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ABSTRACT

A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analy-
sis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) “warm-season” (surface temperature greater
than 10°C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based
classifiers (convective/stratiform and brightband existence). Twenty-five archetypal profile types are iden-
tified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types
(nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically
clustered into 10 similar families, which can be further combined, providing an objective and physical
reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy
allows for description of any storm or local convective spectrum by the profile types or families. The analysis
provides a quasi-independent corroboration of the TRMM 2A23 convective/stratiform classification. The
global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrat-
ing primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/
stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave
brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscor-
ing the importance to passive microwave rain retrieval of convective/stratiform discrimination by other
means, such as polarization or texture techniques, or incorporation of lightning observations. Close corre-
spondence is found between deep convective profile frequency and annualized lightning production, and
pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile

types.

These regimes are often described by differences in the
realized local convective spectra and measured by vari-
ous metrics of convective intensity, depth, areal cover-

1. Introduction

It is widely held that identifiable convective regimes

exist in nature, although precise definitions of these are
elusive. Examples span spatial and temporal scales, and
include land—-ocean distinctions (Zipser 1994), break/
monsoon behavior (Rutledge et al. 1992; Williams et al.
1992), seasonal differences in the Amazon (Williams et
al. 2002), and phases of the Madden—Julian oscillation
(DeMott and Rutledge 1998b; Anyamba et al. 2000)
and of tropical easterly waves (Petersen et al. 2003).
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age, and rainfall. These traditional metrics, when de-
rived from radar reflectivity, typically involve reduced,
scalar quantities thought to be important to convective
dynamics: maximum radar reflectivity, cloud-top
height, 30-35-dBZ echo top height, rain rate, etc. Indi-
vidually, these metrics may be deficient, as their inter-
pretation is often nonunique (the same metric value
may signify different physics in different storm realiza-
tions or stages of storm evolution). Such metrics also
fail to capture the coherence and interrelationships
available in full vertical structure information available
from volumetric radar datasets, although nonparamet-
ric analysis of their distributions may still be informa-
tive (Petersen and Rutledge 2001). Alternative means
of data reduction that seek to preserve the information
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content of hydrometeor vertical structure may thus be
warranted.

One alternative approach is the discovery of natural
partitions of vertical structure in a globally representa-
tive dataset, or “archetypal” reflectivity profiles. A
simple profile separation was performed by Liu and Fu
(2001) and Fu and Liu (2001) using empirical orthogo-
nal functions (EOFs), and L’Ecuyer et al. (2004) have
studied rainfall relationship to vertical structure using a
classification technique. In this paper, such a discovery
is instead accomplished through cluster analysis of a
very large sample [O(10°)] of Tropical Rainfall Mea-
suring Mission (TRMM) precipitation radar (PR) re-
flectivity columns. The rain-conditional and uncondi-
tional distributions of archetypal profile type frequen-
cies at a given location and/or season provide a
description of the local convective spectrum that retains
vertical structure information. Such a taxonomy of pro-
file types also allows evaluation of which vertical struc-
tures are most important to global rainfall and provides
a possible link between empirical convective observa-
tions and related latent heating profiles [since synthetic
radar reflectivity profiles are a feasible output of many
cloud-resolving models (CRMs)]. This link may be
critical in objective approaches to data assimilation of
convective observations into forecast models. Such a
taxonomy also allows evaluation of the nonuniqueness
inherent in convective observables that only implicitly
contain, or integrate over, vertical structure informa-
tion, such as passive microwave brightness temperature
or lightning flash rate. This nonuniqueness problem
may be quite important, as global volumetric radar ob-
servations are rare [the TRMM PR, and possibly a fu-
ture National Aeronautics and Space Administration
(NASA) Global Precipitation Mission], while opera-
tional passive microwave observations are available
from a constellation of platforms, and lightning obser-
vations are available from a variety of ground-based
and, potentially, space-based platforms. The TRMM
PR volumetric data thus forms a natural nexus through
which to couple convective theory, models, and obser-
vations, with ultimate application to more common or
cost-effective (albeit potentially lower information con-
tent) satellite-based observations.

This first paper in a series establishes, through cluster
analysis, an objective, ordinally ranked and hierarchi-
cally clustered classification of radar vertical profiles.
The classification is used to illustrate regional differ-
ences in annualized rain-conditional and unconditional
convective spectra. The classification is then used to
examine the profile types’ frequency of occurrence and
contribution to tropical rainfall, as well as their passive
microwave and lightning properties. Subsequent stud-
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ies will address regional and seasonal variability in
these profile spectra, passive microwave vertical struc-
ture diagnosis, and rainfall estimation errors as a func-
tion of vertical structure, storm feature decomposition
into cells using the profile classification, and objective
classification of local convective regimes.

2. Scope and methodology
a. Philosophy

A nonhierarchical cluster analysis simply answers the
question: Given a set n of p-parameter descriptions of
individual cases or instances, find k natural clusters, or
partitions, of these cases in the p-space The number of
clusters requested, k, is arbitrary and must be pre-
scribed, although iterative examination of analyses
while varying k can often reveal when too few or too
many clusters are sought. In the case of clustering re-
flectivity profiles, a reasonable goal is separation into
clusters that appear to indicate different convective or
microphysical states. In this study, cluster analysis is
used as an empirical, quasi-objective means of multi-
variate data reduction (TRMM PR data are highly mul-
tivariate, including reflectivity at 80 vertical levels, sur-
face rainfall estimates, convective/stratiform and bright
band classifiers, etc.). From field experience, we know
that the radar reflectivity vertical profile spectrum (in a
highly multidimensional data space) does not consist of
cleanly separated, spherical clusters (e.g., as a biological
species data space might). Rather, it consists of a con-
tinuous sequence of deeper and more intense profiles,
with possible frequency “bumps” (i.e., weak modes)
corresponding to physically distinct warm rain profiles,
glaciated midlevel profiles, and deep convective pro-
files, more or less monotonically declining in frequency,
and a parallel branch of decaying stratiform types. Tra-
ditionally, rule-based (and often univariate) techniques
are used to partition (reduce) convective data spaces
for subsequent analysis (e.g., radar echo tops deeper
than altitude X or brightness temperature colder than
temperature Y). We posit that a more robust and physi-
cally meaningful data space reduction can be accom-
plished through cluster analysis of highly multivariate
data.

With no a priori expectation of spherical data clus-
ters, the application of cluster analysis to vertical radar
data is thus philosophically a search for a useful data
space reduction. There is thus also no objectively “op-
timal™ cluster analysis design (such as choice and
weighting of input parameters, selection of distance
metrics, specification of the number of clusters sought,
etc.)—or indeed any objective means of assessing “op-
timality.” As with other techniques used for data re-
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duction or modeling (e.g., specification of windowing
parameters in spectral analysis, or basis functions in
nonlinear regression), the model design is ultimately
subjective (although guided by expert opinion), and
success is qualitatively gauged by the coherence
and usefulness of the results. However, we suggest that
scientific analysis of convective observations using a
model derived from highly multivariate data is sig-
nificantly less sensitive to subjective expert opinion
than, for example, analysis using univariate rules. In
this study, we further mitigate subjectivity in the model
design by seeking more radar profile types (clusters)
than would be likely used in analysis and objectively
grouping these into related families of types (using a
secondary, hierarchical cluster analysis). Ultimately,
the success of the technique must be (and is) gauged
subjectively by the consistency of the classification in
actual storm scenes and the consistency of regional con-
vective spectrum variations with our a priori expecta-
tions.

The methodology employed here (profile-level
analysis, discretized by TRMM PR 4-km diameter ver-
tical columns) also places the results and conclusions
within a specific context. Part of this context is driven
by our interest in and focus on improving pixel-scale
retrieval of physical quantities from orbital sensors (ra-
dar, passive microwave, and lightning). Inferences from
these results related to convective physics must be in-
terpreted within this context. Results from global
analyses at “storm” (precipitation feature) scale (Nes-
bitt et al. 2000; Toracinta et al. 2002; Cecil et al. 2005)
provide a complementary view of the tropical convec-
tive spectrum. Successful statistical analysis of global
radar data at scales between the pixel and storm scales
(i.e., the “cell” scale) has yet to be achieved, although
we note that objective classification of pixel-level pro-
file types may be a useful tool in eventual objective
cell-scale decomposition.

b. Data sources

In addition to the precipitation radar, the TRMM
platform hosts a passive microwave (PM) sensor [the
TRMM Microwave Imager (TMI)], observing at fre-
quencies including 10, 19, 21, 37, and 85 GHz, and an
optically based total (intracloud and cloud-to-ground)
lightning imager [the Lightning Imaging Sensor (LIS)].
The PR pixel resolution at nadir is 4.3 km; TMI pixel
resolution at 85 and 37 GHz is approximately 7 km X 5
km and 16 km X 9 km, respectively (although there are
gaps between adjacent TMI scans), and LIS resolution
varies from 4 to 10 km across the PR swath portion of
its field of view [the TMI/PR pixel sampling can be seen
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in Fig. 11 of Hong et al. (1999)]." The LIS has a diur-
nally varying detection efficiency of 73%-93% (Boc-
cippio et al. 2002) and median dwell time of 83 s, cor-
responding to an ability to detect lightning occurrence
if flash rates exceed approximately 1 flash (fl) min~'.
The TMI and LIS swaths both encompass the much
smaller PR swath.

