Thermal Conductivity and Water Vapor Stability of Ceramic Coating Materials

Dongming Zhu, Dennis S. Fox, Narottam P. Bansal and Robert A. Miller

NASA John H. Glenn Research Center
Cleveland, Ohio 44135

HfO$_2$-Y$_2$O$_3$ and La$_2$Zr$_2$O$_7$ are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO$_2$-5mol\%Y$_2$O$_3$, HfO$_2$-15mol\%Y$_2$O$_3$ and La$_2$Zr$_2$O$_7$ were evaluated at temperatures up to 1700°C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO$_2$-Y$_2$O$_3$ and La$_2$Zr$_2$O$_7$ coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650°C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650°C thermal/environmental barrier coating applications will also be discussed.
Thermal Conductivity and Water Vapor Stability of HfO$_2$-Based Ceramic Coating Materials

Dongming Zhu, Dennis S. Fox, Narottam P. Bansal and Robert A. Miller

NASA John H. Glenn Research Center
Cleveland, Ohio 44135, USA

The 28th International Cocoa Beach Conference on Advanced Ceramics and Composites
January 27, 2004
Abstract

HfO$_2$-based oxides are important thermal/environmental barrier coating materials for 3000°F ceramic matrix composite (CMC) applications. In this paper, thermal conductivity and high temperature stability of hot-pressed HfO$_2$-based disk specimens and plasma-sprayed coatings were evaluated at temperatures up to 1700°C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity changes under steady-state heat flux testing. Durability and failure mechanisms of the HfO$_2$-Y$_2$O$_3$ coatings on mullite/SiC hexoloy or CMC substrates were investigated at 1650°C under thermal gradient cyclic conditions.
Thermal and Environmental Barrier Coatings (T/EBCs) are Critical to Future Advanced Gas Turbine Engine Systems

- Advanced T/EBCs can increase engine temperatures, reduce cooling, lower emission, and improve engine efficiency and reliability

- Low thermal conductivity and long-term high temperature stability are important issues for developing advanced coating systems

(a) without T/EBC

(b) with a T/EBC system

(c) with an advanced T/EBC
Temperature Reductions by Ceramic Coatings will Increase for Future Advanced Low Emission and High Performance Engine Applications

— Advances in coatings technology will increase blade, vane and combustor temperature capability, help to achieve engine emission, efficiency and performance goals.
Objectives

— Thermal conductivity and sintering behavior of HfO$_2$-Y$_2$O$_3$ based coating materials as compared to other baseline materials
 Hot-pressed specimens and plasma-sprayed coatings

— Water vapor stability of HfO$_2$-Y$_2$O$_3$ oxides at temperatures up to 1650°C (3000°F)

— The cyclic durability of HfO$_2$-Y$_2$O$_3$ coating systems at 1650°C (3000°F)
Experimental

— The coating systems include:
 • HfO$_2$-Y$_2$O$_3$ with 5, 10, 15, 20, or 25 mol% Yttria
 • advanced multi-component HfO$_2$ also investigated

— Test specimens were either hot-pressed disks (25.4 mm diameter, 3-4 mm thick), or plasma-sprayed coatings, coated on mullite/Si/SiC hexoloy or MI SiC/SiC ceramic matrix composite

— Water vapor determined by TGA and laser steam chamber

— Thermal conductivity and cyclic durability determined by a laser heat-flux technique for the coating systems on SiC hexoloy and CMCs
Laser High-Heat-Flux Approach for Advanced Thermal/Environmental Barrier Coatings Development

![Diagram of experimental setup with labels for various components including a 3.0 KW CO₂ high power laser, a reflectometer, a camera, a pyrometer, an aluminum laser aperture plate, a platinum flat coil, a specimen, a thermocouple, an air gap, a cooling air tube, a ceramic coating, a bond coat, a miniature thermocouple, a TBC coated back aluminum plate edge, an aluminum back plate, a Ni base superalloy or ceramic substrate, and two-color and 7.9 μm pyrometers for substrate-back.](image-url)
Thermal Conductivity Measurements of Hot-Pressed HfO₂-Y₂O₃ Coatings

Temperature dependence can be determined using the laser heat-flux test approach
Thermal Conductivity of Hot-Pressed HfO$_2$-Y$_2$O$_3$ Coatings

- Thermal conductivity decreases with increasing yttria dopant concentration
- Porosity in the hot-pressed specimens can affect the conductivity measurements
Thermal Conductivity and Sintering Behavior of Plasma-Sprayed HfO₂-Y₂O₃ Coatings Compared with other Coating Materials

- HfO₂ coatings showed low thermal conductivity and excellent high temperature stability
Advanced Coatings Development

Sintering and Cyclic Response of Advanced HfO$_2$ Coating Systems on SiC Substrate Tested at 3000°F

- Initial 20 hr sintering testing and then thermal cyclic testing at 3000°F
- The advanced HfO$_2$ coating system showed excellent performance
Low Yttria-Hafnia Baseline Showed Severe Cracking and Spalling after Testing at 3000°F

— Sintering, high temperature phase stability along with the CTE mismatch stress are the major causes for the low yttria dopant HfO₂ coating’s failure
Water Vapor Stability of Advanced HfO\(_2\) coatings

- Advanced HfO\(_2\) coatings showed excellent water vapor stability at high temperature.
Concluding Remarks

- Thermal gradient sintering and cyclic durability test approach is demonstrated for advanced 3000F (1650°C) T/EBC coatings development

- Phase stability, and sintering and thermal stress resistance are crucial for coating 3000°F durability

- HfO₂-Y₂O₃ are promising coating materials due to low thermal conductivity, good sintering resistance, and excellent water vapor stability
Acknowledgements

This work was supported by NASA Ultra-Efficient Engine Technology (UEET) Program.

The authors are also grateful to George W. Leissler and John A. Setlock for their assistance in the preparation of plasma-sprayed T/EBC coatings and hot-pressed samples, respectively, to Ralph G. Garlick at NASA Glenn for X-ray Diffraction