD40
MCDONALD, S. TD40

MARTIN, J.J. TD40
LEWIS, R.A. TD40
PEARSON, J.B. TD40
SIMS, W.H. TD40
CHAKRABARTI, S. TD40
FANT, W.E. TD40
MCDONALD, S. TD40

MARTIN, J.J. TD40
LEWIS, R.A. TD40
STANOJEV, B. TD40

MARTINEZ-GALARCE, D.S. SD50
WALKER, A.B.C. SD50
BARBEE, T.W., II SD50
HOOVER, R.B. SD50

MAXWELL, T.G. FD42

MAZURUK, K. SD46

MAZURUK, K. SD46
GRUGEL, R.N. SD46

MCCAUL, E.W., JR. USRA
BUECHLER, D.E. UAH
GOODMAN, S.J. SD60
CAMMARATA, M. National Weather Service

MCCAUL, E.W., JR. USRA
GOODMAN, S.J. SD60
BUECHLER, D.E. UAH
BLAKESLEE, R.J. SD60

MELTON, T. FD32
ONKEN, J. FD32

MELLEN, D.P. ED41
GARCIA, D. ED41
VAUGHAN, W.W. UAH

the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9, 2003.

MIKELLIDES, I.G. SAIC
MANDELL, M.J. SAIC
KUHARSKI, R.A. SAIC
DAVIS, D.A. SAIC
GARDNER, B.M. SAIC
MINOR, J. ED03

MITROFANOV, I.G. SD50
ANFIMOV, D.S. SD50
BRIGGS, M.S. SD50
FISHMAN, G.J. SD50
KIPPEN, R.M. SD50
LITVAK, M.L. SD50
MEEGAN, C.A. SD50
PACIESAS, W.S. SD50
PREECE, R.D. SD50
SANIN, A.B. SD50

MONELL, D. VS30
MATHIAS, D. Ames Research Center
REUTHER, J. Ames Research Center
GARN, M. Langley Research Center

MONTGOMERY, E.E., IV TD15
GARBE, G.P. TD15
HEATON, A.F. TD15

MOORE, R.L. SD50
DAVIS, J.M. SD50
HATHAWAY, D.H. SD50

MOORE, R.L. SD50
FALCONER, D.A. SD50
PORTER, J.G. SD50
HATHAWAY, D.H. SD50

MORRIS, C.I. TD40

MORRIS, C.I. TD40

MORRIS, C.I. TD40

MORRIS, C.I. TD40

MURDOCH, K. Hamilton Sundstrand
PERRY, J.L. FD21
SMITH, F. FD21

NALL, M. SD10
Commercial Research Results From the International Space Station—Abstract Only. For presentation at the 41st AIAA Aerospace Science Meeting and Exhibit, Reno, NV, January 6–9, 2003.

NESMAN, T.E. TD63
Shuttle Fuel Feedliner Cracking—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.
NETTLES, A.T.

NETTLES, A.T.

NEWTON, R.L.

NGUYEN, H.H.
MARTIN, M.A.

NICHOLS, J.
TYGIELSKI, P.
URQUIDI, R.
STANGELAND, M.L.

NICHOLS, K.F.
BEST, S.
SCHNEIDER, L.

NIEDERMeyer, M.

NIELSEN, A.D.
PUSEY, M.L.
FUGLSANG, C.C.
Roskilde University
SD48
NovoZymes A/S

NISHIKAWA, K.
HARDEE, P.E.
RICHARDSON, G.A.
PREECE, R.D.
SOL, H.
FISHMAN, G.J.

NISHIKAWA, K.
HARDEE, P.E.
RICHARDSON, G.A.
PREECE, R.D.
SOL, H.
FISHMAN, G.J.

NISHIKAWA, K.
RICHARDSON, G.A.
PREECE, R.D.
HARDEE, P.E.
FISHMAN, G.J.
KOIDE, S. SD50
SHIBATA, K. SD50
KUROH, T. SD50
SOI, H. SD50
FISHMAN, G.J. SD50

O’DELL, S.L. SD50
BAKER, M. SD50
CONTENT, D. SD50
FREEMAN, M. SD50
GLENN, P. SD50
GUBAREV, M. SD50
HAIR, J. SD50
JONES, W. SD50
ET AL.

OCHOA, O. Texas A&M University
JIANG, J. Texas A&M University
PUTNAM, D. Texas A&M University
LO, Z. Texas A&M University
ELLIS, A. Texas A&M University
EFFINGER, M. ED34

OLIVER, S.T. ED33
SELVIDGE, S. ED33
WATWOOD, M.C. ERC, Inc.

ONSTOTT, T.C. Princeton University
MOSER, D.P. Pacific Northwest National Lab
PIFFNER, S.M. University of Tennessee
FREDRICKSON, J.K. Pacific Northwest National Lab
BROCKMAN, F.J. Pacific Northwest National Lab
PHELPS, T.J. Oak Ridge National Lab
WHITE, D.C. University of Tennessee

PEACOCK, A. University of Tennessee
HOVER, R.B. SD50
ET AL.

OSBORNE, R. ERC, Inc.
WEHRMEYER, J. Vanderbilt University
TRINH, H.P. TD61
EARY, J. Los Alamos National Laboratory
CHURILOV, A. Rensselaer Polytechnic Institute
VOLZ, M.P. SD46
BONNER, W.A. Crystallog Inc.
SPIVEY, R.A. Tec-Masters, Inc.
SMITH, G.A. UAH

OSTROGORSKY, A. Rensselaer Polytechnic Institute
MARIN, C. Rensselaer Polytechnic Institute

PANDEY, A.B. Pratt & Whitney
SHAH, S. UP30
SHADOAN, M. UP30

PANDEY, A.B. Pratt & Whitney
SHAH, S. ED33
SHADOAN, M. TD07

PANDEY, A.B. Pratt & Whitney
SHAH, S. UP30
SHADOAN, M. UP30

MSFC ABSTRACTS, ARTICLES, PAPERS, AND PRESENTATIONS CLEARED FOR DISSEMINATION

(Publicly available. Dates are conference dates.)

PARK, O.Y. ATK Thiokol Propulsion

LAWRENCE, T.W. ED34

PATEL, S.K. SD50
KOUVELIOTOU, C. SD50
TENNANT, A.F. SD50
WOODS, P.M. SD50
KINGS, A. SD50
UBERTINI, P. SD50
WINKLER, C. SD50
COURVOISIER, T. SD50
VAN DER KLIS, M. SD50
ET AL.