The PR and TMI pixel data are taken from the
TRMM 1799 dataset [1Z99 is a new TRMM product,
also referred to as the “University of Utah TRMM Pre-
cipitation Feature Dataset™ (Nesbitt et al. 2000)]. The
TMI pixel closest to each PR column is identified.
Lightning data from the LIS v4.1 product are used;
lightning flash and “area” (loosely, thunderstorm cell)
radiance-weighted optical centroids are also paired to
PR pixels. Closest prior 6-hourly National Centers for
Environmental Prediction—-National Center for Atmo-
spheric Research (NCEP-NCAR) reanalysis (Kalnay
et al. 1996) data are also paired to each pixel.

¢. Methodology overview

Identification of radar vertical profile types, and
families of types, is accomplished in three stages. First,
in the training phase, a “flat” (nonhierarchical) cluster
analysis is performed on a subset of TRMM PR vertical
profiles, using 47 observations for each profile, and
seeking 25 clusters. This analysis identifies the 47-
dimensional centroids of the distinct clusters. A similar
cluster analysis approach was recently applied to tropi-
cal sounding data to discover archetypal sounding types
(Lucas and Zipser 2000). Next, in the full classification
phase, 3 yr of TRMM PR profiles are classified based
on their proximity to these centroids, and the mean
radar, PM, and lightning properties of profiles in each
of the 25 clusters are recorded. Finally, in the taxonomy
construction phase, these means (which include the
original centroids) are used as the descriptors in a fur-
ther hierarchical cluster analysis of the 25 types into
similar families. Thus, radar-only measurements are
used for primary profile classification, while radar, PM,
and lightning measurements are used for interpretation
(i.e., the taxonomy construction tasks of naming, rank-
ing, and further aggregation of the profiles). The PM
and lightning data were not used in the primary classi-
fication itself as we desire a scheme that can operate on
any volumetric radar dataset (orbital, suborbital, or
ground based), regardless of the availability of concur-
rent PM and lightning observations.

! Readers are cautioned to consider these issues of sensor reso-
lution, undersampling, viewing angle, and parallax correction
when interpreting conclusions drawn from “concurrent™ multisen-
sor measurements presented below.
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d. Data filtering and preprocessing

Some filtering and preprocessing of TRMM PR pro-
files is performed prior to inclusion in the primary clus-
ter analysis. First, only “warm-season” radar reflectivity
profiles are considered, specifically those that occur
when the near-surface atmospheric temperature 7, >
10°C. NCEP reanalysis surface data are used to esti-
mate this criterion for each PR column. While arbi-
trary, the warm-season restriction 1) helps exclude
heavily sheared reflectivity profiles from strongly baro-
clinic winter systems, since this analysis is primarily lo-
cally vertical, and 2) helps preserve meaningfulness and
consistency of vertical profile reflectivity data at low
levels in the atmosphere, since the analysis is per-
formed using temperature as a vertical coordinate
(again using NCEP reanalysis data) rather than the na-
tive PR vertical coordinate altitude. During winter sea-
sons, a significant number of PR columns in midlati-
tudes thus remain unclassified after the cluster analysis
(22.3% of the total sample).

Second, only PR columns that participate in TRMM
1799 precipitation features (Nesbitt et al. 2000) are
considered. 1799 precipitation features are collections
of contiguous PR columns that are either precipitating
or that exhibit TMI passive microwave ice-scattering
signatures (hence adjacent high-reflectivity, nonpre-
cipitating anvil overhang may be included). A noise
filter is applied to columns suspected of containing spu-
rious high reflectivity values aloft.” Note that no feature
minimum size criterion such as that used by Toracinta
et al. (2002) has been applied to the data in this study.
Since the 47 inputs (described below) span different
dynamic ranges and are in different (or no) units, they
are all standardized to have zero mean and unit vari-
ance.

e. Training phase

During the training phase, a subset of all PR columns
from December 1997 to November 2000 (2.5% ran-
domly subsampled; 3.2 million columns) are used to
identify the p-dimensional centroids of the profile clus-
ters. Only columns passing the 7, criterion and near
nadir (i.e., from PR rays 10-39) are used for cluster
centroid identification, thus guarding against contami-
nation by resolution issues, off-nadir viewing near the
corners of the PR swath, and nonstationarity across the
swath in some of the input parameters.

2 Specifically, reflectivities greater than 25 dBZ in the original
80-level PR data, which also differ by more than 5 dBZ from both
adjacent levels, are considered noise, rejected, and replaced by
the average of the adjacent levels.
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FiG. 1. Relative weights assigned to reflectivity at each input
temperature level in the cluster analysis.

Radar reflectivity values (in dBZ units) at various
temperature levels make up 40 of the p = 47 multipa-
rameter descriptors for each column, taken from the
TRMM 2A25 product (Iguchi et al. 2000). The chosen
temperature levels, and relative weights vy assigned to
them, are shown in Fig. 1. The distribution of tempera-
ture levels selected as inputs, and their weights, reflects
our emphasis on radar measurements most likely to
reveal significant kinematic or microphysical differ-
ences, specifically, near the melting level and in the
lower mixed phase levels of storms. An artificial value
of 0 dBZ is assigned to levels without radar echo, or
with reflectivities less than the nominal 17-dBZ PR
threshold. This value, while arbitrary, is sufficiently re-
moved from the 17-dBZ threshold to implicitly strongly
weight occurrence versus nonoccurrence at a given
temperature level, while still allowing the dynamic
range of reflectivity when echoes do occur (approxi-
mately 17-65 dBZ) to contribute information. In cases
where any specified input temperature level is warmer
than the local T, the lowest altitude reflectivity value is
simply “copied down” the temperature profile, ensur-
ing consistent behavior across a wide dynamic range of
possible surface temperature and altitude. Since inclu-
sion of nonphysical data has obvious drawbacks, we
significantly underweight the warmest temperature
level inputs in the cluster analysis; this also mitigates
systematic bias that might be incurred by use of path
integrated attenuation (PIA)-corrected reflectivity pro-
files from the 2A25 dataset (Iguchi et al. 2000; Me-
neghini et al. 2000). To offset this low-level under-
weighting, we include an additional input, the TRMM
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2A25 version 4 algorithm estimated surface rainfall,
overweighted (y = 2.0). The wide dynamic range of this
input further increases its effective weight in the cluster
analysis.

The remaining six inputs are TRMM 2A23 rainfall
classifiers: binary “is convective” and “is stratiform”
flags, both weighted y = 0.5, their respective confi-
dence levels (ranked ordinally from 0-9 and weighted y
= 0.025), a binary “is other” flag (mostly corresponding
to “anvil,” reflectivity-aloft profiles), weighted y = 0.5,
and a binary “possibly has bright band” flag, weighted
v = 1.5. It is important to note that the 2A23 convec-
tive/stratiform classification scheme considers both ver-
tical structure and horizontal variability; thus some spa-
tial variance information is used to nudge the otherwise
purely vertical column classification. However, since
the 2A23 classifiers comprise only 5 of the 47 inputs and
are underweighted, the primary convective/stratiform
separation in the analysis derives directly from the ver-
tical profiles themselves.

For the flat (nonhierarchical) cluster centroid identi-
fication, the Interactive Data Language (IDL) CLUS-
TER_WTS routine is employed; this identifies cen-
troids in the very large dataset via a (user transparent)
neural-network-based optimization engine. This rou-
tine assumes spherical clusters in the standardized data
space (although our weighting of some parameters pro-
vides some ellipticity) and uses Euclidean distance as a
distance metric. We consider the assumption of sphe-
ricity to be irrelevant as the underlying data themselves
are at best weakly modal rather than true clusters (see
discussion above). The technique simply provides a
means of identifying data-driven multidimensional
boundaries within the data space.

Analyses were attempted seeking & = 2, 3, ... 40
clusters; k = 25 yielded a reasonable trade-off between
identification of “primary” profile types without an
overabundance of clusters consisting of very rare/
anomalous profiles.” Since anomalous profiles tend to
be very far removed in the p = 47 space, it is important
to give the analysis the freedom to cluster them during
the training phase, thus allowing physically important
and distinct but multidimensionally more proximate
profile types to still be isolated. While the final selec-
tion of k = 25 was mostly subjective, this subjectivity is

3 We are bounded at the high end of k by the size of the training
sample; for k larger than 25, “outlier” clusters contained too few
cases to yield coherent mean properties. For k lower than 25,
several clusters clearly consisted of “composites™ of clusters with
visually distinct vertical structure in the k = 25 run. There is
nothing intrinsically meaningful about k& = 25, it simply “works”
for the selected set of input parameters and training sample size.
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mitigated by our eventual aggregation of these clusters
into related families during the taxonomy construction
phase; that is, more clusters are identified than will ac-
tually be used for scientific analysis.

