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Exploration of Titan, envisioned as a follow-on to the highly successful Cassini-Huygens 

mission, is described in this paper. A mission blending measurements from a dedicated 

orbiter and an in-situ aerial explorer is discussed. Summary description of the science 

rationale and the mission architecture, including the orbiter, is provided. The mission has 

been sized to ensure it can be accommodated on an existing expendable heavy-lift launch 

vehicle. A launch to Titan in 2018 with a 6-year time of flight to Titan using a combination of 

Solar Electric Propulsion and aeroassist (direct entry and aerocapture) forms the basic 

mission architecture. A detailed assessment of different platforms for aerial exploration of 

Titan has been performed. A rationale for the selection of the airship as the baseline 

platform is provided. Detailed description of the airship, its subsystems, and its operational 

strategies are provided.  

Nomenclature 

cm = centimeter 

kg = kilogram 

km = kilometer 

m = meter 
mm = millimeter 

nm = nanometer 

s = second 

TRL = Technology Readiness Level 

W = Watts 

I.� Introduction 

NE of the fundamental questions in all of science concerns the origin and evolution of life and the occurrence 

of life beyond Earth.  In the search for life in the Solar System, Titan holds a very unique position. Titan 

(radius: 2575 km) is slightly larger than Mercury (radius: 2439 km) and smaller than Mars (radius: 3393 km).  Like 

the terrestrial planets, Titan has a solid surface and a density that suggests it is composed of a mixture of rock and 

ice in almost equal amounts. Titan may provide the details to explain how life formed on Earth very early in its 

history, shortly after the Earth formed 4.6 billion years ago. The evolution of the Earth’s atmosphere and plate 

tectonics have erased any early record of the primitive pre-biological Earth (the Earth’s geological record begins 

with the oldest rocks on our planet, dated to be about 3.5 billion years old, about a billion years after the Earth 

formed).  The appearance on Earth of the first biological or living system, and the subsequent evolution of biological 
systems, were preceded by the process of prebiotic chemistry or “chemical evolution.”  Chemical evolution is the 

formation of the complex organic compounds, the precursors of living system.  It is generally believed, that on 

Earth, chemical evolution occurred very soon after the Earth and its atmosphere formed.  It is further believed that 

the gases in the early atmosphere, including nitrogen, methane, water vapor, molecular hydrogen, etc. were the 

“raw” materials that chemically formed the complex organic molecules, the precursors for the first living system. 
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Our knowledge and understanding of Titan, Saturn’s largest moon, have increased significantly as a result of 

measurements obtained from the Cassini spacecraft following its orbital insertion around Saturn on June 30, 2004 

and even more recently with the measurements obtained during the descent of the Huygens probe through the 

atmosphere and onto the surface of Titan on January 14, 2005.  The Titan Explorer mission discussed in this paper is 

the next step in the exploration of this mysterious world.  The Titan Explorer mission consists of an orbiter and an 

airship that traverses the atmosphere of Titan and can land on its surface. Alternative aerial vehicles considered 
include airplanes and helicopters. Summary assessments of these other aerial vehicles are included in conjunction 

with a detailed description of the airship (baseline) mission. 

NASA selected this study effort to develop mission concepts for the exploration of Titan with a launch in the 

post 2015 time period. Primary emphasis of the study was to develop an integrated mission concept for a Flagship 

Class mission (total cost >$700M). Development of a science basis coupled with integration of the science payload 

into an investigative platform which could be delivered to Titan in a reasonable time period were key facets of this 

study. Detailed results of the study have been provided to NASA’s Science Mission Directorate.1  

II.� Scientific Rationale for the Exploration of Titan 

Characterizing the atmospheric chemistry, measuring the meteorology, and understanding the nature of the 

surface of Titan provide the focus areas of the scientific investigation. A coupled scientific approach, which 

combines orbital measurements with in-situ measurements, has been assumed. Use of an orbiter also reduces the 

overall complexity of returning the scientific measurements from the aerial vehicles. Devising a science strategy, 

coupled with selection of the preferred instruments, is the necessary first step towards developing a mission concept 

to perform the overall study. 

A. Investigation Timing – Assumed Implementation Time Scale 

The NASA Research Announcement indicated the study should consider launch dates after 2015. For the 

purposes of this study, a launch in 2018 was assumed. A technology development (TRL > 6) cutoff date of 2013 was 

also assumed. Using implementation dates such as this allow for detailed analysis of the Cassini/Huygens data to aid 

in defining an appropriate science investigation strategy.  

B. Science Investigation 1: The Atmosphere of Titan 

Titan’s atmosphere may hold answers to chemical evolution on the early Earth.2, 3, 4 Titan is surrounded by a 

thick, opaque orange-colored atmosphere with a surface pressure of 1.5 bars-about 50% greater than the Earth’s 

atmosphere.  Similar to the Earth, molecular nitrogen (N2) is the overwhelming constituent of the Titan atmosphere 

(about 95% by volume), with smaller amounts of methane (CH4) and molecular hydrogen (H2).
5 The stability of 

methane in Titan’s atmosphere is puzzling, since the atmospheric lifetime of methane is controlled by its destruction 

by solar ultraviolet radiation, which is short on cosmic timescales (107 years). Hence, atmospheric methane on Titan 
appears to be buffered or re-supplied by a possible surface reservoir.  