PATTON, B.W. TD40
HOLLOWAY, J.P. University of Michigan

PEARSON, J.B. TD40
SIMS, W.H. TD40

PECK, J.A. ED21
MAHADEVAN, S. Vanderbilt University

PERRY, J.L. FD21

PERRY, J.L. FD21
COLE, H.E. Boeing
CRAMBLITT, E.L. Boeing

EL-LESSY, H.N. Boeing
MANUEL, S. Boeing
TUCKER, C.D. Boeing

PERRY, J.L. FD21
PETerson, B.V. Dynamac Corporation

PEVTSOV, A.A. SD50
HAGYARD, M.J. SD50
BLEHM, Z. SD50
SMITH, J.E. SD50
CANFIELD, R.C. SD50
SAKURAI, T. SD50

PIKUTA, E.V. SD50
HOOVER, R.B. SD50
MARSIC, D. UAH
BEJ, A.K. UAB
GARRIOTT, O. UAH

Pikuta, E.V., Hoover, R.B., Marsic, D. UAH, Whitman, W.B. University of Georgia, Tang, J. American Type Culture, Krader, P. American Type Culture.

RAMACHANDRAN, N. USRA
LESLIE, F.W. SD46

RAMACHANDRAN, N. BAE/SD46
MAJUMDAR, A.K. ED25
MCDANIELS, D.M. TD63
STEWART, E. ED25

RAMSEY, B.D. SD50
BASSO, S. Osservatorio Astronomico di Brera
BRUNI, R.J. Harvard-Smithsonian
CITERIO, O. Osservatorio Astronomico di Brera
ENGELHAUPT, D. UAH
GHIIO, M. Osservatorio Astronomico di Brera
GORENSTIEN, P. Harvard-Smithsonian
MAZZOLENI, F. Osservatorio Astronomico di Brera
O’DELL, S.L. SD50
SPEEGLE, C.O. Raytheon ITSS

RAMSEY, B.D. SD50
ELSNER, R.F. SD50
ENGELHAUPT, D. UAH
GUBAREV, M. USRA
KOLODZIEJCZAK, J. SD50
MARTIN, G. ERC, Inc.
O’DELL, S.L. SD50
SPEEGLE, C.O. Raytheon ITSS
WEISSKOPF, M.C. SD50

RAMSEY, B.D. SD50
GASKIN, J. SD50
SHARMA, D. SD50
SANDDEL, B.R. SD50

RAMSEY, B.D. SD50
SPEEGLE, C.O. Raytheon ITSS
GASKIN, J. UAH
SHARMA, D. SD50
ENGELHAUPT, D. UAH

REINISCH, B.W. SD50
HUANG, X. SD50
SONG, P. SD50
GREEN, J.L. SD50
FUNG, S.F. SD50
VASYLIUNAS, V.W. SD50
GALLAGHER, D.L. SD50
SANDDEL, B.R. SD50

CHUNG, T.J. SD50

RICHMOND, R.C. SD46

RICHMOND, R.C. SD46
CRUZ, A. SD46
JANSEN, H. SD46
BORS, K. SD46
A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk—

RITCHIE, S. University of Alabama
HOLLADAY, J. FD23
CLARK, D. FD24
HOLT, J.M. ED25

ROBERTSON, F.R. SD60

ROBERTSON, T. TD40
NORLEY, G.D.

ROCKER, M. TD64
NESMAN, T.E. TD63
HULKA, J.R. TD61
DOUGHERTY, N.S. TD63/ERC

ROCKER, M. TD64
WEST, J.S. TD62

ROGERS, M. Luna Innovations, Inc.
STEVENSON, P. Luna Innovations, Inc.
SCRIBBEN, E. Virginia Polytechnic Institute
BAIRD, D. Virginia Polytechnic Institute
HULCHER, A.B. ED34

ROTHERMEL, J. TD64
DORNEY, D.J. TD64
DORNEY, S.M. TD64

RUF, J.H. TD64
HAGEMANN, G. Astrium, Germany
IMMICH, H. Astrium, Germany

SACKHEIM, R. DA01

In-Space Propulsion—Where We Stand and What’s Next—Final Paper. For presentation at the Tenth International Workshop on Combustion and Propulsion, Lerici, La Spezia, Italy, September 21–25, 2003.

SACKHEIM, R. DA01
CIKANEK, H.A. GRC
BEAURAIN, A. Snecma Moteurs
SOUCHIER, A. Snecma Moteurs
MORAVIE, M. Snecma Propulsion Solide

SALVAIL, P.G. ED33
CARTER, R.R. ED33

SCHLAGHECK, R.A. SD41

SCHNEIDER, J.A. Mississippi State University
NUNES, A.C., JR. ED30

SCHNEIDER, M. FD41

SCHNEIDER, M. FD41

SCHNEIDER, T. ED31
VAUGHN, J.A. ED31
CARRUTH, M.R., JR. ED30
MIKELIDES, I.G. SAIC
JONGEWARD, G.A. SAIC
PETERTSON, T. Glenn Research Center
KERSLAKE, T.W. Glenn Research Center
SNYDER, D. Glenn Research Center
FERGUSON, D. Glenn Research Center
HOSKINS, A. Aerojet

SCHNELL, A.R. Tennessee Technological University
TINKER, M.L. ED21

SCHOENFELD, M.P. New Mexico St. University
TINKER, M.L. ED21

SCHOFFSTOLL, D.L. TD53

SCOTT, D.M. USRA
FINGER, M.H. USRA
WILSON, C.A. SD50

SEGRE, P.N. SD46

SELVIDGE, S. ED33
WATWOOD, M.C. ERC

SEVER, T.L. SD60

SEVER, T.L. SD60

SHAH, S. ED33
WELLS, D. ED33
WAGNER, J. Langley Research Center
BABEL, H. Boeing

SHARP, J.R. ED26
KITTREDGE, K. ED26
SCHUNK, R.G. ED26

SHEEHY, J.A. TD40
SHEETS, P. SD60
SEVER, T.L. SD60
CONYERS, L. SD60

SINGHAL, S. ED30

SINGHAL, S. ED30

SKELLEY, S. TD63

SLEDD, A.M. FD31
DANFORD, T.M. FD31
KEY, R.B. FD31

SMITH, D.D. SD46

SMITH, G. International Space Systems
PHILIPS, A. TD03

SMITH, K.A. Raytheon
REYNOLDS, D.W. FD36

SMITHERMAN, D.V. FD02

SMITHERMAN, D.V. FD02

SNELLGROVE, L.M. TD63
GRIFFIN, L.W. TD64
SIEJA, J.P. TD74
HUBER, F.W. Riverbend Design Ser.

