
Extending a Flight Management Computer for Simulation
and Flight Experiments

Michael M. Madden*
NASA, Hampton, VA, 23681

and

Paul C. Sugden †
Unisys Corporation, Hampton, VA, 23666

In modern transport aircraft, the flight management computer (FMC) has evolved from
a flight planning aid to an important hub for pilot information and origin-to-destination op-
timization of flight performance. Current trends indicate increasing roles of the FMC in
aviation safety, aviation security, increasing airport capacity, and improving environmental
impact from aircraft. Related research conducted at the Langley Research Center (LaRC)
often requires functional extension of a modern, full-featured FMC. Ideally, transport simu-
lations would include an FMC simulation that could be tailored and extended for experi-
ments. However, due to the complexity of a modern FMC, a large investment (millions of
dollars over several years) and scarce domain knowledge are needed to create such a simula-
tion for transport aircraft. As an intermediate alternative, the Flight Research Services Di-
rectorate (FRSD) at LaRC created a set of reusable software products to extend flight man-
agement functionality upstream of a Boeing-757 FMC, transparently simulating or sharing
its operator interfaces. The paper details the design of these products and highlights their
use on NASA projects.

Acronyms
1U = One Unit (“unit” is a standard unit of height for electronic system racks.)
ACARS = Aircraft Communications Addressing and Reporting System
ARIES = Airborne Research Integrated Experiments System
ARINC = Aeronautical Radio Incorporated
ATAAS = Advanced Terminal Area Approach Spacing
B757 = Boeing 757
CDLS = CTAS-Data Link System
CDU = Control and Display Unit
CLB = Climb page menu key
CPI = Control Panel Interface
CRZ = Cruise page menu key
CTAS = Center-TRACON Automation System
DES = Descent page menu key
EFIS = Electronic Flight Instrument System
FANS = Future Air Navigation System
FMC = Flight Management Computer
FMS = Flight Management System
FRSD = Flight Research Services Directorate
IEI = Imbedded Element Identifier
IMI = Imbedded Message Identifier
LaRC = Langley Research Center

* Aerospace Engineer, Flight Simulation and Software Branch, Mail Stop 125B, Senior Member AIAA.
† Software Engineer, Federal Systems Division, 20 Research Drive.

American Institute of Aeronautics and Astronautics

1

LNAV = Lateral Navigation
LNG = Low Noise Guidance
LSK = Line Select Key
PC = Personal Computer
PIP = Product Improvement Package
TRACON = Terminal Radar Approach Control
TRS = Transport Research System
VNAV = Vertical Navigation

I. Introduction
omputers continue to drive productivity and increase customer value in many segments of the U.S. economy.
The aviation industry is no different. Airlines have long used Flight Management Computers (FMCs) to mini-

mize cost by optimizing fuel consumption and travel time. Current needs to improve flight safety and security and
reduce congestion in the National Airspace System are driving research into new technology solutions that incorpo-
rate the FMC. These solutions expand the FMC into an information hub between the pilot, ground stations, and
other aircraft. The research requires expanded capabilities for the FMC. FMC’s are closed, proprietary systems.
An FMC cannot be modified without partnering with the manufacturer; partnering is not always practical. Develop-
ing a tailorable software product that replicates the functionality of a modern, transport FMC may not be a viable
solution. Domain knowledge is scarce; only a handful of FMC manufacturers exist. Even with sufficient domain
knowledge, such a complex system requires millions of dollars and several years of development to replicate. The
Flight Research Services Directorate (FRSD) at NASA Langley Research Center has undertaken such a develop-
ment project called the NASA Research Flight Management System. The system has taken five years of develop-
ment and is near completion. In the interim, however, FRSD needed to support advanced Flight Management Sys-
tem (FMS) research. Thus, FRSD developed a system that leverages the existing features of an FMC and runs soft-
ware upstream of the FMC to provide extended features. The FMC extension software must seamlessly integrate
with the FMC from the perspective of human operators (e.g. pilot). The FMC extension software must interoperate
with the FMC using the FMC’s existing interfaces.

C

The Boeing 757 FMC has three primary interfaces that communicate information: the Electronic Flight Instru-
ment System (EFIS), the Control and Display Unit (CDU), and data link. The FMC drives the navigation display on
the EFIS. The navigation display depicts the route that is programmed into the FMC along with other geographi-
cally-mapped and general information.‡ The CDU provides a screen and keyboard. Generally, textual information
is shown on the screen but modern CDUs are also capable of displaying graphics. The text information is organized
into ‘pages’ that the pilot can access via a key press.§ The collection of available pages in the FMC is called a page
set. Pilots use the CDU to make entries into the FMC and view FMC data. Data link provides communication be-
tween the FMC and a ground station. Data link allows information transfer between the pilot and airline operations
centers or air traffic controllers. FRSD has developed software components that utilize the EFIS, CDU, and data
link interfaces to extend the FMC’s features from the perspective of the pilot and ground stations. The software
accomplishes the extension through three primary mechanisms: 1) seamless augmentation and replacement of dis-
play information from the FMC to the EFIS and CDU, 2) automated manipulation of the FMC via CDU keystroke
emulation and data link insertion to support the activation of extended features, and 3) extracting data from the data
link, EFIS, and CDU connections.

