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CHAPTER 1 

Computing action equivalences for planning under time-constraints 

NATALIA H. GARDIOL AND LESLIE PACK KAELBLING 
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Abstract 

In order for autonomous artificial decision-makers to solve realistic tasks, they need to deal with 
the dual problems of searching through large state and action spaces under time pressure. We study 
the problem of planning in domains with lots of objects. Structured representations of action can 
help provide guidance when the number of action choices and size of the state space is large. We 
show how structured representations of action effects can help us partition the action space in to 
a smaller set of approximate equivalence classes. Then, the pared-down action space can be used 
to identify a useful subset of the state space in which to search for a solution. As computational 
resources permit, we then allow ourselves to elaborate the original solution. This kind of analysis 
allows us to collapse the action space and permits faster planning in much larger domains than 
before. 



1.1 Introduction 
In many logical planning domains, the crux of finding a solution often lies in overcoming an 
overwhelmingly large action space. Consider, just to illustrate, the classic blocks world domain: 
fhe number of ways to make a stack of a certain height grows exponentially with the number 
of blocks on the table; and if the outcomes of actions are uncertain, this apparently simple task 
becomes even more daunting. We want planning techniques that can deal with large state spaces 
and large, stochastic action sets; most compelling, realistic domains have these characteristics. 

In order to describe large stochastic domains compactly, we need relational structures that can 
represent uncertainty in the dynamics. Relational representations allow the structure of the domain 
to be expressed in terms of object properties rather than object identities and thus yield a much 
more compact representation of a domain than the equivalent propositional version can. 

Even planning techniques that use relational representations, however, often end up operating 
in a fully-ground state and action space when it comes time to find a solution. However, it is often 
true that many action instances have similar kinds of effects: for example, in a blocks world it 
often does not matter which block is picked up first as long as a stack of blocks is produced in 
the end. If it were possible to identify under what conditions actions produce equivalent kinds of 
effects, the planning problem could be simplified by considering a representative action (from each 
equivalence class) rather than the whole action space. 

This work is about taking advantage of structured, relational action representations. First, we 
want to identify logically similar effects in order to reduce the effective size of the action space; 
second, we want to limit the state space under consideration to an informative, reachable subset. 

1.2 Relational Envelope-based Planning 
Decision-making agents are often faced with complicated problems and not much time in which 
to find a solution. In such situations, the agent is better off acting quickly - finding some reason- 
able solution fast - than acting perfectly. Relational Envelope-based Planning (REBP) (Gardiol & 
Kaelbling, 2003) is a planning approach designed for time-pressured decision-making problems. 

REBP proceeds in two phases. First, given a planning problem, an initial plan of action must 
be quickly found. Knowledge about the structure of action effects is used to eliminate potentially 
redundant information and focus the search onto high-probablility sequences of actions, known as 
an envelope of states (Dean, Kaelbling, Kirman, & Nicholson, 1995). Second, if the agent is given 
additional time, it can elaborate the original plan by considering lower-probability consequences 
of its action choices. Figure 1.1 shows a very high-level system diagram of the main parts of the 
REBP system. 
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f plan Refinement a 

Figure 1.1: A high-level schematic of the REBP system. The input to the system is twofold: a set of 
probabilistic rules. and a description of the planning problem at hand. The next process is to find an initial 
plan quickly. The final process is to refine the initial plan as resources permit. 

REBP lets us reason with ground states and actions, but, it is structured so as to limit how 
much of the ground state and action space is considered at a time. REBP explicitly inhabits the 
space between a plan (a sequence of actions computed for a given state/goal pair) and a policy 
(a mapping from all states in a space to the appropriate action). This allows an agent to make a 
plan that hedges against the most likely deviations from the expected course of action, without 
requiring construction of a complete policy. It produces an initial plan quickly by taking advantage 
of generalization among action effects, and as a result behaves smarter in a large space much sooner 
than it could by waiting for a full solution. Using the relational envelope method, we can take real 
advantage of relational generalization to produce good initial plans efficiently, and use envelope- 
growing techniques to improve the robustness of our plans incrementally as time permits. More 
details on REBP are available in our previous work (Gardiol & Kaelbling, 2003). 

The trick, at least to start, is in producing the initial envelope efficiently. This paper will address 
our first steps in that direction. 

1.2.1 
We cast our planning problem in the framework of a Markov decision process (MDP) (Puterman, 
1994). An MDP is a tuple, (e, A, 7, R) where: is a set of states; A is a set of actions; R is a 
reward function mapping each state to a real number; and 7 is a transition function mapping each 
state-action-state triple to a probability. A solution for an MDP consists in finding the best mapping 
from states to actions in a way that maximizes long-term reward. This function, T ,  is called a 
policy. 

In the past, much work on finding policies for MDPS considered a state to be an atomic entity; 
this approach is known not to scale to large state spaces, and much recent literature has been 
devoted to smarter ways of representing problems. 

In this work, we take advantage of a more compact way of representing state transitions (Le., 

Relational representation of actions and states 
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(:action pick-up-block-from 
:parameters (?top - block ?bottom - object) 
:precondition 

(and (on-top-of ?top ?bottom) (not (= ?top ?bottom)) (on-top-of ?top ?bottom) 
(forall (?b - block) (not (holding ?b))) 
(forall (?b - block) (not (on-top-of ?b ?top)))) 

:effect (probabilistic 
0.9 (and (holding ?top) (not (on-top-of ?top ?bottom))) 
0.1 (and (forall (?b - block)) (not (on-top-of ?b ?top)) (on-top-of ?top table)))) 

Figure 1.2: An example of a probabilistic relational rule for blocks-world dynamics in the PPDDL for- 
malism. Each rule schema contains the action name, arguments, precondition, and a set of outcomes. In 
this case, the first probabilistic outcome is the “successful” outcome of picking up the block; the second 
outcome denotes a less likely “failure” outcome, in which the block falls onto the table. 

actions). That is, rather than a state being composed of a set of propositional features, we think of 
it as being composed instead of a set of logical relationships between domain objects. Since these 
predicates can make assertions about logical variables, a single predicate may in fact represent 
a large number of ground propositions. This lets use a single transition rule to represent many 
ground state transitions. 

w e  define a relational MDP (RMDP) as a tuple (P ,  2 , 0 , 7 , R ) :  
States: The set of states is defined by a finite set P of relational predicates, representing the 

properties and relations that can hold among the finite set of domain objects, 0. Each RMDP state 
is a ground interpretation of the domain predicates over the domain objects. 

Actions: The set of ground actions depends on the set of rules 2 and the objects in the world. 
Trunsition Dynamics: For the transition dynamics, we use a compact set of rules similar to 

probabilistic STRIPS rules (Fikes & Nilsson, 1971). A rule’s behavior is defined by a precondition 
and a probabilistic effect, each expressed in terms of logical predicates. A probabilistic effect 
describes a distribution over a disjoint set of logical outcomes. A rule applies in a state if its 
precondition can be matched against some subset of the state ground predicates. Each outcome 
then describes a possible resulting ground state. An example is shown in Figure 1.2. In our system, 
we currently use rules that are designed by hand; they may, however, be obtained via learning. 

For each action, the distribution Over next states is given compactly by the distribution over 
outcomes encoded in the rule schema. The rule outcomes themselves usually only specify a subset 
of the domain predicates, effectively describing a set of possible resulting ground states. To fill in 
the values of the domain predicates not menioned in the outcome, we assume a static frame: state 
predicates not directly changed by the rule are assumed to remain the same. 
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Rewards: A state is mapped to a scalar reward according to function R(s).  
The original version of envelope-based planning (Dean et al., 1995) uscd an atomic MDP rep- 

resentation. To extend envelope-based planning to relational domains, then, we need two things. 
First, we need a set of probabilistic relational rules, which tell us the transition dynamics for a 
domain; and second, we need a problem description, which tells us the states and reward. These 
are the two input items in the diagram in Figure I .  I .  

A to define a planning problem we have to specify the following elements. The initial world 
state is the set of ground predicates that describes the starting state. The goal condition is a logical 
sentence. The reward is specified by list of logical conditions mapping states to a scalar reward 
value. If a state in the current MDP does not match a reward condition, the default value is 0. 
Additionally, there must be a penalty associated with falling out of the envelope. This penalty is 
an estimate of the cost of having to recover from falling out (such as having to replan back to the 
envelope, for example). 

1.2.2 Initial trajectory planning 
Given a set of rules and the problem description, the next step in envelope-based planning is find- 
ing the initial envelopc. In a relational setting, when the underlying MDP space implied by the full 
instantiation of the representation is potentially huge, a good initial envelope is crucial. It deter- 
mines the quality of the early envelope policies and sets the stage for more elaborate policies later 
on. 

Blum and Langford (Blum & Langford, 1999) describe a probabilistic extension to the Graph- 
plan algorithm (Blum & Furst, 1997), called TGraphplan (TCP), that can find the shortest straight- 
line plan quickly from start to goal that satisfies a minimum probability. We use the trajectory 
found by TGP to populate our initial envelope. 

Initial plan construction essentially follows the TGP algorithm described by Blum and Lang- 
ford (Blum & Langford, 1999). The TGP algorithm starts with the initial world state as the first 
layer in the graph, a minimum probability cutoff for the plan, and a maximum plan depth. The TGP 
algorithm produces a sequence of actions. 

However, our relational MDP describes a large underlying MDP. In a STRIPS -like rule, every 
variable in the rule schema appears in the argument list; so, when a STRIPS rule is grounded, 
it yields an exponential number of actions as the number of domain objects grows. Since large 
numbers of actions will grind TGP to a halt, we want to avoid considering all the actions during 
our plan search. 

TO cope with this problem, we have identified a technique called equivalence-class sampling. 
We partiiton into equivalence classes the actions that produce similar effects on the properties of the 
variables in their scope. Then, the plangraph can be constructed chaining forward only a sampled 
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Figure 1.3: An illustration of the envelope-based approach to planning. The task is to making a two-block 
stack in a domain with two blocks. The initial envelope is shown (far left), followed by a step of deliberation 
(Le., consideration of deviations from the initial plan) (middle), and finally after envelope expansion and 
computation of a new mdp p ! k y  (far right). 

action from each class. The sampled action is representative of the effects of any action from that 
class. Sampling reduces the branching factor at each step in the plangraph, so significantly larger 
domains can be handled. 

1.2.3 Equivalence in relational domains 
Before we can determine whether two actions are equivalent, we must define when two objects are 
equivalent. This requires the following crucial assumption: 
Remark 1 (Sufficiency of Object Properties): We assume an object’s identity is determined solely 
by its properties and relations to other objects, and not by its name. 

So, then, what do we mean by equivalent objects? Intuitively, we mean to say that two objects 
are equivalent to each other if they are related in “similar” ways to other objects that are, in turn, 
equivalent. 

Evaluating equivalence is tricky, of course, because it sets off a “chain reaction”: determining 
whether two objects are equivalent requires looking at the objects that they are related to; we have 
to “push” through each relation an object participates in. How do we know that this process will 
stop, and that it will give us an answer? Previous work on object equivalence, or symmetry, has 
used single, unary predicates as a basis for computing similarity (Ellman, 1993; Fox & Long, 1999, 

We would like to explore object equivalence when more complex relationships come into play. 
To generalize our concept of equivalence, we start by considering a relational state description 

as a graph. We can think of the objects or variables in the dnmair? as ~ c d e s  in the graph, and the 
relations between them as directed arcs. 
Definition 1 (State Relation Graph): A state relation graph is a labeled, directed graph. Nodes 
represent objects in the domain, and arcs represent relations. The arcs are labeled with the relation 

2002). 
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Figure 1.4: A blocks-world arrangement (middle), and corresponding object relation graphs for 
blocks 0 and 5 (at eft and right, respectively). 

name. For every pair of related nodes, we connect them with one directed arc for the original 
relation and an opposite arc for the inverse of the relation. If the domain is typed, then nodes are 
labeled with the object’s type. See Figure 1.4 for an example. 
Definition 2 (Object Relation Graph): An object relation graph is constructed from the state re- 
lation graph by cutting out all nodes to which the object is not connected by a outgoing directed 
path. We keep the relation labels on the arcs (and type labels on the nodes, if they exist) and label 
the object’s node with its name. No other nodes are labeled.’ 
Definition 3 (Equivalence): Two objects are equivalent if their relation graphs are isomorphic to 
each other. Two states are equivalent if there exists a bijective function that maps each object in 
the first state to an equivalent object in the second state. Two actions are equivalent if the objects 
in each action’s argument list are respectively equivalent in the current state. 
Theorem 1: Consider a complete planning procedure P,2 the graph-isomorphism definition of 
state equivalence, and the above definition of action equivalence. If P uses such a definition of 
equivalence to partition its action set into equivalence classes, and then plans with a reduced set 
of actions consisting of a representative from each equivalence class, then P continues to be a 
complete planning procedure as long as we are willing to sacrifice plan parallelism. 
Proof 1 (Sketch): A plan is a sequence of actions that yields a sequence of states from start to 
goal. Substituting one action for an equivalent one, then, will replace one state with a state whose 
relation graph is isomorphic to it. This means all of the objects in the replacement state will be 
equivalent to the objects in the replaced state, and thus the preconditions for the next action in the 
sequence will be satisfied. This means the remainder of the plan is still valid. Thus, any serial plan 
that existed before in the full action space will exist in the new, collapsed action space. 

‘In the case of relation with more than two arguments, we would have to consider a hypergraph to allow for edges 

*a conipfefe planning procedure is one which is guaranteed to find a solution if it exists 
of more than 2 nodes. 
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1.2.4 Planning with equivalent actions in TGraphPlan 
We would like to use this notion of action equivalence in the REBP planning framework. That is to 
say, we want to group two instances of an planning operator into the same equivalence class when 
the ground objects in each argument list are respectively isomorphic to each other in the current 
state. 

When we try to apply this definition into the TGraphplan setting, however, the following issue 
immediately crops up: in each layer of the plan graph, there is no notion of “current state.” In the 
Graphplan algorithm, the first level in the graph (step 0) contains the propositions corresponding 
to the facts in the initial state. Each level beyond the first contains two layers: one layer for all the 
actions that could possibly be enabled based on the propositions on the previous level, and a layer 
for all of the possible effects of those actions. Thus, each level of the plan graph simply contains a 
list of all propositions that could conceivably be true. The only information at our disposal is that 
of which propositions are mutually exclusive from one another. 

In order to partition actions into equivalence classes, we adopt the following criteria. We define 
the extended state of an action to be all those propositions in the current layer that are not mutually 
exclusive with any of the action’s preconditions. Thus, we group two actions together if the ground 
objects in each argument list are isomorphic to each other with respect to each action’s extended 
state. 

Intuitively, this criteria will create a finer set of equivalence classes than our original one, since 
the set of propositions that could be possibly true is greater than those that will actually become 
true. We conjecture, without proof for the moment, that the equivalence classes produced by this 
criteria will be at least exactly those produced by Theorem 1. Most likely, the resulting equivalence 
classes will be simple refinements (i.e., finer partitions) of those of Theorem 1. 

1.3 Preliminary results 
We have very some preliminary, illustrative, results for a small stacking task in the version of 
blocks world from the ICAPS 2004 probabilistic planning competition (Younes & Littman, 2003). 
In this version of the blocks world, blocks are related by the on-top-ofrelation; “clear” blocks are 
those which have no other blocks on top of them. Our experimental domain has seven blocks, 
arranged as in Figure 1.4. 

