Subscale Test Methods for Combustion Devices

Fifth International Symposium on
Liquid Space Propulsion
28-30 October 2003
Chattanooga TN

School of Aeronautics and Astronautics
Purdue University
Outline

• Motivation for Scaled Experiments
• Brief Scaling History
 – Steady-State Combustion
 – Combustion Stability
 – Life Prediction
• Scaling Approaches Presently Used at Purdue
Background

• Stated goals for long-life LRE’s have been between 100 and 500 cycles
 – Inherent technical difficulty of accurately defining the transient and steady
 state thermochemical environments and structural response (strain)
 – Limited statistical basis on failure mechanisms and effects of design and
 operational variability
 – Very high test costs and budget-driven need to protect test hardware
 (aversion to test-to-failure)

• Ambitious goals will require development of new databases
 – Advanced materials, e.g., tailored composites with virtually unlimited
 property variations
 – Innovative functional designs to exploit full capabilities of advanced
 materials
 – Different cycles/operations

• Subscale testing is one way to address technical and budget challenges
 – Prototype subscale combustors exposed to controlled simulated conditions
 – Complementary to conventional laboratory specimen database development
 – Instrumented with sensors to measure thermostructural response
 – Coupled with analysis
SSME Film Cooling Analysis

• Configuration
 – Propellant = LOX + LH2 with O/F = 6.02
 – M_dot_LOX = 64,000 liter/min
 – M_dot_LH2 = 178,000 liter/min
 – M_dot_coolant for regen cooling = 29.06 lb/sec

• Chamber condition
 – Pc = 3300 psi
 – Tc = 3500 K (5840 F)
 – D_throat = 10.88"
 – E = 77

• Cooling channel
 – Wall thickness = 0.03”
 – Width = 0.04 “
 – Height = 0.12 “
 – Pressure_throat = 3851 psi

• Thermal condition at throat
 – Heat flux = 80 Btu/in^2-s
 – hg = 58000 W/m^2-K
 – Twg = 1100 F

• Wall adiabatic temperature
 – Taw = Tr - η(Tr-Tco)
 Where Tr = recovery temperature
 η = film cooling efficiency
 Tco = initial coolant temperature

• Current near wall O/F ratio
 – q_dot = hg(Taw-Twg)
 Where q_dot = 80 Btu/in^2-s
 hg = 58000 W/m^2-K
 Twg = 1100 F
 Taw = 3125 K
 η = 0.5
 Tco = 2750 K
 – O/F_nw = 3.54 from Flame temperature vs O/F ratio chart

![Cooling Effectiveness](Image)
SSME Film Cooling Analysis

- Current film cooling condition
 - O/F_nw = 3.54
- Parametric study with fixed film flow rate (5 %)
 Porowski et al. method (AIAA Journal Vol. 2 No. 2, 1985)
 - O/F_nw change = 3.54 → 1.0
 - Life change = 61 → 107 (75.4% increase)
 - Isp change = 465 → 457 (1.83 % decrease)
Scaling Objectives and Approaches

• Combustor characterization is goal
 – Validation data for design analysis models
 – Assess innovative functional design, materials, operation
 – Investigations into specific physics

• Single element, multi-element, 40K, 250K

• Cold flow and hot fire

• Performance, heat transfer, life, stability

• Experimental objective needs to define scaling approach and measurement
 – Well-instrumented combustors linked to analysis
 – Thrust level and number of elements
 – Element scaling and configuration
Hierarchy of injector experiments

General trend: an increase in subscale efforts

- Single element atmospheric cold flow
- Single element high pressure cold flow
- Single element hot fire
- Subscale Multi-element hot fire
- Full scale testing
- AFRL cold flow facility

difficulty / cost

degree of simulation
Brief History of Scaling in the US – Steady State Combustion

- JPL studies of mixing efficiencies of impinging jets
- Bell Aerospace/AFRL holographic and shadowgraphic studies of combusting flows
- Rocketdyne development of LISP methodology for SDER
- Aerometrics development of PDPA
- Rocketdyne studies of flameholding behind LOX post
- PSU measurements of chemical species in HO combustors
- AFRL studies of supercritical jets
Single Element Test Chamber
Stability Scaling