II. System View
Augmenting the FMC with external software begins with the system design. Figure 1 depicts a system view of

the FMC within FRSD’s facilities. The FMC is connected to a VME chassis. This connection includes ARINC-429
digital buses, discrete lines, and power. This VME chassis is an enclosed VME back plane with a Motorola
PowerPC processor board, a SCRAMNet+¶ module, a discrete input and output card, and two Condor ARINC 429
cards. The VME chassis is connected to the SCRAMNet+ network and mediates the transfer of data between the
FMC and the SCRAMNet+ network. The research computer is an SGI Origin that is also connected to the
SCRAMNet+ network. In the simulator, the research computer hosts the simulation program; on the aircraft, the

‡ Examples of geographically-mapped information are airports and waypoints. Examples of general information are
airspeed and heading.
§ This key press is either a menu key or a line select key from another page.
¶ SCRAMNet+ is a reflective-memory, fiber-optic network that utilizes a ring topology.

American Institute of Aeronautics and Astronautics

2

research compu
embedded in th
computers (PC)
render displays
search compute
plays in the co
chassis is simil
data transfer be

FRSD desig
tension softwar
SCRAMNet+ a
tion can be prog
tion of how the
The research co
computer then
read the table a
could configure
CDU. This is
CDU. When th
FMC’s CDU ou
dress for CDU
research compu
able component

FRSD has d
1) CDU compo
oriented C++. T
CDU between t
late CDU keyst
not part of the
FMCs fails.)
OpenGL EFIS
ports tailoring f
ferred to or from
Flight
Management

Computer

VME
Chassis

Research
Computer

FMC Extension
Software

SCRAMNet+

Cockpit
Displays

(CRT or LCD)

VME
Chassis

Control and
Display Units

(CDU)

Display
Computers

OpenGL EFIS
Display Software

G
ig

ab
it

Et
he

rn
et

Cockpit Component CockpitFMC Computer w/ FRSD SoftwareFRSD Software

Flight
Management

Computer

VME
Chassis

Research
Computer

FMC Extension
Software

SCRAMNet+

Cockpit
Displays

(CRT or LCD)

VME
Chassis

Control and
Display Units

(CDU)

Display
Computers

OpenGL EFIS
Display Software

G
ig

ab
it

Et
he

rn
et

Flight
Management

Computer

VME
Chassis

Research
Computer

FMC Extension
Software

Research
Computer

FMC Extension
Software

SCRAMNet+

Cockpit
Displays

(CRT or LCD)

VME
Chassis

Control and
Display Units

(CDU)

Cockpit
Displays

(CRT or LCD)

VME
Chassis

Control and
Display Units

(CDU)

Display
Computers

OpenGL EFIS
Display Software

Display
Computers

OpenGL EFIS
Display Software

G
ig

ab
it

Et
he

rn
et

Cockpit ComponentCockpit Component CockpitCockpitFMCFMC Computer w/ FRSD SoftwareComputer w/ FRSD SoftwareFRSD SoftwareFRSD Software

Figure 1 FMC in the System

ter hosts the flight research program. The FMC extension software runs in a separate process or
e simulation or flight research program. The display computers are a rack of one-unit (1U) personal
 running Linux on Intel processors. The display computers contain OpenGL-based programs that
 in the cockpit; the EFIS is one of the programs. The display computers receive data from the re-
r via gigabit Ethernet. The display computers’ video outputs are distributed from the rack to the dis-
ckpit. The cockpit is also connected to the SCRAMNet+ network via a VME chassis. The VME
ar to the chassis connected to the FMC but has additional I/O cards. The cockpit’s chassis directs
tween the cockpit instruments and the SCRAMNet+ network. The CDU is one of these instruments.
ned this system with flexible communication routing that provides the foundation for the FMC ex-
e. Each path of communication (e.g. an ARINC-429 bus) is dynamically assigned an address in
t runtime. The research computer controls the allocation of addresses in SCRAMNet+. The alloca-
rammed by a developer or determined by a configuration file. The following is a simplified descrip-
system establishes the connections; more detailed information can be found in references [1] and [2].
mputer writes the configuration information into a table at the start of SCRAMNet+. The research

sets a word in SCRAMNet+ that signals the other computers and VME chasses on the network to
nd configure themselves to read from or write to the assigned address. For example, the operator
 the address for the FMC’s CDU output such that cockpit VME reads the data and transmits it to the
the configuration for an FMC without augmentation; the FMC communicates “directly” with the
e FMC will be augmented by FMC extension software, the operator configures the address for the
tput to connect to the research computer and the operator configures the cockpit VME with an ad-

input that originates from the research computer. Thus, CDU communication is routed through the
ter where the research program can augment or replace the data. The next sections discuss the reus-
s that projects leverage to create FMC extension software that manipulates the re-routed data.