Photochemical and chemical reactions initiated by methane (and nitrogen) lead to the production of numerous 

hydrocarbons of increasing molecular complexity, beginning with ethane, hydrogen cyanide, etc., and leading to 

complex organic compounds such as purines, pyrimidines, and aldehydes, believed to be the chemical precursors of 

the first living systems on Earth.2, 3, 4 The dominance of nitrogen on Titan, gives rise to the rich coupled chemistry 

between nitrogen and carbon. The variety of nitrile species on Titan appears to be unique in the Solar System.  

The early history and evolution of the atmosphere of Titan is a key scientific question. Due to its low 

gravitational attraction (g = 135 cm/sec2), Titan can easily lose atomic (H) and molecular (H2) hydrogen to space. 

With the loss of hydrogen (both atomic and molecular), the production of complex hydrocarbons becomes 

irreversible. Measurements of the isotopic ratios of the carbon, hydrogen, nitrogen and chemically inert gases will 

provide important vital observations on the evolution of the atmosphere of Titan. 

C. Science Investigation 2: Meterology and Circulation 

Titan’s “hydrological” cycle involving the condensation, precipitation and evaporation of hydrocarbons may 

resemble the water hydrological cycle on Earth. Calculations indicate that Titan has roughly 100 times more latent 

heat available for fueling weather than does the Earth’s atmosphere. Recent observations of the presence of clouds 

that form at the tropopause on Titan are evidence for hurricane-sized cloud systems. The nature and formation of the 

clouds, the origin of the large storm systems, and the effects of latent heat on cloud formation and atmospheric 

circulation are unknown.7, 8 
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D. Science Investigation 3: Determining the Nature of the Surface 

Visible imaging of the surface of Titan is not feasible from orbit due to the thick layers of opaque haze and 

clouds in the atmosphere. Hydrocarbon lakes or oceans would serve a similar role as the lakes or oceans on the early 

Earth that led to the production via polymerization reactions of the first living systems. It has also been hypothesized 

that the tropopause of Titan acts as a “cold trap,” where gaseous organic compounds condense out of the atmosphere 

and are, hence, removed from the atmosphere, followed by their deposition to the surface. For example, ethane 
precipitates out of the atmosphere onto the surface producing ponds, lakes or oceans of ethane (or ethane/methane). 

An ethane/methane ocean at the surface may be the source of the re-cycling of methane back into the atmosphere. 

The nature of the surface is best characterized through orbital measurements not in the visible spectrum as well as 

through near-surface, in-situ measurements. 

III. � Science Payload for Titan Explorer 

The Titan Explorer mission concept blends measurements from orbit with in-situ measurements to enable an 

extension of the current and future data sets from the Cassini and Huygens mission. Detailed measurements of the 

atmosphere, particulates in the atmosphere, the chemistry of the atmosphere, and characterizing the nature of the 

surface of Titan, are the basis of the aerial vehicle mission strategy. It is envisioned the aerial vehicle will provide 

almost a global scale set of measurements since its longevity is sufficient to permit at least one circumnavigation of 

Titan. Measurements of the atmosphere and surface of Titan are the primary emphasis of the orbiter. Serving as the 

telecommunications relay to and from the aerial vehicle is the secondary purpose of the orbiter.  

The instruments selected for use in the study focus on providing data necessary to address the science questions 

as shown in Table 1. Detailed performance requirements for the instruments have not yet been derived from the 

Figure 1:  Model of the atmosphere of Titan illustrating mechanisms for the atmospheric 

chemistry.
6
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science questions, however, instruments have been selected that have performed similar measurements and will 

provide enough data (power, mass, volume and data rate) to perform the systems study.  The orbiter and aerial 

platform instruments are described below. Using either existing instruments, or those which can be realized near 

term, reduces the overall risk and provides the performance and mass upper bound for each platform. 

A. Measurements and Measurement Strategy 

Significant advancements in our understanding of the atmosphere of Titan can be made from orbit, however, key 
science questions can only be answered with in-situ measurements. A three-year life is used with the orbiter while a 

minimum 4-month life is used for the aerial vehicle.  A balance between science data, availability of electrical 

power, and ability to transmit the data from Titan to Earth is achieved with the selected mission implementation. 

Further, correlating the science data from the aerial vehicle with a position on Titan form the basis of the airship 

operational strategy.  

B. Orbiter Science Payload 

Science payload for the orbiter consists of five instruments: a solar occultation instrument, a UV spectrometer, a 

Visible and IR mapping spectrometer, two magnetometers, and a radar altimeter.  Summary level details of the 

instrument suite are provided in Table 2. Since the focus of this paper is on the aerial vehicle, the orbiter science 

payload is only briefly described to aid in establishing the overall mission context. 

Table 1: Mapping of Titan Explorer science instruments with the science objectives. 

Platform Measurement Type Science Objective 

Orbiter Solar occultation Determine atmospheric composition and isotopic ratios 

Orbiter Radar Mapper  Determine nature of the surface 

Orbiter Magnetometer  Search for both planetary dipole and surface magnetism 

Orbiter Ultraviolet Spectrometer  Measure atomic and molecular hydrogen escape from the 
upper atmosphere of Titan 

Orbiter Visual and Infrared Mapping 
Spectrometer  

Measure cloud layer, haze layer, and surface 
characteristics (IR) 

Airship Airship Imaging System Investigate surface features, clouds, and haze 

Airship Mass Spectrometer Measure atmospheric composition and isotopic ratios 

Airship Haze and cloud particle detector  Determine aerosol abundance and characterization 

Airship Surface Composition Spectrometer  Determine nature and composition of the surface 

Airship Sun-seeking spectrometer Measure the opacity of the atmosphere of Titan 

Table 2:  Orbiter science payload description and heritage. 