• Simulation of chamber dynamics in subscale configuration is very difficult
 – Acoustic frequencies scale as \(\sim \frac{1}{d} \)
 – Pressure \(v \) velocity sensitivity

• Scaling approaches
 – Wedges, T-burners, 2-d chambers
 – 1T = 3T scaling

• Single element rarely used in US, but is more typical in Russia
This facility screened Injector elements for Liq/liq and gas/liq Injectors for over 20 Years (1965-85)

Typical Pc = 750 psi, Total flowrate of 5 lb/s

‘self-oscillation’ and response to pulsations measured
Experimental Approach of NIICCHIMMASH

- Use full-scale injector elements
- Experiment designed to simulate controlling process - mixing
- Match equivalence ratio and volumetric flowrates using diluted gaseous propellants
- Combustor acoustics matched by using appropriately sized low-pressure chamber
- Stability boundaries determined by varying flowrates
- Relative boundaries indicate stability ranking

Figure 6. Schematic of Single Element Model Set-up and Instrumentation
Propellant Distribution Effects

Table 7.2.5a.—Gas Rocket Test History With Various Injection Profiles

<table>
<thead>
<tr>
<th>Profile</th>
<th>Amplitude, psi</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7</td>
<td>1st tangential</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>Stable</td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>1st tangential</td>
</tr>
<tr>
<td>IV</td>
<td>13</td>
<td>1st radial</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>Stable</td>
</tr>
<tr>
<td>VI</td>
<td>40</td>
<td>1st tangential</td>
</tr>
</tbody>
</table>

[Instabilities initiated spontaneously and linearly; mean chamber pressure, 150 psia; combustion chamber diameter, 7 in.; combustion chamber length, 6 in.]
Single Element ‘Instability’

Impinging jets driven by piezoelectric actuator

Combustor oscillations at driven atomization frequency
Subscale Test Activities at Purdue - Maurice Zucrow Laboratory
Advanced Propellants and Combustion Lab

- Two cells w/ 1 Klbf thrust stands
- Propellant supply of 1800 psia
- 2 - 4 gallon oxidizer tanks
- 1 & 4 gallon fuel tanks
- National Instruments hardware & LabView software
 - 32 channels pressure
 - 32 channels temperature
- All valves computer controlled
- Rapid test article installation
- Design/Build/Test course
High Pressure Lab

Renovation funded thru Indiana 21st Century R & T Fund – Propulsion and Power Center of Excellence
Facility activated in May ‘03
6,000 psi Nitrogen System

- Pressurization, Actuation and Purge Gas
- 2,400 gallon Liquid Nitrogen Tank w/ 6,000 psi Pump
- 253 ft³ 6,000 psi Nitrogen Tube Trailer
- Computer Controlled Pressurization Systems
Propellant/Coolant Tanks

- 22 gal 5,000 psi LOx
- 16 gal 5,000 psi Fuel
- 220 gal 5,000 psi H_2O
- 400 gal 800 psi H_2O_2
- Hydraulic Control Valves
10,000 lbf Thrust Test Cell

- LabView 6.1-based DACS
- 10,000 lbf thrust measurement
- 64 channels pressure
- 96 channels thermocouples
- 18 channels analog control
- 32 channels on/off control
Control System Operation

- Data System Located Adjacent to Test Cell
- Operation Remoted to Control Room (KVM Extender) for Testing
- Video Recorded Directly to DVD
Test Cells

- 18” Thick Reinforced Concrete Test Cell Walls
- High Flow Capacity Test Cell Exhaust Fans
- Heated High Pressure Air Plumbed to Both Cells
- Walled Containment Area
Injector Characterization Scaling Approach

• Study Objectives
 – Steady state and dynamic characterization of ORSC MC injector elements

• Approach
 – Investigate full-scale elements at realistic operating conditions
 – No film cooling (if possible)
 – Evaluate different injector design configurations
 – Couple with analysis

• Measurements
 – Energy release profile from axial pressure gradient
 – Injector face and chamber wall thermal environments
 – Plume signature with IR tomography
 – Manifold, injector and chamber p’
ORSC Main Combustor Components