III. FMC Extension Components
eveloped three categories of extension components that target the three main interfaces of the FMC:
nents, 2) Open-GL EFIS, and 3) data link components. FRSD created the components using object-
he CDU components provide basic capabilities to create custom page sets, to arbitrate control of the

he FMC and the FMC extension software, to capture and modify the content of CDU pages, to emu-
rokes, and to capture flight plan data that the B757 FMC sends to the CDU. (The flight plan data is
display data; it is numeric and text data that the B757 CDU can use to drive the map display if the
The OpenGL-based EFIS product replaces the EFIS line replaceable unit (i.e. black box). The
interface allows limited drawing of custom items on the display, and the product architecture sup-
or more complex customizations. The data link components allow data link messages to be trans-
 the FMC. Data link messages can automate data insertion or data extraction from the FMC.

American Institute of Aeronautics and Astronautics

3

FMC

CDU State
Capture and
Modification

Custom CDU
Page Set

Emulated
Keystrokes

FMC Out

M
em

or
y

B
lo

ck
s

Left CDU In

Right CDU In

Hardware Memory Software CDU Page Data CDU Keystrokes

CDU

Right CDU Out

Left CDU Out

FMC In

M
em

or
y

B
lo

ck
s

Right CDU In

Left CDU In

Right Page Out

Left Page Out

Right

Left

CDU Switch

FMCFMC

CDU State
Capture and
Modification

CDU State
Capture and
Modification

Custom CDU
Page Set

Emulated
Keystrokes

Custom CDU
Page Set

Emulated
Keystrokes

FMC Out

M
em

or
y

B
lo

ck
s

Left CDU In

Right CDU In

HardwareHardware MemoryMemory SoftwareSoftware CDU Page DataCDU Page Data CDU KeystrokesCDU Keystrokes

CDU

Right CDU Out

Left CDU Out

FMC In

M
em

or
y

B
lo

ck
s

Right CDU In

Left CDU In

Right Page Out

Left Page Out

Right

Left

CDU Switch

Figure 2 Conceptual Diagram of CDU Components

A. CDU components
The CDU components are a set of collaborating classes that manipulate the stream of CDU data emitted by the

FMC and the keystrokes emitted by the CDU. Figure 2 depicts a simplified, conceptual depiction of the CDU com-
ponents and how they interact with the FMC and CDUs. The CDU components are divided into four packages: 1) a
custom CDU page set, 2) a CDU switch, 3) CDU state capture and modification, and 4) flight plan components (not
shown). The custom CDU page set provides a CDU interface to the extended FMS features. The CDU switch arbi-
trates control of each CDU between the FMC and the custom CDU page set. The CDU state capture and modifica-
tion component captures the CDU state emitted by the FMC (i.e. page, scratchpad, and annunciators) and allows a
project to read or manipulate the state before it is sent to the CDU. The flight plan component decodes and stores
the flight plan data the B757 FMC sends to the CDU.

Two page managers,
one for left CDU and
one for RIGHT CDU.

The page manager also
manages the scratch pad
and annunciator lights.

CduPageSystem

update()

CduPageSetBuilder

CduPageManager

changeActivePage()
refreshPage()
putKeystroke()

21 21

map<menu_key,CduPage>
CduPageSet

registerPage()
getMenuKeyPage()

1
1

1
1

11 11

ConcreteCduPageSetBuilder ConcreteCduPage

1..*
1

1..*
1

CduPage

<<virtual>> getDisplayText()
<<virtual>> putKeystroke()

1..131..13

+active_page

0..*

+line_select_key_pages

0..*

Figure 3 Top-Level Architecture of the Custom CDU Page Set

1. Custom CDU Page Set
Figure 3 depicts the top level architecture of the Custom CDU Page Set in Unified Modeling Language notation.

Operationally, the top object is the CduPageSystem. The CduPageSystem connects CduPageManager objects to an
I/O interface such as the CDU Switch software. By default, it connects two CduPageManagers, one for the left
CDU and one for the right CDU. CduPageSystem::update() causes the CduPageManagers to process any keystroke
inputs from the I/O interface and to upload page displays (including scratchpad or annunciator light updates) to the
I/O interface. The CduPageManager operates the collection of pages embodied in the CduPageSet object. The

American Institute of Aeronautics and Astronautics

4

CduPageManager encapsulates the dynamic state of CDU, i.e. which page is active, what annunciator lights are ac-
tive, and what are the contents of the scratchpad. The CduPageSet represents the static properties of the page set,
i.e. what pages exist in the set and which page becomes active when a menu key is pressed.