Instrument  Description Heritage Mass 

(kg) 

Power 

(W) 

Data 

Rate 
(kbps) 

Solar 
Occultation 

Fourier Transform Spectrometer. Resolution 
0.02 cm-1. Spectral range of 2 to 13 microns. 

ACE-SCISAT 13 25 115 

UV 
Spectrometer 

Spectral range of 55 to 190 nanometers. Push 
broom configuration with 1 pixel along track by 
60 pixels cross track. Spectral dimension is 
1024 pixels per spatial pixel. 

Cassini UVIS 8 6.5 32 

Visible & IR 
Mapping 
Spectrometer 

Pair of imaging-grating spectrometers. Spectral 
range of 0.35 to 5.1 microns.  

Cassini VIMS 34 27 182 

Magnetometers Two magnetometers – vector/scalar helium and 
fluxgate magnetometers. Both sensors mounted 
on a single 3 m long deployable boom.  

MGS and 
STEREO 

8 2 4 

Radar 
Altimeter 

Altimetry and scatterometer operations.  X-band 
frequency; use 2.6 m diameter X-band high gain 
antenna on orbiter. 

Magellan and 
Cassini 

15 200 1400  



 

American Institute of Aeronautics and Astronautics 

 

5

C. In-Situ (Aerial) Science Payload 

Science payload for the aerial vehicle consists of five instruments: a visible light imager, a mass spectrometer, a 

haze and cloud particle detector, a surface composition spectrometer, and a sun seeking spectrometer. A surface 

science payload allocation is also included in the overall science payload. 

1. Airship Imaging System - Visible Light Imager 

An airship mounted imaging system is used to investigate surface features, clouds, and haze. The Clementine 

Ultraviolet/Visible camera (UV/Vis) was used as the baseline for the study.  The detector and electronics can be 

used with a redesign of the optical assembly.  Calculations were performed to determine the luminence level at the 

surface of Titan. An optics layout was developed using these luminence levels. The Airship Imaging System (AIS) 

consists of two identical cameras. Each camera provides a 45 degree by 45 degree field of view with a detector array 

consisting of 373 by 373 pixels, with each pixel being 0.02 mm. The imager provides a minimum SNR of 450 over 
the wavelength range of 450 to 900 nm. At the nominal cruise altitude of 5 km, the images are a 4 km by 4 km 

image with an approximate resolution of 20 meters. An integration time of 1.9 seconds is needed to achieve the 

desired SNR while meeting the 1/2 pixel smear limit at the maximum cruise velocity of 4 meters per second. 

2. Mass Spectrometer 

Atmospheric composition and isotopic ratios are measured using the mass spectrometer (MS). The Cassini Ion 

and Neutral Mass Spectrometer (INMS) was used as a baseline for the study.  It is intended to measure positive ion 

and neutral species composition and structure in the upper atmosphere of Titan, however, with some minor 

modifications to accommodate the significantly higher density and variability of species, it can ably serve as the in-

situ mass spectrometer. The baseline mass spectrometer for the Titan Explorer can measure mass to charge ratios 

between 1 to 99 AMU’s. 

3. Haze and Cloud Particle Detector 

The lower altitude haze layers and cloud particulates are investigated using the haze and cloud particle (HCP) 
detector instrument. The small probe nephelometer used on the Pioneer Venus mission was used as a reference 

instrument for the study.  The nephelometer can be used to measure the particle size and concentrations and locate 

and characterize UV absorption on the sunlit portion of the planet.  The measurements can be used to document the 

optical properties of the atmosphere to attempt to infer the composition of particulate matter or gaseous absorbers in 

the atmosphere. The instrument contains two distinct, but physically integrated experiments, a backscattering 

nephelometer channel and a two-spectral channel radiometer. The nephelometer comprised of a pulsed laser, a 

detector to measure the scattered light, collimating and collecting optics, spectral filters, and analog and digital 

electronics and power supplies.  The radiometer consisted of a set of detector-filter combinations, optics, internal 

calibration systems and signal processing electronics and power supplies.9  

4. Surface Composition Spectrometer 

The nature and composition of the surface are determined using a spectrometer (SCS). The instrument will 
measure the unique spectral signatures for different molecules or minerals, since they only absorb and reflect certain 

wavelengths of light. By looking at what wavelengths are absorbed and reflected by a material, the minerals on the 

surface can be determined. The MESSENGER Mercury Atmospheric and Surface Composition Spectrometer 

(MASCS) was used as the baseline instrument. A similar design of the MASCS instrument can use ultraviolet, 

visible, and near-infrared spectrometry to search for iron-related minerals on the surface of Titan, as well as to 

profile the distribution of various species with altitude in the atmosphere. The MASCS experiment consists of two 

instruments, a UV/Visible Spectrometer (UVVS) and a Visible/IR Spectrograph (VIRS). A baffled 250 mm 

Cassegrain f/5 telescope focuses light through a common boresight to both instruments. The UVVS consists of an 

Ebert-Fastie diffraction grating spectrometer. An 1800 groove/mm grating gives an average spectral resolution of 

1.0 nm (0.5 nm in the far ultraviolet). The grating is rotated in 0.25 nm steps for scanning. Three photomultiplier 

Table 3:  Airship science payload description and heritage. 