There are thus three subjective factors in this analy-
sis: the parameters selected as inputs, the weights as-
signed to those parameters, and the final number of
clusters sought. During the exploratory phase of the
study, these were varied in a trial-and-error fashion us-
ing the probability distributions of the resultant reflec-
tivity profile clusters for assessment. No objective opti-
mization criteria (other than convergence of the itera-
tive cluster analysis algorithm itself) were applied to the
experimental design; the goal was to create a versatile
and useful tool for partitioning the highly multivariate
input parameter space, rather than one optimized for a
specific application, for example, surface rainfall re-
trieval.

f- Full classification phase

During the full classification phase, the 47-
dimensional centroids are used to classify a full 3-yr
(December 1997-November 2000) dataset (212.5 mil-
lion columns). During this phase, the outermost PR
rays are included; we thus implicitly tolerate some off-
nadir classification error in the final analyses, so long as
the cluster centroids themselves are robust. The IDL
CLUSTER routine is used; it simply classifies each pro-
file based on its Euclidean distance to the nearest of the
25 centroids found during the training phase. The pri-
mary clusters found during the training phase and their
properties computed during the full classification phase
are presented in section 3a.

g. Taxonomy construction phase

Assignment into 1 of 25 arbitrarily numbered profile
clusters is arguably not a significant improvement over
47 input parameters, or approximately 90 raw observa-
tions and derived parameters. To be useful as a means
of data reduction, the clusters need to be qualitatively
interpretable, carry meaningful names, exist in some
sort of grouping or ordinal ranking relative to each
other, and be capable of being consolidated into fewer,
broader (but still physically meaningful) categories. As
will be seen below, many of the clusters exhibit readily
recognizable vertical structures, such as a series of in-
creasingly deeper convective types, stratiform types,
and anvil types. However, several are ambiguous, and it
is not readily apparent where they exist in relation to
the others in the 47-parameter data space.

To construct a cluster-naming scheme, we perform a
second cluster analysis on the mean properties of pro-
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files in the clusters themselves. These mean properties
include the original 47-parameter centroids and ob-
servations not included in the training phase. These
latter include the median 17-dBZ echo top tem-
perature, the mean area and weighted area (defined
below) of precipitation features in which profiles of
each type occur, the mean TRMM TMI 85-GHz polar-
ization-corrected temperature (PCT), mean PM 37-
GHz PCT, mean 37-85-GHz depression, the likelihood
that profiles of this type occur anywhere in a thunder-
storm complex, and the likelihood that a thunderstorm
center (“area”) or lightning flash observed by the
TRMM LIS occurs within 5, 10, and 15 km of profiles of
each type.

With only 25 data objects to be clustered, a hierar-
chical clustering is feasible. Agglomerative hierarchical
clustering was performed in the R statistical program-
ming language. A number of different distance metrics
(Euclidean and Manhattan) and linkage schemes
(single, average, complete, weighted, and Ward) were
tested, all yielding essentially the same results (assessed
by inspecting standard dendrograms); the design se-
lected for use was Euclidean distance with complete
linkage. As will be shown in section 3b, the lowest-level
pairs in this clustering are visually and physically similar
profile types that aggregate in physically meaningful
ways. A 3-4 character naming scheme was constructed
in which the first letter denotes the primary profile class
[convective (C), stratiform (S), mixed (M), or anvil
(A)], and the second numeral denotes relative depth of
the profile [1 for warm (tops near or warmer than 0°C),
2 for midlevel (tops in the mixed-phase region), 3 for
deep (tops above the mixed-phase region), 4 for deep/
near-tropopause depth]. The third letter and fourth
numeral denote subtypes of this family within the den-
drogram. Thus, for example, §; denotes warm (1)
stratiform (S), of subtype b, while C; denotes deep
(3) convective (C) of subtype a,. A color:coding scheme
was constructed to visually represent the clusters,
in which convective profiles carry warm colors [varying
with depth from purple (warm) to yellow (midlevel)
to orange (deep) to red (very deep)], stratiform and
mixed profiles take on cool colors [from blue (warm) to
cyan (mid) to green (deep) to yellow-green (deep/
mixed). Low-precipitation S and M variants have
darker shades of the same hue, and anvil profiles have
gray shades.”

* A byte-coding scheme was also devised to encode profile type
for storage based on its location in the hierarchical clustering
dendrogram, with most to least significant bits corresponding to
successive branch “decisions” down the cluster tree.
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3. Cluster analysis results

a. Primary profile types

The results of the full classification phase are shown
in Figs. 2-4. Each cluster’s plot shows the conditional
frequency distribution of reflectivity at each tempera-
ture level. Characteristic values of three of the seven
nonreflectivity descriptors are included (the percentage
in each cluster classified by 2A23 as stratiform and con-
vective, and as “bright band possible or certain”). In 14
of the 17 C and S series profiles, agreement with the
TRMM 2A23 convective/stratiform classification ex-
ceeds 90%. Since the 2A23 classifiers make up only a
few, strongly underweighted inputs to the cluster analy-
sis, this can be seen as a quasi-independent corrobora-
tion of the 2A23 classification algorithm (section 2).

The rationale for the names given to each type will be
presented below, although simple visual inspection of
the reflectivity distributions conveys much. Within the
convective C profiles, the C,; family corresponds to
warm convective profiles (C; ) and warm convective
profiles with 17-dBZ echo tops colder than 0°C but
little evidence of mixed-phase growth (C,,) (or at least,
little contribution from mixed-phase growth profile
rainfall). The C, “midlevel” family of convective pro-
files exhibits mixed-phase growth with tops from ap-
proximately —5° to —25°C (C,) and —20° to —40°C
(G5,). The Cs family is clearly “deep” and will be
loosely termed “garden variety” deep convective. The
C,4 family consists of two unique types; C, is not the
deepest profile type (indeed, it is slightly shallower than
C3,) but has the highest surface reflectivity and very
high reflectivity in the mixed-phase region, with much
less of an abrupt reflectivity decline at temperatures
colder than 0°C than the other profiles (it lacks the
“inflection point” at —10° to —15°C seen in other deep
C profiles). We will loosely refer to this as the “wet
growth” deep profile, an interpretation that will be cor-
roborated by its prevalence in midlatitude and meso-
scale convective system (MCS)-prone regions (section
5, below). Profile C, exhibits very cold tops, approxi-
mately corresponding to tropical tropopause tempera-
tures. This profile is thus loosely termed “deep tropi-
cal.”

An interesting feature of the convective profile clus-
ters is that they strongly suggest that significant regions
of the data space are statistically “off limits” in nature.
For example, convective profiles with echo tops near
—40°C imply a fairly narrow range of “allowable” re-
flectivities lower in the profiles. This can be seen as
“good news” for estimation of reflectivity values from
CRMs, cross-comparison between CRMs and observa-
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FiG. 3. Temperature-reflectivity frequency distributions: S and M series profile clusters.

from observed reflectivities using CRMs as guidance.

The stratiform § and mixed M profiles are more dif-
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ficult to ordinally rank based only on visual inspection.
The S, family includes what appears to be shallow stra-
tocumulus (S, ) and stratiform rain with tops at 0°C but
infrequent bright band §;,. The S, family includes
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FIG. 4. Temperature-reflectivity frequency distributions: anvil/fragment (A) series profile clusters.

midlevel stratiform with bright band, with depths sug-
gesting occurrence as decaying stages of isolated
midlevel profiles, as components of weak, loosely orga-
nized oceanic systems, or as the rearmost-trailing re-
gions of MCS stratiform precipitation; we term this
family “garden variety cold stratiform.” The S5 family,
alternatively, includes deep, low precipitation variants
(S5,, S5, ), resembling MCS transition zones, and a deep,
high pr'ecipitation profile (S5, ), similar to the leading
regions of MCS stratiform preéipitation. The M; mixed
profiles are more ambiguous; both are more often clas-
sified by 2A23 as stratiform than as convective but have
relatively low incidence of bright band. As will be
shown below, they share many similarities with S5 pro-
files, and together S5 and M are loosely termed “MCS
stratiform.” While the interpretation of M5 profiles is
unclear, we note that they nonetheless exhibit a narrow
range of reflectivities along their profiles and do appear
to comprise distinct classes of profiles.

The six anvil A types are comparatively rare and in-
clude purely aloft anvils, overhanging anvils, and frag-
ments of sheared convective or stratiform profiles along
the edges of precipitation features.

Additional radar, passive microwave, and lightning
characteristics are shown in Tables 1 and 2 (character-

istics of rare A types are not reported, for brevity). The
additional radar parameters are shown in bubble plots
in Fig. 5. In Fig. Sa, each type’s median surface reflec-
tivity is plotted against its median echo top temperature
(bubble size here denotes the type’s contribution to
total rainfall). The ordering of convective, mixed, deep
stratiform and midlevel stratiform pairs is loosely remi-
niscent of a “growth/decay” sequence, adding confi-
dence to the naming convention.