The goal is to put any three blocks into a single stack; as written in PPDDL: 

(:goal (and (exists (?fbO - block) (exists (?fbl - block) (exists (?fb2 - block) 
(on-top-of ?fb2 ?fbl ) (on-top-of ?fbl ?fbO) (on-top-of ?fbO table)))))) 

A correct plan is a sequence of pick-up and put-down actions. In Figure 1.5, the highlighting in the 
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14 facts 14 maintenawe actwm 24 mintenawe x t m s  
intul: 3 s a w  actiun + 

14 facts 14 mintenawe actions 
16 sampkd actiun + 

18 maintenance actions 

Figure 1.5: Two versions of a plan graph for achieving a 3-block stack in a world with 7 blocks. On the 
left, we show a plan graph without equivalence sampling: it populates each level with all possible action 
instantiations. The plan graphs are too small to interpret closely, but it is possible to get a sense for their 
relative density. Even for such a small task, without equivalence sampling the plan graph becomes dense 
quickly. In contrast, on the right, a plan graph with equivalence sampling: it uses only representative actions 
from each equivalence class for each level. The reduction in actions considered at each layer is significantly 
reduced. 

plan graph denotes the selected action in each step3: in step 1, pick up block 4 from the table; and 
in step 2, put down block 4 on block 2. There are many instances of each pick-up and put-down 
operator in each level, but many acheive the same qualitative result. 

In Figure 1.5, we can appreciate the effect of using equivalence class sampling in even the first 
level of the plan graph. In the step 1, the algorithm identifies two equivalence classes, a reduction 
from four ground instantiations. In the second layer, it is more dramatic: from 47 instantiations to 
11 equivalence classes. Even in this tiny experiment, the effect of reducing the branching factor 
has a significant impact on the plan computation time. 

In layer one, the algorithm identified two classes, shown in Table 1.3. They distinguish between 
picking a block from a table and picking a block from the top of a stack. 

In layer two, 11 classes were found (see Table 1.3. These classes are harder to intepret intu- 
itively, but they are nevertheless revealing. For example, there is a class (5) which groups together 
all the ways to put down block 4 on the top of a stack. However, there are two classes (1 and 
4) distinguishing between the set of circumstances for picking up block 4 from the table, and for 
picking up blocks I ,  3, or 6 from the table (which were covered by other blocks in the previous 
step). We are currently experimenting with larger instances of the blocks world domain, as well as 

’In addition to the explicitly chosen planning action, the highlighting also shows any required “maintenance” or 
“frame” actions, which maintain the state from one level to the next. 
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Class Members I 

Figure 1.6: Two equivalence classes found in Step 1 of the plan graph of Figure 1.5. The sampled (repre- 
sentative) action is listed first. 

a variety of logistics domains from the ICAPS 2004 competition. 

1.4 Conclusion 
Our objective is to plan in large domains in which there is time-pressure to begin acting appro- 
priately. To this end, we seek to take advantage of an envelope-based planning framework, which 
explicitely considers low-complexity plans first, and higher-complexity plans as time permits. The 
difficulty of envelope-based approaches, however, is always this: what is the best way to populate 
the initial envelope? 

If our domain is represented relationally, then it makes sense to leverage the fast classical plan- 
ning techniques for finding straight-line plans, such as Graphplan. However, when our domains 
have many objects in them (which is precisely the setting we want to consider), the number of 
ground action instantiations creates an insurmountable branching factor for Graphplan and de- 
scendent algorithms. They are unable to find the straight-line plan we need in order to create an 
initial envelope. 

Thus, for envelope-based approaches to scale, it is crucial to find a way to prune out action 
instantiations that do not achieve qualitatively different outcomes. 

There is a host of preceeding approaches that attempt to identify symmetries in the problem to 
collapse actions together (Ellman, 1993; Fox & Long, 1999,2002). Unfortunately, in the existing 
work in this area there is a rather weak notion of what makes objects equivalent. These notions 
rely primarily on unary predicates, and they are hard to reconcile with a relational domain in which 
predicates have more than one argument. 

This is the first work that we know of that explicitly attempts to define what it means for 
planning operatnrs tn be equiva!ent in the presence of complicated relational structure. This is 
work is an initial attempt at formalizing such a definition, and to apply it within the context of 
envelope-based planning. 
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Class Members 
[ I  1 pick-up-block-from (block2, table) 

___ 

[2] pick-up-block-from (block2, block3) 
pick-up-block-from (block5, block6) 
pick-up-block-from (block0, blockl) 

[3] pick-up-block-from (block4, table) 
[4] pick-up-block-from (blockl, table) 

pick-up-block-from (block3, table) 
pick-up-block-from (block6, table) 

[5] put-down-block-on (block4, block2) 
put-down-block-on (block4, block5) 
put-down-block-on (block4, block0) 

[6] put-down-block-on (block4, block3) 
put-down-block-on (block4, block6) 
put-down-block-on (block4, blockl) ___ 

[7] put-down-block-on (block2, block6) 
put-down-block-on (block2, blockl) 

[8] put-down-block-on (block2, block4) 
put-down-block-on (block2, block3) 

[9] put-down-block-on (biock2, block0) 
put-down-block-on (block2, block5) 

.____ 

[ IO] put-down-block-on [ block2, table) 
I 1  11 Put-down-block-on (block4. table) 

Figure 1.7: Eleven equivalence classes found in Step 2 of the plan graph of Figure 1.5. The sampled 
(representative) action is listed first. The classes in this step less obvious to interpret than in the first, since 
these classes are based on all possibly true propositions (not necessarily the ultimate state) of Step 1 .  
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CHAPTER 2 

Learning Probabilistic Relational Planning Rules 

HANNA M. PASULA, LUKE s. ZETTLEMOYER, AND LESLIE PACK KAELBLING 
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Abstract 

To learn to behave in highly complex domains, agents must represent and learn com- 
pact models of the world dynamics. In this paper, we present an algorithm for learning 
probabilistic STRIPS-like planning operators from examples. We demonstrate the 
effective learning of rule-based operators for a wide range of traditional planning do- 
mains. 



2.1 Introduction 
Imagine robots that live in the same world as we do. Such robots must be able to predict the 
consequences of their actions both efficiently and accurately. Programming a robot for advanced 
problem soiving in a complicated environment is an hard problem, for which engineering a direct 
solution has proven difficult. Even the most sophisticated robot programming paradigms (Brooks, 
1991) are difficult to scale to human-like robot behaviors. 

If robots could learn to act in the world, then much of the programming burden would be 
removed from the robot engineer. Reinforcement learning has attempted to solve this problem, 
but this approach often involves learning to achieve particular goals, without gathering any general 
knowledge of the world dynamics. As a result, the robots can learn to do particular tasks but have 
trouble generalizing to new ones. If, instead, robots could learn how their actions affect the world, 
then they would be able to behave more robustly in a wide range of situations. This type of learning 
allows the robot to develop a model that represents the immediate effects of its action in the world. 
Once this model is learned, the robot could use it to behave robustly in a wide variety of situations. 

There are many different ways of representing action models, but one representation, proba- 
bilistic relational rules, stands out. These rules represent situations in which actions will have a set 
of possible effects. Because they are probabilistic they can model actions that have more than one 
effect and actions that might fail often. Because they are rules, each situation can be considered 
independently. Rules can be used individually without having to understand the whole world. Be- 
cause they are relational, they can generalize over the identities of the objects in the world. Overall, 
the rules we will explore in this paper, encode a set of assumptions about the world that, as we will 
see later, improve learning in our example domains. 

Once rules have been learned, acting with them is a well-studied research problem. Probabilis- 
tic planning approaches are directly applicable (Blum & Langford, 1999) and work in this area has 
shown that compact representations, like rules, are essential for scaling probabilistic planning to 
large worlds (Boutilier, Dearden, & Goldszmidt, 2002). 

2.1.1 Structured Worlds 
When an agent is introduced into a foreign world, it must find the best possible explanation for 
the world’s dynamics within the space of possible models it can represent. This space of models 
is defined by the agent’s representation language. The ideal language would be able to compactly 
mode! every werld the agent night encounter and no others. Any extra modeling capacity is wasted 
and will complicate learning since the agent will have to consider a larger space of possible models, 
and be more likely to overfit its experience. Choosing a good representation language provides a 
strong bias for any algorithm that will learn models in that language. In this paper we explore 
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learning a rule-based language that makes the following assumptions about the world: 

0 Frame Assumption: When an agent takes an action in a world, anything not explicitly 
changed by that action stays the same. 

0 Object Abstraction Assumption: The world is made up of objects, and the effects of ac- 
tions on these objects generally depend on their attributes rather than their identities. 

0 Action Outcomes Assumption: Each action can only affect the world in a small number of 
distinct ways. Each possible effect causes a set of changes to the world that happen together 
as a single outcome. 

The first two assumptions have been captured in almost all planning representations, such as 
STRIPS operators (Fikes & Nilsson, 1971) and more recent variants (Penberthy & Weld, 1992). 
The third assumption has been made by several probabilistic planning representations, including 
probabilistic rules (Blum & Langford, 1999), equivalence-classes (Draper, Hanks, & Weld, 1994), 
and the situation calculus approach of Boutilier, Reiter, and Price (2001). The first and third 
assumptions might seem too rigid for some real problems: relaxing them slightly is a topic for 
future work. 

This paper is organized as follows. First, we describe how we represent states and action 
dynamics. Then, we present a rule-learning algorithm, and demonstrate its performance in three 
different domains. Finally, we go on to discuss some related work, conclusions, and future plans. 

2.2 Representation 
This section presents a formal definition of relational planning rules, as well as of the world de- 
scriptions that the rules will manipulate. Both are built using a subset of standard first-order logic 
that does not include functions, disjunctive connectives, or existential quantification. 

2.2.1 State Representation 
An agent’s description of the world, also called the state, is represented syntactically as a conjunc- 
tion of ground literals. Semantically, this conjunction encodes all of the important aspects of this 
world. The constants map to the objects in the world. The literals encode the truth values of all 
the possible properties of all of the objects and all of the relations that are possible between the 
objcc ts. 
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pickup(X, Y )  : on(X, Y ) ,  cZear(X), in hand(^^), block( Y) 
inhand(X) , lclear(X), -inhand( NIL), 

yon(X, Y) , clear( Y )  
.2 : on(X, TABLE), ~ o n ( X ,  Y), clear(Y) 
.1 : no change 

pickup(X, TABLE) :  on(^, TABLE), cZeur(X), in hand(^^^) 

---f { 1:; i no change 
puton(& Y )  : clear( l'), inhand(X), block(Y) 

in hand(^^), d e a r (  Y ) ,  linhand(X), 
on(X, Y ) ,  clear(X) 
on(X, TABLE), clear(X), inhand(NlL), 

inhand(X), lclear(X), l i n h a n d ( ~ ~ ~ ) ,  
w n ( X ,  TABLE) 

.7 : 

.2 : 

.1 : no change 
puton(X, TABLE) : inhand(X) 

--$ { 1; i no change 

1inhand(X) 

on(X, TABLE), clear(X), inhand(NL), 
1inhand(X) 

Figure 2.1 : Four relational rules that model the action dynamics of a simple blocks world. 

For example, imagine a simple blocks world. The objects in this world include blocks, a table 
and a gripper. Blocks can be on other blocks or on the table. A block that has nothing on it is clear. 
The gripper can hold one block or be empty. The state description 

on(u, b), on(b, TABLE), lon(b,  a), W~(U,TABLE) ,  

i n h ~ n d ( ~ ~ ~ ) ,  clear(a), block( a), block(b), lclear(b), 
+duznd(a), l inhand(b),  +ZOC~(TABLE) 

represents a blocks world where there are two blocks in a single stack on the table. Block a is on 
top of the stack, while b is below a and on the TABLE. 

2.2.2 Action Representation 
Rule sets model the action dynamics of the world. The rule set we will explore in this section 
models how the simple blocks world changes state as it is manipulated by a robot arm. This arm 
can attempt to pick up blocks and put them on other blocks or the table. However, the arm is 
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faulty, so its actions can succeed, fail to change the world, or fail by knocking the block onto the 
table. Each of these possible outcomes changes several aspects of the state. We bcgin the section 
by presenting the rule set syntax. Then, the semantics of rule sets is described procedurally. 

Rule Set Syntax 

A rule set, R, is simply a set of rules. Each r E R is a four-tuple, ( r ~ ,  TC, r o ,  rp) .  The rule’s 
action, T A ,  is a positive literal. The context, rc,  is a conjunction of literals. The outcome set, TO, is 
a non-empty set of outcomes, where each outcome o E ro is a conjunction of literals that defines 
a deterministic mapping from previous states to successor states, fo : S + S ,  as described shortly. 
Finally, rp  is a discrete distribution over the set of outcomes TO. Rules may contain variables; 
however, every variable appearing in rc  or ro must also appear in T A .  Figure 2.1 shows a rule set 
with four rules for the blocks world domain. 

A rule set is a full model of a world’s action dynamics. This model can be used to predict 
the effects of an action, a, when it ,is performed in a specific state, s, as well as to determine the 
probability that a transition from s to s’ occurred when a was executed. When using the rule set 
to do either, we must first select the rule which governs the change for the state-action pair, (s, a) :  
the rule r E R that covers (s, a) .  

Rule Selection 

The rule that covers (s, a) is found by considering each candidate r E R in turn, and testing it using 
a three-step process that ensures that r’s action models a, that r’s context is satisfied by s, and that 
T is well-formed given a. The first step attempts to unify ?-A with a. A successful unification returns 
an action substitution 6’ that maps all of the variables in r A  to the corresponding constants in a. This 
substitution is then applied to r ;  because of our assumption that all the variables in r are in r A ,  this 
application is guaranteed to ground all literals in r. The second step checks whether the context 
rc ,  when grounded using 0, is a subset of s. Finally, the third step tests the ground outcomes for 
contradictions. A contradiction occurs when the grounding leads to an outcome containing both a 
literal and its negation. 

As an example, imagine an agent wants to predict the effects of executing pickup(a,b) in 
the world described in (2.1) given the model represented by the rule set in Figure 2.1. The ac- 
tion unifies with the action of the first rule, producing the substitution 6’ = { X / a ,  Y / b } ;  fails to 
unify with the second rule’s action, because b doesn’t equal TABLE; and fails to unify with the 
remaining rules since they have different action predicates. When we apply 6’ to the first rule, 
we can see that its outcomes contain no contradictions; note, however, that if the action a had 
been pickup(a, a)  then the first outcome would have contained one. The context, meanwhile, be- 
comes {on(a, b) ,  clear(a), i n h a n d ( ~ i ~ ) ,  block(b)}. Since this set is a subset of the state description 
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P(S’IS, A,  r )  = P(S’, olS, A, T )  

OETo 

= P(S’Jo, S ,  A, r)P(oJS, A, T )  
OCTO 

in (2.1), the first rule passes all three tests. 
In general, the state-action pair ( s ,  a )  could be covered by zero, one, or many rules. If there are 

zero rules, we can fall back on the frame assumption. A rule set is proper if every possible state is 
covered by at most one rule. All of the rule sets in this paper are assumed to be proper. 

Successor State Construction 

An agent can predict the effects of executing action a in state s as follows. If no r E R covers 
(s ,  a ) ,  then, because of the frame assumption, the successor state s‘ is taken to be simply s. Given 
an r ,  an outcome o E TO is selected by sampling from rp and ground using 8. The next state, 
s‘, is constructed by applying fo (s ) ,  which combines o with those literals in s that are not directly 
contradicted by 0. 

Likelihood Estimation 

The general probability distribution P(S’IS, A,  R) is defined as follows. If no rule in R covers 
(S ,  A) ,  then this probability is 1.0 iff s‘ = s. Otherwise, it is defined as 

where r is the covering rule, P(olS, A, r )  is rp(o) ,  and P(S’lo, S,  A,  r )  is deterministic: it is 1.0 
iff f o ( S )  = S’. 

We say that an outcome covers an example (s ,  a ,  s’) if fo(sj = s‘. Now, the probability of S‘ is 
the sum of all the outcomes in r that cover the transition from S to S‘. Notice that a specific S and 
o uniquely determine S‘. This fact guarantees that, as long as rp is a well-defined distribution, so 
is P(S‘IS, A,  r) .  

Overlapping Outcomes 

Notice that P(S’IS, A,  r )  is using the set of outcomes as a hidden variable. This introduces the 
phenomenon of overlapping outcomes. Outcomes overlap when, given a rule r that covers the 
initial state and action ( s ,  a ) ,  several of the outcomes ro could be used to describe the transition to 
the successor state s’. 4 s  an exariiple, consider a rule for painting blocks, 

paint(X) : inhand(X), block(X) 
.8 : painted(X), wet 
.2 : no change 
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When this rule is used to model the transition caused by the action paint(a) in an initial state that 
contains wet and painted(a), there is only one possible successor state: the one where no change 
occurs, and painted(a) remains true. Both the outcomes describe this one successor state, and SO 

we must sum their probabilities to recover that state’s total probability. 