Instrument  Heritage Mass (kg) Power (W) Data Rate 

Visible Light Imager Clementine UVVIS 1.3 5 1 Mbit per image 

Mass Spectrometer Cassini INMS 10 28 1.5 kbps 
Haze & Cloud Particle Detector Pioneer Venus (LCPS) 2.5 20 4 kbps 

Surface Composition Spectrometer Messenger (MASCS) 5 5 5 kbps 

Sun Seeking Spectrometer Galileo (Net Flux 
Radiometer) 

3 11 4 kbps 

Surface Science Payload Not determined 3 -- -- 
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tubes are situated behind separate slits, one covers the far ultraviolet (115-190 nm), one the middle ultraviolet (160-

320 nm), and one the visible (250-600 nm).  The VIRS is designed to measure surface reflectance in the 300 to 1450 

nm band with a spatial resolution of 100 m. The field of view is 0.023 by 0.023 degrees. Light reaches the detector 

through a fused silica fiber optic bundle. A concave holographic diffraction grating with 120 lines/mm and a 

dichroic beam splitter which separates the visible (300 to 1025 nm) and infrared (950 to 1450 nm) parts of the 

spectrum are used to focus the spectra on two detectors. The visible detector is a 512-pixel silicon line array with an 
absorption filter in front of the long-wavelength half to eliminate the second order spectrum. The infrared detector is 

a 256 pixel InGaAs line array which does not require cooling. Spectral resolution is 4 nm and data is digitized to 12 

bits.  

5. Sun Seeking Spectrometer 

Atmospheric opacity of Titan is investigated using the Sun-Seeking Spectrometer (SSS) instrument. This 
instrument can be used to: (1) measure vertical distribution of net flux of solar energy and planetary emission in the 
region of the atmosphere, (2) determine the location of cloud layers, and (3) obtain evidence on the mixing ratios of 
selected constituents and the opacity of low altitude clouds and aerosols in the infrared. The Net-flux Radiometer 

used on the Galileo Probe was used for the study. A multi-channel radiometer measures flux in about 30 degree 
cones alternately centered plus or minus 45 degrees from horizontal. The radiometer has an onboard calibration 
system (two black bodies), a multi-detector array (with channels at approximately 0.3 to 3.0, 0.3 to 2000, 20 to 30, 
30 to 40, and 40 to 60 micrometers), and an array of six pyroelectric detectors.  

6. Surface Science Payload 

An allocation for a surface science payload (SSP) was included in the study. A detailed assessment of the SSP 

was not performed. Allocations for mass as well as data volume were made. It was assumed the aerial vehicle would 

either drop or place this science payload on the surface of Titan. Data return would be by low power UHF and 

would necessitate the aerial vehicle remaining within 100 km of the SSP to receive the data.  

D. Data Collection and Return Strategy 

Science instrument operation on the aerial vehicle is primarily constrained through communications bandwidth. 

A UHF communication system between the orbiter and the aerial vehicle has been assumed to leverage the extensive 
Mars data return heritage. Previous studies assessed a direct to earth link from an aerial vehicle and concluded it was 

feasible. Since this study was considering a Flagship class mission, and it was capable of being launched on a single 

existing, heavy-lift expendable launch vehicle, the mass savings inherent in not having a dedicated orbiter for data 

return were not addressed. Transmission of the data from Titan to Earth was baselined using an X-band system. 

Near term demonstrations of Ka-band for deep space data transmission to Earth will allow for this option to be 

added to the Titan Explorer with a resulting four-fold increase in returned orbiter data volume, however, this does 

not aid in increasing the data bandwidth between the aerial vehicle and the orbiter. 

1. Airship Data Collection and Relay Strategy 

Airship operations are structured around data collection and return with the perspective of correlating the data 

with a surface position. There is a 14-orbit cycle where the airship and orbiter can communicate from 35 to 75 

minutes during each 5.2 hour orbit (1700 km circular orbit, inclined at 100 degrees). Then, there is a nominal 5 day 

period (average) where the airship and orbiter cannot communicate due to the precession of Titan beneath the 
orbiter. These two periods of time are used to define the airship operational architecture. Each of these categories is 

further divided into the time periods when the airship is on the side of Titan which is facing the Sun and when the 

airship is on the side which is not facing the Sun.  

The operational cycle balances the available electrical power and the bandwidth of the UHF relay system. This 

operational cycle is then used to define the peak data storage needed on board the airship to ensure all data is ready 

for transmission when the orbiter is in view. Day-side operations result in a significantly larger data burden. The 

AIS, SCS, and SSS are only operated on the day-side, while the MS and the HCP are operated during both day-side 

and night-side scenarios. Based on the operational scenarios illustrated in Figure 2, the uncompressed data load is 

found to be 9.6 Mbits per hour for the day-side and 6.6 Mbits per hour for the night-side. The operational life for the 

day-side includes the nominal 5 days of no contact with the orbiter plus the final 5 orbits when only navigation data 

is transferred and the first 5 orbits when again only navigation data is transferred. This corresponds to a period of 
173 hours of data storage coupled with 4 hours per orbit during the 4 science data transfer orbits. A total data storage 

volume of 1.81 Gbits (189 hours at 9.6 Mbits per hour) is needed. 

Key science data which requires precise collection knowledge is the data from the AIS and the SCS instruments. 