In Fig. 5b, the mean area of 17299 precipitation fea-
tures containing at least one profile of the specified
type (each feature area is counted once if a profile oc-
curs anywhere in it) and the weighted mean area of
1799 precipitation features containing the specified
profiles (each feature area is counted the number of
times the profile is found within it) are plotted (bubble
size here denotes each profile’s total frequency of oc-
currence). As expected, the deeper and more intense
profiles tend to occur in larger features. The weighted
mean area metric provides additional information: it
peaks for midlevel profiles, both convective and strati-
form, suggesting that when features containing these
profile types occur, the types comprise significant frac-
tions of the features themselves. This observation is
important, as midlevel convective and stratiform pro-
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TABLE 1. Characteristics of the convective (C) family profile clusters. Echo tops and surface reflectivity are medians; areas and
brightness temperatures are means.

Parameter G, c, G, G, C;ﬂl C3u2 G, Cy, Cs,
2A23 convective (%) 100.0 100.0 99.5 94.9 98.0 94.8 84.1 99.0 89.9
2A23 stratiform (%) 0.0 0.0 0.5 5] 2.0 52 15.9 1.0 9.8
2A23 other (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
2A23 bright band (%) 0.0 0.2 0.5 24 1.8 2.8 5.3 1.0 3.6
17-dBZ echo top (°C) 3 —6 -16 =275 =375 =50 —60 =55 —60
Surface reflectivity (dBZ) 30 32 37 38 43 40 38 49 42
Feature area (km?) 37 65 133 231 332 360 417 446 481
Feature area, weighted (km?) 223 555 1056 1132 1017 844 756 953 766
85-GHz PCT (K) 280.0 270.3 256.3 238.1 219.6 200.0 180.7 177.9 156.4
37-GHz PCT (K) 283.0 279.0 273.8 269.7 264.4 261.1 256.6 244.3 245.0
37-85 (GHz) depression (IWP; K) 3.0 8.7 17.4 31.5 44.8 61.1 75:9 66.3 88.6
In thunderstorm complex (%) 7.4 16.5 30.9 523 723 72.6 75.5 96.7 84.9
Thunderstorm <5 km (%) 0.2 0.5 1.3 4.1 10.8 11.1 197 24.0 15.9
Thunderstorm <10 km (%) 0.7 1.7 4.6 12.9 30.6 397 3522 62.1 45.0
Thunderstorm <15 km (%) 1.5 3.6 8.3 214 45.9 50.3 54.9 83.3 66.9
Flash <5 km (%) 0.3 0.9 24 8.8 25.6 28.2 335 67.8 48.9
Flash <10 km (%) Ll 2.7 6.9 20.0 46.9 51:2 56.2 89.1 69.9
Flash <15 km (%) 1.9 4.7 10.6 26.9 55.1 59.4 64.4 92.8 76.7

files contribute a dominant portion of warm-season
rainfall section (Fig. 5a; sections 3b and 6 below).

b. Profile families

As discussed in section 2g, the 25 primary profile
types are hierarchically clustered, using their 47-
parameter radar centroids and the additional radar,
PM, and lightning parameters shown in Tables 1 and 2
as descriptors (all values are standardized prior to
analysis). The results (using agglomerative clustering, a

TABLE 2. Characteristics of the stratiform

Euclidean distance metric, and complete linkage
scheme) are shown in Fig. 6 as an “enhanced” dendro-
gram. Branch cuts on the dendrogram occurring at
larger height values correspond to greater separation
of the agglomerated clusters in the input parameter
space (thus, the greatest multidimensional separa-
tion occurs between the “deep convective” branch
and the “everything else” branch, while the most
similar components are the S, and S, individual
profiles). Obviously the results of the ﬁnalysis de-
pend upon the selected set of descriptors, although that

(S) and mixed (M) family profile clusters.

Parameter Sy, Si, Szul Ss,, S5, S3, S3,, S3,, M, M,
2A23 convective (%) 0.2 0.1 0.7 0.0 0.0 10.6 8.4 43 34.6 3515
2A23 stratiform (%) 99.7 99.9 99.3 100.0 100.0 88.0 91.2 95.7 65.0 64.5
2A23 other (%) 0.2 0.0 0.0 0.0 0.0 1.4 0.3 0.0 0.4 0.0
2A23 bright band (%) 0.5 36.0 67.4 64.6 75.4 19.5 29.4 60.6 13.8 32.8
17-dBZ echo top (°C) 8 =il =3 —14 ~18 =10 —-16 =27.58 —30 =35
Surface reflectivity (dBZ) 23 23 25 28 34 21 23 29 2, 34
Feature area (km?) 14 32 157 77 293 476 286 403 415 399
Feature area, weighted (km?) 259 990 1603 1634 2100 1041 1180 1520 824 1404
85-GHz PCT (K) 280.6  270.1 256.7 2622 2452 233.0 248.1 236.9 211.1 2228
37-GHz PCT (K) 282.7 277.4 273.0 274.0 268.1 271.0 272, 269.0 266.7 266.4
37-85-GHz depression (IWP) (K) 2.0 7.3 16.2 11.8 229 38.0 24.6 321 55.5 441
In thunderstorm complex (%) 3.7 9.5 21.8 15.8 30.2 67.0 42.1 54.8 62.0 61.2
Thunderstorm <5 km (%) 0.0 0.1 0.2 0.1 0.2 1.8 0.7 1.0 4.2 34
Thunderstorm <10 km (%) 0.1 0.3 0.7 0.3 0.9 77 32 4.1 16.2 11.0
Thunderstorm <15 km (%) 0.4 0.7 il 0.8 2.0 17.8 73 8.9 322 20.9
Flash <5 km (%) 0.1 0.1 0.4 0.2 0.5 55 1.8 2.6 13.5 8.0
Flash <10 km (%) 0.2 0.5 1.3 0.6 1.6 17.0 5.9 7.9 322 20.3
Flash <15 km (%) 0.5 1.0 2.5 1.3 2.9 28.8 10.8 13.4 442 2941
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FIG. 5. Radar characteristics of the profile clusters. (a) Median
surface reflectivity and echo top temperature; bubble size denotes
profile contribution to net rainfall. (b) Median area of features
containing each profile type; unweighted (each feature area
counted once per profile occurrence) and weighted (each feature
area counted the number of times the profiles occur within it).
Bubble size denotes relative frequency of each profile type in the
entire dataset.

set is fairly comprehensive and includes some nonlocal
information such as the containing-feature area.

The enhanced dendrogram encodes two additional
pieces of information. The width of each branch or sub-
branch corresponds linearly to the total rainfall contri-
bution from profiles within that branch. The color of
each branch corresponds to the frequency of occur-
rence of profiles within that branch (varying on a cool-
to-warm color rainbow color scale). Thus, for example,
within the midlevel branch, C, and S3/M; profiles occur
with comparable frequency, but C,’s contribute signifi-
cantly more rainfall to the total. For emphasis (as it will
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be used repeatedly), the color table used to code profile
types is included at left and in the profile labels.

After the deep convective—everything else split, the
Aj and A, anvil types are broken off, consistent with
their somewhat anomalous structure. The next major
split is then “warm” (C, and §,) versus midlevel (C,, S5,
M, and S,). Within the warm category, C; and C,, pair
closely together (which is why C;, was named as it was,
rather than being included in a midlevel family, despite
having echo tops colder than 0°C; a similar rationale
holds for S;,). Within the midlevel category, midlevel
convective C, is more similar to the MCS stratiform S5
and mixed M, families than to the S, garden variety
stratiform with bright band family. Similarly, S5 and M5
pair together in their own family. The precise ordering
of profile types and substructure of branches within the
S3/M5 family is the only dendrogram feature that varied
when different distance metrics or linkage schemes
were tested, suggesting some ambiguity in their inter-
pretation. Fortunately, net rainfall contributions from
these profiles are small, although 53’,2 and M5 profiles
do occur with some frequency.

As an example of the importance of this objective,
hierarchical clustering approach, our initial inclination
(prior to this analysis) was to include the C; profile
with the midlevel profiles, as its echo tops occur near
the top of the mixed-phase region (—30°C to —50°C).
However, within the PR/TMI/LIS data space consid-
ered, this profile type clearly has far more in common
with other deep convective profiles than it does with
midlevel convective profiles. This distinction is impor-
tant, as C3" contributes the most rainfall of the deep
convective 1proﬁles, and misclassifying it as midlevel
would nontrivially skew the “warm/midlevel/deep”
rainfall decompositions to be presented below.

The hierarchical clustering is performed on the mean
or median radar, passive microwave, and lightning
characteristics of profile types. It is also instructive to
view the identified profile types and hierarchically clus-
tered families within the original data space. Figure 7a
renders the profile type distribution within the first
three principal components of the (unweighted) 47-
parameter PR profile training dataset. In this plot, the
profiles’ color table entries [red/green/blue (RGB) val-
ues] are “blended” at each principle component (PC)
pair weighted by their frequency of occurrence at that
pair. Each profile type cluster is well bounded in either
the PC1, 2 or PC1, 3 pairs. Additionally, profile families
are proximate in ways consistent with the hierarchical
clustering (i.e., similar-shaded C,, C,, Cs, Cy, Sy, S5, S,
M,, and A regions are adjacent).