Both the CduPageManager and CduPageSet rely on the object-oriented feature of abstract interfaces to operate a
set of heterogeneous pages without knowing the purpose of each page. All CDU pages derive from a common an-
cestor, CduPage. CduPage is an abstract interface that provides the basic methods for manipulating a page. For
example, getDisplayText() renders the page, and putKeystroke() responds to operator inputs. A concrete CduPage
(e.g., the INDEX page) uses polymorphism to define the abstract methods with the page’s specific implementation.
Thus, when the INDEX page is the object assigned to the active_page in the CduPageManger, the CduPageManager
will receive the content of the INDEX page when it calls active_page→getDisplayText(). A concrete subclass of
CduPageSetBuilder determines the actual collection of pages, with which the CduPageSet and CduPageManager
interact. In other words, the CduPageSetBuilder subclass is the only class that knows what concrete CduPage
subclasses will be in the page set. It constructs each concrete CduPage and registers the object to the CduPageSet as
a CduPage pointer; it also configures the mapping of menu keys to CduPage objects.

The concrete CduPages also take advantage of the abstract CduPage interface to anonymously connect with
other concrete CduPages for performing tasks such as a page transition in response to the operator pressing a line
select key (LSK). For example, the INDEX page (e.g. class name “IndexPage”) may contain a link to the TAKE-
OFF page from LSK 4L.# The IndexPage stores this link as a pointer to a CduPage, not a pointer to a concrete
TakeoffPage. This design provides the freedom to link the IndexPage to any number of TAKEOFF page implemen-
tations without changing the IndexPage code. The IndexPage can therefore be reused in multiple page sets, each
with a different TAKEOFF page implementation. Developers can extend an existing page set or modify the “navi-
gation map”** of the page set by adding or modifying a few lines of code in the CduPageSetBuilder subclass. This
property of the design allows research projects to rapidly prototype an experimental page set from an existing page
set or from individual CduPage subclasses.
2. The CDU Switch

The CDU switch performs independent switching of the left and right CDUs. For example, the custom CDU
page can control the left CDU while the FMC controls the right CDU. Figure 2 shows three external connections for
CDU data, two keystroke connections and one page connection. In the Boeing 757 system, the FMC has independ-
ent inputs for incoming keystrokes but combines the page output for all CDUs into a single output. To support a
“direct” connection between FMC and CDU in FRSD’s facilities, the VME chassis in the cockpit (see Figure 1) uses
a single memory block for incoming CDU page data but separate memory blocks for keystroke data. The CDU
switch software must, therefore, split the FMC output into left (pilot) and right (copilot) in order to perform the in-
dependent switching. The CDU switch must also recombine the two data streams following source selection. The
CDU switch uses menu keys to determine which page source has control over a CDU. The developer can configure
the CDU switch to map one or more menu keys to the custom CDU page set. When the operator presses one of the
mapped menu keys, control over the operator’s CDU is switched to the custom CDU page set. When the operator
presses a menu key that is not mapped, control is returned to the FMC.

The CDU switch also provides a connection that allows the custom CDU page set to insert keystrokes into one of
the FMC’s CDU inputs. The CDU switch uses an FMC CDU input that corresponds to a CDU which is not cur-
rently controlled by the FMC. Being a user interface, the Custom CDU Page Set sends emulated keystrokes only in
response to operator actions; the Custom CDU Page receives operator input only if it controls one of the CDUs.
Therefore, emulated keystrokes can only be emitted if the Custom CDU Page controls at least one CDU.

LSK 4L is the fourth line select key from the top and on the left.
** The “navigation map” is the path of page connections via menu keys and line select keys.

American Institute of Aeronautics and Astronautics

5

3. CDU State Capture and Modification
The CDU state capture and modification component cap-

tures the current CDU state (e.g. page, scratchpad, annunciators,
and last key press) and decodes it into text, boolean, and integer
values that the FMC extension software can read and/or ma-
nipulate. The state capture software operates on both the FMC-
generated and custom CDU pages. Thus, the component can
generate a log of all CDU page views, annunciator lights, and
pilot keystrokes. By reading the CDU state, the FMC extension
software can extract FMC information that is only available
from CDU pages. Furthermore, the FMC extension software
can alter any portion of the FMC-generated CDU state to incor-
porate extended FMS features into the FMC’s CDU output.

Unlike the custom page software, modifications to the CDU
state do not require switching of the CDU I/O. The CDU State
component is unaware of the source of state data or the destina-
tion of CDU key presses. Figure 4 depicts the primary classes
of this component. The CduState class decodes and stores the
CDU state; there is one CduState object per CDU. Each object
contains data structures representing the page text and formatting, on/off status annunciatior lights, and the most
recent key press made on the CDU. Private, virtual methods execute state modification; these methods are named
processAnnunciators(), processPage(), and processScratchPad(). The CduState class invokes the appropriate
method whenever that portion of the CDU state is updated. The default methods in the CduState class are empty.
Research-specific classes derived from CduState can provide implementations for these methods that modify spe-
cific portions of the state data before it is transmitted to the CDU.

ResearchCduState

processAnnunciators()
processPage()
processScratchPad()

CduState
text
format
annunciators
last_keypress

decode()
getPageData()
processAnnunciators()
processPage()
processScratchPad()

Maintains state
of CDU. There
is one object
per CDU.