While these measurements will be collected throughout the mission, those measurements collected during the 73 

hours when the orbiter is providing navigated position updates form the heart of the science data return. Further, the 
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navigation uncertainty is such that 2 orbits before communication starts and 2 orbits after communication ends will 

still either retain sufficient navigated state knowledge, or be able to be corrected on the ground. These measurements 

will be collected during this time (73 hours).  The remainder of the time when the orbiter is out of view, the MS, 

HCP, and SSS data will be collected. It has been estimated that the maximum position uncertainty when the orbiter 

is not providing navigated state updates is approximately plus or minus 48 km 2

2. Orbiter Data Collection and Return Strategy 

Orbiter operations are divided between operations while the airship is active and after the airship operational 

period is complete. While the airship is operational, the focus of the orbiter while overhead the airship is to serve as 

the data relay platform. During the periods when the orbiter is not over the airship, the emphasis is the orbiter 

science payload. The initial 4-months of orbiter operation focus on collecting data from the solar occultation, 

ultraviolet spectrometer, and visual and infrared mapping spectrometer instruments. The magnetometer boom is not 

deployed until after completion of the airship operational period since the boom deployment could pose additional 

mission risk. Use of the radar is limited to operational checkout periods while the airship is operational. The orbiter 

power is provided through four second generation multi-mission radioisotope thermoelectric generators (MMRTG) 

with a secondary battery system for load leveling. Since there is a significant amount of power required for receiving 
the airship data and transmitting the data to Earth, it is judged the radar operations should be limited until the 

additional power burden from airship communications is removed. After the airship operational period is complete, 

then the orbiter science instruments are balanced between the various operating scenarios. 

IV. Operating Environment of Titan 

Operations of an aerial vehicle on Titan require a working knowledge of the atmosphere of Titan as well as 

providing large margins for the design process. Provided in Figure 1 is a nominal assessment of the pressure and 

temperature of the atmosphere of Titan. Specific parameters needed for performing design studies of aerial vehicles 

at Titan are provided in Table 4.  The atmospheric density on Titan varies relatively uniformly from the average 

density at the surface as shown in Table 4 to about 3.5 kg/m3 at the peak operational altitude of 10 km above the 

surface. All atmospheric properties were generated using the TitanGRAM atmosphere model.15      
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 (a) Day-Side Operations (b) Night-Side Operations 

Figure 2:  Airship  science instrument operational sequence. 

Table 4: Comparison of Earth and Titan. 

Parameter Earth Titan 

Diameter 12,756 km 5150 km 

Gravity 980 cm/s2 135 cm/s2 

Average Surface Temperature 288 K 93 K 

Average Surface Pressure 1 bar 1.5 bars 

Average Surface Density 1.24 kg/m3 5.75 kg/m3 

Average Surface Speed of Sound 319 m/s 181 m/s 

Primary Atmospheric Constituents N2 78%, O2 21% N2 97% CH4 3% 
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V. � Comparison of Aerial Vehicles  

One of the most alluring aspects of flying anything on Titan is that it is possible to design an aerial platform 

which is similar to what flies on Earth every day, thereby reducing inherent design risk.  It is reasonable to assume 

any of three types of powered aerial platforms could be flown on Titan: a helicopter, a fixed-wing airplane, or an 

airship. Detailed assessments of each of the platforms were performed as part of this study. The assessment began 

with the selected science payload and their intended operational sequence and data return strategy. Identification and 

selection of the necessary subsystems were performed as part of this study. Cursory assessments of an airplane, a 

helicopter, and an airship have been performed to determine if a closed mission is feasible. Based on the capabilities 

of the selected launch vehicle (Delta IV Heavy), the size and necessary performance of the Solar Electric Propulsion 

Module, and the Orbiter and its aerocapture system, the mass available for the aerial vehicle can be determined. It 
was found that a mass of up to 500 kg is available for the complete aerial vehicle. Meeting the desired lifetime of at 

least 90 days provides additional design constraints for the study. 

A. Airplane 

An airplane would use a propeller driven by an electric motor. An airplane has merit for flight on Titan given the 

high atmospheric density and low gravity. Due to the higher atmospheric density than Earth, the required propulsion 

power at even moderate speeds (>20 m/s) is excessive.10 The need for reduced propulsion power resulted in an 

airplane with long, slender wings (high aspect ratio).  This configuration means multiple folds are needed in each 

wing for aeroshell packaging, thus increasing the deployment risk. Assessments of the propulsive power required for 

an airplane on Titan illustrate the excessive propulsive power which is required.10 Other issues such as the 

propulsive power requirements and how that need is correlated to the power output available from projected future 

radioisotope thermoelectric generators aid in identifying the upper bound between airspeed and mass. An airplane 
also has limited capability regarding surface interaction capability either through repeated take-off and landings or 

deploying payloads. Based on the large propulsive power requirements and the limited surface interaction capability, 

the airplane was judged to not provide sufficient performance capabilities for further consideration. 

B. Helicopter 

Having the capability for repeated surface interactions provides a strong science incentive for considering 

helicopters or Vertical Take-Off and Landing (VTOL) type vehicles. Titan is ideally suited for a rotorcraft because 

of its thick atmosphere and low gravity. This study included a detailed assessment of a helicopter.11  

The baseline helicopter considered was a double-blade helicopter with an ellipsoidal body 2.56 m long with a 

major cross-sectional diameter of 0.77 m. The tail length is 0.75 m. Each rotor has a radius of 1.6 m, allowing the 

helicopter to fit inside the aeroshell without the need to fold. The helicopter is equipped with a four-leg telescopic 

landing gear system that operates much like a piston so the helicopter can remain relatively level regardless of the 
local terrain slope.  A bladder is attached around the body, which is inflated during the initial deployment. The 

bladder will remain inflated throughout the mission, enabling the helicopter to land in liquid methane and still 

remain afloat. The induced drag from the landing gear and the bladder are minimal due to low flight speed. 