While physical interpretation of principal compo-
nents is imprecise, it appears that PC1 loosely corre-
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FiG. 6. Agglomerative hierarchical clustering of the 25 profile types into families. The level (“height”)
of each branch cut denotes distance in the multiparameter descriptor space. Branch width denotes the
relative contribution to total rainfall from profiles in each branch, while branch color denotes relative
frequency of profiles in each branch in the overall sample. The color table used to render profile types
is shown at left and in the profile labels. A most-to-least significant bit byte coding for profile types is

included at far left for reference.

sponds to a “depth/rainfall/intensity” mode of variabil-
ity, PC2 loosely to a midlevel mode (C,, €5, Sy, and S,
exhibit positive PC2 values; warmer and colder profiles
are negative in PC2), and PC3 loosely to a “convective/
stratiform” separation. Among the warmer profiles,
PC3 is required to distinguish between C; and S, (the
families occupy the same domain in the PC1, PC2 de-

PC3
i

PC1

composition), consistent with the occurrence of their
branch cut at a relatively low height value on the hier-
archical clustering dendrogram and the known difficul-
ties in separating warm stratiform and convective pro-
files in the TRMM dataset (Schumacher and Houze
2003a,b).

The actual frequency distribution of radar observa-

PC3

S PC1

PC2 Wi

FIG. 7. (a) The PR training data, projected onto its first three PCs and shaded based on the columns’ assigned profile clusters. Each
point on the grids is shaded with a blend of the profile color table entries for profiles occurring at that locus, with colors weighted by
the frequency of occurrence of each profile type. (b) Same PC projection, with logarithm of observation frequency contoured (irre-

spective of profile type).
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tions within the (unweighted) input data space is shown
in Fig. 7b (note that the logarithm of frequency is con-
toured). To a certain extent, this visualization corrobo-
rates our a priori conceptualization of the data space
presented in section 2a, that is, a weakly modal series of
increasingly deep/intense profiles with rapidly declining
frequency and parallel convective/stratiform branches.
The frequency distribution also corroborates some of
the key profile separations in the cluster analysis. In
particular, the separation of C; and C, profiles is justi-
fied by the “kink™ in the distribution in the PC1, 3 panel
and in the long tail in the PC2, 3 panel. While difficult
to discern given the color schemes and angular projec-
tion, warm C, family and S, family profiles comprise
single modes in the PC1, 2 space, but in the PC1, 3 and
PC2, 3 spaces weak, separate modes exist for C; versus
C,, and S, versus §; . There is also little evidence (par-
ticularly in the PC1, PC3 panel) that a different choice
of primary cluster analysis design or algorithm (using
these input parameters) would yield a significantly
“better” profile separation; the types appear meaning-
fully separated in physically interpretable ways. We re-
call the original premise that subjectivity in the classi-
fication scheme design is tolerable so long as the results
are useful. Further evidence of the utility of the scheme
is presented next.

4. Example storm complexes

Six examples of PR column classification are shown
in Fig. 8. The scenes include four insets: the profile
classification, shaded using the color table from Fig. 6
(left insets); the 17-dBZ echo top temperature (center
left); the near-surface reflectivity (center right); and an
RGB rendering of 37-GHz PCT (red), 85-37-GHz PCT
depression, which loosely corresponds to total ice water
path (blue) and total lightning optical pulse count
(green) (right). In the RGB panels, warm rain appears
as red areas, cold rain as magenta, and weak rain with
cold tops (or anvil) as blue, while lightning “whitens”
regions by adding in green. Approximately 13 000 such
scenes have been rendered and examined, centered on
the largest TRMM 1799 precipitation feature in each
orbit; the scenes shown in this figure and the next were
selected to represent “interesting” features.

Overall, the classification results show good agree-
ment and consistency with traditional radar metrics and
strong coherence within scenes. Crudely, the classifica-
tion can be considered an “echo tops plus” product;
greater coherence is demonstrated with radar echo tops
than with surface reflectivity. This, of course, is by de-
sign, as the cluster analysis was designed with vertical
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structure separation as a primary goal. The fact that a
range of surface reflectivity values occurs in the plots
for individual profile types (as already shown in Figs.
2-4) is not problematic; rather, a hypothetical applica-
tion of the classification scheme could be to improve
radar-based rainfall estimation by partitioning observa-
tions [i.e., constructing reflectivity—rainfall (Z-R) rela-
tionships] based on vertical structure, in which case a
range of surface reflectivity for each profile type would
be required.

In Figs. 8a,b, the context of M5 family profiles (light
green in the classification insets) relative to parent con-
vection is illustrated; these surround active convective
cores and smoothly transition to deep stratiform S5
(green) and midlevel stratiform S, (cyan). Anvil A se-
ries profiles surround the cores and correspond to
“bluer” regions in the RGB passive microwave/
lightning insets.

Figure 8c illustrates a continuous gradation of
profile types. Scattered warm convective profiles occur
in advance of an organized convective line, which
itself smoothly transitions from warm to midlevel to
deep convective profiles. Behind the convective
line, an 53,,, to S5 to A transition occurs on the right
flank; on the rear f‘lank, an M3 /S5, 15,1, /S, gradation
occurs.

Figure 8d illustrates a case where weak lightning oc-
curs in the trailing stratiform region composed of M5
and S profiles, but not in the regions dominated by S,
profiles (despite the fact that these latter exhibit greater
surface reflectivity). A number of other scenes were
observed in which S5 or even scattered C, occurrence in
trailing stratiform regions corresponds to low flash rate
lightning occurrence. In the RGB plots, the light green/
light blue shading is characteristic of these cases (mod-
est rain, infrequent lightning, and some ice), suggesting
a TMI + LIS signature for deep trailing stratiform re-
gions.

Figure 8e illustrates a convective line comprised of
smaller, more isolated convective cells. The column
classification here seems to reveal the cellular structure
more comprehensively than either the echo tops or sur-
face reflectivity fields alone. Weak embedded convec-
tion is also suggested in the core of the trailing strati-
form region.

In Fig. 8f, the organized convection has detrained a
significant anvil shield. In the echo tops inset, the anvil
is shown to exhibit the coldest echo tops (color table
“saturation” at black). Apparently, this anvil extends
well ahead of the convective cluster at reflectivities
near or below the radar threshold: in the shallow line
ahead of the complex, half the line “incorrectly” exhib-
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FiG. 8. Sample scenes of large precipitation features. In each scene, the insets correspond to (left) profile type
classification, using the color scheme shown above; (left center) 17-dBZ radar echo top temperature; (right center)
near-surface reflectivity; and (right) passive microwave/lightning RGB composite, with the red channel mapping
37-GHz PCT, the blue channel mapping the 37-85-GHz PCT difference (loosely, IWP), and the green channel
mapping lightning optical pulse frequency. Features discussed in the text are highlighted by enclosing circles.
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FIG. 9. Additional sample scenes (profile classification only).

its fairly cold echo tops. Interestingly, the classification
scheme nonetheless correctly identifies these profiles as
warm convective and stratiform rain.

Figure 9 shows 16 additional large precipitation fea-
ture scenes (profile classifications only), including
five cases with a warm or midlevel convective line
embedded in large stratiform regions, four cases of
disorganized or weakly organized deep convective
outbreaks, three additional deep convective line cases,
and four cases of tropical cyclonic features with deep
convection occurring on one side of the eyewall. Again,
the coherence of profile classification in these scenes,
and its visual consistency with known patterns of con-
vective mesoscale organization, is presented as purely
subjective “validation” of the usefulness of the tech-
nique.

5. Geographic distributions

a. Conditional frequency and rainfall spectra

The rain-conditional frequencies of occurrence of
selected profile types and families, on an annualized
basis, are shown in Fig. 10. The first three panels
show a warm (C; + §;)/midlevel (C, + S, + S5 +
M;)/deep (C5 + C,) decomposition, corresponding to a
vertical cut at a height of about 11 on the dendrogram
in Fig. 6 (ignoring the A types and “overriding” the
separation of C, into its own category at this level).
The remaining panels show a decomposition corre-
sponding to a vertical cut at heights between 4 and 6 on
the dendrogram.

The warm-midlevel-deep decomposition shows the
known dominance of warm profiles over oceans and




FI1G. 10. Annualized rain-conditional frequencies of selected warm-season profile types and families.
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their relative depletion in the conditional spectra over
continents (most severe at midlatitudes and over Af-
rica). This depletion is less over the Amazon, India,
southeast Asia, and the Maritime Continent, which ap-
pear “intermediate” between continental and ocean
frequencies. The separation into C; and S, warm fami-
lies shows that the warm depletion over Africa occurs
for both convective and stratiform types, while for the
Amazon, India, and the Maritime Continent, it occurs
only for stratiform types. and over southeast Asia, it is
barely evident (indeed, southeast Asia seems unique
among continental regions by having near-oceanic rela-
tive frequencies of S, profiles). The S, profiles also
dominate the oceanic warm profile spectrum. Notable
in all three panels is the “intrusion” of oceanic warm
profile frequencies into eastern coastal areas of South
America and Africa. Also notable is the sharp contrast
in warm rain frequencies between the Red Sea and
adjoining land areas.

