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ABSTRACT

The influence of compression and shear loads on the strength of composite laminates
with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based
on Cosserat couple stress theory. Meshes were generated for three unique combinations
of z-pin diameter and density. A laminated plate theory analysis was performed on
several layups to determine the bi-axial stresses in the zero degree plies. These stresses,
in turn, were used to determine the magnitude of the relative load steps prescribed in the
FLASH analyses. Results indicated that increasing pin density was more detrimental to
in-plane compression strength than increasing pin diameter. Compression strengths of
lamina without z-pins agreed well with a closed form expression derived by Budiansky
and Fleck. FLASH results for lamina with z-pins were consistent with the closed form
results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin
insertion was added to the fiber waviness in the material to yield a total misalignment.
Addition of 10% shear to the compression loading significantly reduced the lamina
strength compared to pure compression loading. Addition of 50% shear to the
compression indicated shear yielding rather than kink band formation as the likely failure
mode. Two different stiffener reinforced skin configurations with z-pins, one quai-
isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from
pure compression to compression plus 50% shear were analyzed assuming material fiber
waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased
with increased shear loading for both configurations, with the quasi-isotropic
configuration yielding lower strengths than the orthotropic configuration.

INTRODUCTION
One of the most common failure modes for composite structures is delamination [1].
Recently, z-pins* have been proposed to provide through-thickness reinforcement to
composite laminates [2-3]. Z-pins are pultruded rods of carbon fiber and epoxy matrix.
The z-pins are ultrasonically inserted through the thickness of a laminated composite

                                                  
* The generic term z-pin will be used throughout the paper versus the trade mark Z-Fiber™ registered by
Aztex Inc.
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prepreg, which is then cured in an autoclave. This approach to through-thickness
reinforcement offers an alternative to stitching, and can provide much higher areal
densities of reinforcement [4]. Although the toughening properties of stitches, z-pins and
similar structures have been studied extensively, only a few investigations have focused
on the effect of z-pins on the in-plane properties of laminates. Steeves demonstrated that
disruption in the alignment of the fibers in the composite leads to a significant reduction
in the in-plane compressive strength [4]. The z-pins may cause significant misalignment
of the fibers of the composite because the diameter of the z-pins (~280 to 510 µm) is
large relative to the diameter of the fibers (~7 µm). Previously, Sun and coworkers
studied the influence of shear loads on the uni-axial compression strength of composites
by testing an off-axis unidirectional lamina and extrapolating the compression strength
[5-6]. They found that the addition of small shear loads significantly reduce the
compression strength of unidirectional composite lamina. In this study, the influence of
additional shear loads, along with axial compression, on the strength of lamina in some
commonly utilized laminates with z-pins will be evaluated parametrically.

BACKGROUND

The compression strengths of unidirectional fiber-reinforced composite lamina are much
less than their corresponding tensile strengths. This is typically attributed to the
mechanism of fiber micro-buckling where the fiber looses the local support of the
surrounding matrix material. As shown in figure 1, micro-buckling initiates from an
imperfection (fiber waviness with misalignment angle 
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φ ,) that forms a kink band of
width, w, and inclination angle, β. In order to better assess the influence of critical
parameters on lamina compression strength, Fleck and Shu developed a finite element
code called FLASH [7-9]. This FE code is based on a 2D general Cosserat couple stress
theory that assumes the unidirectional composite lamina is a homogeneous anisotropic
material that carries couple stress as well as classical Cauchy point stress. The
constitutive response is deduced from a unit cell consisting of a fiber, represented by a
linear elastic Timoshenko beam, embedded in a non-linear elastic-plastic matrix. The
continuum theory was implemented within a two-dimensional finite element code that
uses 6-noded triangular plane strain elements with 3 degrees of freedom at each node
(two-displacements and one rotation corresponding to rotation of the fiber cross section).
The finite element procedure is based upon a Lagrangian formulation of the finite
deformation of the composite and can accommodate both geometric and material non-
linearities. The code models finite deformation using a Newton-Raphson incremental
solution procedure with a modified Riks algorithm in the final stage to handle snap-back
behavior associated with fiber micro-buckling. Boundary loading is piecewise
proportional with a loading parameter, λ, for each loading stage [7].