Sizing the helicopter propulsion system and ensuring the total power needs (propulsion, subsystems, and science 

payload) are met was the primary design driver. A hybrid system was assessed which couples three second 

generation MMRTG’s with a novel turbo-

expander propulsion system. The turbo-

expander propulsion system uses the waste 

heat from the MMRTG’s to drive a generator 

which is then used to power an electric motor 

and thus drive the helicopter main propulsion 

system.12 The helicopter was sized to meet a 
wide range of mission profiles with the most 

demanding profile being: 1) ascend to 1 km 

above ground level, 2) hover for 1 minute, 3) 

continue climbing to 10 km above ground 

level, 4) traverse up to 50 km of range, and 5) 

descend to the surface and land.  The 

helicopter also was to carry the same science 

payload as the two other aerial vehicles.  

Hover power (853 W) was the mission 

Table 5:  Helicopter subsystem mass distribution. 

Subsystem Mass (Includes 30% 

Contingency) - kg 

Propulsion 13.0 

Communications 37.3 

Attitude Determination and Control 31.1 

Command and Data Handling 16.1 

Thermal 14.0 

Electrical Power 97.0 
Structures and Mechanisms 69.9 

Flotation 4.4 

Sub-total 282.8 

Science Payload 36.0 

Total Mass 318.8 
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parameter driving the sizing of the propulsion system. It was found the hover power equates to a maximum forward 

flight velocity of about 4.5 m/s. A nominal cruise velocity of 2.5 m/s was used. Subsystem mass distribution for the 

helicopter is provided in Table 5. 

C.  Airship 

Preliminary analyses were performed for the three primary aerial vehicles. At the conclusion of that analysis, it 

was evident the choice was primarily between the helicopter and the airship. The detailed assessment of the 
helicopter was performed by a student design team at Georgia Tech,11 while the detailed assessment of the airship 

was performed by the authors. The airship was sized for a similar mission to that of the helicopter (science payload 

and mission duration).  It was concluded the airship provided the lowest risk alternative to meeting the mission 

requirements and was thus selected as the baseline mission. In the interests of brevity, a summary level description 

of the airship is not provided here as a more detailed description follows.  

D. Baseline Aerial Vehicle Selection 

Detailed assessments were performed for the aerial vehicles. The assessments results and how they influence the 

selection of the baseline vehicle are provided.  All three aerial vehicles can be sized to carry the baseline science 

payload. Both the airship and the helicopter have the ability to perform meaningful surface interactions. In addition, 

both the airship and the helicopter exhibit operating modes, which allow for recovery from system failures by either 

hovering (airship), or autorotating to the surface and waiting (helicopter). The final rationale for selecting the airship 

was the reduced complexity associated with the development and implementation of the airship over the helicopter. 
The baseline vehicle selected was the airship. 

VI. � Baseline Mission – Exploration via Autonomous Airship 

A. Airship Description 

The baseline airship (seen in Figure 3) is a non-rigid design with a prolate spheroid shaped gasbag with helium 

as the lifting gas, an internal catenary and suspension system, two internal ballonets positioned fore and aft within 

the gasbag, an external gondola integrally attached to the bottom of the gasbag, a reinforced nose cap, and a four-fin 

tail attached to the aft of the gasbag.  The airship is powered by two (2) electrically-driven ducted propellers 

attached to the gondola via outrigger wings.  These propellers can be vectored in all three axes for accurate station-

keeping and for compensation of wind direction when cruising.  The airship is powered by four (4) second 
generation Stirling-cycle radioisotope thermo-electric generators (SRGs) which are externally mounted to the 

gondola for thermal control purposes.  All science, electrical power subsystem (EPS), command and data subsystem 

 

Figure 3: Airship 3-view drawing. 
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(CDS), attitude control subsystem (ACS), and telecommunications (telecom) components are housed within the 

gondola, with the exception of some control surface actuators, the UHF antennas, and health monitoring sensors.  

Deployment occurs via extraction from the entry aeroshell, followed by a mid-air inflation of the gasbag.   

B. Airship Subsystems 

The design study that was performed included assumptions regarding each subsystem element of the airship. The 

airship mass distribution is provided in Table 6. 

1. Command and Data Subsystem  

A block redundant Command and Data Subsystem (CDS) which includes the main processor and the flight 

software has been assumed. The CDS also includes the solid-state data recorder used to store the science and 

engineering data prior to relay to the orbiter. The airship has a significant amount of autonomy so development, 

implementation, and validation of the flight software imposes a key risk on the proposed mission implementation.16 

A block redundant Integrated Avionics Unit (IAU) employing miniaturized Multi-Chip Modules (MCM’s) has been 
assumed. The CDS includes all cards packaged in a single chassis. Volatile DRAM storage and rad-tolerant field 

programmable gate arrays and ASIC’s employed in the MCM’s have been assumed. Data recording is based on 

assuming all data collected over a complete orbit of Titan about Saturn (15.9 days) is stored on-board. This ensures 

at least 2 opportunities to return the data to the orbiter. This data burden along with an assumed 400% data storage 

margin has led to the identification of a need for at least a 16 Gbits of data storage. 