2.3 Learning 
In this section, we describe how a rule set defining the distribution P(S’IS, A, R) may be learned 
from a training set D = D1 . . . DID,.  Every example (s, a,  s’) E D represents a single action 
execution in the world, consisting of a previous state s, an action a, and a successor state s‘. 

The algorithm involves three levels of greedy search: an outermost level, LearnRuZes, which 
searches through the space of rule sets; a middle level, ZnduceOutcomes which, given a context and 
an action, constructs the best set of outcomes; and an innermost level, LearnParumeters, which 
learns a distribution over a given set of outcomes. These three levels are detailed in the next three 
sections. 

2.3.1 Learning Rules 
LearnRules performs a greedy search in the space of proper rule sets. We define a rule set as proper 
with respect to a data set D as a set of rules R that includes exactly one rule that is applicable to 
every example D E D in which some change occurs, and that does not includes any rules that are 
applicable to no examples. 

Scoring Rule Sets 

As it searches, LearnRuZes must judge which rule sets are the most desirable. This is done with the 
help of a scoring metric, S(R) = 

log(P(s’(s, a, R)) - Q P E N ( r )  (2.3) 
( s , a , s ’ ) ~ D  rER 

which favors rule sets that assign high likelihood to the data and penalizes rule sets that are overly 
complex. The complexity of a rule P E N ( r )  is defined simply as lrcl + lro(. The first part of 
this term penalizes long contexts; the second part penalizes for having too many outcomes. We 
have chosen this penalty for its simplicity, and also because it performed no worse than any other 
penalty term we tested in informal experiments. The scaling parameter a is set to 0.5 in our 
experiments, but it could also be set using cross-validation on a hold-out dataset or some other 
principled technique. 
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Initializing the Search 

We initialize the search by creating the most specific rule set: one that contains, for every unique 
( s ,  a )  pair in the data, a rule with rc = s and T A  = a. Because the context contains the whole 
~ x l d  stzte, this is the on!y FL!~ that muld possibly cover the relevant examples, and so this rule 
set is guaranteed to be proper. 

Search Operators 

Given a starting point, LearnRules repeatedly finds and applies the operator that will increase the 
score of the current rule set the most. There are four types of search operators available, based on 
the four basic syntactic operations used for rule search in inductive logic programming (LavraC & 
Dieroski, 1994). Each operator selects a rule T ,  removes it from the rule set, and creates one or 
more new rules, which are then introduced back into the rule set in a manner that ensures the rule 
set remains proper. How this is done for each operator is described below. In each case, the new 
rules are created by choosing an rc  and an T A  and calling ZnduceOutcornes to complete T .  

There are two possible ways to generalize a rule: a literal can be removed from the context, 
or a constant can be replaced with a variable. Given an old rule, the first generalization operator 
simply shortens the context by one while keeping the action the same; the second generalization 
operator picks one of the constant arguments of the action, invents a new variable to replace it, 
and substitutes that variable for every instance of the original constant both in the action and the 
context.' Both operators then call ZnduceOutcornes to complete the new rule, which is added to 
the set. At this point, LearnRules must ensure that the rule set remains proper. Generalization may 
increase the number of examples covered by a rule, and so make some of the other rules redundant. 
The new rule replaces these other rules, removing them from the set. Since this removal can leave 
some training examples with no rule, new, maximally specific rules are created to cover them. 

There are also two ways to specialize a rule: a literal can be added to the context, or a variable 
can be replaced with a constant. The first specialization operator picks an atom that is absent from 
the old rule's context. It then constructs two new enlarged contexts, one containing a positive 
instance of this atom, and one containing a negative instance. A rule is filled in for each of the 
contexts, with the action remaining the same. The second specialization operator picks one of the 
variable arguments of the action, and creates a new rule for every possible constant by substituting 
the constant for the variable in both the action and the body of the rule, and calling ZnduceOutcornes 
as usual. In either case, the new rules are then introduced into the rule set, and LearnRules must, 
again, ensure that it remains proper. This time the only concern is that s ~ m e  cf the nev: ra!es night 
cover no training examples; such rules are simply left out of the rule set. 

'During learning, we always introduce variables aggressively wherever possible, based on the intuition that if it is 
important for any of them to remain a constant, this should become apparent through the other training examples. 
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All these operators, just like the ILP operators that motivated them (LavraE & Dieroski, 1994), 
can be used to create any possible rule set. There are also other advanced rule set search operators, 
such as least general generalization (Plotkin, 1970), which might be modified to create operators 
that allow LearnRules to search the planning rule set space more efficiently. 

LearnRuZes’s search strategy has one large drawback; the set of rules which is learned is only 
guaranteed to be proper on the training set and not on testing data. Solving this problem, possibly 
with approaches based on relational decision trees (Blockeel & Raedt, 1998), is an important area 
for future work. 

2.3.2 Inducing Outcomes 
The effectiveness and efficiency of the LearnRules algorithm are limited by those of the Induce- 
Outcomes sub-procedure, which is called every time a new rule is constructed. Formally, the 
problem of inducing outcomes for a rule T is the problem of finding a set of outcomes TO and a 
corresponding set of parameters rP which maximize the score, 

log(P(s’ls, a, T ) )  - cuPEN(T), 
( S , a , S ’ ) E D r  

where D, is the set of examples such that T covers (s, u). This score is simply T’S contribution to 
the overall rule set score of (2.3). 

In general, outcome induction is NP-hard (Zettlemoyer et al., 2003). ZnduceOutcornes uses 
greedy search through a restricted subset of possible outcome sets: those that are proper on the 
training examples, where an outcome set is proper if every training example has at least one out- 
come that covers it and every outcome covers at least one training example. Two operators, de- 
scribed below, move through this space until there are no more immediate moves that improve 
the rule score. For each set of outcomes it considers, ZnduceOutcomes calls LeamPurameters to 
supply the best TP it can. 

Initializing the Search 

The initial set of proper outcomes is created by, for each example, writing down the set of atoms 
that changed truth values as a result of the action, and then creating an outcome to describe every 
set of changes observed in this way. 

As an example, consider the coins domain. Each coins world contains n coins, which can be 
showing either heads or tails. The actionJip-coupled, which has no context and no arguments, flips 
all of the coins to heads half of the time and otherwise flips them all to tails. A set of training data 
for learning outcomes with two coins might look like part (a) of Figure 2.2 where h(C) stands for 
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D1 = t(cl), h(c2) -+ h(cl), h(c2) 
0 2  = h(cl), t(c2) -+ h(cl), h(c2) 

0 4  = h(cl), h(c2) -+ h(cl), h(c2) 

(a) 

0 3  = h(cl), h(c2) -+ t(cl), t(c2) 

Figure 2.2: (a) Possible training data for learning a set of outcomes. (b) The initial set of outcomes 
that would be created from the data in (a). 

heads(C), t (C)  stands for lheads(C), and s + s' is part of an (s ,  a,  s') example where a = JEip- 
coupled. Given this data, the initial set of outcomes has the four entries in part (b) of Figure 2.2. 

Search Operators 

InduceOutcomes uses two search operators. The first is an add operator, which picks a pair of 
non-contradictory outcomes in the set and adds in a new outcome based on their conjunction. For 
example, it might pick O1 and 0 2  and combine them, adding a new outcome 0 5  = {h(cl), h(c2)) 
to the set. The second is a remove operator that drops an outcome from the set. Outcomes can 
only be dropped if they were overlapping with other outcomes on every example they cover, 0th- 
envise the outcome set would not remain proper. Sometimes, Learnparameters will return zero 
probabilities for some of the outcomes. Such outcomes are removed from the outcome set, since 
they contribute nothing to the likelihood, and only add to the complexity. This optimization greatly 
improves the efficiency of the search. 

In the outcomes of Figure 2.2, 0 4  can be immediately dropped since it covers only D4, which 
is also covered by both O1 and 0 2 .  If we imagine that O5 = {h(cl), h(c2)) has been added with 
the add operator, then O1 and 0 2  could also be dropped since 0 5  covers D1, D2, and D3. This 
would, in fact, lead to the optimal set of outcomes for the training examples in Figure 2.2. 

Our coins world example has no context and no action. Handling contexts and actions with 
constant arguments is easy, since they simply restrict the set of training examples the outcomes 
have to cover. However, when a rule has variables among its action arguments, InduceOutcomes 
must be able to introduce those variables into the appropriate places in the outcome set. This vari- 
able introduction is achieved by applying the inverse of the action substitution to each example's 
set of changes while computing the initial set of outcomes. So, for example, if I'iiduceOiiicoiiies 
were learning outcomes for the actionJEip(X) that flips a single coin, our initial outcome set would 
be (01 = {h(X)}, O2 = {t(X)}, O3 = {no change}} and search would progress as usual from 
there. 
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Notice that an outcome is always equal to the union of the set of literals that change in every 
training example it covers. This fact ensures that every proper outcome can be made by merging 
outcomes from the initial outcome set. InduceOutcomes can, in theory, find any set of proper 
outcomes. 

2.3.3 Learning Parameters 
Given a rule r with a context TC and a set of outcomes ro, all that remains to be learned is the 
distribution over the outcomes, TP. LearnParameters learns the distribution that maximizes the 
rule score: this will be the distribution that maximizes the log likelihood of the examples D, as 
given by 

(2.4) 

where Do is the set of examples covered by outcome 0. When every example is covered by a 
unique outcome, the problem of minimizing L is relatively simple. Using a Lagrange multiplier to 
enforce the constraint that r p  must sum to 1.0, the partial derivative of L with respect to rp(o)  is 
then ID,I/rp(o) - A ,  and X = ID[, so that rp(o)  = lDol/lDl. The parameters can be estimated by 
calculating the percentage of the examples that each outcome covers. 

However, in general, the rule could have overlapping outcomes. In this case, the partials would 
have sums over os in the denominators and there is no obvious closed-form solution; estimating 
the maximum likelihood parameters is a nonlinear programming problem. Fortunately, it is an 
instance of the well-studied problem of maximizing a convex function over a probability simplex. 
Several gradient ascent algorithms with guaranteed convergence can be found (Bertsekas, 1999). 
LearnParameters uses the conditional gradient method, which works by, at each iteration, moving 
along the axis with the maximal partial derivative. The step-sizes are chosen using the Armijo 
rule (with the parameters s = 1.0, = 0.1, and o = 0.01.) The search converges when the 
improvement in L is very small, less than If problems are found where this method converges 
too slowly, one of the other methods could be tried. 

2.4 Experiments 
This section describes experiments that demonstrate that the rule learning algorithm is robust. We 
first describe our test domains and then we report the experiments we performed. 
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2.4.1 Domains 
The experiments we performed involve learning rules for the domains which are briefly described 
in the following sections. Please see the technical report by Zettlemoyer et al. (2003) for a formal 
definition of these domains. 

Coin Flipping 

In the coin flipping domain, n coins are flipped using three atomic actions: Pip-coupled, which, as 
described previously, turns all of the coins to heads half of the time and to tails the rest of the time; 
Pip-a-coin, which picks a random coin uniformly and then flips that coin; and flip-independent, 
which flips each of the coins independently of each other. Since the contexts of all these actions 
are empty, every rule set contains only a single rule and the whole problem reduces to outcome 
induction. 

Slippery Gripper 

The slippery gripper domain, inspired by the work of Draper et al. (1994), is a blocks world with 
a simulated robotic arm, which can be used to move the blocks around on a table, and a nozzle, 
which can be used to paint the blocks. Painting a block might cause the gripper to become wet, 
which makes it more likely that it will fail to manipulate the blocks successfully; fortunately, a wet 
gripper can be dried. 

Trucks and Drivers 

Trucks and drivers is a logistics domain, adapted from the 2002 AIPS international planning com- 
petition (AIPS, 2002), with four types of constants. There are trucks, drivers, locations, and ob- 
jects. Trucks, drivers and objects can all be at any of the locations. The locations are connected 
with paths and links. Drivers can board and exit trucks. They can drive trucks between locations 
that are linked. Drivers can also walk, without a truck, between locations that are connected by 
paths. Finally, objects can be loaded and unloaded from trucks. 

Most of the actions are simple rules which succeed or fail to change the world. However, the 
walk action has an interesting twist. When drivers try to walk from one location to another, they 
succeed most of the time, but some of the time they arrive at a randomly chosen location that is 
connected by some path to their origin location. 

11 



I 

2 2 
flip-a-coin initial 5 7 9 11 13 

Pip-a-coin final 4 6.25 8 9.75 12 
flip-independent initial 9 25 47.5 - 

flip-independent final 5.5 1 1.25 20 

Figure 2.3: The decrease in the number of outcomes found while inducing outcomes in the n- 
coins world. Results are averaged over four runs of the algorithm. The blank entries did not finish 
running in reasonable amounts of time. 

2.4.2 Inducing Outcomes 
Before we investigate learning full rule sets, we consider how the ZnduceOutcomes sub-procedure 
performs on some canonical problems in the coin flipping domain. We do this to evaluate Zn- 
duceoutcomes in isolation, and demonstrate its performance on overlapping outcomes. In order 
to do so, a rule was created with an empty context and passed to ZnduceOutcomes. Table 2.3 
contrasts the number of outcomes in the initial outcome set with the number eventually learned 
by ZnduceOutcornes. These experiments used 300 randomly created training examples; this rather 
large training set gave the algorithm a chance of observing many of the possible outcomes, and SO 

ensured that the problem of finding a smaller, optimal, proper outcome set was difficult. 
Given n coins, the optimal number of outcomes for each action is well defined. Pip-coupled 

requires 2 outcomes, Pip-a-coin requires 2n, and Pip-independent requires 2rL. In this sense, Pip- 
independent is an action that violates our basic structural assumptions about the world, Pip-a-coin 
is a difficult problem, andflip-coupled behaves like the sort of action we expect to see frequently. 
The table shows that ZnduceOutcomes can learn the latter two cases, the ones it was designed for, 
but that actions where a large number of independent changes results in an exponential number of 
outcomes are beyond its reach. 

2.4.3 Learning Rule Sets 
Now that we have seen that ZnduceOutcomes can learn rules that don’t require an exponential 
number of outcomes, let us investigate how LearnRules performs. 

The experiments perform two types of comparisons. The first shows that propositional rules can 
be learned more effectively than Dynamic Bayesian Networks (DBNs), a well-known propositional 
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representation that has traditionally been used to learn world dynamics. The second shows that 
relational rules outperform propositional ones. 

These comparisons are performed for four actions. The first two, paint and pickup, are from 
the slippery gripper domain while the second two, drive and walk, are from the trucks and drivers 
domain. Each action presents different challenges for learning. Paint is a simple action <hat has 
overlapping outcomes. Pickup is a complex action that must be represented by more than one 
planning rule. Drive is a simple action that has four arguments. Finally, walk is a complicated 
action uses the path connectivity of the world in its noise model for lost pedestrians. The slippery 
gripper actions were performed in a world with four blocks. The trucks and driver actions were 
performed in a world with two trucks, two drivers, two objects, and four locations. 

All of the experiments use examples, ( s ,  a, s’) E D, generated by randomly constructing a 
state s, randomly picking the arguments of the action a, and then executing the action in the state 
to generate s’. The distribution used to construct s is biased to guarantee that, in approximately 
half of the examples, a has a chance to change the state: that is, that a hand-constructed rule applies 
to s. 

Thus, the experiments in this paper ignore the problems an agent would face if it had to generate 
data by exploring the world. 

After training on a set of training examples D, the models are tested on a set of test examples 
E by calculating the average variational distance between the true model P and an estimate P,  

Variational distance is a suitable measure because it favors similar distributions and is well- 
defined when a zero probability event is observed, which can happen when a rule is learned from 
sparse data and doesn’t have as many outcomes as it should. 