SONDAK, D.L. Boston University
DORNEY, D.J. TD64

SOZEN, M. Embry-Riddle Aeronautical University
MAJUMDAR, A.K. ED25

SPANN, J.F. SD50

STAHLM, H.P.

STATHAM, G.
ERC, Inc.

WHITE, S.
ERC, Inc.

ADAMS, R.B.
TD03

THIO, Y.C.F.
Dept. of Energy

ALEXANDER, R.
TD03

FINCHER, S.
TD03

PHILIPS, A.
TD03

POLSGROVE, T.
TD03

STOKES, J.W.
FD22

STORY, G.
TD51

ZOLADZ, T.F.
TD51

ARVES, J.
Lockheed Martin

KEARNEY, D.
Lockheed Martin

ABEL, T.
Lockheed Martin

PARK, O.Y.
Thiokol

SULLIVAN, D.G.
Auburn University

SHAW, J.N.
Auburn University

MASK, P.L.
Auburn University

RICKMAN, D.
SD60

LUVALL, J.C.
SD60

WERSINGER, J.M.
Auburn University

SULLIVAN, D.G. Auburn University TAKAHASHI, Y. UAH
SHAW, J.N. Auburn University HILLMAN, L.W. UAH
MASK, P.L. Auburn University ZUCCARO, A. UAH
RICKMAN, D. SD60 ADAMS, J.H. SD50
LUVALL, J.C. SD60 CLINE, D. University of California
WERSINGER, J.M. Auburn University Detection of Upward Air Showers With the EUSO

SULLIVAN, D.G. Auburn University TAYLOR, J. Austin Peay State
SHAW, J.N. Auburn University RAKOZY, J. ED10
RICKMAN, D. SD60 STEINCAMP, J. ED10
MASK, P.L. Auburn University Genetic Algorithm Phase Retrieval for the Systematic
WERSINGER, J.M. Auburn University Image-Based Optical Alignment Testbed—Preliminary
LUVALL, J.C. SD60 Draft. For presentation at the Genetic and Evolutionary

SWIFT, W.R. ED44 TAYLOR, T. Teledyne Brown Engineering
SUGGS, R.M. ED44 MOTON, T.T. Teledyne Brown Engineering
MEACHEM, T. ED44 ROBINSON, D. Teledyne Brown Engineering
COOKE, W.J. ED44 ANDING, R.C. Teledyne Brown Engineering
Recent Advances in Video Meteor Photometry—Abstract MATLOFF, G.L. Bangs/Matloff Aerospace
Only. For presentation at the Leonid MAC Conference, GARBE, G.P. TD05

SWIFT, W.R. ED44 MONTGOMERY, E.E., IV TD05
SUGGS, R.M. ED44 Solar Sail Application to Comet Nucleus Sample
MEACHEM, T. ED44 Return—Final Paper. For presentation at the 39th AIAA/ SWIFT, W.R. ED44 ASME/SAE/ASEE Joint Propulsion Conference/Exhibit,
Recent Advances in Video Meteor Photometry—Abstract MATLOFF, G.L. Bangs/Matloff Aerospace
Only. For presentation at the Leonid MAC Conference, GARBE, G.P. TD05

THOMAS, D. VS01 A Study of the X-Ray Source Population in the Dwarf
SMITH, C. UP10 Galaxy NGC 6822—Abstract Only. For presentation
SAIE, F.M. UP10 at the 202nd American Astronomical Society Meeting,
SMITH, C. UP10 A Study of the X-Ray Source Population in the Dwarf
SAIE, F.M. UP10 Galaxy NGC 6822—Abstract Only. For presentation
THOMAS, D. VS01 at the 202nd American Astronomical Society Meeting,

TAKAHASHI, K. Johns Hopkins University Life Cycle Systems Engineering Approach to NASA's
DENTON, R.E. Dartmouth College 2nd Generation Reusable Launch Vehicle—Extended
GALLAGHER, D.L. SD50 Abstract. For presentation at the Workshop on Life Cycle
Abstract Only. For publication in the Journal of Geophysical THOMAS, D. VS01
THOMAS, L. UP10
KITTREDGE, S. UP10

THOMPSON, A.N. SD60
SHAW, J.N. SD60
MASK, P.L. SD60
TOUCHTON, J.T. SD60
RICKMAN, D. SD60

THOMPSON, M.S. UAH
PAKHOMOV, A.V. UAH
HERREN, K.A. SD71

TREVINO, L.C. ED14
OLCMEN, S. UAH
POLITES, M. UAH

TRINH, H.P. TD61
BULLARD, B. TD61
KOPICZ, C. TD61
MICHAELS, S. U.S. Army Missile Command

TRINH, H.P. TD61
EARLY, J. Los Alamos National Laboratory
OSBORNE, R. ERC, Inc.

TUCKER, J. Southern Research Institute
DASPT, G. Southern Research Institute
STALLCUP, M. SD71
PRESSON, J. SD71
NEIN, M. UAH

TUCKER, D.S. SD70
ETHRIDGE, E.C. SD70
SMITH, G.A. UAH
WORKMAN, G. UAH

TUCKER, D.S. SD71
NETTLES, A.T. SD71
CAGLE, H. SD71

TURNER, S.G. UP40

TURNER, S.G. UP40

VAIDYANATHAN, R. Adv. Ceramics Research
GREEN, C. Adv. Ceramics Research
PHILLIPS, T. Adv. Ceramics Research
CIPRIANI, R. Adv. Ceramics Research
YARLAGADDA, S. University of Delaware
GILLESPIE, J. University of Delaware
EFFINGER, M. ED34
COOPER, K.C. ED34

VAIDYANATHAN, R. University of Florida
TUCKER, P.K. TD64
PAAILA, N. University of Florida
SHYY, W. University of Florida

VAIDYANATHAN, R. SD50
AVANO, L.A. SD50
MOORE, T.E. SD50

VAIDYANATHAN, R. SD50
AVANO, L.A. SD50
SMIRNOV, V.N. SD50
MOORE, T.E. SD50

VAIDYANATHAN, R. SD50
SMIRNOV, V.N. SD50
AVANO, L.A. SD50
MOORE, T.E. SD50

VAN DER WOERD, M.J. SD46
Protein Crystal Growth With the Aid of Microfluidics—Abstract Only. For presentation at the Materials and Crystal Growth Seminar, MSFC, AL, December 16, 2002.

VAN DER WOERD, M.J. SD46
FERREE, D.S. SD46
SNELL, E.H. SD46

Microcrack Quantification in Composite Materials by a Neural Network Analysis of Ultrasound Spectral Data—Abstract Only. For presentation at the ASNT Fall Conference and Quality Testing Show, Pittsburgh, PA, October 13–17, 2003.