2. Attitude and Control Subsystem 

Attitude determination and control of the airship is accomplished through a blend of legacy and advanced 

systems. Position, speed, and attitude are determined using flight proven systems and techniques. The primary 

navigation aid during periods when communications with the orbiter are possible is through ranging and Doppler 

from the orbiter. This terrestrially proven technique for in-flight position and speed determination (aka GPS) can be 

implemented using the UHF Transceiver on the airship and the orbiter. Early in the mission (the first 5 to 7 days), 
the accuracy of this technique will be insufficient as the ephemeris of the orbiter will have large uncertainties. As the 

ephemeris of the orbiter improves, then the knowledge provided by this technique will also increase. During periods 

when communications with the orbiter is not possible as well as early in the mission, legacy methods combining 

inertial measurements, direct altitude measurements with radar and pressure, temperature, and winds measurements 

through an air data system will be used. Existing technologies are sufficient for the needed accuracies such that no 

new capability is required. The primary control aspects provided by the ACS are through the propulsion subsystem 

and the tail mounted actuators. The tail-mounted actuators control the tail surfaces used for controlling the lateral 

direction of travel. Vertical control of the airship is provided through the ballonet system such that only venting and 

pressurizing the ballonets to achieve the desired vertical rate of travel is required. 

Table 6:  Airship subsystem mass distribution. 

Description CBE Mass (kg) Contingency (%) Max. Expected Mass (kg) 

CDS 9.4 20.6% 11.3 

ACS 23.5 24.2% 29.2 

Telecom 17.5 24.3% 21.8 

Thermal 15.9 30.0% 20.7 
Electrical Power 64.9 30.0% 84.4 

Inflation 44.3 10.1% 48.7 

Propulsion 10.5 30.0% 13.7 

Vertical Propulsion 4.0 30.0% 5.2 

Airship Hull 50.0 48.4% 75.6 

Airship Tail 8.4 50.0% 12.7 

Airship Gondola 33.6 30.0% 43.7 

Science 23.1 23.5% 28.5 

Science-SSP 3.0 30.0% 3.9 

Total - Dry 309.0 29.2% 399.2 

Helium - Float at 5 km 69.2 30.0% 90.0 

Total Float Mass - Wet 378.2 29.3% 489.2 
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3. Telecommunications Subsystem 

All science and engineering data collected is processed and stored for later transmission to the orbiter. Use of 

omni-directional antennas reduces the control and pointing requirements on the airship thus simplifying the overall 

system. A mono-pole, whip style antenna located on the top of the gas bag has been assumed. Since it is uncertain 

how RF transparent the gasbag will be in the UHF frequency, and mounting the antenna on a deployable platform so 

it can see around the gasbag both provide significant uncertainty and mass penalties, it was judged using the 
monopole antenna was the optimum solution. A block redundant UHF telecom solution has been implemented with 

redundant transceivers. Other constraints for the relay telecom strategy include use of a 10 dB relay link margin as 

well as a 15 degree elevation mask. 

4. Thermal Subsystem 

Titan provides a unique and challenging thermal environment. Atmospheric temperatures are essentially at liquid 

nitrogen levels so that cryogenic design considerations dominate the solution space. Local heaters for the control 

surface actuators will suffice. All of the subsystems are mounted inside the gondola, which serves as a “Warm 

Electronics Box.” The gondola will not be hermetically sealed so that atmospheric gases from Titan will penetrate 

into the gondola. Multi-layer insulation blankets line the inside surface of the gondola. Radioisotope heating units 

and strap-on electrical heaters provide local spot heating for all of the systems and elements requiring heating. The 

SRG’s will be mounted in the gondola in such a way that their radiator fins will extend through the walls of the 

gondola directly into the atmosphere of Titan. A small radiator system will be used to provide a means of dumping 
the excess heat from the systems and the science instruments. This heat-pipe based system will operate with a 

surface temperature of about 40°C and an emissivity of 0.4 with some environmental back loading. The peak heat 

load required to be rejected is about 180 Watts without the propulsion electric motors. It is assumed that the radiator 

can reject about 160 Watts per square meter. This means that a radiator with a surface area of about 1.13 m
2 is 

required. This systems radiator is located on the lower surface of the gondola facing Titan. Mounting of the systems 
onto thermally conductive base plates provides a simple means of removing the heat from the components and 

moving it into the heat pipe system for eventual rejection to the environment of Titan. 

5. Electrical Power Subsystem 

A hybrid electrical power subsystem comprised of 4 SRG’s and a single 12 A-hour Lithium-ion battery is used 

for the airship. One SRG provides a maximum of 95W at end-of-life (EOL) based on 10-years of decay and has a 

mass of 14 kg.  System analysis indicates a maximum power level 470 W is needed, which would lead to a need for 

5 SRG’s. Using a low-level optimization, it is found that the peak power level is a short duration (about 1 hour) and 

lends itself to use of batteries for load leveling. The primary modes requiring batteries are during the vertical descent 

to the surface and during the science mode when contact with the orbiter is on-going. Duty cycle analysis has 

identified the total energy between battery charging is about 3.5 A-hours. Providing a 40% depth of discharge 

coupled with a 30% energy margin equates to a peak battery energy level of about 12 A-hours. 