Substituted for
parent class
when research
modifications
are required.

Figure 4 CDU State Design

4. Flight Plan Components
The flight plan components decode flight plan

information that the Boeing 757 FMC sends to the
CDU. The Boeing 757 FMC interlaces this data
with the CDU page data. In the event that the FMCs
fail, the B757 CDUs can use the last uploaded flight
plan to generate their own pages and drive the navi-
gation displays. FRSD’s system separates the flight
plan data into a dedicated SCRAMNet+ memory
block. The FmcFlightPlan object reads this data and
decodes it into a vector of FmcWaypoint objects.
The flight plan data from the FMC contains only the
latitude, longitude, and identifier for each waypoint.
The CDU Page Capture and Modification compo-
nent (see III.A.3) provides the option of populating the speed and altitude attributes of the FmcWaypoint class by
scanning the FMC’s LEGS page. FMC extension software can use the flight plan data as a source of information for
its algorithms or to repackage the information for new displays or new external communication (e.g. Distributed
Air/Ground Traffic Management [DAG-TM]).

ScramnetMemoryBlock

FmcFlightPlan

1

1

FmcWaypoint
latitude
longitude
identifier
speed
altittude

0..*

1

1

1

0..*

1

FmcFlightPlan creates
a vector of waypoints
from FMC data placed
in the memory block.

Figure 5 Class Diagram of the Flight Plan Components

B. OpenGL EFIS Software
FRSD’s system replaces the black-box EFIS with display software that draws the EFIS display using OpenGL.

Figure 6 depicts a conceptual view of the OpenGL EFIS software in the system. The display software uses a mem-
ory-based interface that is populated with symbol data for the display. The symbol data is composed of intrinsic
types; it is not a stream of ARINC words such as the FMC emits. The ARINC 702 Translator on the research com-
puter retrieves the FMC’s EFIS output from SCRAMNet+ and decodes it into the display software’s interface. In
FRSD’s prior-generation system architecture, the display software also existed on the research computer; the transla-
tor and display software communicated directly via shared memory. In FRSD’s current system architecture, the
display software has been offloaded to a dedicated display computer (1U PC). The research computer now commu-
nicates the symbol data in the memory block over gigabit Ethernet using sockets, and the display computer takes the
socket data and places it in a memory block. FRSD retained the memory interfaces for the flexibility of running the
display software in configurations that used shared memory or SCRAMNet+ for communication of symbol data.

American Institute of Aeronautics and Astronautics

6

The FMC Exte
play. Unlike th
display commu
than replace the

The project
translator and
existing symbo
The architectur
consists of a gr
face. When th
the display com
library that the
sends a data sig

The display
pository of reu
ture and build
from scratch as

C. Data Link
The FMC e

This purpose s
the FMC. The
data link comp
ferring messag
ages, the Acar
communication
FMC extension
stantiations of
for anonymous
without knowle
the data (input
producing data
tion to the FMC
ware to the Ac

†† ACARS is a
dard used by th
M
em

or
y

B
lo

ck
s

M
em

or
y

B
lo

ck
s

Et
he

rn
et

 S
oc

ke
t

Project-Specific
Extension Library

FMC Extension
Software

Graphics
Executive

ARINC 702
Translator

M
em

or
y

B
lo

ck
s

FMC

The Display Library
can be project-specific

Display Library

Hardware Communication Software

Research Computer

Display Computer

M
em

or
y

B
lo

ck
s

M
em

or
y

B
lo

ck
s

Et
he

rn
et

 S
oc

ke
t

Project-Specific
Extension Library

FMC Extension
Software

Project-Specific
Extension Library

FMC Extension
Software

Graphics
Executive

ARINC 702
Translator

M
em

or
y

B
lo

ck
s

FMCFMC

The Display Library
can be project-specific

Display Library

Hardware Communication SoftwareHardwareHardware CommunicationCommunication SoftwareSoftware

Research Computer

Display Computer

Figure 6 Conceptual View of OpenGL EFIS Software

nsion Software can access the memory block for symbol data in order to modify or augment the dis-
e CDU, no generic feature to switch between the FMC and FMC extension software is needed. The
nication is unidirectional and the FMC Extension Software usually augments existing displays rather
m. Even if replacement is needed, the FMC data can simply be ignored.

 can make limited augmentation of the standard navigation display by deriving from the ARINC 702
inserting its own data. This technique works best when the additional data can be displayed using
ls in the standard navigation display. Creating new symbols requires tailoring the display software.
e of the display software offers the flexibility to easily install tailored displays. The display software
aphics executive that can dynamically load a display library which adheres to a standard export inter-
e simulation starts, it sends data (via sockets) to the display computers; upon reception of this data,
puter initiates the launch of the graphics process. The simulation then provides the pathname of the

 graphics executive will dynamically load and execute. When the simulation ends, the simulation
nal (via sockets) that causes the graphics process to terminate.
 libraries are written in object-oriented C++. FRSD has developed a reusable architecture and a re-
sable classes for the display libraries. Tailored displays generally derive from the reusable architec-
their extensions from the reusable classes. However, it is possible to build a new graphics library
 long as the library adheres to the export interface that the graphics executive expects.