Comparison to DBNs 

To compare LeamRuZes to DBN learning, we forbid variable abstraction, thereby forcing the rule 
sets to remain propositional during learning. The BN learning algorithm of Friedman and Gold- 
szmidt ( 1998), which uses decision trees to represent its conditional probability distributions, is 
compared to this restricted LeamRules algorithm in Figure 2.4. 

Notice that the propositional rules consistently outperform DBNs. In the four blocks world 
DBN learning consistently gets stuck in local optima and never learns a satisfactory model. We 
ran other experiments in the simpler two blocks world which showed DBN learning reasonable 
(VD<.07) models in 7 out of 10 trials and generalizing better than the rules in one trial. 
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Figure 2.4: Variational distance as a function of the number of training examples for DBNs and 
propositional rules. The results are averaged over ten trials of the experiment. The test set size was 
300 examples. 
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Figure 2.5: Variational distance as a function of the number of training examples for propositional 
and relational rules. The results are averaged over ten trials of the experiment. The test set size 
was 400 examples. 

The Advantages of Abstraction 

The second set of experiments demonstrates that when LearnRuZes is able to use variable abstrac- 
tion, it outperforms the propositional version. Figure 2.5 shows that the full version consistently 
outperforms the restricted version. 

Also, observe that the performance gap grows with the number of arguments that the action 
has. This result should not be particularly surprising. The abstracted representation is significantly 
more compact. Since there are fewer rules, each rule has more training examples and the abstracted 
representation is significantly more robust in the presence of data sparsity. 

We also performed another set of experiments, showing that relational models can be trained 
in blocks worlds with a small number of blocks and tested in much larger worlds. Figure 2.6 
shows that there is no real increase in test error. This is one of the major attractions of a relational 
representation. 
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Figure 2.6: Variational distance of a relational rule set trained in a world four-block world, as a 
function of the number of blocks in the worlds on which it was tested. Results are given for three 
different training set sizes. The testing sets were the same size as the training sets. 

Discussion 

The experiments of this section should not be surprising. Planning rules were designed to effi- 
ciently encode the dynamics of the worlds used in the experiments. If they couldn’t outperform 
more general representations and learning algorithms, there would be a serious problem. 

However, these experiments are still an important validation that LeurnRules is a robust algo- 
rithm that does leverage the bias that it was designed for. Because no other algorithms have been 
designed with this bias, it would be difficult to demonstrate anything else. Ultimately, the question 
of whether this bias is useful will depend on its applicability in real domains of interest. 

2.5 Related Work 
The problem of learning deterministic action models, which is closely related to our work, is 
well-studied. There are several systems which are, in one way or another, more advanced than 
ours. The LIVE system (Shen & Simon, 1989) learns operators with quantified variables while 
incrementally exploring the world. The EXPO system (Gil, 1993, 1994) also learns incrementally, 
and uses special heuristics to design experiments to test the operators. However, both of these 
system assume that the learned models are completely deterministic and would fail in the presence 
of noise. The TRAIL system (Benson, 1996) limits its operators to a slightly-extended version of 
Horn clauses so that it  can apply ILP learning which is robust to noise. Moreover, TRAIL models 
continuous actions and real-valued fluents, which allow it to represent some of the most complex 
models to date, including the knowledge required to pilot a realistic flight simulator. 

Our search through the space of rule sets, LearnRules, is a simple extension of these determin- 
istic rule learning techniques. However, our Induceoutcomes and EstimatePurams algorithms are 
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novel. No previous work has represented the action effects using a set of alternative outcomes. 
This is an important advance since deterministic operators cannot model even the simplest prob- 
abilistic actions, such as flipping a coin. Even in nearly-deterministic domains, actions can have 
unlikely consequences that are worth modeling explicitly. 

Literature on learning probabilistic planning ruies is reiativeiy sparser we kiiow zlf only oxe 
method for learning operators of this type (Oates & Cohen, 1996). Their rules are factored and 
can apply in parallel. However, their representation is strictly propositional and it only allows each 
rule to contain a single outcome. 

networks (BNs) (Friedman & Goldszmidt, 1998), a propositional representation, and probabilistic 
relational models (PRMs) (Getoor, 2001), a relational generalization. However, these representa- 
tions do not make any assumptions tailored towards representing action dynamics. In this paper, 
we test the usefulness of such assumptions by comparing BN learning to our propositional rule- 
learning algorithm. We would like to have included an comparison to PRM learning but were 
unable to because of various technical limitations of that representation (Zettlemoyer et al., 2003). 

Probabilistic world dynamics are commonly represented using graphical models, such as Bayesian 

2.6 Conclusions and Future Work 
Our experiments show that biasing representations towards the structure of the world they will 
represent significantly improves learning. The natural next question is: how do we bias robots so 
they can learn in the real world? 

Planning operators exploit a general principle in modeling agent-induced change in world dy- 
namics: each action can only have a few possible outcomes. In the simple examples in this paper, 
this assertion was exactly true in the underlying world. In real worlds, this assertion may not be 
exactly true, but it can be a powerful approximation. If we are able to abstract sets of resulting 
states into a single generic “outcome,” then we can say, for example, that one outcome of trying 
to put a block on top of a stack is that the whole stack falls over. Although the details of how it 
falls over can be very different from instance to instance, the import of its having fallen over is 
essentially the same. 

An additional goal in this work is that of operating in extremely complex domains. In such 
cases, it is important to have a representation and a learning algorithm that can operate incre- 
mentally, in the sense that it can represent, learn, and exploit some regularities about the world 
without having to capture all of the dynamics at once. This goal originally contributed to the use 
of rule-based representations. 

A crucial further step is the generalization of these methods to the partially observable case. 
Again, we cannot hope to come up with a general efficient solution for the problem. Instead, algo- 
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rithms that leverage world structure should be able to obtain good approximate models efficiently. 

L 
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Abstract 

We present an algorithm for learning a model of the effects of actions in noisy stochas- 
tic worlds. We consider learning in a 3D simulated blocks world with realistic physics. 
To model this world, we develop a planning representation with explicit mechanisms 
for expressing object reference and noise. We then present a learning algorithm that 
can create rules while also learning derived predicates, and evaluate this algorithm 
in the blocks world simulator, demonstrating that we can learn rules that effectively 
model the world dynamics. 



3.1 Introduction 
One of the goals of artificial intelligence is to build systems that can act in complex environments 
as effectively as humans do: to perform everyday human tasks, like making l?rd!fzsf or ucpzcking 
and putting away the contents of an office. Any robot that hopes to solve these tasks must be an 
integrated system that perceives the world, understands it in an, at least naively, human manner, and 
commands motors to effect changes to it. Unfortunately, the current state of the art in reasoning, 
planning, learning, perception, locomotion, and manipulation is so far removed from human-level 
abilities that we cannot even contemplate working in an actual domain of interest. Instead, we 
choose to work in domains that are its almost ridiculously simplified proxies. 

One popular such proxy, used since the beginning of work in AI planning (Fikes & Nilsson, 
1971) is a world of stacking blocks. This blocks world is typically formalized in some version of 
logic, using predicates such as on(a, b )  and clear(a) to describe the relationships of the blocks to 
one another. Blocks are always very neatly stacked; they don’t fall into jumbles. In this paper, we 
will work in a slightly less ridiculous version of the blocks world, one constructed using a three- 
dimensional rigid-body dynamics simulator (ODE, 2004). An example domain configuration is 
shown in Figure 3.1. In this simulated blocks world, blocks are not always in tidy piles; blocks 
sometimes slip out of the gripper; and piles sometimes fall over. We would like to learn models 
that enable effective action in this world. 

Unfortunately, previous approaches to action model learning cannot solve this problem. The 
algorithms that learn deterministic rule descriptions (Shen & Simon, 1989; Gil, 1994; Wang, 
1995) have limited applicability in a stochastic world. One approach (Pasula et al., 2004) has 
extended those methods to learn probabilistic STRIPS rules, but this representation cannot cope 
with the complexity of the simulated blocks world. The work of (Benson, 1996), which extends 
a deterministic ILP (Lavrae & Dieroski, 1994) learning algorithm that is robust to noise in the 
training set, would, perhaps, come the closest, but it lacks the ability to handle complex action 
effects such as piles of blocks falling over. We address this challenge by developing a more flexible 
algorithm that creates models that include mechanisms for referring to objects and abstracting away 
rare or highly complex action outcomes, and also invents new concepts that help determine when 
actions will have different effects. 

When learning these models, we assume that the learner has access to training examples that 
show how the world changes when an action is executed. The learning problem is then one of 
density estimation. The learner must estimate the distribution over next states of the world that 
executing an ziction will cause. 

In the rest of this paper, we first present our representation, showing how these extensions 
are added to probabilistic STRIPS rules. Then, we develop a learning algorithm for these rules. 
Finally, we evaluate these learned rules in the simulated blocks world. 
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Figure 3. I : A screen capture of the simulated blocks world. The blocks come in various sizes, visible here, 
and various colors. The gripper can perform two macro actions: pickup, which centers the gripper above a 
block, lowers it until it hits something, closes it, and raises the gripper; and puton, which centers the gripper 
above a block, lowers until it encounters pressure, opens it, and raises it. 

3.2 Representation 
This section describes representations for the set S of possible states of the world, the set A of 
possible actions the agent can take, and the probabilistic transition dynamics Pr(s’ls, a ) ,  where 
s, s’ E S and a E A. In each case, we use a subset of a relatively standard first-order logic with 
equality. States and actions are ground; the rules used to express the transition dynamics quantify 
over variables. 

and a set of functions R. 
There are three types of functions in Q: traditional functions, which range over objects; discrete- 
valued functions, which range over a predefined discrete set of values; and integer-valued func- 
tions, which range over a finite subset of the integers. 

We begin by defining a language that includes a set of predicates 

3.2.1 State Representation 
In this work, we assume that the environment is completely observable; that is, that the agent is 
able to perceive an unambiguous and correct description of the current state.’ Each state consists of 
a particular configuration of the properties of and relations between objects for all of the objects in 
the world, where those individual objects are denoted using constants. State descriptions are con- 

‘This is a very slrong, and ultimately indefensible assumption; one of our highest priorities for future work is to 
extend this to the case when the environment is partially observable. 
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junctive sentences that list the truth values for all of the possible groundings of the predicates and 
functions with the constants. When writing them down, we will make the closed world assumption 
and omit the negative literals. 

As an example, let us consider representing the state of a simple blocks world, using a language 
that contains the predicates on, tnble, clem, tizkaiid, and inizatui-nii. l'he objects in this world 
include two blocks, c1 and c2, a table t, and a gripper. The sentence 

(3.1) 

-- 

on(c1, c2) A on(c2, t )  A inhand-nd A clear(c1) A table(t) 

represents a blocks world where the gripper holds nothing and the two blocks are in a single stack 
on the table. 

3.2.2 Action Representation 
Actions are represented as positive literals whose predicates are drawn from a special set, a, and 
whose terms are drawn from the set of constants C associated with the world s where the action is 
to be executed. 

For example, in the 
blocks, and putonll, an 
resent the action where 
Sentence 3.1. 

simulated blocks world, cx contains pickup/l, an action for picking up 
action for putting down blocks. The action literal pickup(c1) could rep- 
the gripper attempts to pickup the block c1 in the state represented in 

3.2.3 World Dynamics Representation 
We begin by defining probabilistic STRIPS rules (Blum & Langford, 1999). Next, we describe 
the changes we have made to the rules to enable them to model more complex worlds. Then, we 
explain how the representation language is extended to allow for the construction of additional 
predicates and functions. Finally, we show how to use a set of rules to provide a model of world 
dynamics. 

Probabilistic STRIPS rules 

Each probabilistic STRIPS rule specifies the conditions under which it applies, as well as a small 
number of simple action outcomes-sets of changes that might occur in tandem. More formally, a 
rule for action z has the form 

Pl %(.> 
k=E.e(Z> A z(Z) + 0 > 
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where Z is a vector of variables, Q is the context, a formula that might hold of them at the cur- 
rent time step, *; . . . !€’; are ourcomes, formulas that might hold in the next step, and pl . . . pn are 
positive numbers summing to I, representing a probability distribution over the outcomes. Tradi- 
tionally, the action z(Z) must contain every xi E Z. We constrain \zI and @‘ to be conjunctions 
of literals constructed from the predicates in and the variables 3 as well as equality statements 
comparing a function (taken from R) of these variables to a value in its range. In addition, Q is 
allowed to contain greater-than and less-than statements. 

We say that a rule covers a state r(C) and action a(C)  if there exists an action substitution o 
mapping the variables in Z to C (note that there may be fewer variables in Z than constants in C) 
such that r(C) *(a(?)) and a(C)  = z (a(3) ) .  That is, if there exists a substitution of constants 
for variables that, when applied to antecedent, grounds it so that it is entailed by the state and, 
when applied to the rule action, makes it equal the action the rule covers. 

Here is an example using the language of Sentence 3.1 : 

pickup(X, Y) : 
on(X, Y ) ,  inhund-nil 

ion(X, Y), inhand(X), -hhand-nil, 
clear( Y) 

.80: 

The context of this rule states that X is on Y, and there is nothing in the gripper. The rule covers the 
world of Sentence 3.1 and action pickup(cl, c2)  under the action substitution { X  --+ c1, Y + cp}. 
The first outcome describes the situation where the gripper successfully picks up the block X ,  and 
the second indicates that X falls onto the table. 

Let us now consider what a rule that covers the state and action can tell us about the possible 
subsequent states. Each outcome directly specifies that W(o(Z) )  holds at the next step, but this 
may be only an incomplete specification of the state. We use the frame assumption to fill in the rest; 
every literal that would be needed to make a complete description of the state that is not included 
in V(a(3 ) )  is retrieved, with its associated truth value or equality assignment, from I‘(C). 

Thus, each outcome !€’: can be used to construct a new state s;, which will occur with proba- 
bility pi. The probability that a rule T assigns to moving from state s to state s‘ when action a is 
taken, P(s’Is, a ,  T ) ,  can be calculated as: 

n 

P(s’ls, a ,  7- )  = P(s’, q s ,  a, 7- )  

i= 1 
n 

= P(S’(!q, s, a,  7 - )P(qS ,u ,  7.) 
i= l  
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where P(KPi\s, a, r )  is pi, and the outcome distribution P(.s’IQi, s, a, T )  is a deterministic distribu- 
tion that assigns all of its mass to the relevant s‘. If P(s’l@i, s, a, r )  = 1.0, that is, if s‘ is the state 
that would be constructed given that rule and outcome, we say that the outcome qi covers s‘. 

Noisy Deictic Rules 

We extend probabilistic STRIPS rules in two ways: by permitting them to refer to objects not 
mentioned in the action description, and by adding a noise outcome. 

Deictic References 

Relational planning representations use a list of action variables to abstract over the objects in the 
world. For example, pickup(X, Y )  abstracts the identity of the block X to be picked up and the block 
Y that X will be picked up from. This abstraction allows the rules to compactly encode actions that 
affect many different objects. Part of the challenge of creating effective rules is to determine what 
to abstract over. Traditionally, this is done when defining the set of actions, since abstraction can 
occur only in the action argument list. 

We have developed deictic references, an extension of a mechanism originally introduced 
by (Benson, 1996), as a way of introducing additional variables to the rules. Our rule learning 
algorithm uses them to learn useful abstractions that were not initially included in the action argu- 
ments. 

We extend probabilistic STRIPS rules as follows. Each rule is augmented with a list, D, of 
deictic references. A reference consists of a variable vi and a restriction pi, which is a set of literals 
that define vi with respect to the variables 3 in the action and the other vj such that j < i. 