The FLASH code assumes micro-buckling initiates from an imperfection in the form of
fiber waviness. Inputs include lamina stiffness properties, normalized by the shear yield
strength, (τy) and Ramberg-Osgood strain hardening law parameters (α,n). FLASH
allows options for input of fiber misalignment angle due to fiber waviness either as (1) an
elliptical patch of waviness, or (2) an arbitrary distribution of initial fiber waviness
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through initial misalignment angle, 
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φ  , at the Gauss integration point for each element.
The first option prescribes the elliptical patch along one edge of the unit cell, and hence,
was not useful for this study with an embedded void to simulate a lamina with an
embedded z-pin.

ANALYSIS FORMULATION

For this study, finite element meshes with the z-pin and surrounding resin rich regions
simulated as voids were generated for three unique combinations of pin diameter and
density. Geometric parameters used to generate the finite element meshes of the unit cells
for different z-pin diameters and z-pin areal densities are shown in figure 2. Detailed
descriptions of equations defining the unit cell dimensions are given in references 10 and
11. It was assumed that the fiber is completely surrounded by resin as shown in figure 3,
and hence, the transverse dimension of the void, D’z, was increased by 0.02 mm
compared to the z-pin diameter, Dz. The unit cell parameters were determined from the
average of values measured from micrographs taken from different specimens with z-pins
(table 1). Meshes are shown in figure 4 for the small (0.28 mm) z-pin with 2% and 4%
areal density and the large (0.508 mm) z-pin with 2% areal density. The size of the
elements was varied to provide the greatest mesh refinement near the resin pocket, and in
the region of greatest fiber misalignment. Carbon Epoxy material data, including the
measured strain hardening parameters for the Ramberg-Osgood law, were used as input
for the FLASH analyses (table 2). Input of an arbitrary distribution of the fiber
misalignment in FLASH is possible. However, these data were not readily available.
Hence, a uniform distribution of initial fiber misalignment angles from 0 to 10 degrees
was prescribed in unit cells simulating lamina with embedded z-pins.

A laminated plate theory analysis was performed on three layups, subjected to either pure
compression or equal compression and shear loading (Nx = Nxy), to determine the bi-axial
stresses in the zero degree plies. Transverse (σ22) and shear (τ12) stresses in the zero
degree plies were normalized by the axial compression stresses (σ11) in the fiber direction
to identify the relative magnitudes of the zero degree ply stresses for the three laminates
analyzed (table 3). In order to perform a parametric study, these relative percentages of
axial compression, transverse tension, and shear stresses in the zero degree plies were
used to determine the magnitude of the relative load steps prescribed in the FLASH
analyses as shown in table 4. The compression stress is gradually incremented by FLASH
until it reaches the specified limit defined by the user (σ11/τy = -1000, where τy is the
shear yield strength of the material). This limit was deliberately chosen to be well above
the onset of fiber microbuckling to assure that the analysis reached the failure point and
did not terminate prematurely. For the combined load cases, the other loads were
incremented in the proportions shown in table 4.

Unit cells were analyzed for three load cases: (1) a pure axial compression load case, (2)
a combined axial compression and 10% shear load case, and (3) a combined axial
compression and 50% shear load case. Load and boundary conditions used in this study
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for axial compression (figure 5) were identical to those used by Steeves and others [4,7].
However, appropriate load and boundary conditions had to be determined before
simulating shear loading in FLASH. Ultimately, boundary conditions identical to those
used for the simulation of axial compression loading cases were used for shear loading
[10,11]. Further details for setting up models of unit cells with z-pins using FLASH are
documented in reference 11.

ANALYSIS RESULTS

Figure 6 shows the compression strength, corresponding to the onset of fiber
microbuckling, as a function of fiber waviness for the three z-pin configurations
analyzed. Results indicated that increasing pin density was more detrimental to
compression strength than increasing pin diameter. Figure 7 shows the technique used to
calculate the misalignment angle, 
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φ  , associated with z-pin insertion for the three unit
cell geometries based on the geometric points used to generate the unit cell finite element
meshes [11]. The z-pin insertion angle was greater for the smaller diameter pins than for
the larger diameter pins. In figure 8, compression strength predictions for lamina with z-
pins were plotted as a function of the total misalignment angle due to z-pin insertion and
fiber waviness. This has the effect of offsetting the z-pin results along the horizontal axis
by the amount of the initial misalignment due to z-pin insertion. FLASH results were also
generated for lamina with no-z-pins by closing the void to create a new unit cell mesh
[10]. As shown in figure 8, compression strengths of lamina without z-pins agreed well
with a closed form expression derived by Budiansky and Fleck [12]. FLASH results for
lamina with z-pins were consistent with the closed form results, and FLASH results
without z-pins, if the initial fiber waviness due to z-pin insertion was added to fiber
waviness in the material to yield a total 
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φ  .