International Space Station Laboratory “Destiny” Hardware Move From MSFC to KSC—Final Paper. For presentation at the Society of Logistics Engineers 38th Annual International Conference and Exhibition, Huntsville, AL, August 10–14, 2003.

WELCH, C.L.

WERT, M.J.
HOFMEISTER, W.H.
BAYUZICK, R.J.
ROGERS, J.R.
RATHZ, T.J.
FOUNTAIN, G.
HYERS, R.W.

WEST, J.S.
ROtherMEL, J.

Application of the Loci-Based CFD Code Chem at MSFC: Preliminary Results—Presentation. For presentation at the MSFC Fall Workshop on Fluids, Huntsville, AL, November 19–21, 2002.

WHITAKER, A.F.
CURRERI, P.A.
SMITH, T.R.

WILSON, C.A.

WILSON, J.

WHORTON, M.S.

Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For presentation at the 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31–August 7, 2003.

Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment—Abstract Only. For publication in Nuclear Instruments and Methods, 2003.
INDEX

TECHNICAL MEMORANDA

BENNETT, K.E. ... 2
BENTH, R.E. ... 1, 2
BURNS, H.D. ... 2
COOPER, K.G. ... 3
FINCKENOR, J.L. .. 2
GAMWELL, W.R. ... 1
GLASGOW, S.D. .. 1
GRIFFIN, M.R. ... 3
GRUGEL, R.N. .. 1
KING, K.D. ... 2
KITTREDGE, K.B. .. 1
MAZURUK, K. .. 1
NEWTON, R.L. ... 3
PICKETT, R.D. ... 2
SMITH, K. ... 3
SUMMERS, F.G. .. 2
TINKER, M.L. .. 1
VOLZ, M.P. ... 1
WATSON, G.L. ... 3

JONES, J.E. ... 5
LINEBERRY, C.W. ... 5
LINEBERRY, J.T. .. 5
LITCHFORD, R.J. ... 5, 6
MCGHEE, D.S. ... 4
PLEMMONS, D.H. ... 5
RUOFF, R.S. ... 6
SCHMIDT, H.J. ... 5, 6
SCHNEIDER, T.A. ... 4
SEUGLING, R.M. .. 5
THOMPSON, B.R. .. 5
TURNER, M.W. .. 5
VAUGHN, J.A. .. 4

CONFERENCE PUBLICATIONS

BENNETT, N. .. 7
BREWER, J.C. ... 7
GILLIES, D. ... 7
MCCAULEY, D. .. 7
MURPHY, K. ... 7
RAMACHANDRAN, N. .. 7

TECHNICAL PUBLICATIONS

ALBYN, K.C. ... 6
BOOTHE, R.E. .. 6
BROWN, A.M. .. 4, 5
BURNS, H.D. .. 6
CHANDRASEKHAR, V. ... 6
CHAPMAN, J.N. .. 5, 6
COLE, J.W. ... 5
DIKIN, D.A. .. 6
DOBSON, C.C. ... 5
EDWARDS, D.L. .. 4
FINCHUM, C.A. .. 6
FINCKENOR, M.M. ... 4, 6
HAWK, C.W. .. 5
HOPPE, D.T. .. 4
HOVATER, M.A. .. 4
HOWELL, L.W. .. 4

CONTRACTOR REPORTS

BLAND, J. ... 8
CRAIN, S.H. ... 8
EBERLE, B. ... 8
FARRIS, B. ... 8
FREEMAN, L.M. ... 8
GORDON, T. ... 8
KARR, C.L. .. 8
KARR, G. ... 8
LOOPER, M.D. .. 8
MAZUR, J.E. ... 8
NASH-STEVENSON, S.K. ... 8
NEGAST, B. ... 8
PICKEL, J.C. ... 8
RANTANEN, R. .. 8
WOODOCK, G. ... 8