For example, the pickup(X, Y )  rule we saw earlier can be rewritten to use deictic references as 
follows: 

pickup(X) : { Y :  on(X, Y ) ,  z : tabZe(Z) } 
inhand-nil 

.80 : lon(X,  Y )  , inhand(X), iinhand-nil, 

. IO : lon(X,  Y ) ,  on@, Z ) ,  clear( Y )  
-10 : no change 

where Y is now defined as a deictic reference that names that i;niqiie thing that A’ is on. In many 
ways, this is a more natural encoding because it makes explicit the fact that the only block that 
Y should ever name is the one that X is on. This reduces the number of arguments to the action, 
which can greatly increase planning efficiency (Gardiol & Kaelbling, 2003). Note also that, in this 
representation, different rules for the same action can abstract over different sets of objects. 
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To use rules with deictic references, we must extend our procedure for computing rule coverage 
to ensure that all of the deictic references can be resolved. The deictic variables are bound by 
starting with bindings for 3 and working sequentially through the deictic references D, using 
their restrictions to determine their unique bindings. If a deictic variable does not have a unique 
binding-if it has either no possible bindings, or several-it fails to refer, and the rule fails to cover 
the state and action. 

The Noise Outcome 

Probability models of the type we have seen thus far, ones with a small set of possible outcomes, 
are not sufficiently flexible to handle noisy domains where there may be a large number of possible 
action effects that are highly unlikely and yet hard to model-such as all the configurations that 
may result when a tall stack of blocks topples. It would be inappropriate to model such effects as 
impossible, and yet we don’t have the space or inclination to model each of them as an individual 
outcome. 

We handle this issue by augmenting each rule with an additional noise outcome. This outcome 
has the probability pnoise = 1 - pi, but no associated a‘; we are declining to model in detail 
what happens to the world in such cases. 

As an example, consider the rule 

pickup(X) : { Y :  un(X, Y ) ,  z : table(Z) } 
inhand-nil 

iun(X ,  Y ) ,  inhand(X), Tinhand-nil, 
clear( Y )  [ -80: 

.10 : iun(X,  Y ) ,  un(X, Z ) ,  clear(Y) 

.05 : nochange 

.05 : noise 

where noise can happen with a probability of 0.05. Here, the noise outcome might model the fact 
that towers sometimes fall over when you are picking up a block. 

Since we are not explicitly modeling the effects of noise, we can no longer calculate the tran- 
sition probability Pr(s’ls, a,  r )  using (3.2): we lack the distribution over next states given the 
noise outcome, P(s’Inoise, s, a ,  r ) .  Instead, we substitute a worst case constant bound pmin I 
P(s’lnoise, s, a ,  r )  everywhere this distribution would be required, and bound the transition prob- 
ability as 

n 

‘(s’Is, a,  r )  = Pnoisepmin + ~ ( S ’ \ Q ; ,  S ,  a ,  r ) ~ i  
i=l 

5 P(s‘ls, a ,  r ) .  
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In this way, we create a partial model that allows us to ignore unlikely or overly complex state 
transitions while still learning and acting effectively. 

3.2.4 Bzckground knowledge 
In the rule semantics as described so far, the same set of primitive predicates has been used to 
construct all the elements of the rule. However, it is often useful to divide the predicates and 
functions of the language into two sets: a set of primitives whose values are observed directly, 
and represented within a state, and a set of additional predicates and functions that can be derived 
from these primitives, and so do not need to be represented directly. The derived predicates and 
functions can then be used in the antecedents, but not in the outcomes-a good thing, since it can 
be difficult to describe how the values of the derived predicates change directly. (The predicate 
above, the transitive closure of on, is an example of a hard-to-update predicate.) This has been 
found to be essential for representing certain advanced planning domains (Edelkamp & Hoffman, 
2OO4). 

We define such background knowledge using a concept language that includes existential quan- 
tification, universal quantification, transitive closure, and counting. Consider the situation where 
the only primitive predicates are on and table. Quantification is used for defining predicates such 
as inhand. Transitive closure is included in the language via the Kleene star and plus and defines 
predicates such as above. Finally, counting is included using a special quantifier # which returns 
the number of objects for which a formula is true. It is useful for defining integer-valued functions 
such as height. The derived predicates can be used in the context and deictic reference restrictions. 

As an example, here is a deictic noisy rule for attempting to pick up block X together with the 
background knowledge used by this rule: 

Y : topstuck( Y ,  X ) ,  

T : tubZe(T) 
pickup(X) : { 2 :  on(Y,Z) ,  

inhund-nil, height( Y )  < 9 
.so : 1on(Y,  2) 
.10 : -on(Y,Z),  on(Y, T> 
.05 : no change 
.05: noise 

(3.3) 

*P(s’1nozse, s, a, T )  could alternately be any well-defined probability distribution that models the noise of the 
world. However, we would have to ensure that this distribution does not assign probability to worlds that are impossible 
(for example, blocks worlds where blocks are floating in midair), because this would complicate planning. We will 
leave the exploration of this alternative approach to future work. 
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clear(V1) := 13V2.on(V2, V I )  
inhand(Vl) := -dV2.on(V1, V2j 
inhand-nil := +IVzinhand( V2) 

above( V I ,  V2) := on* ( V I ,  V2) 
topstack(V1, V2) := clear(V1) A above(V1, V2) 

height(V1) := #V2.above(V1, V2)) 

The rule is far more complicated than our running example: it deals with the situation when 
the block to be picked up, X ,  is in the middle of a stack. It is now useful to abstract over even 
more objects: the deictic variable Y identifies the (unique) block on top of the stack, and the deictic 
variable Z-the block under Y. As might be expected, the gripper succeeds in lifting Y with a high 
probability. 

3.2.5 Action Models 
Individual rules define the world dynamics only in specific situations; a general description is 
provided by an action model, which consists of some background knowledge and a set of rules R 
that, together, define the action dynamics of a world. Given an action a and state s, the rule T E R 
that covers s and a is used to predict the effects of a in s. When no such rule exists, we use the 
default rule. This rule has an empty context and two outcomes: a no-change outcome (which, in 
combination with the frame assumption, models the situations where nothing changes), and, again, 
a noise outcome (modeling all other situations). This rule allows noise to occur in situations where 
no single non-default rule applies; the probability assigned to the noise outcome in the default rule 
specifies a kind of “background noise” level. The default rule is also used when more than one 
rule covers s and a. However, in general, we hope to learn rule sets where the rules are mutually 
exclusive. 

3.3 Learning 
In this section, we describe an algorithm for learning action models from training examples that 
describe action effects. More formally, each training example E E E is a state, action, next state 
triple (s, a ,  s’) where states are described in terms of primitive functions and predicates. 

We divide the problem of learning action models into two parts: learning background knowl- 
edge, and learning a rule set R. First, we describe how to learn a rule set given some background 
knowledge. Then, we show how to derive new useful concepts. 
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LearnRuleSet (E) 
Inputs: 

Computation: 
Training examples E 

Initialize rule set R to contain only the default rule 
While better rules sets are found 

For each search operator 0 
Create new rule sets with 0, & = O(R,  E) 
For each rule set R’ E & 

If the score improves (S(R’) > S ( R ) )  
Update the new hest m!e set, R = -E’ 

output: 
The final rule set R 

Figure 3.2: LearnRuZeSet Pseudocode. This algorithm performs greedy search through the space of rule 
sets. At each step a set of search operators each propose a set of new rule sets. The highest scoring rule set 
is selected and used in the next iteration. 

3.3.1 Learning Rule Sets 
The LearnRuleSet algorithm takes a set of examples E and a fixed language of primitive and 
derived predicates. It then performs a greedy search through the space of possible rule sets as 
described in the pseudocode in Figure 3.2. 

The search starts with a rule set that contains only the noisy default rule. At every step, we take 
the current rule set and apply all our search operators to it to obtain a set of new rule sets. We then 
select the rule set R that maximizes the scoring metric 

(s,a,s‘)~E rER 

where T - ( ~ , ~ )  is the rule that covers (s, a) ,  Q is a scaling parameter, and the penalty PEN(r )  is the 
number of literals in the rule T-. Ties in S(R)  are broken randomly. 

As a greedy search through the space of rule sets, LeurnRuleSet is similar in spirit to previous 
work (Pasula et al., 2004). However, adapting that work to handle our representation extensions 
involved substantial redesign of the dgerithm, including changing the initiai rule set, the scoring 
metric, and the search operators. 
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Search Operators 

Each search operator 0 takes as input a rule set R and a set of training examples E, and cre- 
ates a set of new rule sets Ro to be evaluated by the greedy search loop. There are eight search 
operators. We first describe the most complex operator, ExplainExamples, and then the most sim- 
ple one, DropRuZes. Finally, we present the remaining six operators which all share a common 
computational framework, outlined in Figure 3.4. 

0 ExplainExamples takes as input a training set E and a rule set R and creates new rule sets 
that contain additional rules modeling the training examples that were covered by the default 
rule in R. Figure 3.3 shows the pseudocode for this algorithm, which considers each training 
example E that was covered by the default rule in R, and executes a three-step procedure. 
The first step builds a large and specific rule r’ that describes this example; the second step 
attempts to trim this rule, and so generalize it so as to maximize its score, while still ensuring 
that it covers E; and the third step creates a new rule set R’ by copying R and integrating the 
new rule r’ into this new rule set. 
As an illustration, let us consider how steps 1 and 2 of ExplainExumples might be applied 
to the training example (s, a,  s’) = ( {on(a ,  t ) ,  on(b, a)},pickup(b), {on(a, t ) } ) ,  when the 
background knowledge is as defined for Rule 3.4. 
Step 1 builds a rule r. It creates a new variable X to represent the object b in the action; 
then, the action substitution becomes 0 = { X  -+ b}, and the action of r is set topickup(X). 
The context of r is set to the conjunction inhand-nil, linhand(X), clear(X), height(X) = 
2,1on(X, X ) ,  labove(X, X ) ,  ltopstack(X, X )  Then, in Step 1.2, ExplainExamples attempts 
to creatc deictic references that name the constants whose properties changed in the example. 
In this case, the only changed literal is on(b,a), so C = { a } ;  a new deictic variable Y is 
created and restricted, and 0 is extended to be { X  + b, Y + a} .  The resulting rule r‘ looks 
as follows: 

( i inhand(Y),  iclear(Y),  on(^, Y), ) I above(X, Y), topstack(X, Y), 
iabove( Y, Y) , itopstack( Y ,  Y ) ,  

I 
inhand-nil, linhand(X), clear(X), height(X) = 2,  iun(X, X ) ,  
labove(X, X ) ,  ltopstack(X, X )  
--f { 1.0 : 1o.(X, Y) 

In Step 2, ExplainExamples trims this rule to remove the invariably true literals, like i o n ( X ,  X ) ,  
and the redundant ones, like linhand() and d e a r (  Y ) ,  to give 

pickup(X) : { Y :  on(^, Y ) ,  height(Y) = o } 
inhand-nil, clear(X), height(X) = 1 
--f { 1.0 : w ( X ,  Y )  
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which is then integrated into the rule set. 

0 DrupRuZes cycles through all the rules in the current rule set, and removes each one in turn 
from the set. It returns a set of rule sets, each one missing a different rule. 

The remaining six operators create new rule sets from the input rule set R by repeatedly choos- 
ing a rule r E R and making changes to it to create one or more new rules. These new rules are 
then integrated into R, just as in ExpZainExampZes, to create a new rule set R'. Figure 3.4 shows 
the the general pseudocode for how this is done. The operators vary in the way they select rules 
and the changes they make to them. These variations are described for each operator below: 

0 DropLits selects every rule r E R n times, where n is the number of literals in the context of 
r;  in other words, it selects each r once for each literal in its context. It then creates a new 
rule r' by removing that literal from r's context; N of Figure 3.4 is simply the set containing 
r'. 

0 DropRefs selects each rule r E R once for each deictic reference in r. It then creates a new 
rule r' by removing that deictic reference from r. 

0 ChangeRanges selects each rule r E R n times for each equality or inequality literal in 
the context, where n is the total number of values in the range of each literal. Each time it 
selects r it creates a new rule r' by replacing the numeric value of the chosen (in)equality with 
another other possible value from the range. Thus, i f f ( )  ranges over [l . . . n], ChangeRange 
would, when applied to a rule containing the inequality f() < i, construct rule sets in which 
i is replaced by all other integers in [I . . . n]. 

0 SpZitOnLits selects each rule r E R n times, where n is the number of literals that are absent 
from the rule's context. (The set of absent literals is obtained by applying the available 
predicates and functions-both primitive and derived-to the variables defined in the rule, 
and removing those already present.) It then constructs a set of new rules. In the case of 
predicate and inequality literals, it creates one rule in which the positive version of the literal 
is inserted into the context, and one in which it is the negative version. In the case of equality 
literals, it constructs a rule for every possible value the equality could take. This time, N 
contains all these rules. 

0 AddLits selects each rule r E R n times, where E is the mmber of predicate-based literals 
that are absent from the rule's antecedent. It constructs a new rule by inserting that literal 
into the earliest place in which the its variables are all well-defined. If the literal contains 
no deictic variables, this will be the context, otherwise this will be the restriction of the last 
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ExplainExamples( R, E) 
Inputs: 

A rule set R 
A training set E 

Computation: 
For each example (s, a,  s’) E E covered by the default 

rule in R 
Step 1: Create a new rule r 

Step 1.1: Create an action and context for r 
Create new variables to represent the arguments of a 
Use them to create a new action substitution u 
Set r’s action to be u-’(a)  
Set r’s context to be the conjunction of boolean 

and equality literals that can be formed using the 
variables and the available functions and predicates 
(primitive and derived) and that are entailed by s 

Step 1.2: Create deictic references for  r 

from s to S I ,  but which are not in a 

Create a new variable w and extend u to map w to c 
Create p, the conjunction of literals containing w 

that can be formed using the available variables, 
functions, and predicates, and that are entailed by s 

restriction 0 - l  ( p )  

Step 2: Trim literals from r 

Collect the set of constants C whose properties changed 

For each c E C 

Create deictic reference d with variable w and 

If d uniquely refers to c in s, add it to r 

Create a rule set R’ containing r and the default rule 
Greedily trim literals from T while T still covers (s, a, s’) 

and R”s score improves 

Create a new rule set R‘ = R 
Add r to R’ and remove any rules in R’ that 

Recompute the set of examples that the default rule in R‘ 

Step 3: Create a new rule set containing r 

cover any examples r covers 

covers and the parameters of this default rule 
Add R’ to the return rule sets & 

output: 
A set of rule sets, Ro 

Figure 3.3: ExplainExamples Pseudocode. This algorithm attempts to augment the rule set with new rules 
covering examples currently handled by the default rule. 
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OperatorTemplate( R, E) 
Inputs: 

Rule set R 
Training examples E 

Computation: 
Repeatedly select a rule r E R 

Create a copy of the input rule set R’ = R 
Create a new set of rules, N, by making changes to r 
For each new rule r‘ E N 

Estimate new outcomes for r’ with the Induceoutcomes 

Add r‘ to R’ and remove and rules in R’ that 
a!gcrithiii de~ribed by (Pasula et al., 2004) 

cover any examples r‘ covers 
Recompute the set of examples that the default rule in R’ 

Add R’ to the return rule sets & 
covers and the parameters of this default rule 

output: 
The set of rules sets, & 

Figure 3.4: OperatorTemplate Pseudocode. This algorithm is the basic framework that is used by six 
different search operators. Each operator repeatedly selects a rule, uses it to make n new rules, and integrates 
those rules into the original rule set to create a new rule set. 

deictic variable mentioned in the literal. (If VI and V2 are deictic variables and VI appears 
first, p(Vl, V2) would be inserted into the restriction of V2.) 

0 AddRefs selects each rule T E R n times, where n is the number of literals that can be 
constructed from variables in T and a new variable v. It then creates a new rule by adding a 
deictic reference with the variable 21 and a restriction defined by one of the literals. 

We have found that all of these types of operators are consistently used during learning. While 
this set of operators is heuristic, it is complete in the sense that every rule set can be constructed 
from the initial rule set-although, of course, there is no guarantee that the scoring metric will lead 
the greedy search to the global maximum. 

3.3.2 Learning Background Knowledge 
We learn background knowledge using an algorithm which iteratively constructs increasingly com- 
plex concepts, then tests their usefulness by running LeamRuZeSet and checking whether they ap- 

13 



Figure 3.5: Operators used to invent a new predicate n. Each operator takes as input one or more literals, 
listed on the left. The ps  represent old predicates; f represents an old function; Q can refer to V or 3; and c 
is a numerical constant. Each operator takes a literal and returns a concept definition. These operators are 
applied to all of the literals used in rules in a rule set to create new predicates. 

pear in the learned rules. The first set is created by applying the operators in Figure 3.5 to literals 
built with the original language. Subsequent sets of concepts are constructed using the literals that 
proved useful on the latest run; concepts that have been tried before, or that are always true or 
always false across all examples, are discarded. The search ends when none of the new concepts 
prove useful. 