Components
xtension software can use data link messages to automate the insertion of information into the FMC.
ometimes requires the assistance of emulated CDU keystrokes to automate acceptance of the data by
 FMC extension software can also use data link messages to retrieve information from the FMC. The
onents (see Figure 7) provide basic services for encoding or decoding data link messages and trans-
es between the FMC and FMC extension software. The data link components consist of two pack-
sManagementUnit†† and the ImbeddedMessageIdentifier. The AcarsManagementUnit manages the
 of data link strings with the FMC. The package translates between plain text strings used by the
 software and the protocol used by the FMC. The package receives and exports its data through in-
the DataHandler template. DataHandler is an abstract interface for communication that is designed
 chaining. DataHandler-based interfaces can be mated to a variety of DataHandler implementations
dge of how the implementation will use the data (output chains) or how the implementation obtained
chains). For example, the text input of the AcarsManagementUnit code can be attached to a package
 link weather updates or to a package that produces canned data link messages for testing the connec-

’s data link port. The DataHandler interface allows any project to attach their FMC extension soft-
arsManagementUnit. It also allows the project to adapt the AcarsManagementUnit to any representa-

n acronym for Aircraft Communications Addressing and Reporting System. It is the data link stan-
e Boeing 757 FMC.

American Institute of Aeronautics and Astronautics

7

DataHandler<ARINC>

processData()
putSuccessorHandler()

DataHanlder<Text>

AcarsManagementUnit

22 22

Interface to FMC.
1 Input. 1 Output.

Interface to FMC
Extension Software.
1 Input. 1 Output.

FMC Extension
Software

ImbeddedElementIdentifier

encode()
decode()

ImbeddedMessageIdentifier

encode()
decode()

0..*0..*

This class only acts as a
translator between plain text
and the FMC's protocol.

Figure 7 High-Level Architecture of Data Link Components

tion of FMC communication. In the FRSD facility, the DataHandler subclasses for ARINC communication imple-
ment SCRAMNet+ communication to the FMC’s VME chassis. [Note: The CDU components also use DataHandler
objects; however, these objects appear at a lower level of detail than shown in this paper.]

A data link message is a plain text encoding of numeric, enumerated, boolean, and text data. The Imbedded-
MessageIdentifier package performs the encoding and decoding of data link strings. A data link string is composed
of an imbedded message identifier and zero or more imbedded element identifiers. The design reflects this decom-
position. The ImbeddedMessageIdentifier (IMI) and ImbeddedElementIdentifier (IEI) are abstract classes that en-
capsulate the common attributes and behaviors of both identifiers. Classes derived from ImbeddedMessageIdenti-
fier implement a specific IMI. An ImbeddedMessageIdentifier subclass defines the text marker for the IMI, en-
codes/decodes the IMI fields, constructs the IEI objects that can appear in the message, and knows which IEIs are
mandatory and which are optional. Classes derived from ImbeddedElementIdentifier implement a specific IEI. An
ImbeddedElementIdentifier defines the text marker for the IEI, encodes/decodes the IEI fields, and knows which
fields are mandatory and which are optional. The FMC extension software uses the ImbeddedMessageIdentifier
package to encode/decode data link messages exchanged with the FMC. The package can also be used to create
custom data link messages for communication with research products that create data link extensions to the FMC.

IV. Case Studies
This section contains examples of how the FMC extension components have been used on projects. The projects

highlighted are Boeing 757 Center-TRACON Automation System (CTAS), Advanced Terminal Area Approach
Spacing (ATAAS), and Low Noise Guidance (LNG).

A. Boeing 757 Center-TRACON Automation System (CTAS)
This simulation study had two objectives: 1) explore options for interfacing CTAS‡‡ with an FMC to exchange

trajectory data and 2) evaluate candidate procedures for pilot and controller interactions with the FMS and CTAS.
B757 CTAS was the first project to integrate a Honeywell B757 FMC-PIP (Product Improvement Package) with
LaRC’s Boeing 757 Simulation. Figure 8 depicts the software and hardware interfaces in the B757 CTAS product.
The development team created a software system called the CTAS-Data Link System (CDLS) that contained the
extended FMC functionality that interfaced with the CTAS product. The CTAS software communicates with the
Boeing 757 using plain text data link messages and structures of aircraft state information. To satisfy the first objec-
tive of the experiment, CDLS required access to the FMC’s trajectory data in order to pass that data to CTAS via a
plain text data link message. The research team obtained a proprietary device from Honeywell called a Control
Panel Interface (CPI) that exposed the flight plan memory of the FMC. The memory contents were transmitted to
CDLS which encoded the data into a data link message and transmitted the message to CTAS. In future experi-
ments, the CPI interface would be replaced with a combination of the Flight Plan components and capturing of in-

‡‡ CTAS is a software product developed at Ames Research Center. CTAS is a collection of aids that enable air
traffic controllers to manage the increasingly complex air traffic at large airports.