271 elements, 1722 lb each, d = 0.5 in
Principle Design Features

- Gasflow inlet lip to affect acoustic admittance
- Ox tube length set to tune injector acoustics
- Swirl injectors isolated from gas path
- Beveled recess to provide injector face cooling
- Two rows of inlets provides wave cancellations
- Liquid submergence to enhance mixing, control face heating & promote stability
- Atomization due to Kelvin-Helmholtz instability
- Two-phase region enhances impedance
Single Element Sizing Exercise

Approach
- use full scale F/element (1722 lb$_{f\text{vac}}$)
 - $m_{\text{o}} = 3.6$ lb/s, $m_{f} = 1.2$ lb/s
- test at ‘full’ P_{c} (2250 psia)
 - $A_{t} = 0.39$ in2, $d_{t} = 0.70$ in
- match injection pressure drops (10%)
 $d_{\text{inj}}, o_{x} = 0.43$ in, $d_{\text{inj}} = 0.57$ in

Possible scaling methods:
- Contraction ratio (1.61) $d_{c} = 0.89$ in
- Element to chamber area ratio (0.30) $d_{c} = 1.04$ in
- Element-element spacing (0.60d) $d_{c} = 0.91$ in
- Element-wall spacing (0.60d ?) $d_{c} = 0.91$ in
- Element area (0.65 in2) $d_{c} = 0.91$ in
- Chamber length based on $L^{*} \sim 30$ in (?)
Baseline Injector Design

Mating Flange / Sensor Ring

RP-I INLET

INSERT

Fuel Manifold

Ox Rich Gas

INLET / P' MEASUREMENT

INJECTOR FACE
High-Pressure Chamber

Mating Flange

Igniter Section

Gun-Drilled Chamber Sections

Dump-Cooled Throat Section

Injector Assembly

Igniter

Calorimeter Sections

Flanges

Nozzle Jacket

Ø 0.81

16.13

Ø 1.00

6.00

Igniter Section

Nozzle Liner

Gun-Drilled Chamber Sections

Calorimeter
Life Prediction - Background

- Rocket combustor liner such as SSME operated at high temperature (6000°F) and pressure (3000 psi) ranges as well as extreme heat flux (80 Btu/in²-s) requires active cooling devices to prevent material failure.
- Combustor liner experiences high thermal structural stress (~100 MPa) during mission profile (SSME 8 min)
- Experiments by Quentmeyer and Jankovsky showed bulging and thinning of liner due to cyclic loading
- Kasper and Porowski developed analytical life prediction methods using simple fatigue and creep model
- Robinson, Arnold and Freed developed visco-plastic model for fatigue-creep interaction phenomena which is believed to be a main failure mechanism

![Image](image-url)
Full Scale – Subscale Life Comparison
– \(P_c = 3300 \text{ psi}, T_c = 3500 \text{ K} \)

Full scale engine
Strain\(_{\max}\) = 2.4
Life = 120

1/10 scale model
Strain\(_{\max}\) = 3.94
Life = 48
Approach

• Develop DBT course with life prediction as part of AAE curriculum
• Develop design requirements
 – Controlled hot-gas environments – use ‘pre-combustor’
 – Creep-fatigue interaction failure of cooled liner
 – Failure within reasonable number of cycles
• Life prediction analysis using conventional methods
 – Chemical equilibrium in pre-combustor
 – One-dimensional heat transfer analysis for initial design
 • critical heat flux and cooling requirements, duty cycle
 – FEM for stress and plastic strain
 – Strain-life curves for cycle life
 – More advanced life modeling by graduate student following project
• Cyclic testing of test article
 – Ten cycles per test
 – Validation of cooling analysis
 – Regular inspection
• Test-to-failure
Combustor Design Parameters