The warm rain continental depletion is balanced pri-
marily by increases in midlevel profile frequency (and
to a lesser extent, deep profile frequency). The land/
ocean distinction is sharpest for C,, S5, and M5 profile
families. Again, the Amazon, India, southeast Asia, and
the Maritime Continent appear intermediate between
land and ocean spectra. The S5 and M5 families—which
we have previously termed MCS deep stratiform—
comprise relatively high portions of the profile spectra
in midlatitudes and in the sub-Saharan Africa region,
consistent with interpreting them as characteristic of
MCSs.

The relative frequency of deep convective profiles is
elevated, as expected, over tropical continents, consis-
tent with global lightning and convection studies (Or-
ville and Henderson 1986; Boccippio et al. 2000, Nesbitt
et al. 2000; Toracinta and Zipser 2001; Petersen and
Rutledge 2001; Christian et al. 2003) and particularly in
the same midlatitude and African MCS regions. This is
also expected as the frequencies are rain conditional; in
these regions, profile occurrence is less frequent (more
“suppressed,” or lower duty cycle) but more explosive
(greater relative frequency of deep convective types).
Deep convective profiles over the Amazon are rela-
tively depleted, consistent with some interpretations of
the region as a “green ocean” (Petersen and Rutledge
2001; Williams et al. 2002).

Figure 11 shows the same profile type/family decom-
position, but with relative contribution to rainfall
(rather than relative frequency of occurrence) con-
toured. Among the warm profiles, the relative contri-
bution to rainfall is more “balanced” between C, and S,
types than their relative frequencies. Over oceans, the
extremely high frequency of S, profiles offsets their
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very low rain rates and makes these profiles “competi-
tive” with the C, types. Over Africa and in midlati-
tudes, S, profiles contribute negligibly to total rainfall.
Interestingly, over the Amazon, S, profiles contribute
as much rainfall as the deepest convective types (C; , or
(5, and C4 combined). A similar situation exists over
India for §, and C5 + C, profiles. This is likely due to
enhanced §; occurrence during these regions’ mon-
soonal seasons (December—February and June—
August, respectively).

Outside of cold ocean gyre regions, rainfall contribu-
tion is dominated by midlevel profiles. Indeed, the
midlevel profile contribution exhibits remarkably little
variability between land and ocean (notable given the
significant land/ocean differences in relative frequency
of occurrence). The contributions are again balanced
between convective (C,) and stratiform (S,) types, with
very little contribution from MCS stratiform S5 and M,
types (while comparable in relative frequency to C,
profiles, their lower rain rates significantly diminish
their net rain contribution).

As expected, deep convective profiles contribute sig-
nificantly more to net rainfall over continents than over
oceans, with the greatest relative contributions occur-
ring in midlatitudes and over the Congo and sub-
Saharan Africa. However, a decomposition of the deep
spectrum is instructive. The “MCS region” deep con-
vective dominance is least pronounced in the garden
variety C5 and deep tropical C, types, and most pro-
nounced in the wet growth C, type. The frequency and
rainfall maps of S5, M5, and C, all support the inter-
pretation of these families as pre“ferentially occurring in
MCSs, and in a “disproportionate™ contribution to rain-
fall frequency and amount in these regions by meso-
scale systems. An interesting contrast is observed in
Africa north of the equator: just north of the MCS
region latitudes, extending into the more arid sub-
Saharan and Saharan regions, C, profiles contribute a
large portion of the net rainfall. This represents a tran-
sition from organized systems to more isolated, mid-
level convective outbreaks in the more arid regions.

b. Unconditional frequency spectra

The conditional spectra discussed above mask signifi-
cant regional variations in absolute (unconditional)
rainfall occurrence. The unconditional profile variabil-
ity is illustrated by decomposing the (annualized) local
spectra into a series of three-parameter descriptors, and
rendering these in three-channel RGB composites. The
selection of profile families for these decompositions is
again determined by vertical “cuts” on the dendrogram
in Fig. 6.

Four RGB composites are shown in Fig. 12. In each
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FIG. 12. Three-parameter RGB decompositions of the unconditional (a) overall, (b) warm, (c) midlevel, and (d)
deep profile spectra. RGB mappings are (a) C; + S,/C, + S, + S5 + M3/C5 + C, (warm/midlevel/deep), (b)

C

la

/C1p/S14 (€) Co/Sy + M5/S,, and (d) C4/C,,/C,,. Each channel is normalized to its own minimum/maximum

range, rather than the range of all channels in each plot, to enhance contrast.

panel, each channel maps the unconditional frequency
of occurrence of a set of profile types or families. Since
these span very different dynamic ranges, each channel
in each map is normalized to its own minimum and
maximum frequency of occurrence (otherwise the maps
would be dominated by single colors). Thus, for ex-
ample, in these maps, regions with a “blue dominance”
do not necessarily have more blue profiles than red
profiles; the blue frequency is simply greater in these
regions than elsewhere in the maps. The maps are not
intended to convey quantitative information; rather,
they are intended to illustrate simple, three-parameter
descriptions of climatological “convective regimes”
(unique colors in the maps correspond to different re-
gimes).

Figure 12a shows the basic warm/midlevel/deep (red/
green/blue) profile family decomposition. The map
shows much of the same variability evident in the rain-
conditional maps. It also reveals very interesting warm
rain enhancements in a number of narrow, offshore

coastal bands, including off the west coasts of South
America, Madagascar, and to a lesser extent, Australia,
and off the east coasts of India, southeast Asia, and
Indonesia. Figure 12b decomposes the warm portion of
the profile spectrum into C; (red), C;, (green), and S,
(blue) types (S, is neglectc“d as three parameters are
visual overload enough!). The offshore/coastal en-
hancements are apparently dominated by warm con-
vective C; profiles. The green dominance over Africa
illustrates the “promotion™ of C, profiles there to C;,
types and absence of S; profiles. The continuous gra-
dation westward from the southeast Pacific cold ocean
gyre illustrates an evolution from exclusively shallow
stratocumulus profiles to include increasingly deeper
warm convective types as the South Pacific conver-
gence zone (SPCZ) is approached. The warm spectrum
in the central/eastern Pacific intertropical convergence
zone (ITCZ) contains discernibly fewer C, profiles
than, for example, the west and east Pacific warm pools
and the Atlantic ITCZ. The warm spectrum over the
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FiG. 13. Annualized total (intracloud and cloud to ground) lightning flash rate density (fl km 2 yr™'), derived from
5 yr (1995-2000) of Optical Transient Detector and 5 yr (1998-2002) of TRMM Lightning Imager Sensor data.

Maritime Continent is very similar over both island and
ocean regions, and distinct from the Indian Ocean to
the west and the Pacific warm pool to the east (indeed,
the interisland ocean regions there have a nearly
unique oceanic warm spectrum, more comparable to
the Amazon basin than to other oceanic regions). A
final feature of interest is the upstream/downstream dif-
ference in warm profile composition around the Hawai-
ian island chain, demonstrating a clear shift from strati-
form to convective profile types.

Figure 12¢ decomposes the midlevel spectrum into
C, (red), Sy/M, (green), and S, (blue) families. The
primary features of interest here are the (blue) en-
hancement of S, profiles over midlatitude oceans and
the MCS stratiform (green) enhancements discussed
previously in midlatitude continents and sub-Saharan
Africa. The Pacific ITCZ is also significantly “nar-
rower” at midlevels. Both features are also evident in
the deep convective spectrum decomposition in Fig.
12d into C; (red), C, (green), and C, (blue). The en-
hancement of wet growth C, profiles in midlatitudes is
particularly striking (the absence of blue in these re-
gions is due to the fact that C, profiles can only occur
with tropical-depth tropopauses). Figure 12d under-
scores the fact that the deep convective spectrum itself
is neither monolithic nor described completely by cloud
depth (recall that C3 5 G, and C,_profiles are of com-
parable depth).

There is close correspondence between the spatial
variability of midlevel and deep convective profile fre-
quency in these maps and annualized global lightning
production, as observed by the Optical Transient De-
tector (Boccippio et al. 2000) and TRMM Lightning
Imaging Sensor. Figure 13 shows total lightning produc-
tion, computed following the methodology of Christian
et al. (2003) but also including five years of cross-
calibrated TRMM LIS data. The agreement extends to
very local scales, including features in the Congo basin,
Madagascar, Colombia, Papua New Guinea, Borneo,

and the Central American west coast. While not sur-
prising, the spatial agreement is in stark contrast to
many other remotely observed convective properties,
such as outgoing longwave radiation (OLR) or net rain-

fall.

6. Frequency of occurrence; contributions to
rainfall and lightning

The relevance of each profile type in terms of total
frequency of occurrence, contribution to total rainfall,
and total lightning production (associating each flash’s
radiance-weighted centroid with the nearest PR pro-
file) is shown in the first three columns of Table 3. Note
that these are percentages only of those PR columns
classified by this study, that is, those that were not re-
jected as being cold season, noise, or isolated from a
1799 precipitation feature. Convective profiles occur
18% of the time but are associated with 58% of rainfall
and 77% of lightning; stratiform and mixed profiles oc-
cur 80% of the time and are associated with 42% of
rainfall and 20% of lightning.