Figure 9 shows the stress-displacement plots and shear stress contours for the small pin
2% areal density configuration analyzed assuming three values of fiber waviness (0,1 and
5 degrees). In the plots of stress versus displacement, the average stress along the lower
left edge of the unit cell is plotted versus the displacement (normalized by the fiber
diameter) at the lower left corner of the unit cell [8,11]. The 
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φ  = 0 case reflects specimen
response due to initial misalignment associated with z-pin insertion alone. Each stress-
displacement plot has a maxima indicating the onset of an unstable event (fiber
microbuckling) followed by a finite deformation as the kink band forms and grows. The
shear stress contours are plotted at the final load step and mimic the region where kink
band formation would be anticipated. This becomes increasingly more obvious for higher
values of fiber waviness. Similar plots for the other configurations and loadings are
shown in reference 10.

As shown in figure 10, the addition of 10% shear to the compression loading significantly
reduced the lamina strength compared to pure compression loading predicted by the
Budiansky and Fleck equation. The FLASH results with z-pins were still consistent with
FLASH results without z-pins when the initial fiber waviness due to z-pin insertion was
added to fiber waviness. As shown in figure 11, the addition of 50% shear to the
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compression loading appeared to drastically reduce the lamina strength compared to pure
compression loading predicted by the Budiansky and Fleck equation. However, the
FLASH results with z-pins were no longer consistent with FLASH results without z-pins
when including the initial misalignment angle due to z-pin insertion. The results for the
2% density small z-pin configuration slightly decreased with fiber waviness angle.
However, the results for the other two configurations did not vary with fiber waviness
angle. As shown in figure 12, the applied shear stress was close to, and in one case
exceeded, the shear yield strength of the material (table 2). This is in contrast to the
compression plus 10% shear case, also shown in figure 12, where the applied shear
stresses were consistently lower than the shear yield strength. Hence, gradual shear
yielding may be the failure mode for this compression plus 50% shear loading rather than
kink band formation. As shown in tables 3 and 4, this load case corresponds to equal
compression and shear loading on a cross-ply [0/90]s laminate. Hence, laminates without
45 degress plies may be more likely to fail by shear yielding than microbuckling.

Strength prediction for stiffener reinforced skin laminates under combined
compression and shear loading

Two different stiffener reinforced skin configurations with z-pins were analyzed (figure
13). The first configuration consisted of an 8-ply (45/0/-45/90)s quasi-isotropic skin
bonded to a stiffener with a 16-ply (45/0/-45/90)2s quasi-isotropic flange. The second
configuration consisted of a 6-ply (45/0/-45)s orthotropic skin bonded to a stiffener with
an 18-ply (45/0/0/-45/0/45/0/-45/0)s flange. For both configurations, the total 24-ply
combined laminate where the skin meets the stringer flange was modeled with 2% areal
density 0.28 mm diameter z-pins. A laminated plate theory analysis was performed for
both 24-ply laminates using the carbon epoxy material properties in table 2. However, a
lower value of E11 (143 Gpa) was used to better represent the compression lamina
stiffness in the fiber direction. The applied net compression stress was specified and the
corresponding stresses in the individual plies were calculated.

For the quasi-isotropic configuration, the ratio of the applied net compression stress to the
compression stress in the zero degree plies was 0.392. As expected, the 24-ply
unsymmetric orthotropic configuration exhibited compression and bending coupling
resulting in the maximum zero degree ply stresses in the outermost zero-degree skin ply.
For this ply, the ratio of the applied net compression stress on the laminate to the
compression stress in the zero degree ply was 0.480. The laminate theory calculation was
performed allowing the full bending deformation due to the coupling that arises from the
unsymmetric skin-flange laminate. If, however, this bending deformation is constrained
in the structural configuration, the constraint should be applied when performing the
laminate theory analysis to estimate the zero degree ply stresses. Alternatively, the zero
degree ply stresses could be obtained directly from a numerical analysis of the skin-
stiffener region if the individual plies are modeled discretely.