57
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, M.M.</td>
<td>9, 17</td>
</tr>
<tr>
<td>Abel, T.</td>
<td>47</td>
</tr>
<tr>
<td>Abzyrov, S.S.</td>
<td>9</td>
</tr>
<tr>
<td>Achari, A.</td>
<td>43</td>
</tr>
<tr>
<td>Adamo, C.</td>
<td>9</td>
</tr>
<tr>
<td>Adams, D.E.</td>
<td>9, 10</td>
</tr>
<tr>
<td>Adams, J.H.</td>
<td>9, 10, 11, 12, 16, 20, 21, 25, 48, 52, 55</td>
</tr>
<tr>
<td>Adams, M.L.</td>
<td>9, 10</td>
</tr>
<tr>
<td>Adams, R.B.</td>
<td>10, 47</td>
</tr>
<tr>
<td>Adrian, M.L.</td>
<td>10, 22</td>
</tr>
<tr>
<td>Ager, J.W.</td>
<td>54</td>
</tr>
<tr>
<td>Aggarwal, P.K.</td>
<td>11</td>
</tr>
<tr>
<td>Ahmed, R.</td>
<td>10</td>
</tr>
<tr>
<td>Ahn, E.J.</td>
<td>20, 21</td>
</tr>
<tr>
<td>Ahn, H.S.</td>
<td>10, 11, 16, 21, 25, 52, 55</td>
</tr>
<tr>
<td>Albarado, T.</td>
<td>11</td>
</tr>
<tr>
<td>Albyn, K.</td>
<td>11</td>
</tr>
<tr>
<td>Alexander, R.</td>
<td>10, 47</td>
</tr>
<tr>
<td>Allen, P.A.</td>
<td>11</td>
</tr>
<tr>
<td>Alloor, S.</td>
<td>11</td>
</tr>
<tr>
<td>Alred, J.</td>
<td>11</td>
</tr>
<tr>
<td>Altstatt, R.</td>
<td>19</td>
</tr>
<tr>
<td>Anderson, M.</td>
<td>35</td>
</tr>
<tr>
<td>Anderson, M.J.</td>
<td>27</td>
</tr>
<tr>
<td>Anding, R.C.</td>
<td>48</td>
</tr>
<tr>
<td>Anfimov, D.S.</td>
<td>37</td>
</tr>
<tr>
<td>Anil Kumar, A.V.</td>
<td>11, 25</td>
</tr>
<tr>
<td>Apple, J.</td>
<td>25, 42</td>
</tr>
<tr>
<td>Aarakere, N.K.</td>
<td>11</td>
</tr>
<tr>
<td>Arumugam, M.</td>
<td>11</td>
</tr>
<tr>
<td>Arves, J.</td>
<td>47</td>
</tr>
<tr>
<td>Ashley, P.R.</td>
<td>31</td>
</tr>
<tr>
<td>Athayde, A.</td>
<td>13</td>
</tr>
<tr>
<td>Avanov, L.A.</td>
<td>10, 12, 16, 31, 50</td>
</tr>
<tr>
<td>Babel, H.</td>
<td>45</td>
</tr>
<tr>
<td>Backer, D.</td>
<td>13, 52</td>
</tr>
<tr>
<td>Baggett, R.M.</td>
<td>12</td>
</tr>
<tr>
<td>Bailey, J.C.</td>
<td>13, 20, 23, 32, 34, 36</td>
</tr>
<tr>
<td>Bailey, J.W.</td>
<td>26</td>
</tr>
<tr>
<td>Baird, D.</td>
<td>43, 44</td>
</tr>
<tr>
<td>Baird, J.K.</td>
<td>12</td>
</tr>
<tr>
<td>Baker, M.</td>
<td>39</td>
</tr>
<tr>
<td>Ballard, R.O.</td>
<td>12</td>
</tr>
<tr>
<td>Ban, H.</td>
<td>33, 34</td>
</tr>
<tr>
<td>Baranova, N.</td>
<td>12</td>
</tr>
<tr>
<td>Barbee, T.W., II</td>
<td>36</td>
</tr>
<tr>
<td>Barghouty, A.F.</td>
<td>30</td>
</tr>
<tr>
<td>Barlow, D.A.</td>
<td>12</td>
</tr>
<tr>
<td>Barnes, C.L.</td>
<td>12, 27</td>
</tr>
<tr>
<td>Barret, C.</td>
<td>12</td>
</tr>
<tr>
<td>Barth, J.</td>
<td>30</td>
</tr>
<tr>
<td>Bashindzhagyan, G.L.</td>
<td>10, 11, 12, 16, 20, 21, 25, 52, 55</td>
</tr>
<tr>
<td>Bashindzhagyan, P.</td>
<td>12</td>
</tr>
<tr>
<td>Basso, S.</td>
<td>12, 42</td>
</tr>
<tr>
<td>Bateeman, M.G.</td>
<td>32, 36</td>
</tr>
<tr>
<td>Batkov, K.E.</td>
<td>10, 11, 16, 52, 55</td>
</tr>
<tr>
<td>Batra, R.C.</td>
<td>26</td>
</tr>
<tr>
<td>Battista, G.</td>
<td>11</td>
</tr>
<tr>
<td>Baugh, C.R.</td>
<td>12</td>
</tr>
<tr>
<td>Bayu-zick, R.J.</td>
<td>53</td>
</tr>
<tr>
<td>Beauregard, A.</td>
<td>44</td>
</tr>
<tr>
<td>Becker, W.E.</td>
<td>12, 52</td>
</tr>
<tr>
<td>Beij, A.K.</td>
<td>28, 40</td>
</tr>
<tr>
<td>Bell, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>Bellamy, H.</td>
<td>14, 34</td>
</tr>
<tr>
<td>Belloni, T.</td>
<td>53</td>
</tr>
<tr>
<td>Bemporad, A.</td>
<td>13</td>
</tr>
<tr>
<td>Benson, R.F.</td>
<td>15</td>
</tr>
<tr>
<td>Berat, C.</td>
<td>9</td>
</tr>
<tr>
<td>Bernhardsdotter, E.</td>
<td>13</td>
</tr>
<tr>
<td>Beshares, R.</td>
<td>19</td>
</tr>
<tr>
<td>Best, S.</td>
<td>13, 38</td>
</tr>
<tr>
<td>Bhardwaj, A.</td>
<td>19</td>
</tr>
<tr>
<td>Bhat, B.</td>
<td>17</td>
</tr>
<tr>
<td>Bhowmick, J.</td>
<td>11</td>
</tr>
<tr>
<td>Bille, M.</td>
<td>26</td>
</tr>
<tr>
<td>Bjorkman, G.</td>
<td>13</td>
</tr>
<tr>
<td>Blackwell, W.C.</td>
<td>13, 5, 1, 34, 34, 36</td>
</tr>
<tr>
<td>Blakeslee, R.J.</td>
<td>13, 15, 20, 23, 32, 34, 36</td>
</tr>
<tr>
<td>Blehm, Z.</td>
<td>26, 40</td>
</tr>
<tr>
<td>Blevins, J.A.</td>
<td>13</td>
</tr>
<tr>
<td>Boiocci, D.</td>
<td>15</td>
</tr>
<tr>
<td>Boccippio, D.J.</td>