Since our concept language is quite rich, overfitting (e.g., by learning concepts that can be used 
to identify individual examples) can be a serious problem. We handle this in the expected way: by 
introducing a penalty term, a’c(R), to create a new scoring metric 

S’(R) = S(R)  - a’c(R) 

where c(R) is the number of distinct concepts used in the rule set R and a‘ is a scaling parameter. 
This new metric S’ is now used by LearnRuleSet; it avoids overfitting by favoring rule sets that use 
fewer derived predicates. 
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3.4 Evaluation 
In this section, we demonstrate that noise outcomes and derived predicates are necessary to learn 
good action models for the physics-based blocks world simulator of Figure 3.1, and also that our 
algorithm is capable of discovering the re!e’;ant background knowiecige. -We accomplish this by 
learning a variety of action models and then comparing their performance on a simple planning 
task. 

All the experiments are set in a world containing twenty blocks. The observed, primitive 
predicates include on(X, Y )  (which is true if block X exerts a downward force on Y ) ,  size(X), 
coZor(X), and the typing predicate tabZe(X). There were five sizes and five colors, both uniformly 
distributed. The color attribute is a distractor. The sizes complicate the action dynamics, both 
because they influence stack stability, and because the gripper does best with blocks of average 
size, and is unable to grasp giant blocks at all. The training data were generated by repeatedly 
attempting to perform random actions in random simulator states and noting the result. The random 
starting states were generated by randomly placing blocks on each other, or on the table. The last 
block was sometimes placed in the gripper. 

3.4.1 Planning 
Since we have no true model to compare the rule sets to, we evaluate them by using them to plan. 
We implemented a simple planner based on the sparse sampling algorithm (Kearns, Mansour, & 
Ng, 2002), which treats the domain as a Markov Decision Problem (MDP) (Puterman, 1999). 
Given a state s, it creates a tree of states (of predefined depth and branching factor) by sampling 
forward using a transition model, computes the value of each node using the Bellman equation, 
and selects the action that has the highest value. In our implementation, the transition function is 
defined using an action model and the reward function is defined by hand. 

We adapt the algorithm to handle noisy outcomes, which do not predict the next state, by 
estimating the value of the unknown next state as a fraction of the value of staying in the same 
state: i.e., we sample forward as if we had stayed in the same state and then scale down the value 
we obtain. Our scaling factor was 0.75, our depth was three, and our branching factor was five. 

This scaling method is only a guess at what the value of the unknown next state might be; 
because noisy rules are partial models, there is no way to compute the value explicitly. In the 
future, we would like to explore methods that learn to associate values with noise outcomes. For 
example, the value of the outcome where a tower of blocks falls over is different if the goa! is to 
build a tail stack of blocks than if the goal is to put all of the blocks on the table. 
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Learning in the Simulated Blocksworld 

200 300 400 500 600 700 800 900 loo0 
Training set size 

Figure 3.6: The performance of various action model variants as a function of the number of training 
examples. All data points were averaged over five runs each of three rule sets learned on different training 
data sets. For comparison, the average reward for performing no actions is 9.2, and the reward obtained 
when a human directed the gripper averaged 16.2. 

3.4.2 Experiments 
We set our planner the task of building tall stacks: our reward function was the average height of 
the blocks in the world. The plans were executed for ten time steps. The scaling parameters Q and 
a’ (associated respectively with the rule complexity penalty term, and the background knowledge 
complexity penalty term) were set to 1.0 and 5.0. The noise probability bound pnin was set to 
0.00001. 

To evaluate the overall quality of the learned rules, we did an informal experiment to measure 
the reward achieved when a human domain expert directed the robot arm. (Note that humans have 
an advantage over the planner, since they can view the entire 3D world while the planner only has 
access to the information encoded in the on, height, and size relations.) 

Results 

We tested four action model variants, varying the training set size; the results are shown in Fig- 
ure 3.6. The curve labeled ‘learned concepts’ represents the full algorithm as presented in this 
paper. Its performance approaches that obtained by a human expert, and is comparable to that 
of the algorithm labeled ‘hand-engineered concepts’ that did not do concept learning, but was, 
instead, provided with hand-coded versions of the concepts clear, inhand, inhand-nil, above, 
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topstack, and height. The concept learner discovered all of these, as well as other useful pred- 
icates, e.g., p ( X ,  Y) := cZear(Y) A o n ( Y , X ) ,  which we will call onclear. This could be why its 
action models outperformed the hand-engineered ones slightly on small training sets. In domains 
less well-studied than the blocks world, it might be less obvious what the useful concepts are; the 
concept-discovery technique presented here should prove helpful. 

The remaining two model variants obtained rewards comparable to the reward for doing noth- 
ing at all. (The planner did attempt to act during these experiments, it just did a poor job.) In 
one variant, we used the same full set of predefined concepts but the rules could not have noise 
outcomes. The requirement that they explain every action effect led to significant overfitting and a 
decrease in performance. The other rule set was given the traditional blocks world language, which 
does not include above, topstack, or height, and allowed to learn rules with noise outcomes. We 
also tried a full-language variant where noise outcomes were allowed, but deictic references were 
not: the resulting rule sets contained only a few very noisy rules, and the planner did not attempt 
to act at all. The poor performance of these ablated versions of our representation shows that all 
three of our extensions are essential for modeling the simulated blocks world domain. 

Example Learned Rules To get a better feel for the types of rules learned, here are two interest- 
ing rules learned by the full algorithm. 

inhand-nil, size(X) < 2 
.80 : -mn(Y,Z) 
.10 : 1on(X, Y )  + {  -10 : -.on(X, Y),on(Y, T ) ,  lon(Y ,Z)  

This rule applies when the empty gripper is asked to pick up a small block X that sits on top of 
another block Y. The gripper grabs both with a high probability. 

I Y : topstack( Y, X ) ,  Z : inhand(2) , 
T : table(T) puton(X) : 

size(Y) < 2 
.62 : on(Z, Y) 

.04 : 4 .22 : noise 

.12 : on(Z,T) 
..(Z, T) ,  on(Y, T ) ,  i on (Y ,X)  

This rule applies when the gripper is asked to put its contents, 2, on a block X which is inside 
a stack topped by a small block Y. Because placing things on a small block is chancy, there is a 
reasonable probability that 2 will fall to the table, and a small probability that Y will follow. 
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3.5 Discussion and Future Work 
In this paper, we developed a probabilistic action model representation that is rich enough to be 
used to learn models for planning in the simulated blocks world. This is a first step towards defining 
representations and algorithms that will enable learning in more complex worlds. 

There remains much work to be done in the context of learning probabilistic planning rules. 
We plan to expand our approach to handle partial observability, possibly incorporating some of the 
techniques from work on deterministic learning (Amir, 2005). We also plan to learn probabilistic 
operators in an incremental, online manner, similar to the learning setup in the deterministic case 
(Shen & Simon, 1989; Gil, 1994; Wang, 1995), which has the potential to help scale this approach 
to larger domains. Finally, we plan to explore the learning of parallel planning rules. 
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CHAPTER 4 

Kurt Steinkraus, Leslie Pack Kaelbling 
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Abstract 

One of the reasons that it is difficult to plan and act in real-world domains is that they 
are very large. Existing research generally deals with the large domain size using a 
static representation and exploiting a single type of domain structure. In this paper, we 
create a framework that encapsulates existing and new abstraction and approximation 
methods into modules, and combines arbitrary modules into a system that allows for 
dynamic representation changes. We show that the dynamic changes of representation 
allow our framework to solve larger and more interesting domains than were previ- 
ously possible, and while there are no optimality guarantees, suitable module choices 
gain tractability at little cost to optimality. 



4.1 Introduction 
Recent planning algorithms for deterministic and stochastic systems have improved considerably, 
allowing the solution of moderately large problems. When exact solution i s  reqnired fnr relatively 
circumscribed applications, these approaches are clearly appropriate. In this paper, we wish to 
consider a somewhat different case, analogous to the action selection problem faced by a human, 
or by a robot operating in a highly complex and open-ended domain, such as disaster relief or 
general battlefield operations. In such domains, the world model is so big that, ideally, a planning 
algorithm would run in time that is effectively constant, independent even of the number of state 
variables in the model. 

Our approach will be to use dynamic abstractions, so that the agent only ever needs to solve 
very small planning problem instances. This approach will, of necessity, give up on achieving op- 
timal performance, instead emphasizing the ability to continue to behave without complete failure 
in situations of extreme complexity. As the agent moves through the environment, it represents 
the domain at multiple levels of abstraction. What makes our approach different from a variety of 
other abstraction methods is the dynamism of the abstraction: the agent’s current view of its en- 
vironment depends on the current state. In the current work, the adaptation methods are designed 
into the system; in future work, the agent should learn which abstractions are appropriately used 
in which circumstances. 

This paper presents a framework for building agents using a dynamic combination of abstrac- 
tions, describes a particular concrete set of abstraction methods, shows how they can be combined 
into a dynamically adapting hierarchy, and applies that hierarchy to the problem of controlling an 
agent in a moderately complex game domain. 

4.2 Module hierarchy framework 
We assume that the agent has a domain model expressed as a factored Markov decision process 
(MDP) and a high-level goal articulated as a reward function over the variables in the factored 
model. Both the MDP’s transition functions and the reward function are represented using alge- 
braic decision diagrams (ADDS). In addition, the agent has a hierarchy of abstraction modules that 
dynamically create a hierarchy of abstracted versions of the base-level domain model. 

To help understand the framework, consider a trivial example of a robot that lives in a 10 x 10 
gridworld (see figure 4.1 (a)). Thc robot cslii c m y  packages, a d  its goal is io move them from one 
location to another. The robot’s movement is stochastic, so that with some small probability it fails 
to execute the action it attempts, or it moves in the wrong direction. The robot has a battery whose 
charge gradually runs down from 1000 to 0 and needs to be charged periodically at a charger. 
Finally, the robot gets reward (discounted over time) for successfully transferring packages. This 
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Figure 4.1 : (a) The package and charger gridworld example. (b) An abstract version of the grid- 
world example. 

domain has 10 x 10 x 2 x 1000 = 200,000 states and seven action values (north, south, east, 
west, ge t ,  put, and charge) in one action variable. 

In this example, there are two different kinds of domain structure to exploit. First, a robot 
executing optimally will only ever want to go back and forth between three locations: the pickup, 
drop-off, and charger points, so the robot’s view of the map can be abstracted into a smaller, 
topological version. Second, the battery sensor is more fine-grained than needed, so similar battery 
levels can be clustered together, say, in groups of 1 0 0  (see figure 4.1 (b)). 

Were the robot to attempt to find a policy for this domain using a single previous abstraction 
method such as state aggregation or the options framework (Precup, Sutton, & Singh, 1998), it 
would miss the chance to exploit both types of structure. Our framework, however, allows multiple 
abstraction methods to be used together, each focusing on the domain structure it is able to simplify. 

In our framework, each abstraction method is packaged into an abstraction module, and in- 
dividual modules are combined into a module hierarchy, which is then used to plan and act in a 
domain. The modules in the module hierarchy induce successive i-models (see figure 4.2). The 
top-level i-model is a trivial MDP with one state and one action (the action means “act in the 
domain”), while the bottom-level i-model, I’, is identical to the input model. 
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module" 

Figure 4.2: Module hierarchy nomenclature, with labels given relative to module Ad2. 

4.2.1 Intermediate models 
Each i-model Ii is an intermediate representation for the domain and is created by module Mip1 
looking at 1 j - l  and applying some abstraction. We let i-models befactored semi-MDPs, since they 
need to be able to represent both the input model, which is a factored MDP, and also any temporal 
abstraction information generated by abstraction modules. 

It is difficult to come up with consistent, intuitive semantics for factored semi-MDPs when 
allowing multiple concurrent action variables. Rohanimanesh and Mahadevan (Rohanimanesh 8z 
Mahadevan, 2001), for instance, have tackled concurrent options, but the general case remains the 
subject of future research. For now, we therefore assume that, no matter how many action variables 
a domain contains, only one action variable can be active (i.e., can have an action selected) at any 
particular time step. - -  

We define an i-model I as a tuple ( S ,  A,  T,  T,  r, 7): 

0 3 = { S }  is a set of state variables; each S ranges over a set of state values {s}. 

?3: = { A }  is a set of action variables; each A ranges over a set of action values {a}.  
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0 T is a time distribution, where T : nsEs S x UAEX A x N + R gives the probability 
distribution over lengths of time that each actinn will take in each state. 

0 T = { t k }  is the set of transition probability distributions, one per state variable SI, E 9, 
that the overall transition probability distribution is factored into. Each t ~ ,  : n,,%s X 

UAEx A x N x SI, + R gives the probability distribution over SI, at time t + 1, given the 
relevant portions of the state space, E. 9, at time t, and the relevant portions of the action 
space, & 2 3. Each tI, is also conditioned on the action's duration. 

0 T is a reward function, where T : n,,s S x UAEX A --+ R. 

0 y is a discount factor, where 0 < y < 1. 

We assume that the action values in different action variables A are unique. Therefore, UAEz A 
gives the set of all possible action choices (remember, only one action variable is active at any one 
time). 

In each i-model, the distributions T and { t k }  as well as the reward function T are represented 
as ADDs. Using ADDs allows for a much more compact representation than, say, using tables or 
even using normal decision trees. 

4.3 Abstraction modules 
The abstraction modules MJ' are the heart of the module hierarchy. Each module must conform to 
the following interface: 

0 Each module MJ' must create an abstract i-model IJ'+l from i-model I j .  Ij+' should contain 
approximately the same information as I j ,  except that some structure or redundancy will 
have been factored out in an attempt to make the domain simpler. 
M i  must be able to create Ij+' so that a specified atomic state is representable in Ij", given 
that it is representable in I j .  During initial planning, this will be the starting state, but it may 
change over the course of execution. 

Each module M j  must respond to requests for re-abstraction, so that Ij+' changes appropri- 
ately when I j  changes. Ideally, the new Ij+l will be only slightly different than the old one, 
and this allows modules to reuse a lot of the information from the old Ij+' when computing 
the new one. 

The actual approach that each module takes to re-abstraction needs to be lazy; that is, it 
should create Ij+' not when notified that I j  has changed, but rather when the new Ij+' is 
first needed by module 
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0 Each module M j  must be able to translate a state from its concrete i-model I j  to its abstract i- 
model Ij+'. There will not always be an abstract state corresponding to every concrete state, 
but the planning and execution framework guarantees that this translation is only requested 
when it is possible. 

0 Each module M j  must provide the proper hooks for the execution framework, which in- 
volves expanding actions from Ij+' into actions in I j  and storing intermediate execution in- 
formation. The interface for execution is approximately given by the following pseudocode 
functions: 

void SetAbstractAction (Action a) ; 
void makeAtomicObservation(State s); 
boolean isExecutingAbstractAction(); 
Action getNextAtomicAction ( )  ; 

All existing MDP abstraction and approximation methods that we know of can be made to 
fit this interface. To solve the gridworld example domain, we package two prior methods into 
abstraction modules. 

4.3.1 Subgoal-options module 
The first abstraction discussed in the gridworld example above, having abstract actions that move 
the robot between the pertinent locations, is similar to the options framework (Precup et al., 1998) 
and to nearly deterministic abstractions (Lane & Kaelbling, 2002). The idea of the options frame- 
work is to create temporally extended actions, in order to speed up value/policy iteration, or in 
order to create a temporally abstract model that skips past most states by only executing the op- 
tions (rather than the atomic actions that the options utilize). In this module, the options that it 
creates are all sub-policies to go from one salient location to another. Applied to the gridworld 
example, the resulting abstract i-model is a semi-MDP that has 3 locations instead of 100 x-y 
combinations. 