The dominant rainfall-producing profile is C;
(17.7%), followed by the similar-depth stratiform S,
family and S, profile (14.7%, 13.3%), then by the next
warmer and next colder convective profiles, C;, and C,,
(11.9% and 9.7%). Taken together, midlevel profiles
contribute 55% (C, + S,) t0 59% (C, + S, + S5 + M;)
of all rainfall and are most proximate to 23%-35% of
all lightning. Warm profiles contribute 29% of all rain-
fall, while deep convective profiles contribute only 12%
(with half of this coming from the shallowest C3 pro-
file and two-thirds from the C; family; Figs. 2, 6) their
low overall frequency of oceurrence is not sufficiently
offset by higher rainfall rates to cause them to domi-
nate. This is consistent with a regional study of the
Tropical Ocean Global Atmosphere Coupled Ocean—
Atmosphere Response Experiment (TOGA COARE)
west Pacific warm pool by DeMott and Rutledge
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TABLE 3. Summary of profile major type frequency, rainfall contribution, and lightning contribution.
% Frequency % Rain % Lightning
n, Ty L RO T, L I,n Ll
: N=— R=— L=-— e R e ==
Profile p n r [ N n,r N n,l R r,l
€ 18.1 58.2 76.8 32 4.2 1.3
C 113 18.7 ST 1.7 0.5 0.3
G, 53 6.8 1.6 1.3 0.3 0.2
1, 6.0 11.9 4.1 2.0 0.7 0.3
C, 555 274 17.8 5.0 32 057
c, 3.8 177 6.9 4.7 1.8 0.4
G, 157 0 10.9 ST 6.4 1.1
(& 1.1 9.4 30.4 8.5 28 32
. 0.9 8.5 23.1 9.4 26 2.7
G, 0.2 0.9 7.3 45 37 8.1
@ 0.2 2] 28.0 14 140 10
Cs, 0.1 159 13.8 19 140 73
Cs, 0.1 0.8 9.2 8.0 92 12
S M 80.3 41.9 20.3 0.5 0.3 0.5
Y 41.9 10.0 2.8 0.2 0.07 0.3
S 221 5.0 11 0.2 0.05 0.2
S1, 19.8 5.0 1.7 0.3 0.09 0.3
S, 333 28.0 52, 0.8 02 0.2
S 263 14.7 34 0.6 0.1 02
S5 7.0 iaie 1.8 1.9 0.3 0.1
Ss 42 2.3 6.2 0.6 155 2.7
S, 0.3 0.0 1.2 0.0 4.0 =
S, 3.9 2.3 5.0 0.6 1.3 22
M, 0.9 1.6 6.2 1.8 6.9 3.9
M, 0.2 0.2 2.4 1.0 12 —
M;, 0.7 1.4 3.8 2.0 54 2.7,
A 1.6 <0.1 2.9 <0.1 1.8 >29

(1998a), who found midlevel profiles dominant con-
tributors to total rainfall.

The midlevel profile dominance in rainfall contribu-
tion must be reconciled with prior findings that large
and often deep mesoscale systems contribute a dispro-
portionately large amount of rainfall (Mohr et al. 1999;
Nesbitt et al. 2000; Toracinta et al. 2002). Figure 5b
shows that the median area of precipitation features
containing C, profiles is fairly small, corresponding to
13-17-km diameter storms (assuming circular features).
However, the median weighted area of precipitation
features (counting feature areas the number of times
each profile type occurs within them) peaks for
midlevel profiles, confirming that when large features
occur, midlevel profiles make up a large portion of their
total area. Midlevel profile importance to total rainfall
thus stems from both a large number of “isolated” con-
vective cells and a much smaller number of large fea-
tures, in which many of the midlevel profiles only exist
within (and because of) larger-scale convective organi-
zation and deep convective elements. The present re-
sults simply confirm that surface rain rates below the

deepest, highest reflectivity profiles within these large
systems are not the dominant contributors. Regardless
of the parent storm structure of C, and S, profiles, this
information may be important, as it guides emphasis in
improvement of active and passive microwave remote
sensing correction algorithms and physical retrievals
away from high-reflectivity, deep convective elements
and toward the middle of the spectrum, where even
convective/stratiform separation can be challenging
(section 7). This guidance of emphasis also applies to
field campaign/ground validation studies, where there
is a natural tendency to focus on the deepest, most
intense convective features.

The relevance of warm rain processes can also be
summarized: 19% of rainfall comes from convective
warm rain profiles C,, and 36% of rainfall comes from
C, + G, (profile types that arguably do not contain
significant contributions to rainfall from mixed-phase
growth); 5% (S, ) to 10% (S,) of rain comes from strati-
form warm profiles, with the understanding that some
shallow convective warm rain may be classified as
stratiform given TRMM PR limitations (Schumacher
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and Houze 2003a; Schumacher and Houze 2003b),
which could affect not only 2A23 convective/stratiform
classifiers but also this cluster analysis. Hence 24%-
46% of all rain comes from profiles without indication
(lower bound), or with questionable indication (upper
bound) of concurrent or prior precipitation-sized
mixed-phase growth. Conversely, 54%-76% of all rain
is associated with glaciated column types. All decom-
positions reported here are obviously subject to signifi-
cant regional variability within the TRMM domain
(Fig. 11) and again, reflect only warm-season rainfall
(section 2d).

The final three columns of Table 3 provide further
insight into the process physics associated with each
profile type p. The variables n,, r,, and [, denote the
total number of pixels, amount of rainfall, and number
of lightning flashes associated with each profile type,
and n, r, and [ the respective totals within the warm-
season dataset; N = n,/n, R = r,/r, L = [,/ thus rep-
resent the relative frequency, fraction of total rainfall,
and fraction of total lighting associated with each type,
and R/N, L/N, and L/R thus vary as the mean rain rate
of each profile type, mean number of flashes associated
with each profile type, and number of flashes per unit
rainfall associated with each profile type (each scaled
by an invariant global constant). The value of R/N con-
firms the importance of moderate rain-rate profiles to
total rainfall, given the apportionment of R shown in
the second column.

Here L/N demonstrates that midlevel convective
profiles with comparatively low flash rates make up a
disproportionate percentage of global lightning produc-
tion (the C5: C, ratio of lightning contribution L is 1.7:1,
while the ratio of flash rates L/N is 8.5:1); this is con-
sistent with results by Boccippio et al. (2000) demon-
strating that the flash rate spectrum is heavily domi-
nated by low flash rate storm cells and that regional
variability in total lightning production is dominated by
storm cell occurrence rather than variability in instan-
taneous flash rates. This inference may have relevance
to parameterization of lightning production in regional
or global chemistry models for purposes of NO, esti-
mation, elevating the importance of resolving the
threshold process by which a storm cell becomes elec-
trified and produces lightning, versus resolving the de-
pendency of instantaneous flash rate on storm cell ki-
nematic and microphysical state.

The value of L/R implies two conclusions: 1) light-
ning is most relevant for rainfall estimation for deep
convective profiles (ignoring M and A profiles, which
contribute little to the global total), and 2) the profile-
level “rain yield per flash” ~R/L depends on vertical
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structure. This latter observation has relevance to re-
sults by Petersen and Rutledge (1998), who found that
daily lightning rain yield relationships varied with con-
vective regime. The current results help explain that
finding: the convective regimes of Petersen and Rut-
ledge (1998) exhibit different profile spectra (using the
current classification), and their large-scale rain yields
thus reflect a regime-dependent weighted average of
the profile-level, instantaneous rain yields presented
here.

7. Microwave and lightning properties

As described in section 2b, concurrent passive micro-
wave and lightning data are paired to each radar col-
umn; these can thus be binned by the 25 archetypal
profile types. For the lightning statistics, search dis-
tances of 5, 10, and 15 km from each column were
examined. Additionally, the percentage of time in
which a precipitation feature containing each column
type has lightning anywhere within its bound is com-
puted (i.e., likelihood that a column type occurs in a
thunderstorm complex).

Tables 1 and 2 have shown, for each profile type, the
mean TMI 85- and 37-GHz PCTs (Toracinta et al.
2002) and the mean 37-85-GHz PCT depression [a
metric loosely related to total Ice Water Path (IWP;
Vivekanandan et al. 1991)] within the profile. Note
that because of resolution differences, particularly at
37 GHz, these means may contain a signal from signifi-
cant sub-TMI-pixel variability in the actual column
types.

The complete distribution of profile types within the
37-85-GHz PCT space is rendered in Fig. 14. The same
“frequency-weighted color blending” approach is used
as in Fig. 7; at each PCT pair, the profiles’ color table
RGB values are composited with a weighting given by
each profile’s frequency of occurrence at that pair. In
contrast to the radar principal component decomposi-
tion in Fig. 7, the profile distributions in Figs. 14a.d are
significantly “muddier,” revealing the (known; Grecu
and Anagnostou 2001) fact that the 37-85-GHz PCT
space does not map uniquely to vertical structure. The
ambiguity is worst for warm and midlevel profiles,
where far more common stratiform type profiles
“mask” less common convective profiles in the overall
distribution. The C and S profiles are separated in Figs.
14b,c,e.f (i.e., positing the existence of a “perfect” C/S
separation algorithm operating on high frequency
brightness temperatures).