<td>14, 32, 36</td>
</tr>
<tr>
<td>Boeck, W.L.</td>
<td>14</td>
</tr>
<tr>
<td>Boles, W.</td>
<td>15</td>
</tr>
<tr>
<td>Bonamente, M.</td>
<td>30, 33</td>
</tr>
<tr>
<td>Bonner, W.A.</td>
<td>39</td>
</tr>
<tr>
<td>Bonometti, J.</td>
<td>10</td>
</tr>
<tr>
<td>Book, M.L.</td>
<td>28</td>
</tr>
<tr>
<td>Bordelon, W.J., Jr.</td>
<td>14</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CROW, R.W.</td>
<td>31</td>
</tr>
<tr>
<td>CRUZ, A.</td>
<td>42</td>
</tr>
<tr>
<td>CULBERTSON, A.</td>
<td>17</td>
</tr>
<tr>
<td>CURRELLI, P.A.</td>
<td>17, 53</td>
</tr>
<tr>
<td>CURTIS, L.</td>
<td>51</td>
</tr>
<tr>
<td>CUTTEN, D.R.</td>
<td>17</td>
</tr>
<tr>
<td>D'AGOSTINO, M.</td>
<td>51</td>
</tr>
<tr>
<td>DAHACHE, H.M.</td>
<td>30</td>
</tr>
<tr>
<td>DANFORD, T.M.</td>
<td>46</td>
</tr>
<tr>
<td>DANG, L.</td>
<td>15</td>
</tr>
<tr>
<td>DANIEL, C.</td>
<td>44</td>
</tr>
<tr>
<td>DARDEN, C.</td>
<td>23, 29, 32</td>
</tr>
<tr>
<td>DASPIT, G.</td>
<td>50</td>
</tr>
<tr>
<td>DAUGHTERY, S.</td>
<td>53</td>
</tr>
<tr>
<td>DAVIS, D.A.</td>
<td>37</td>
</tr>
<tr>
<td>DAVIS, E.</td>
<td>29</td>
</tr>
<tr>
<td>DAVIS, J.M.</td>
<td>17, 37, 41</td>
</tr>
<tr>
<td>DAVIS, S.</td>
<td>17</td>
</tr>
<tr>
<td>DAVIS, S.E.</td>
<td>17</td>
</tr>
<tr>
<td>DAWSON, K.S.</td>
<td>30, 33</td>
</tr>
<tr>
<td>DAY, G.</td>
<td>27</td>
</tr>
<tr>
<td>DELAMERE, P.A.</td>
<td>31</td>
</tr>
<tr>
<td>DENTON, R.E.</td>
<td>48</td>
</tr>
<tr>
<td>DERRICKSON, J.</td>
<td>12</td>
</tr>
<tr>
<td>DESCH, M.D.</td>
<td>13, 20, 34</td>
</tr>
<tr>
<td>DICKENS, R.</td>
<td>28, 51</td>
</tr>
<tr>
<td>DIETRICH, S.</td>
<td>9</td>
</tr>
<tr>
<td>DING, R.J.</td>
<td>18</td>
</tr>
<tr>
<td>DINSMORE, A.</td>
<td>16</td>
</tr>
<tr>
<td>DOBSON, C.</td>
<td>18</td>
</tr>
<tr>
<td>DODGE, J.</td>
<td>23</td>
</tr>
<tr>
<td>DOMINIK, P.M.</td>
<td>16</td>
</tr>
<tr>
<td>DORNEY, D.J.</td>
<td>18, 24, 36, 44, 46, 55</td>
</tr>
<tr>
<td>DORNEY, S.M.</td>
<td>18, 44</td>
</tr>
<tr>
<td>DOUGHERTY, N.S.</td>
<td>43</td>
</tr>
<tr>
<td>DOWELL, J.</td>
<td>41</td>
</tr>
<tr>
<td>DRAKE, B.G.</td>
<td>18</td>
</tr>
<tr>
<td>DRESSLER, G.A.</td>
<td>18</td>
</tr>
<tr>
<td>DROBOT, S.</td>
<td>35</td>
</tr>
<tr>
<td>DROEGE, A.</td>
<td>51</td>
</tr>
<tr>
<td>DRURY, L.</td>
<td>12</td>
</tr>
<tr>
<td>DUKE, G.</td>
<td>11</td>
</tr>
<tr>
<td>DUKEMAN, G.</td>
<td>18</td>
</tr>
<tr>
<td>DUMBACHER, D.L.</td>
<td>17, 19</td>
</tr>
<tr>
<td>DUTTON, K.</td>
<td>26, 54</td>
</tr>
<tr>
<td>DUVALL, A.</td>
<td>30</td>
</tr>
<tr>
<td>EARLY, J.</td>
<td>39, 49</td>
</tr>
<tr>
<td>EBEILING, H.</td>
<td>33</td>
</tr>
<tr>
<td>EDGE, A.</td>
<td>33</td>
</tr>
<tr>
<td>EDMUNDS, T.</td>
<td>43</td>
</tr>
<tr>
<td>EDWARDS, D.L.</td>
<td>11, 19, 24</td>
</tr>
<tr>
<td>EFFINGER, M.</td>
<td>19, 39, 50</td>
</tr>
<tr>
<td>EGOROV, N.</td>
<td>12</td>
</tr>
<tr>
<td>EHRET, C.F.</td>
<td>21</td>
</tr>
<tr>
<td>EICHLER, D.</td>
<td>32</td>
</tr>
<tr>
<td>EL-LESSY, H.N.</td>
<td>40</td>
</tr>
<tr>
<td>ELAM, S.K.</td>
<td>19</td>
</tr>
<tr>
<td>ELLIS, A.</td>
<td>39</td>
</tr>
<tr>
<td>ELLISON, S.B.</td>
<td>11, 20, 21, 52</td>
</tr>
<tr>
<td>ELSNER, R.F.</td>
<td>10, 12, 19, 42, 52</td>
</tr>
<tr>
<td>EMERSON, C.</td>
<td>11, 32</td>
</tr>
<tr>
<td>EMRICH, W.J., JR.</td>
<td>20</td>
</tr>
<tr>
<td>ENG, R.</td>
<td>29</td>
</tr>
<tr>
<td>ENGEL, R.C.</td>
<td>20</td>
</tr>
<tr>
<td>ENGEL, H.P.</td>
<td>23</td>
</tr>
<tr>
<td>ENGELHAUPT, D.</td>
<td>12, 25, 42</td>
</tr>
<tr>
<td>ENSLER, L.</td>
<td>17</td>
</tr>
<tr>
<td>ERIKSON, D.</td>
<td>27</td>
</tr>
<tr>
<td>ESKRIDGE, R.</td>
<td>20, 31</td>
</tr>
<tr>
<td>ESTES, M.G.</td>
<td>20</td>
</tr>
<tr>
<td>ETHRIDGE, E.C.</td>
<td>50</td>
</tr>
<tr>
<td>EVANS, J.P.</td>
<td>20</td>
</tr>
<tr>
<td>EVANS, S.W.</td>
<td>20</td>
</tr>
<tr>
<td>FACHEMIRE, B.R.</td>
<td>21</td>
</tr>
<tr>
<td>FALCONER, D.A.</td>
<td>20, 37</td>
</tr>
<tr>
<td>FANT, W.E.</td>
<td>35</td>
</tr>
<tr>
<td>FARRELL, W.M.</td>
<td>13, 20, 34</td>
</tr>
<tr>
<td>FASSOW, J.</td>
<td>54</td>
</tr>