- Top level requirements
 - Less than 200 life cycle
 - Test should produce verifiable results
 - Liner has no melting prior to the LCF failure
 - All parts had to be manufactured in ASL at Purdue
- Under these requirements, the coolant pressure, flow rate and cooling channel aspect ratio (0.5) were determined.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propellant</td>
<td>90% $H_2O_2 + JP-8</td>
</tr>
<tr>
<td>Propellant mixture ratio (O/F)</td>
<td>4.0</td>
</tr>
<tr>
<td>Propellant flow rate</td>
<td>1.25 lb/s</td>
</tr>
<tr>
<td>Chamber pressure (P_c)</td>
<td>200 psia</td>
</tr>
<tr>
<td>Chamber temperature (T_c)</td>
<td>3440 °F</td>
</tr>
<tr>
<td>Characteristic velocity (C^*)</td>
<td>4961 ft/s</td>
</tr>
<tr>
<td>Throat area (A_t)</td>
<td>0.915 in²</td>
</tr>
<tr>
<td>Characteristic length (L^*)</td>
<td>70</td>
</tr>
<tr>
<td>Test liner diameter</td>
<td>2.0 in</td>
</tr>
<tr>
<td>Test liner length</td>
<td>5.0 in</td>
</tr>
<tr>
<td>No. of cooling channel</td>
<td>30</td>
</tr>
<tr>
<td>$P_{coolant}$</td>
<td>110 psi</td>
</tr>
<tr>
<td>$M_{dot}^{coolant}$</td>
<td>0.8 lb/s</td>
</tr>
</tbody>
</table>

Table 1: Combustor design parameters
Thermal Structural Prediction

Thermal analysis
- Burn out heat flux --- 6.54 Btu/in²
- Max wall temp --- 670 K

Total strain predicted by ANSYS around rectangular cooling channel.
- Total strain --- 2.0%
- Life expected --- 115 cycles

Strain-life curve for OFHC at 810 K from NASA CR-134806, 1975
Test Article

- Catalyst bed for decomposing H_2O_2
- Heat sink dump combustor for hot gas generation
- Chamber liner --- water cooling
- Center body --- water cooling with TBC (0.01” thick)
Testing

- Tests were conducted in the APCL at Purdue University
- Propellant flow timing sequence was automatically controlled by pneumatically actuated valve with LABVIEW system

Test article assembly on test stand Cyclic test
Test Results

- Chamber pressure, C* efficiency, propellant mass flow rate, coolant temperature and pressure were measured and calculated.
- Data reduction was performed using in-house code written by students using MATLAB.
- Validation procedure
 - Measure coolant ΔT, wall thinning rate
 - 2.15E-5 in/cycle (0.032” → 0.029”)
 - Verify 1D thermal model
 - Compute updated thermo-structural environment
 - Make life prediction

Predicted and measured coolant temperature
ΔT = 4.0K at throat

Discoloration and deformation at 90 cycles (1.5” × 0.6”)

Coolant temperature
Updated Structural Analysis

- Simulation of temperature, strain and deformation (bulging, thinning) using ABAQUS explicit module
- Maximum strain: 1.2% at middle of ligament
- Only bulging of ligament was simulated

Deformation after 80 cycle

Plastic strain distribution

Deformation after 60 cycle

Deformation after 100 cycle
Summary and Conclusions

- Small-scale rocket combustor was designed and tested to verify life prediction models for low cycle fatigue and fatigue-creep interaction.
- Several life prediction methods were applied to predict combustor life and were compared with test results.
- Correlation data used to improve predictions.
- Improvements would include fixing the liner lands to the structural jacket, and testing at more severe conditions.

<table>
<thead>
<tr>
<th>Prediction method</th>
<th>Estimated life cycle</th>
<th>Determined life cycle by experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective stress-strain</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>ANSYS</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Porowski</td>
<td>51</td>
<td>270</td>
</tr>
<tr>
<td>Dai and Ray with Freed model</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>ABAQUS</td>
<td>320</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of life prediction with test
Summary and Conclusions

• 100’s of cycle goal is very challenging and verification would be very expensive
 – Question of economic feasibility

• Improved life prediction methodology for expanding range of design and operational scenarios is needed
 – Probabilistic life prediction design analysis
 – Testing methodologies with \textit{in situ} thermostructural response measurements
 – Environments definition
 – Improved material database and understanding of damage mechanisms
Acknowledgements

• Work sponsored under NAG8-1856, -1876, -1894
 – Huu Trinh, Robert Williams, and Terri Tramel COTR’s
• Professor Steve Heister and senior engineer Scott Meyer
• Machinists Madeline Chadwell and Jerry Hahn
• Students of AAE 590
• School of Aeronautics and Astronautics