Unidirectional compression strengths predicted from FLASH were multiplied by the
appropriate factor for each configuration and loading to calculate predicted strengths for
the skin/stiffener-flange laminates. For each configuration, six unique loading cases
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ranging from Nxy/Nx = 0 to Nxy/Nx = 0.5, were assumed in the FLASH analysis assuming
material fiber waviness misalignment angles of 0, 1, and 2 degrees. Table 5 shows the
normalized zero degree ply stresses (axial, transverse, and shear) for the six loadings on
the two stringer reinforced skin configurations analyzed. The axial compression stress in
the zero degree plies is shown as -1000 times the shear yield strength, τy. The magnitude
of the other normalized stress components are shown relative to the normalized
compression stress.  These relative magnitudes were used as input to the FLASH code for
each load case studied.

Figure 14 shows the predicted quasi-isotropic skin/stiffener-flange laminate strengths,
corresponding to the onset of microbuckling in the zero degree plies, as a function of the
misalignment angle. Figure 15 compares the strength of the skin/stiffener-flange
laminates for the quasi-isotropic and orthotropic skin/stiffener-flange laminates for
Nxy/Nx = 0.5. Results indicate that the quasi-isotropic configuration should have lower
strengths than the orthotropic configuration. Figure 16 shows the combined shear plus
compression strength, σult, normalized by the compression only strength, σultc, as a
function of the normalized loading, Nxy/Nx, for the quasi-isotropic skin/stiffener-flange
laminate assuming three values of misalignment angle, 0,1 and 2 degrees. Although the
absolute strength is lower for laminates with larger misalignment angles (fig.14), the
normalized strength reduction (σult/σultc) is slightly less for larger misalignment angles
(fig.16). Figure 17 compares the combined shear plus compression strength, normalized
by the compression only strength, as a function of the normalized loading, Nxy/Nx, for the
quasi-isotropic and orthotropic skin/stiffener-flange laminates assuming a misalignment
angle of one degree. Although the strength is lower for the quasi-isotropic laminates than
the orthotropic laminates, the normalized strength reduction is slightly less for the quasi-
isotropic laminates.

CONCLUSIONS

Increasing pin density was more detrimental to in-plane compression strength than
increasing pin diameter. Compression strengths of lamina without z-pins agreed well with
a closed form expression derived by Budiansky and Fleck. FLASH results for lamina
with z-pins were consistent with the closed form results, and FLASH results without z-
pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in
the material to yield a total misalignment. Addition of 10% shear to the compression
loading significantly reduced the lamina strength compared to pure compression loading.
Addition of 50% shear to the compression indicated shear yielding rather than kink band
formation as the likely failure mode. Two different stiffener reinforced skin
configurations with z-pins, one quai-isotropic and one orthotropic, were also analyzed.
Six unique loading cases ranging from pure compression to compression plus 50% shear
were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2
degrees. Compression strength decreased with increased shear loading for both
configurations, with the quasi-isotropic configuration yielding lower strengths than the
orthotropic configuration.
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Table 1

Carbon/Epoxy UD prepreg unit cell parameter dimensions

2% areal density
Large diameter

4% areal density
small diameter

2% areal density
small diameter

DZ 0.508 mm 0.28 mm 0.28 mm

D’Z 0.528 mm 0.3 mm 0.3 mm

HZ 3.18 mm 1.245 mm 1.753 mm

LZ 3.18 mm 1.245 mm 1.753 mm

C 2.18 mm 0.868 mm 0.868 mm

Table 2

Carbon epoxy material properties

E11 161 GPa

E22 (tension) 11.4 GPa

E22 (compression) 12.8 GPa

G12 5.17 GPa

Gf 22 GPa

τy 39 MPa

d 5.1 µm

Vf 0.59

v12 0.32

α 0.00923

n 8.54
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Table 3. Normalized zero-degree  ply  stresses from  laminate analysis

 external load Nx= -1000 lbs/in

Laminate σ11/σ11 σ22/σ11 τ12/σ11

[0/90]s 1 -0.02 (~2% σ11) 0

[0/±45]s 1 0.003 (~0% σ11) 0

[0/45/-45/90]s 1 -0.0001 (~0% σ11) 0

external load Nx= -1000 lbs/in, plus Nxy= -1000 lbs/in

σ11/σ11 σ22/σ11 τ12/σ11

[0/90]s 1 -0.02 (~2% σ11) 0.535 (~50% σ11)