<tr>
<td>FAZLEY, A.R.</td>
<td>11, 16, 20, 21, 25, 52, 55</td>
</tr>
<tr>
<td>FENG, Y.X.</td>
<td>21</td>
</tr>
<tr>
<td>FERGUSON, D.</td>
<td>45</td>
</tr>
<tr>
<td>FERGUSON, M.I.</td>
<td>25, 26</td>
</tr>
<tr>
<td>FERREE, D.S.</td>
<td>21, 41, 50</td>
</tr>
<tr>
<td>FIKES, J.C.</td>
<td>21, 27</td>
</tr>
<tr>
<td>FINCHER, S.</td>
<td>10, 47</td>
</tr>
<tr>
<td>FINCKENOR, M.M.</td>
<td>21</td>
</tr>
<tr>
<td>FINGER, M.H.</td>
<td>23, 26, 32, 45</td>
</tr>
<tr>
<td>FISHER, M.E.</td>
<td>17</td>
</tr>
<tr>
<td>FISHER, G.J.</td>
<td>21, 26, 37, 38, 39</td>
</tr>
<tr>
<td>FITZJARRALD, D.E.</td>
<td>43</td>
</tr>
<tr>
<td>FLACHBART, R.H.</td>
<td>26, 27, 34</td>
</tr>
<tr>
<td>FOK, M.C.</td>
<td>31</td>
</tr>
<tr>
<td>Name</td>
<td>Page Range</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>LIPINSKI, R.J.</td>
<td>54</td>
</tr>
<tr>
<td>LITCHFORD, R.J.</td>
<td>34</td>
</tr>
<tr>
<td>LITVAK, M.L.</td>
<td>37</td>
</tr>
<tr>
<td>LO, C.P.</td>
<td>34</td>
</tr>
<tr>
<td>LO, Z.</td>
<td>39</td>
</tr>
<tr>
<td>LOOS, A.C.</td>
<td>26</td>
</tr>
<tr>
<td>LOPADO, A.</td>
<td>27</td>
</tr>
<tr>
<td>LORENZINI, E.C.</td>
<td>30, 34</td>
</tr>
<tr>
<td>LOVELACE, J.</td>
<td>14, 34</td>
</tr>
<tr>
<td>LU, H.</td>
<td>34</td>
</tr>
<tr>
<td>LUGAZ, N.</td>
<td>19</td>
</tr>
<tr>
<td>LUKENS, C.</td>
<td>33</td>
</tr>
<tr>
<td>LUVALL, J.C.</td>
<td>47, 48</td>
</tr>
<tr>
<td>LUZ, P.</td>
<td>47</td>
</tr>
<tr>
<td>LYUBARSKY, Y.</td>
<td>32</td>
</tr>
<tr>
<td>MACH, D.M.</td>
<td>13, 15, 20, 34</td>
</tr>
<tr>
<td>MACLEOD, T.C.</td>
<td>34</td>
</tr>
<tr>
<td>MAGNAI, A.</td>
<td>9</td>
</tr>
<tr>
<td>MAHADEVAN, S.</td>
<td>40</td>
</tr>
<tr>
<td>MAJEED, T.</td>
<td>19</td>
</tr>
<tr>
<td>MAJUMDAR, A.K.</td>
<td>34, 42, 46, 47</td>
</tr>
<tr>
<td>MALONE, C.C.</td>
<td>21</td>
</tr>
<tr>
<td>MANAVALAN, P.</td>
<td>43</td>
</tr>
<tr>
<td>MANDELL, M.J.</td>
<td>37</td>
</tr>
<tr>
<td>MANKINS, J.C.</td>
<td>21, 27, 28</td>
</tr>
<tr>
<td>MANUEL, S.</td>
<td>40</td>
</tr>
<tr>
<td>MARCU, B.</td>
<td>18</td>
</tr>
<tr>
<td>MARIN, C.</td>
<td>39</td>
</tr>
<tr>
<td>MARKUSIC, T.E.</td>
<td>35</td>
</tr>
<tr>
<td>MARKWARDT, C.B.</td>
<td>23</td>
</tr>
<tr>
<td>MARSH, M.</td>
<td>41</td>
</tr>
<tr>
<td>MARSHALL, H.</td>
<td>35</td>
</tr>
<tr>
<td>MARSHALL, S.</td>
<td>35</td>
</tr>
<tr>
<td>MARSIC, D.</td>
<td>28, 40, 41</td>
</tr>
<tr>
<td>MARTIN, A.K.</td>
<td>20, 31</td>
</tr>
<tr>
<td>MARTIN, G.</td>
<td>25, 42</td>
</tr>
<tr>
<td>MARTIN, J.J.</td>
<td>15, 28, 30, 32, 35, 36, 51</td>
</tr>
<tr>
<td>MARTIN, M.A.</td>
<td>38</td>
</tr>
<tr>
<td>MARTINEZ, N.</td>
<td>54</td>
</tr>
<tr>
<td>MARTINEZ-GALARCE, D.S.</td>
<td>36</td>
</tr>
<tr>
<td>MASETTEI, N.</td>
<td>24</td>
</tr>
<tr>
<td>MASK, P.L.</td>
<td>47, 48, 49</td>
</tr>
<tr>
<td>MATHIAS, D.</td>
<td>37</td>
</tr>
<tr>
<td>MATLOFF, G.L.</td>
<td>48</td>
</tr>
<tr>
<td>MATUSZAK, L.W.</td>
<td>18</td>
</tr>
<tr>
<td>MAXWELL, T.G.</td>
<td>36</td>
</tr>
<tr>
<td>MAY, T.</td>
<td>22</td>
</tr>
<tr>
<td>MAYER, D.</td>
<td>27</td>
</tr>
<tr>
<td>MAZURUK, K.</td>
<td>36, 51, 54</td>
</tr>
<tr>
<td>MAZZOLENI, F.</td>
<td>12, 42</td>
</tr>
<tr>
<td>MCCAUl, E.W., JR.</td>
<td>17, 23, 36</td>
</tr>
<tr>
<td>MCCCLURE, J.C.</td>
<td>11, 25, 36</td>
</tr>
<tr>
<td>MCCOLLOUGH, M.L.</td>
<td>26</td>
</tr>
<tr>
<td>MCDANIELS, D.M.</td>
<td>42, 44</td>
</tr>
<tr>
<td>MCDONALD, S.</td>
<td>35</td>
</tr>
<tr>
<td>MCGILL, P.B.</td>
<td>22</td>
</tr>
<tr>
<td>MCKECHNIE, T.</td>
<td>19</td>
</tr>
<tr>
<td>MCKNULY, I.</td>
<td>21</td>
</tr>
<tr>
<td>MEACHEM, T.</td>
<td>48</td>
</tr>
<tr>
<td>MEJGAN, C.A.</td>
<td>26, 37</td>
</tr>
<tr>
<td>MELENDEZ, M.</td>
<td>36</td>
</tr>
<tr>
<td>MELLEN, D.P.</td>
<td>36</td>
</tr>
<tr>
<td>MELTON, T.</td>
<td>36</td>
</tr>
<tr>
<td>MERKLE, C.L.</td>
<td>36</td>
</tr>
<tr>
<td>MEYER, P.</td>
<td>32</td>
</tr>
<tr>
<td>MICHAELS, S.</td>
<td>49</td>
</tr>
<tr>
<td>MIERNIK, J.H.</td>
<td>36</td>
</tr>
<tr>
<td>MIGNANI, R.</td>
<td>12, 52</td>
</tr>
<tr>
<td>MIKELIDES, I.G.</td>