The inputs to a subgoal-options module Mi are 

SG, a set of goal states, where each goal state 
Si of Ij 's state vxkbles; and 

E Sc specifies values over some subset - -  
Sgoal 

{agoal} G A*, a set of action values, drawn from an action variable A* E A3 of I j ,  that the 
options are permitted to use when attempting to reach a goal. These actions will be replaced 
by the options when the abstract model Ij+' is created. 
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In theexample, == {x, y}, Sc = {(2,2),  (8,2), (5,9)}, and {agoal} = {north, south, east, west}. 
This module creates a set 0 of options, one for each goal g E SG. An option og gives a 

sub-policy that terminates when the restriction of the current state o to is g. Each option is 
built by using policy iteration on a slightly modified version of the domain, where the option's 
corresponding goal g has absorbing dynamics and a slightly positive pseudo-reward. For each 
option, the probabilistic expected time transition, state transition, and reward functions (pett, pest, 
and per, respectively) are calculated for moving from goal state to goal state. 

The abstract state and action variable sets that this module creates for Ij+l are 

Sj+' = Sj \ Sgoal U {SG};  and 

0 Aj+l = A3 \ { A * }  U {A'} ,  where A' is an action variable with values {a*} \ {agoal} U 0. 

In this example, the robot's x and y state variables are replaced with a state variable whose values 
are the three salient goal locations, and the robot's choices to move in the four compass directions 
are replaced by actions to move from one goal location to another. 

S + n s E ~  S be a mapping that unpacks the goal part of a state in Ij+' into 
its constituent state variables, giving a state in 13. In other words, u is the obvious mapping from 
SC to Sgoal extended to be the identity on other state variables. The subgoal-options module maps 
I j  + Ij+' and defines ~j+', Tjf', and rj+' in terms of their I j  counterparts as follows: 

- - -  

Let u : 

- 

pett(u(oj+') ,  a ,  n) if Q E O 
~ j ( ~ ( o j + ' ) ,  a, n) if a 6 o 0 .j+' (oj+l, Q, n)  = 

per(u(oj+l),a) if a E O 
rj(u(aj+'),a) if Q 6 O 

0 ++'((Jj+',@) = 

4.3.2 State-aggregation module 
The second abstraction discussed in the example above, clustering together states that have similar 
battery levels, is a simple state aggregation. Using the mapping between original and abstract 
states, transition and reward dynamics for the new states can be formed by taking the average 
(mean) of the dynamics for the corresponding original states. 

The inputs to a state-aggregation module M j  are 

Snoiiaggr E Sj, the state variable being transformed; 
- 
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S a g e ,  the replacement state variable; and 

f : Snonaggr -+ Saggr ,  the aggregation function. 

In the gridworld example. Snonnggr = battery-level, Saggr = coarse-battery-level, and f(x) = 
[X/1001. 

The abstract state and action variable sets that this module creates for Ij+l are 

For any state G T ~  E n,,zS, let f(d) be the same state but with the value 'u of Snonage in oj 
replaced by f(v). Also, let c(oj+l) be the number of states that f maps to CT~+', Le., c(oj+l) = 
I{oj : f (oj) = aj+l)l. The state aggregation module maps I j  --+ Ij+' as follows: 

In this module, we take the uniform average of the dynamics and reward over the states being 
aggregated. This is clearly an approximation, since the transition probability distribution at an 
aggregated state depends very much on the underlying distribution over the states that were aggre- 
gated, which in turn depends on the agent's actions to this point. Since we aim to work in huge 
domains, the large reduction in state space size outweighs the small risk of abstracting out perti- 
nent information. One long-term goal we have is to learn to identify when pertinent information 
is being abstracted out (in this or other abstraction modules), and to replace such underperforming 
modules in a module hierarchy. 

4.4 Planning and execution 
Given a module hierarchy that some domain expert has created, the module hierarchy framework 
creates various plan or policy pieces and fnen executes actions while mcr.it,cring its execution. 
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policy iteration module i@ 

location: at-start, at-pickup, at-dropoff, at-charger r3 
I coarse-battery-level: 0, 1-100, . . ., 901-1000 1 ' 

state aggregation module M 

location: at-start, at-pickup, at-dropoff, at-charger r2 
I battery-level: 0, 1.2, . . .. 1000 I '  

I 
subgoal options module M' 

x:o ,1 ,2  ,..., 9 
y :o ,1 ,2  ,..., 9 

Figure 4.3: A module hierarchy for the gridworld example. 
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4.4.1 Planning 
A module hierarchy for the example gridworld domain is given in figure 4.3. In the figure’s i- 
models, the state variables are listed to demonstrate how the input model is successively abstracted. 

The topmost module is a!w2ys a sgeckd rrioduie tnat creates an abstract i-model with only one 
state and one action. This “abstraction” involves solving the model using policy iteration (Put- 
erman & Shin, 1978), so that the single abstract action is a temporally abstract action meaning 
“execute the optimal policy that was calculated using policy iteration.” 

Planning is implicit in the module hierarchy as part of the process of creating the i-models. The 
i-models are created in order from the bottom to the top, where each module M i  creates IJsl from 
I j .  Some obvious planning is done by module M 3  as it uses policy iteration to solve the abstract 
model 13, but implicit planning also occurs in the subgoal-options module MI,  because creating 
each option requires creating a plan or policy to get from one location to another. In most module 
hierarchies, the majority of the planning will happen this latter way, Le., as part of the process of 
creating an abstract i-model, rather than in the topmost module. 

The overall plan is therefore composed of pieces that are created by and stored in the individual 
modules. Notice that each piece of planning is done in a much smaller domain than the whole 
200,000 state domain: the subgoal-options module creates options on a 1100 state domain, and the 
policy iteration module creates a policy in an 88 state domain. 

An important thing to note is that Ij+’ is created so that a specified state is representable. 
When doing initial planning, the state specified to be representable is the starting state. This lets 
the subgoal-options module, for instance, know that it will have to create a location other than the 
pickup, drop-off, and charger locations if the initial state is elsewhere. 

Another thing to note is that the planning is done in a lazy fashion, where i-model Ij+l is 
created only when it is first needed. This will be important to prevent unnecessary plan change 
propagation during replanning. 

Thus, when receiving a message to represent the world dynamics for a particular starting state, 
each module M j  follows these steps: 

1. Pass the message about representing the world dynamics for a particular state to the child 
module (if any). 

2. Note the particular state to represent. 

3. Mark that Ij+’ is out of date. 

When receiving a request for Ij+’, each module M j  follows these steps: 

1. If Ij+’ is up to date, return it. 
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2. Ask Mj-l for I j .  If there is no child module, then this module's concrete i-model I j  is 
simply the input model. 

3. Based on I j ,  figure out what Ij+' should be. What this step actually does is specific to the 
type of abstraction being performed by Mj.  

4. Mark that Ij+l is up to date. 

5. Return the newly created Ij+'. 

Since both of these lists of steps begin by asking something of the child module, a request to 
model a certain starting state or a request for the top i-model will result in a chain of messages 
being passed from the top to the bottom of the module hierarchy, and then the abstraction work is 
done in order from the bottom up to the top. 

4.4.2 Execution 
After the i-models (and the relevant plan pieces) have been created, the module hierarchy begins 
to execute. This starts by executing the single action in the top i-model. 

When an action is executed in any Ii+', module M j  makes observations and chooses concrete 
actions in I j  to execute until the abstract action from Ij+l is done executing. Each time M j  
executes an action in I j ,  module Mj-' makes observations and chooses concrete actions, etc. The 
actions are translated further and further down the module hierarchy, and eventually they end up in 
I' as atomic actions that can be executed directly in original domain model. 

The execution loop consists of two steps: informing all modules of the current state, and then 
asking the topmost module for the next atomic action to execute. When receiving a request for the 
next atomic action to execute, each module Mj follows these steps: 

1. From Mj-I, get the next atomic action to execute. 

2. If returns a terminated action, 

(a) Choose the next action in I j  to execute, according to the current action that is executing 

(b) If there is no such action, then the action in Ij+l is finished, so return a terminated 

(c) Tell Mj-' to execute the action chosen in I j .  

(d) From Mj-', get the next atomic action to execute. 

in P+l. 

action to A@+'. 
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3. Return the atomic action specified by module A4j-l. 

Suppose we use the module hierarchy given in figure 4.3 to solve the example gridworld do- 
main, starting as shown in figure 4.l(a). When the single top action is executed, M 3  gains control 
and executes the optimal policy that it has found (i.e., the top-level action never terminates). The 
goto-pickup action is executed, and control passes to M2.  M 2  passes the action on to M1, which 
determines that the current concrete action corresponding to goto-pickup is north. This is in I’ 
and atomic, so the robot takes this action. Suppose this action fails to move the robot; M1 deter- 
mines that north is again what should be done. This time, the action succeeds, and M1 determines 
that goto-pickup has terminated. It therefore returns control to M 2 ,  telling it that goto-pickup has 
terminated, and M 2  similarly returns control to M 3 .  Since location is now at-pickup, the optimal 
policy indicates that pickup should be executed. Execution continues in a similar manner. 

4.4.3 State representation 
As part of execution, a module M j  needs to determine the current state in I j  when choosing a new 
action. The current state is determined by having each module successively translate the observed 
(atomic) state up from I1. 

Not all atomic states are always representable at all i-models; for instance, only four of the 
hundred combinations of x and y correspond to values of the location state variable. This is not 
a problem, though, because the only time that the current state needs to be representable in I j  is 
when a new action is being selected in I j ,  and this happens in only two situations. The first is 
when beginning to execute, and recall that the initial i-models are built so that the initial state is 
representable. The second is when some action in I3 has just finished, and the current state will 
necessarily be representable since Ij is assumed to be a valid factored semi-MDP. 

4.4.4 Replanning and dynamic representation changes 
The module hierarchy so far is a static entity: the decomposition and the modules are chosen, 
then the framework executes. What makes the module hierarchy different from similar previous 
methods is that the module hierarchy can change the representation dynamically and update the 
plan accordingly. 

In the gridworld example, the robot can make several deliveries on one charge, and so the 
mbot’s battery !eve! isn’t important until it gcts low. Suppose we imert a ncw nodule right below 
the policy iteration module and have it selectively remove or not remove the coarse-battery-level 
state from the abstract i-model that it creates (see figure 4.4(b)), say, removing coarse-battery-level 
when its value is above 1-100. Removing coarse-battery-level gives the policy iteration module a 
much smaller model to find a policy for. 
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dummy-state: s Is 

policy iteration module M' 

(location: at-start, at-pickup, at-dropoff, at-charger) I4 

selective removal module M 

state aggregation module M 2  

location: at-start, at-pickup, at-dropoff, at-charger 
battery-level: 0, 1 ,  2, . . ., 1000 

subgoal options module M' 

x : o , 1 , 2  ,..., 
y:o,  1 , 2  ,..., 

Figure 4.4: The same module hierarchy as in figure 4.3 but with a selective removal module added. 
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When the battery level gets low enough, we want the selective removal module to notice this 
and change I4 to include coarse-battery-level, causing the policy iteration module to update the 
optimal policy it has found to take account of the new coarse-battery-level state variable. 

In general, when a module M i  changes I j+ l i  this wi!! care  2 cascade cf updates up the h k m -  
chy as each module propagates the change by updating its abstract i-model. These updates happen 
in the same way that initial planning happened: modules are notified that their abstract i-models 
are out of date, modules are told to create i-models so that the current state is representable, and 
when the new i-models are requested, each Ij+' is created based on I j  . 

When a change happens, all currently executing actions are terminated, since they may not 
be optimal (or may not even exist!) any more. To continue execution after replanning, the top 
i-model's single action must be executed again, just like the initial execution step. 

Note that changes do not have to be propagated down the hierarchy towards I' ,  but rather only 
from the point of the change up to the top of the hierarchy. It could be that the new requirement 
that the i-models be able to represent the current state is not met by some lower i-models, if they 
were in the middle of executing a temporally abstract action that was terminated. To ensure that 
this does not happen, we insist that each module M j  may only make changes to Ij+l when an 
action has just finished executing in 13. 

As each module M j  updates Ij+l to take account of changes, it could recalculate Ij+' from 
scratch, but in many cases, it can reuse most of the solution from the previous version of Ij+'. 
This causes the change of representation to happen much faster than the creation of the initial 
representation. For instance, suppose the robot is periodically instructed to change its drop-off 
location to one of nine other possible sites. Instead of representing all possible drop-off locations 
and having nine of them be useless, the drop-off location can be approximated as fixed in one 
place. When its location changes, the options module only has to create a new goto-dropoff option; 
it can reuse the options to reach other locations. Even better, changes to location cause the state 
aggregation module no new work, since it just copies information about location from I 2  to 13. 
Reabstraction can therefore occur fairly frequently in this framework without being a burden. For 
large domains, this ability to keep the current representation small will likely mean the difference 
between tractability and intractability. 

The ability to adapt the representation dynamically can be used in other ways as well. For 
instance, if more processing power is suddenly available, it may be advantageous to reduce the 
amount of approximating, in the hopes of getting a better policy. Or, if a better atomic model of 
the domain's dynamics becomes available (say, because it is being learned online), then that better 
mudei can replace the oid model without needing to plan from scratch. 

13 



4.5 Experiments 
In order to test the module hierarchy, we used a simplified version of the computer game nethack 
(http://www.nethack.org). Nethack is a good domain for testing different approaches to solving 
real-world problems because it contains several different types of structure, some simple and some 
complex. The varying structure and the interaction between the different parts is representative of 
even larger, real-world domains, such a disaster relief robot, a Mars rover, or a general-purpose 
battlefield robot. 

In the simplified version of nethack that we used, the goal is to escape from a dungeon. The 
dungeon is composed of several levels, where each level consists of some large rooms connected 
by narrow hallways. The levels are connected by stairways to the levels right above and right below 
them, and the escape stairway is at the top. The player can move north, south, east, west, up, and 
down, but not diagonally. 

The game is not just a path planning problem, because the player has hunger and health. The 
player gets progressively more hungry as time goes on; if he starves, his health decreases, but there 
is food available to eat lying around the dungeon, and the player can carry this food with him. 
The player’s health normally stays constant, but it decreases when starving or when attacked by a 
monster. The player can heal himself by using one of the medkits lying around the dungeon, and 
the player can carry medkits with him. 

We represented the domain as an infinite-horizon discounted factored MDP with 1 1  primitive 
actions and a varying number of states (depending on the exact layout of the dungeon). Some 
of the actions, such as movement and attacking a monster, had probabilistic outcomes (e.g., the 
monster dies with a certain probability). The reward was set to be positive for escaping from the 
dungeon, negative for dying, and zero elsewhere. 

4.5.1 Implemented module hierarchy 
The module hierarchy that was created to solve the nethack domain is shown in figure 4.5. Even 
though the module hierarchy is a linear alternation of i-models and modules, modules are drawn 
showing which part of the domain they change, in order to better and more compactly illuminate 
the structure of the changes that each abstraction module makes. 

This module hierarchy uses eighteen modules instantiated from six module types. These mod- 
ules were arranged in the module hierarchy and parameters were supplied by a domain expert, 
who tailored the structure and parameters so as to solve the simplified nethack domain as well as 
possible. It is important to note that, although the above module types were created in order to 
solve this simplified nethack domain, they are completely general and can be used in other module 
hierarchies to solve other problems, given appropriate parameter choices. 

14 



solve-domain 

I 

location0 0 0 0 location1 0 0 

create-subgoals(x,y) create-subgoals(x,y) 
IT 

xo yo x l  y l  level 

/ 
((food-at- 1,5,2)) 
I 

ignore( item-when-gone) 
I 

(hunger’) (have-food) (food-at- 1,5,2) 

ignore( food-when-no t-hungry ) 
i 
hunger’ 
I 

aggregate-states 
I I I 

hunger have-food food-at-1,5,2 x y 

(medkit-at-2,4,1) 
I 

ignore(item-w hen-gone) 

level medkit-at-2,4,1 0 

Figure 4.5: The module hierarchy used to solve the simplified nethack domain. 
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Of the six module types used, four are the modules used in the package and charger gridworld 
example above (subgoal-options, state-aggregation, policy-iteration, and selective-removal). The 
remaining two modules allow subparts of the state space to be solved separately and recombined, 
and there is an extension to the subgoal-options module that allows it to fill in some of its parame- 
ters more automatically. 