Within these plots, the suspected wet growth deep
convective profile C, (darkest red) exhibits an unusu-
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FIG. 14. (a)—(f) Profile type distribution within the (85 GHz, 37 GHz) PCT space, over (a)—(c) ocean and (d)—(f) land. Colors
denote a frequency-weighted blending of profile color table entries as in Fig. 7.

ally warm 85-GHz mean PCT. This may reflect the
emission effects of high supercooled liquid water con-
tents aloft (Vivekanandan et al. 1991; Toracinta et al.
2002).

Overlaid on the panels in Fig. 14 (dashes—dots) is
the 250-K 85-GHz PCT thershold used by, for example,
Mohr and Zipser (1996) and Nesbitt et al. (2000) as
an ice-scattering signature and the 190-K 85-GHz
threshold used by Toracinta and Zipser (2001) as a
strong ice-scattering threshold. Also overlaid (dots) are
85- (160 K) and 37-GHz (253 K) thresholds for the
upper 1% of the cumulative distribution function
(CDF) of minimum PCTs in precipitation features,
found by Cecil et al. (2005) (“CAT-2” in their study).
The 190-K 85-GHz strong ice-scattering threshold ap-
pears reasonable; the most common convective profiles
colder than this threshold are Cy and C, (orange and
red), while the most common stratiform types are S;
and M5 (green and olive green). The 250-K ice scatter-
ing threshold is less well defined; significant excursions
of €y, (which is “barely cold” and does not exhibit
strong evidence of mixed phase growth) below this
threshold occur, as well as some excursions of the
deeper C, above it.

The mean PCT pairs for each profile type are plotted
in Fig. 15a. The severe ambiguity between midlevel

convective and stratiform types (e.g., C;, and S, C;
and S, > C,, and S5, r C;, and M) is illustrated. These
exhibit nearly 1dent1cal mean PCT pairs. This ambiguity
can be quite important; within the (C,,, S5 ) pair, the
convective profile contributes 7 times more rainfall
than the stratiform profile, but the stratiform profile
occurs twice as often. The severity of the problem is
underscored by the overall dominance in tropical rain-
fall by midlevel profile contributions (Figs. 6, 11; Ta-
ble 3).°

The difficulty encountered in inferring vertical
structure from high-frequency PCT observations alone
[e.g., the MLR or Pggear vertically integrated hy-
drometeor algorithms of Grecu and Anagnostou
(2001)] is problematic; as an extreme example, the
overland implementation of the TRMM 2A12 rain-
fall product relies solely on 85-GHz brightness tem-
perature. Passive microwave rainfall retrievals using

5 Also in Fig. 15a, many of the shallow and midlevel convective
profiles exhibit 37-GHz mean PCT warmer than similar-depth
stratiform profiles, perhaps reflecting subpixel variability issues
with convective profiles. This may represent disagreement with
studies that find a greater increase in 37-GHz brightness tempera-
tures than at 85 GHz associated with melting layers (Olson et al.
2001a).
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FIG. 15. High-frequency passive microwave and lightning characteristics of the profile clus-

ters. (a) Mean 37- and 85-GHz PCT (bubble size denotes profile frequency in the entire
dataset), illustrating significant convective/stratiform ambiguity for important midlevel pro-
files. (b) Probability that a profile of each type has an LIS-observed lightning flash centroid
within 15 km and probability that a profile of each type occurs anywhere in a thunderstorm
complex (1299 precipitation feature containing lightning). Bubble size denotes IWP, proxied

by the 37-85-GHz PCT difference.

blended physical/statistical retrievals (Kummerow et al.
2001) could plausibly be significantly improved by a
priori estimation of the hydrometeor profile vertical
structure itself. Passive microwave-based profile type
classification could be used as “branch points” in
rainfall retrieval algorithms to constrain the space of
physically plausible scattering/emission paths. The
results shown in Fig. 14 show that at minimum, con-
vective/stratiform separation, perhaps using horizon-
tal texture or polarization information (Hong et al.
1999; Olson et al. 2001b), must be performed. For op-
timal prediction of vertical structure in absence of radar
observations, inclusion of low-frequency passive micro-
wave, lightning, or other ancillary observations (Miller
and Emery 1997; Del Genio and Kovari 2002) as inputs
to a multivariate model would likely be required.

As an illustration of the potential for lightning ob-
servations to assist in convective/stratiform separation
or profile typing, Tables 1 and 2 show, for each profile
type, the likelihood that a column of that type occurs in
a thunderstorm complex, and the probability that a
lightning area (thunderstorm cell center) or flash radi-
ance-weighted centroid falls within 5, 10, or 15 km of
the column. The participation-in-a-thunderstorm com-
plex and flash-within-15-km metrics are plotted and
joined in Fig. 15b, with mean PCT depression (loosely,
ice water path) shown by relative symbol size. Notable
in these plots are the separation of “ambiguous”
midlevel convective/stratiform cluster pairs in their
lightning probabilities. This is a demonstration of how
lightning information might statistically (and expect-

edly) help remove convective/stratiform ambiguity in
passive microwave observations.”

8. Conclusions

This study demonstrates that vertical structure infor-
mation in radar reflectivity profiles is sufficiently
unique to organize the profiles into physically distinct
clusters. Evidence that this organization is meaningful
and useful is provided by the clusters’ coherence in
actual storm scenes, distinct passive microwave and
lightning characteristics, physically intuitive (and some-
times locally very high contrast) geographic distribu-
tions, and significant variability in their frequency of
occurrence and fractional rainfall contribution. The
clusters can be aggregated into more general families of
profiles using joint passive microwave and lightning ob-
servations, as well as radar characteristics not originally
used as profile descriptors (e.g., the mean area of con-
taining storms). A meaningful, reduced multiparameter
description of local convective spectra can thus be con-
structed from the conditional and unconditional fre-
quency of occurrence of these families; the hierarchical

®We posit a nonlinear, multiparameter-input classification
model such as neural network within which the presence or ab-
sence of lightning does not provide deterministic classification,
but simply helps to “nudge” the decision surface between classes
in the right direction. Figure 15b implies that lightning inputs
should benefit such a model, although the quantitative skill gains
could only be verified through full model training and validation.
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clustering dendrogram indicates levels of decomposi-
tion (family specificity) supported by the actual data.
Such convective spectrum descriptions retain vertical
structure information in ways that traditional scalar ra-
dar metrics do not.

Analysis of the relative rainfall contributions from
profile families confirms that 55%-59% of all warm-
season rainfall within the TRMM orbit bounds is asso-
ciated with midlevel profiles. These are often associ-
ated with large systems that contain deep convective
elements, although those deep convective columns
themselves are not primary rainfall contributors. Gla-
ciated column types contribute 54%-76% of all rainfall
(the lower number includes only profiles with evidence
of concurrent or prior mixed-phase growth; the latter
includes all profiles with echo tops colder than 0°C).
Convective warm rain contributes 19%-36%. Convec-
tive-type profiles make up 18% of the sample, contrib-
ute 58% of rainfall, and are most proximate to 77% of
all lightning flash centers. Stratiform and mixed profiles
make up 80% of the sample, contribute 42% of rainfall,
and are most proximate to 20% of lightning (the latter
dominated by MCS stratiform and mixed stratiform/
convective profiles).

Several profile types are identified in which the same
passive microwave 85-/37-GHz PCT pair corresponds
to significantly different radar vertical structure and
surface reflectivity; the worst ambiguity occurs for
midlevel profiles highly important to warm-season rain-
fall within the TRMM domain. Supplementary light-
ning observations provide at least one means to help
resolve this nonuniqueness problem. Use of the profile
typing results can provide a useful tool to subset PM
observations and examine whether, and how, supple-
mentary observations such as brightness temperature
gradients or variance, polarized brightness tempera-
tures or lower frequency observations can further re-
solve the nonuniqueness problem.

This classification scheme can be used to study sea-
sonal variability in local convective spectra, as well as
forcing/response behavior relative to the local environ-
ment. It can also be used to identify convectively “simi-
lar” locations and as one component of an objective
convective regime definition. From the standpoint of
ground validation, profile classification may provide a
useful tool for analysis of systematic biases and errors
in retrieval algorithms [e.g., binning cross-algorithm re-
trieval discrepancies by profile types derived from
ground validation (GV) data (L’Ecuyer et al. 2004)]. As
a data reduction technique, it may have application in
other convective problems of interest (e.g., predicting
lightning occurrence based on radar-only observa-
tions). From a data assimilation standpoint, a vertical-
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structure-based convective spectrum description pro-
vides an objective target for ensemble CRM runs and
prescription of associated latent heating profiles. Fi-
nally, joint passive microwave and lightning observa-
tions could potentially be used to predict a “virtual”
radar reflectivity structure in instances where volumet-
ric radar data are not available. Such a prediction could
be useful in physically based retrieval of rainfall rates
from passive microwave observations themselves.
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