American Institute of Aeronautics and Astronautics

8

formation from the FMC’s LEGS page (us-
ing CDU page capture and modification).
This software-only solution results in a less
complex system and would require less scru-
tiny for deployment on LaRC’s research air-
craft.

The research team decided to implement
the pilot interface with CTAS using modified
FANS (Future Air Navigation) CDU pages
that are an option on the Boeing 747. The
FANS CDU pages were implemented using
the CDU Custom Page System components
(see III.A.1). The CDU Switch component
arbitrated control of the CDU between the
custom pages and the FMC pages. The
CDU’s cruise (CRZ) menu key was changed
to an ATC key and the CDU Switch was configured to map this key to the FANS pages. The CDU switch was also
tailored to cycle through the FMC’s Cruise, Climb, and Descent pages when the CDU’s climb (CLB) menu key was
pressed. (On the face plate, the descent key was changed to a blank and the climb key was changed to VNAV.) The
FANS pages connected to the CTAS-Data Link System. The pages sent commands to the system in response to
pilot inputs and retrieved data from the system for display.

CTAS sent updated weather and route modification data link messages to the Boeing 757. The pilot reviewed
and accepted or rejected these uplinks via the FANS pages. To provide the illusion that the FANS pages were inte-
grated with the FMC, the CDLS had to automatically insert information from accepted data link messages into the
FMC. The CDLS packaged the data into ACARS data link messages and transmitted them to the FMC. The CDLS
would follow the transmission with a series of emulated CDU keystrokes that commanded the FMC to accept the
data link message. This activity exposed one of the weaknesses of extending the FMC with external software.
FMC processing of the ACARS message was not deterministic and neither were the FMC’s response to keystrokes.
A delay had to be added between the sending of the ACARS message and the first keystroke. Some keystrokes re-
lied on page changes commanded by a prior keystroke. A delay had to be placed between keystrokes to assure that
the FMC had sufficient time to respond to the prior keystroke and update the page. The delays necessary to obtain
greater than 95% success for auto-loading the data added up to several seconds in some cases. Since the emulated
keystrokes were sent via the FMC input for the CDU that initiated the action, any attempt by the operator to imme-
diately switch to an FMC controlled page would be met with a delay while the emulated keystrokes were processed.
Other events could interfere with the emulated keystroke sequence, particularly if the sequence required data inser-
tion via the scratch pad. The required delays between keystrokes widened the window for such interference. A
great deal of time was spent optimizing the delays so that these issues became a rare annoyance.

 The B757 CTAS project also used the standard Navigation Display available from a predecessor to the OpenGL
EFIS software that used VAPS™ from Enginuity Technologies as the rendering engine; thus, the EFIS software
only required input data from the FMC.

CDU
Switch

Custom CDU
Pages (FANS)

CDU

CTAS

Data
Link

CTAS-Data Link
System

VAPS
EFIS

FMC
CDU

EFIS

CPI

Data Link
CDU

Switch

Custom CDU
Pages (FANS)

CDU

CTAS

Data
Link

CTAS-Data Link
System

VAPS
EFIS

FMC
CDU

EFIS

CPI

Data Link

Figure 8 B757 CTAS System

B. Advanced Terminal Area Approach Spacing (ATAAS):
Advanced Terminal Area Approach Spacing (ATAAS) explored in-trail, self-spacing of aircraft in the airport

terminal area using the time-history concept. In time-history self-spacing, each aircraft attempts to fly the speed
profile of the aircraft that it is following. To achieve this concept, ATAAS introduced new autothrottle and vertical
navigation (VNAV) modes. Before either of these modes could be engaged, several inputs from the pilot were re-
quired, including the target-to-follow, desired spacing interval, planned final approach speed for ownship and target,
and wind speed and direction. Two new CDU pages that allowed pilot input of these parameters were created using
the Custom CDU Page System. One of these pages also allowed the crew to monitor current status of the spacing
and speed of the lead aircraft. The CDU Switch was employed to arbitrate control of the CDU between the two cus-
tom pages and the FMC. As with CTAS, the cruise (CRZ) menu key was mapped to the custom page source and all
other function keycodes caused the FMS to resume its role as the active source. However, rotating among descent,
climb, and cruise pages when pressing the climb key was not implemented for this experiment; all three pages are
accessible from each other normally via a line select key.

The ATAAS software intercepted the VNAV autopilot output from the FMC and modified it to drive the auto-
throttle in a manner that minimized in-trail spacing error upon landing. For pilot awareness, two new display con-

American Institute of Aeronautics and Astronautics

9

cepts were required for the Navigation display: the lateral path of the target-to-follow and a separation bar indicating
horizontal distance from the location that would yield the desired temporal spacing interval. The development team
created a tailored display by deriving from the classes of the standard navigation display.