[0/±45]s 1 0.003 (~0% σ11) 0.073 (~10% σ11)

[0/45/-45/90]s 1 -0.0001 (~0% σ11) 0.085 (~10% σ11)

Table 4. FLASH input for load cases used for strength reduction analysis

axial
compression

compression
10% shear

compression
50% shear

σ11/τy -1000 -1000 -1000

σ22/τy - - -

τ12/τy - 100 500

τ21/τy - 100 500

Table 5 – Normalized zero degree ply stresses in skin/ stringer-flange laminates

Ply Stress Nxy/Nx

= 0
Nxy/Nx

= 0.1
Nxy/Nx

= 0.2
Nxy/Nx

= 0.3
Nxy/Nx

= 0.4
Nxy/Nx

= 0.5
σ11/τy -1000 -1000 -1000 -1000 -1000 -1000
σ22/τy 0 0 0 0 0 0
τ12/τy 0 10 19 29 38 48

(A) Quasi-isotropic configuration

Ply Stress Nxy/Nx

= 0
Nxy/Nx

= 0.1
Nxy/Nx

= 0.2
Nxy/Nx

= 0.3
Nxy/Nx

= 0.4
Nxy/Nx

= 0.5
σ11/τy -1000 -1000 -1000 -1000 -1000 -1000
σ22/τy 35 35 35 34 34 34
τ12/τy 0 10 20 30 40 50

(B) Orthotropic configuration
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(A) 2% small z-pin           (B) 4% small z-pin            (C) 2% large z-pin

Figure 4. FLASH models of carbon epoxy lamina with embedded z-pins

Figure 5. Loadings and prescribed displacements (ux, uy) on unit cells with z-pins [11]



12

0

200

400

600

800

1000

0 5 1 0 1 5 2 0

Strength, 
Mpa

phibar, degrees

0.28 mm z-pin, 2%

0.28 mm z-pin, 4%

0.50 mm z-pin, 2%

Figure 6. Influence of pin density and aerial weight percentage
on compression strength

x

y

2 31

4
5

6
7 8

9 10 11 1213 14
15 16 17 18

19 20
21 22

23

24 25 26

ΔxΔy

Geometrical 
points

tan φ = Δy / Δx

Sikorsky Models:
small zpin, 2% density
φ = 7.95
small zpin, 4% density
φ = 7.78
large zpin, 2% density
φ = 5.55

-
-

-

-

Figure 7. Calculation of fiber misalignment angle [11]



13

0

500

1000

1500

2000

0 5 1 0 1 5 2 0

Strength, 
Mpa

phibar, degrees

0.28 mm z-pin, 2%

Budiansky &Fleck 1993

0.28 mm z-pin, 4%

0.50 mm z-pin, 2%

No Zpin

Figure 8. Predicted compression strengths with and
without z-pins

Shear Stress Contours
Figure 9. Influence of fiber waviness on response, small pin, 2% areal density

-100

0

100

200

300

400

500

600

- 2 0 2 4 6 8

Stress, 
MPa

u
x
/d

phibar = 0

-100

0

100

200

300

400

500

600

- 1 0 1 2 3 4 5 6 7

Stress, 
MPa

u
x
/d

phibar = 1

-100

0

100

200

300

400

500

600

- 1 0 1 2 3 4 5

Stress, 
MPa

u
x
/d

phibar = 5



14

0

500

1000

1500

0 5 1 0 1 5 2 0

Strength, 
Mpa

phibar, degrees

0.28 mm z-pin, 2%

Budiansky &Fleck 1993

0.28 mm z-pin, 4%

0.50 mm z-pin, 2%

No Zpin

0

100

200

300

400

500

0 5 1 0 1 5 2 0

Strength, 
Mpa

phibar, degrees

0.28 mm z-pin, 2%

Budiansky &Fleck 1993

0.28 mm z-pin, 4%0.50 mm z-pin, 2%

No Zpin

Figure 10. Predicted strengths for Figure 11. Predicted strengths for
laminates with and without z-pins; laminates with and without z-pins;
compression plus 10% shear compression plus 50% shear

Figure 12. Ratio of applied shear stress at failure to
shear yield strength of carbon epoxy

0

0.5

1

1.5

τ/τ
y

Z-pin Configuration and Loading

10% Shear
100% compression

50% Shear
100% compression

A

A

B

B

C

C



15

Fig.13 Stringer reinforced skin configurations
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