4.5.2 Split-on-state and join-on-state modules 
These two modules allow subparts of the state space to be solved separately and recombined, in a 
way similar to the macro-action framework (Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 
1998). 

Split-on-state module 

The split-on-state module divides up the state space into subparts. Each state is assigned to a 
subpart based on the state value that it contains for a particular indicator state variable. In the 
nethack domain, for instance, the dungeon was divided up based on thefloor state variable, so that 
an escape path could be found separately through each floor. Copies of all the rest of the state 
variables are created for each subpart, as well as copies of all the action variables. 

The transition dynamics for each subpart are simply the original dynamics but with the indi- 
cator state variable fixed, if the active action variable is from that subpart. If it the active action 
variable is from another subpart, then the state for this subpart does not change no matter what 
action is chosen. The abstract reward function is based on what happens in the active subpart only. 

Since there will be other modules between the split-on-state and join-on-state modules that will 
want to abstract each subpart separately, it would be good to have each subpart be as independent as 
possible. Unfortunately, because some actions can cause the state to switch into other subparts, the 
subparts will have to be linked somehow (Le., transition probability distributions for state variables 
in a subpart will be dependent on some state or action variables not in that subpart). We make 
this interdependence as small as possible by creating a new action variable Aswitch to encapsulate 
all dynamics that switch subparts, removing such dynamics from each subpart’s normal action 
variable. 

Aswitch contains action values for each combination of state and action that can cause the sub- 
part to switch, and those action values execute the switching action when at states where the subpart 
could switch but execute a no-op elsewhere. For instance, in the nethack domain, the player can 
go from floor to floor using stairways. So, Aswitch contains an action value meaning “go up this 
stairway” for each stairway; this action value causes the player to ascend when at the bottom of 
the stairway and to stay put elsewhere. In the split action variable corresponding to the floor at the 
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bottom of the stairway, the corresponding dynamics (i.e., the result of taking an up action at the 
bottom of the stairway) are changed to staying put. By moving all switching behavior to Aswitch, 

each subpart's dynamics are virtually independent, which is a huge boon for modules operating 
between the split-on-state and join-on-state modules. 

Tine singie input to a split-on-state module M j  is Ssplit E 3, the state variable that indicates 
the current subpart. In the nethack domain, Ssplit  = floor. 

The abstract state and action variable sets that the split-on-state module creates for Ij+' are 

For any action value aj+' E U A E ~ , A s w i t c h  A, let sp(aj+') E Ssplit  be the subpart that the 
action value is drawn from. For any state E nSLw S, let [aj+'J be the corresponding state 
in I j ,  where the subpart of ai+' that is mapped into Sj is given by the value of Ssplit in &'. Also 
let [aj+'J ssp be the same except that the selected subpart of aj+' is given by ssp E Sspl i t -  

For action values a E Aswitch, let aps(oj, a )  E {true, false} indicate whether aj is an appro- 
priate pre-state for a, and let u(a) be the corresponding normal action value that is executed when 
a is at an appropriate pre-state. 

The split-on-state module maps I j  + Ij+l as follows: 
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Join-on-state module 

The join-on-state module merges back together the subparts that the split-on-state module created. 
As with the macro-action framework, the abstract states created by this module are the boundary 
states, where it is possible to go from one subpart to another, and the abstract actions are sub- 
policies to travel from one boundary state to another. 

Even though the join-on-state module simply undoes the partitioning of the split-on-state mod- 
ule, it cannot get away with only using the same parameters as split-on-state module. This is 
because there may have been other modules, in between the split- and join-on-state modules, that 
reworked various parts of the state and action space until it is not recognizable as belonging to a 
particular subpart. So, the join-on-state module needs parameters that tell it what state and action 
variables correspond to which subpart. 

The inputs to ajoin-on-state module M j  are 

0 Ssplit, the state variable that indicates the current subpart; 

0 Aswitch, the action variable that switches subparts; 

0 sps : Sj + Ssplit,  a mapping that indicates which subpart each state variable belongs to (if 
- 

any; Ssplit doesn't belong to a subpart); and 
- 

0 spa : Aj + Ssplit,  a mapping that indicates which subpart each action variable belongs to. 

These inputs are used in the construction of the abstract state and action spaces. The abstract state 
and action variable sets that the join-on-state module creates for are 

0 = {Sbdry}, where &dry is a state variable whose values are all states that can be 
reached by taking an action in Aswitch and attempting to go from one subpart to another. 
(More precisely, the state values are the restriction of such states to the post-subpart, along 
with the value of Ssplit.) 

Aj+' = {Agoto~~ry} ,  where Agotobdry is an action variable whose values consist of all sub- 
policies agototdry of the following form: given the current subpart and some aswitch € Aswitc~i  

that switches from this subpart to another, attempt to go and execute aswitcll in an optimal 
way. These policies are built in the same was as the options in the subgoal-options module, 
by running policy iteration on a domain with a slightly positive reward at the goal. There are 
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roughly two parts to each policy; the first part attempts to reach a state where aswitch could be 
effective at switching to a different subpart, and the second part executes aswitch once. The 
optimality requirement is with respect to reward gathered along the way. 

- 1 1  .1 As wirn irie sUbgoa:-optims modu!e, defix the pmhahilistic expected time transition, state 
transition, and reward functions (pett, pest, and per, respectively) for each aswitch E Aswitch. Sim- 
ilarly, we let u : S b d r y  + flsGs s be a mapping that unpacks the state in Ij+' into ss,,lit and the 
appropriate subpart's state variables in I j ,  filling in the rest of 5 randomly. 

The join-on-state module maps I j  + Ij+l as follows: 

0 ~j+'(oj+l, a, n) = pett(u(oj+l), a,  n) 

tj+l (oj+l, a,  n, olj+') = 
bdry 

p e S t b d r y ( U ( o ' + l ) ,  a, n, U(o"+')) 

0 ++l(oj+l, a )  = per(u(oj+l), a)  

Intervening modules 

The point of breaking the macro-action framework into two modules is that there can be other 
modules in between the division into subparts and the creation of the boundary state semi-MDP. 
Intervening modules can manipulate, abstract, approximate, and solve different subparts separately, 
before they get merged back together. 

Each intervening module should be careful only modify state and action variables correspond- 
ing to a single subpart. They should never modify values of the state variable Ssplit or the action 
variable Aswitch, and they should only modify the transitionheward dynamics associated with these 
in order to reflect the changes that happened in some subpart's state space. For instance, consider 
the case of using a subgoal-options module M J  to abstract a particular level 1 of the nethack do- 
main, in between the split-on-state and join-on-state modules. The dynamics of the action values in 
A:witch that switch into and out of level 1 refer to x-y coordinates, but the dynamics of comparable 
&+I switch action values need to refer to locations. 

4.5.3 Auto-subgoal-options module 
This modu!e is an extension nf the subgoal-options module that automatically determines what the 
subgoals should be. It takes a set of state variables to find goals in, and it creates goals wherever 
the transition or reward dynamics are "interesting." 

The inputs to an auto-subgoal-options module M j  are 
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0 Ssubsume C 3, a set of state variables to create goals in and then subsume; and 

0 ( ~ ~ ~ ~ 1 )  G A*, a set of action values drawn from an action variable A* E A3 of I j ;  this is the 
same set of action values as is given as input to a subgoal-options module. 

The states of Ssubsume that are added as goals are the ones where transition and reward dynamics 
are mostly the same but are different at a few states. The algorithm to find subgoals is as follows: 

1. Vary the transition distribution t k  over all transition distributions for non-subsumed state 
is the set of state variables that are relevant to the variables T\Ssut,sume. Recall that 

transition. 

2. Vary the action a over all non-subsumed action values [UACx A] \{agoal}. 
- 

3. Vary the partial state S s U b  over the relevant subsumed state variables Ssubsume f l  sk. 
4. For each combination of t k ,  a, and ssub ,  

(a) Vary the partial state S,,onsub over the relevant non-subsumed state variables. 

(b) Notice how the conditional probability distribution over post-states, given by c p d ( n ,  s’) = 
tk(Ss,b u Snonsub, a ,  n, s’), varies as Snonsub is changed. 

(c) If there is more than one cpd as snons,b is varied, and if one is more than twice as 
frequent as all the rest, then add all non-zero state outcomes in the infrequent cpds as 
goals. 

The algorithm to find interesting combinations based on reward is very similar. As an example, 
this module would note that, for most x-y coordinates, when a player chooses the up action the 
level state variable doesn’t change. When the player happens to be standing at an up staircase, 
however, the level changes. This indicates that the stairway’s x-y coordinates should be thought of 
as an interesting subgoal. 

This process seems as though it could potentially iterate over many transition functions, partial 
states and action values, and indeed it would if the representation of the t k  were flat. However, since 
the t k  are given by ADDS, this algorithm takes time proportional to the size of the ADD rather than 
the number of state and action variables, and this produces substantial savings in execution time. 

4.5.4 Experimental results 

The running time and solution quality of the module hierarchy were compared both to policy it- 
eration on the original domain and to several abstraction methods used in its modules, operating 
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Figure 4.6: Experimental results. 

individually. Each method was run on a sequence of progressively more complicated instances of 
the nethack domain until it failed to escape from the dungeon within one hour. In successive do- 
mains, the number of items in the domain, the number of levels, and the x-y size of each level were 
gradually increased, so that the state space size ranged from 9,600 to 108,900,000. The number of 
primitive action steps required to escape from the dungeon increased sub-logarithmically with the 
size of the domain. 

The running time results are given in figure 4.6. As expected, the module hierarchy is the only 
method that scales up to problems with very large numbers of states. 

The most important point of comparison between the different methods is the size of the do- 
mains that each works with after having applied pertinent abstractions. The previous methods end 
up attempting to work in models with hundreds of thousands of states by the fourth or fifth test 
domain. In contrast, the largest model that the module hierarchy needs to solve has just 450 states 
and 15 actions. Granted, quite a few 450-state domains are solved during the course of execution, 
but this is certainly preferable to intractability. 
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4.5.5 Optimality 
In the test runs described above, wherever two methods managed to produce a solution for the 
same test domain, the reward gained by those methods was the same (within the margin of error 
caused by the stochasticity of the domain and thus needing to average over several trial runs). In 
other words, all methods that succeeded in escaping from the dungeon in one CPU hour did so in 
approximately the same amount of time. 

Of course, that no reward was lost by approximately solving the domains is due entirely to an 
appropriate choice of modules and their parameters. If, for instance, the selective-removal module 
that operates on the hunger portion of the domain were to have its threshold parameter set too 
low, then the player might die from hunger before being able to reach food. But an appropriate 
choice of modules is not unreasonable to assume, because any approximation method is dependent 
on the quality of its approximation. In addition, even if the approximation turns out to be wildly 
sub-optimal, a system that makes a very large domain tractable is still be better than one that can't 
handle the domain at all. 

What would be ideal is for each module to come with a bound on the possible reward loss when 
using it, and we can derive a loose such bound, for instance, using value functions. Suppose we 
consider solving the given model M by first solving an approximate model M and then using its 
optimal policy, 7rt, instead of the optimal policy 7r*, in the original model. The triangle inequality 
gives us a bound on the loss, 

L"'(s) 5 IV.*(S) - V " ' ( s ) l  + I V " ' ( s )  - V " ' ( S ) l ,  

where V"* gives the optimal values in M ,  VTt gives the optimal values in My and VTt ( s )  gives 
the values when using 7rt in M .  

Unfortunately, only loose loss bounds like the one above can be derived in general, if we wish 
to allow modules powerful enough to drastically reduce the complexity of the original domain. 
Individual estimates of reward loss might be possible for different modules, and this is an ongoing 
area of our research. 

4.6 Comparison with prior work 
There are several previous approaches to hierarchical planning under uncertainty that are similar 
to module hierarchies, but most use a single abstraction method and exploit only one kind of 
domain structure. MAXQ (Dietterich, I998), for instance, uses parameterized tasks arranged in 
a hierarchy to constrain the policy that it searches for, and it works very well on domains that 
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decompose hierarchically into subtasks, but it does not support arbitrary other abstractions like 
state aggregation. 

The most similar previous work is the hierarchies of abstract machines (HAMS) framework (Parr 
& Russell, 2000). This method allows for combining multiple abstraction types represented as non- 

methods. 
The first advantage is the representation of the domain MDP. The factoring of state and action 

spaces into variables, and the representation of functions as ADDs, allows for a large amount of 
structure to be stored explicitly with each i-model. This structure allows abstraction modules to 
operate on large chunks of state and action space at once; thus, a simple abstraction such as state 
approximation can operate on a domain in time proportional to the domain complexity rather than 
the domain size. 

A lot of the benefit from the structured representation actually comes automatically from using 
ADDs to represent functions; for instance, ADDs never have redundant choices, so a function’s 
independence of certain state variables manifests itself in the ADD structure with no special pro- 
cessing. Such independence is noticed and exploited in the split-on-state and join-on-state abstrac- 
tors, for instance, when they determine that certain state variables are irrelevant to the workings of 
particular subparts and therefore do not need to be added to that subpart’s state space. 

The second and larger advantage of the module hierarchy comes in the ability to change the 
representation dynamically, at any time, and update the plan accordingly. This allows for partial 
plans to be created and then amended as needed. As long as the current representation is accurate 
enough to show the gist of far-future dynamics, the details can wait until the present situation has 
been dealt with and currently useful information is no longer relevant. 

(Not planning the far future in detail has the added bonus that no work is wasted if the far future 
turns out differently than currently expected.) 

As an example, in nethack, a player rarely has to worry about simultaneous imminent death 
from starvation and imminent death from monsters. By removing and then selectively adding 
back these aspects of the domain only when necessary, it is possible to deal with them separately. 
This effect is even more pronounced in larger, real-world domains, which have more areas of 
knowledge that are fairly specialized and thus do not interact much; such areas of knowledge 
produce a combinatorial explosion in the size of the state and action spaces unless dealt with 
separately. 

Unfortunately, in order to gain benefits over these previous methods, it is necessary to give up 
any hope at optimality. Each of the previous methods mentioned guarantees optimality, or perhaps 
a limited version such as hierarchical or recursive optimality, if certain criteria are met. Similar 
criteria could be formulated for the module hierarchy framework; for instance, if all modules have a 
bound on the reward loss from using the module, then those bounds could be summed or multiplied 

dete:IEinistic finite st2te machines. The modilk hicrarchq. framcflork has iwci advaiitages zlver this 
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to give an overall reward loss bound. Such hard criteria are unlikely to be found for the most useful 
of modules, however. 

Our usage of ADDS to represent probability distributions and reward functions is reminiscent of 
SPUDD (Hoey, St-Aubin, Hu, & Boutilier, 1999) and APRICODD (St-Aubin, Hoey, & Boutilier, 
2000). These algorithms attempt to improve value iteration by exploiting the domain structure 
exposed by ADDS, which is an orthogonal approach to that of the module hierarchy framework. 
Though we could have used SPUDD and APRICODD algorithms when, say, creating options in 
the subgoal-options module, the sub-domains being solved were small enough that this would have 
brought no significant improvement. 

4.7 Conclusions and future work 
The module hierarchy trades optimality and high speed on small domains for tractability on large 
domains. Although the module hierarchy makes no guarantees about optimality, the nethack 
domain results show that it may not be necessary to sacrifice much optimality in order to gain 
tractability. Tractability is gained because modules can be chosen to exploit the specific struc- 
ture of different parts of the domain, and because those modules have the ability to reabstract 
dynamically, changing the representation to focus domain solving on the (small) currently relevant 
portions of state space. 

The execution times show that the module hierarchy can handle larger domains than any single 
static abstraction method; even so, there is room for considerable improvement. For instance, ways 
to improve on this first module hierarchy system include monitoring abstract action execution and 
interrupting when low probability occurrences can be exploited, and extension to other models like 
POMDPs and relational MDPs. 
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