Portability of this software was verified when ATAAS moved from simulation study to flight demonstration.
This required rehosting the custom CDU page and CDU switching software to the Transport Research System
(TRS) onboard NASA's Boeing 757 Airborne Research Integrated Experiments System (ARIES). This proved pos-
sible with only minor enhancements to the TRS-FMS interface.

C. Low Noise Guidance (LNG)
The Low Noise Guidance (LNG) simulation aims to minimize noise in populated areas during aircraft approach.

The Low Noise Guidance (LNG) study introduced custom Lateral Navigation (LNAV) and Vertical Navigation
(VNAV) autopilot modes. LNG required the new modes to operate transparently in conjunction with the existing
FMC. The new control laws required the flight plan as one of its inputs. LNG used the flight plan components (see
III.A.4) to obtain a copy of the active flight plan. In addition to the active flight plan, the LNG algorithms required
any modified active route. While modified active routes are computed and maintained by the FMC, the FMC does
not provide them as an output. LNG also required constraints associated with flight plan waypoints; the FMC also
does not output the constraints. Using the CDU capture and modification software, all "LEGS" pages visited by
either pilot or first officer were scanned for mod active routes and constraint information. This information was
collected and stored in the LNG research software.

Since ATAAS was incorporated as part of the LNG experiment, the same custom page generating and switching
software used for the ATAAS project was also used for LNG. In addition to custom pages, this project required
minor modifications to several of the FMC-generated CDU pages. Since VNAV target speeds and altitudes were
modified by the LNG software, the CDU page capture and modification software was used to overwrite select in-
formation on the LEGS and PROGRESS pages with LNG’s data. Furthermore, the CDU components were tailored
to block selected annunciations from the FMC and automatically clear select scratchpad messages. These steps were
required to maintain the illusion of an FMS incorporating new autopilot modes.

A standard FMS VNAV path includes basic altitude profile events such as "Top of Descent", and "End of De-
scent". These events are generated by the FMS as part of the EFIS data stream. LNG added additional altitude pro-
file events, such as flap and gear extensions, for the purpose of controlling noise levels on descent. The standard
navigation display library already has the capability to display altitude profile points. Thus, the new points were
implemented by capturing the FMC’s EFIS stream and augmenting it with the new profile points. The project de-
veloped a derivation of the ARINC 702 Translator (see III.B) that filtered FMC events from the EFIS symbols and
augmented the display with LNG event data. This data was then sent to the standard navigation display.

V. Conclusion
FRSD has developed a set of reusable software components that reduce the effort to create extended FMS func-

tionality around an FMC. The software has successfully been deployed on several research projects (including B757
CTAS, ATAAS, and LNG) to provide experimental FMS functionality for increasing aviation safety, aviation secu-
rity, airport capacity, and environmental impact of aircraft. These components interact with the three main informa-
tion interfaces of the FMC: CDU, EFIS, and data link. By manipulating the information interfaces, the software
components provide the illusion of an integrated FMS system to operators. However, the FMC’s interfaces also
limit the degree to which external software can extend the FMC’s function. The software cannot control how
quickly the FMC responds to inputs. The software cannot fundamentally alter the FMC’s flight planning, trajectory
generation, or guidance without creating full-featured replacements of these functions outside of the FMC. Over
time, such replacements border on full development of a software flight management system. Thus, organizations
with requirements for long-term experimentation in these areas should pursue a feature-complete software flight
management system. FRSD has used the FMC extension components as a stepping stone and interim solution to a
software flight management system. FRSD has designed many of the FMC extension components for reuse in the
software flight management system that FRSD is developing.

Acknowledgments
The authors want to acknowledge the following individuals for their contributions to the software described in

this paper: James Barnes, Arlene Guenther, Patricia Glaab, Brian Hutchinson, Jerry Karwac, Patrick “Sean” Kenney,
Jason Neuhaus, Myron Sothcott, and Jerry VanPelt.

American Institute of Aeronautics and Astronautics

10

References
1 Chung, V. I., and Hutchinson, B. K., “A Unique Software System for Simulation-to-Flight Research,” AIAA-2001-4057,

AIAA Modeling and Simulation Technologies Conference, Montreal, August 2001.
2 Geyer, D. W., et. al., “Managing Shared Memory Spaces in an Object-Oriented Real-Time Simulation,” AIAA-98-4532,

AIAA Modeling and Simulation Technologies Conference, Boston, August 1999.

American Institute of Aeronautics and Astronautics

11

	Acronyms
	Introduction
	System View
	FMC Extension Components
	CDU components
	Custom CDU Page Set
	The CDU Switch
	CDU State Capture and Modification
	Flight Plan Components

	OpenGL EFIS Software
	Data Link Components

	Case Studies
	Boeing 757 Center-TRACON Automation System (CTAS)
	Advanced Terminal Area Approach Spacing (ATAAS):
	Low Noise Guidance (LNG)

	Conclusion
	Acknowledgments
	References