<td>28, 37, 45</td>
</tr>
<tr>
<td>MILLER, J.D.</td>
<td>33</td>
</tr>
<tr>
<td>MILLER, L.</td>
<td>53</td>
</tr>
<tr>
<td>MILTON, M.E.</td>
<td>36</td>
</tr>
<tr>
<td>MINOR, J.</td>
<td>30, 37</td>
</tr>
<tr>
<td>MINOW, J.I.</td>
<td>13, 51</td>
</tr>
<tr>
<td>MIOTKOWSKI, A.K.</td>
<td>54</td>
</tr>
<tr>
<td>MITCHELL, J.D.</td>
<td>13, 20</td>
</tr>
<tr>
<td>MITCHELL, S.</td>
<td>22</td>
</tr>
<tr>
<td>MITROFANOV, I.G.</td>
<td>37</td>
</tr>
<tr>
<td>MITSKEVICH, I.N.</td>
<td>9</td>
</tr>
<tr>
<td>MOHAROS, J.</td>
<td>54</td>
</tr>
<tr>
<td>MOLLER, P.</td>
<td>27</td>
</tr>
<tr>
<td>MONACO, L.</td>
<td>27</td>
</tr>
<tr>
<td>MONELL, D.</td>
<td>37</td>
</tr>
<tr>
<td>MONTANET, F.</td>
<td>9</td>
</tr>
<tr>
<td>MONTGOMERY, E.E., IV</td>
<td>22, 37, 48</td>
</tr>
<tr>
<td>MOON, S.</td>
<td>29</td>
</tr>
<tr>
<td>MOORE, R.L.</td>
<td>16, 17, 20, 37, 47, 54</td>
</tr>
<tr>
<td>MOORE, T.E.</td>
<td>16, 50</td>
</tr>
<tr>
<td>MORAVIE, M.</td>
<td>44</td>
</tr>
<tr>
<td>MORRIS, C.I.</td>
<td>37</td>
</tr>
<tr>
<td>MOSER, D.P.</td>
<td>39</td>
</tr>
<tr>
<td>MOTAKEF, S.</td>
<td>54</td>
</tr>
<tr>
<td>Name</td>
<td>References</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>ROEE, F.D.</td>
<td>10, 37, 38</td>
</tr>
<tr>
<td>PRESSON, J.</td>
<td>50</td>
</tr>
<tr>
<td>PRINCE, F.A.</td>
<td>41</td>
</tr>
<tr>
<td>PUESCHEL, R.F.</td>
<td>17</td>
</tr>
<tr>
<td>PULONE, L.</td>
<td>52</td>
</tr>
<tr>
<td>PUSEY, M.L.</td>
<td>13, 23, 38, 41</td>
</tr>
<tr>
<td>PUTNAM, D.</td>
<td>39</td>
</tr>
<tr>
<td>QUATTROCHI, D.A.</td>
<td>11, 14, 20, 32, 34</td>
</tr>
<tr>
<td>QUINN, J.E.</td>
<td>41</td>
</tr>
<tr>
<td>RABIN, D.M.</td>
<td>41</td>
</tr>
<tr>
<td>RAKOZY, J.</td>
<td>48</td>
</tr>
<tr>
<td>RAMACHANDRAN, N.</td>
<td>33, 41, 42</td>
</tr>
<tr>
<td>RAMIREZ-RUIZ, R.</td>
<td>29</td>
</tr>
<tr>
<td>RAMSEY, B.D.</td>
<td>12, 22, 25, 42</td>
</tr>
<tr>
<td>RANGEL, R.</td>
<td>49</td>
</tr>
<tr>
<td>RATHZ, T.J.</td>
<td>30, 53</td>
</tr>
<tr>
<td>REDMAN, S.</td>
<td>14</td>
</tr>
<tr>
<td>REED, D.K.</td>
<td>14</td>
</tr>
<tr>
<td>REED, L.</td>
<td>26</td>
</tr>
<tr>
<td>REEVES, D.R.</td>
<td>33</td>
</tr>
<tr>
<td>REICHMAN, E.J.</td>
<td>26</td>
</tr>
<tr>
<td>REIFF, P.</td>
<td>23</td>
</tr>
<tr>
<td>REILY, J.C.</td>
<td>15, 29</td>
</tr>
<tr>
<td>REINISCH, B.W.</td>
<td>15, 23, 28, 42</td>
</tr>
<tr>
<td>REISZ, A.</td>
<td>43</td>
</tr>
<tr>
<td>RENNO, N.</td>
<td>13</td>
</tr>
<tr>
<td>REUTHER, J.</td>
<td>37</td>
</tr>
<tr>
<td>REYNOLDS, D.W.</td>
<td>46</td>
</tr>
<tr>
<td>RICHARDSON, G.A.</td>
<td>22, 38, 42</td>
</tr>
<tr>
<td>RICHARDSON, L.</td>
<td>29</td>
</tr>
<tr>
<td>RICHMOND, R.C.</td>
<td>21, 42</td>
</tr>
<tr>
<td>RICKMAN, D.</td>
<td>47, 48, 49</td>
</tr>
<tr>
<td>RIDLEY, A.J.</td>
<td>31</td>
</tr>
<tr>
<td>RILEY, P.</td>
<td>13</td>
</tr>
<tr>
<td>RITCHIE, S.</td>
<td>43</td>
</tr>
<tr>
<td>ROBERTS, B.C.</td>
<td>27, 29</td>
</tr>
<tr>
<td>ROBERTSON, F.R.</td>
<td>34, 43</td>
</tr>
<tr>
<td>ROBERTSON, T.</td>
<td>43</td>
</tr>
<tr>
<td>ROBINSON, D.</td>
<td>48</td>
</tr>
<tr>
<td>ROBINSON, M.B.</td>
<td>30</td>
</tr>
<tr>
<td>ROCKER, M.</td>
<td>43</td>
</tr>
<tr>
<td>RODGERS, S.L.</td>
<td>13, 34, 43</td>
</tr>
<tr>
<td>ROE, F.D.</td>
<td>43</td>
</tr>
<tr>
<td>ROEBER, D.</td>
<td>43</td>
</tr>
<tr>
<td>ROGERS, J.R.</td>
<td>21, 30, 43, 53</td>
</tr>
<tr>
<td>ROGERS, M.</td>
<td>43, 44</td>
</tr>
</tbody>
</table>
This Technical Memorandum (TM) presents formal NASA technical reports, papers published in technical journals, and presentations by Marshall Space Flight Center (MSFC) personnel in FY 2003. It also includes papers of MSFC contractors.

After being announced in STAR, all NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this TM may be of value to the scientific and engineering community in determining what information has been published and what is available.
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results—even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076–1320
 301–621–0390