6. Airship Inflation Subsystem 

The endurance of the airship is directly related to the amount of lifting gas lost by intentional venting 

(vertical/altitude control) and through unintentional diffusion through the gasbag both via seams and other 

protrusions and through the laminate itself.  Estimates of the loss of lifting gas over a given time have been made for 

different gasbag materials.13 These estimates are dependent on the particular gasbag material and its gas retention 

characteristics.  The baseline gasbag and ballonet materials have been selected and the lifting gas reserve of 10.2 kg 

selected so the airship will stay fully inflated at 5 km for approximately 100 days.  As leakage occurs without 

makeup, the gasbag volume will decrease causing the airship to seek a neutral point at a lower altitude. At the 

predicted leakage rate, the airship will slowly descend to the 1 km level within about 50 more days. The inflation 

subsystem uses a single large composite overwrapped toroidal tank for fully inflating the gasbag during the 

deployment phase. Once the gasbag is inflated, then the toroidal tank is isolated, vented, separated, and allowed to 

fall to the surface. Two small composite overwrapped pressure vessel tanks are used to provide the helium used for 
leakage makeup. 

7. Propulsion Subsystem 

The main component of the propulsion group is the propellers. The sizing of the propellers was based on basic 

propeller analysis momentum theory with an airship drag buildup. The propeller analysis was performed over a 

range of blade diameters (meaning the tip to tip length of the propeller, assuming a 2-bladed propeller), available 

powers, and densities (employing the density variations over the operating range) for a given maximum flight speed. 

The sum of the hull, tail, gondola, and miscellaneous drag is the total drag of the airship.  This total drag was used to 

produce a total drag coefficient, which compared quite well to established ranges of this value for terrestrial 

airships.
13 Using the total computed drag for the airship at various altitudes, with the maximum drag occurring at the 

highest density (0 km altitude), it was possible to determine the thrust available. Given a maximum blade diameter 
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of 0.7 m, the power available could be varied until the thrust available equaled the thrust required.  Two design 

points were considered for propulsion sizing. Design point 1 is using a single propeller to drive the airship at a speed 

of 3 m/s. Design point 2 is using both propellers to drive the airship at a speed of 4 m/s.  

8. Vertical Propulsion 

Interacting with the surface, either by performing measurements within close proximity to the surface (a few 

hundred meters) or by depositing an SSP, is a desirable feature of the airship. It has been judged that landing or 
coming in close proximity to the surface is a critical event with the operational constraint of only performing these 

maneuvers when in contact with the orbiter. Operating anywhere between 1 to 5 km altitude is considered normal 

operations which can occur any time in the mission. Descent below 1 km is considered a critical event (descent but 

not operations at that altitude). A maximum descent rate of 25 meters per minute has been assumed. A fan system is 

used to inject atmosphere into the ballonets. Using the atmospheric properties of Titan, the drag on the hull during 

the vertical movement and the apparent mass of the local atmosphere, then 5 m3 change in the ballonet volume is 

needed to reduce the altitude from 1 km to 0 km. It was found that a theoretical fan power of 30 W was sufficient to 

meet the desired descent rates with two fans (1 fan per ballonet, each at 30W) providing a redundant solution. 

Ducting and dampers are used to allow either fan to fill either ballonet (or both) thus providing full redundancy. The 

fans are operated at a constant speed, to reduce complexity, and are duty cycled to meet specific operating needs. 

9. Airship Envelope 

Using the mass and accommodation requirements of the science instruments, then the necessary subsystems can 
be sized. Once the subsystems have been sized and their mass defined, then the sizing of the gasbag, or envelope, 

can be performed. Different lifting gases were considered, but only two reasonable options were available based on 

terrestrial use and performance: hydrogen and helium.  While hydrogen has a slightly lower density than helium, and 

therefore has slightly better performance, its use was eliminated early in the design process due to operational 

liabilities associated with contamination of the science instruments’ measurements.  Therefore, helium was selected 

as the lifting gas.  

One essential parameter that should be mentioned about the gasbag is the differential pressure between the lifting 

gas within the gasbag and the Titan atmosphere.  Suggested values for most modern non-rigid terrestrial airships13 

show that a pressure difference of 125 Pa is sufficient, with a factor added to account for the maximum impinging 

velocity expected during flight (including wind gusts).  Including this factor assuming maximum wind gusts of 30 

m/s gives a minimum pressure differential of 155 Pa.  Due to the cryogenic temperatures on Titan, as well as the 
higher atmospheric density, the materials chosen for the gasbag laminate will be able to withstand differential 

pressures in excess of 300 Pa. 

A diameter to length (d/l) ratio of 0.20 was chosen based on separate theoretical and experimental work which 

pointed to this approximate value as producing the lowest total drag coefficient.13 Gasbag mass was found by 

assuming an areal density of the laminate material used for the envelope material of 0.250 kg/m2 over the hull 

surface area. The other major components of the Hull Group are the ballonets.  As discussed earlier, it is assumed 

there are two ballonets, positioned fore and aft, within the gasbag. The ballonets were assumed to be hemi-spherical 

in shape and to have material areal density 15% less than that of the gasbag (0.212 kg/m2).   

The Tail Group includes the tail surfaces and structure, as well as any rigging and support material.  For the tail 

sizing, the wetted area of the tail was taken to be a function of the total surface area of the hull/gasbag.  This 

relationship is based on the area relationship of the tail to the hull. The hull surface area is then multiplied by this 

ratio to obtain an estimate of the wetted tail area.  The planform area of the tail is then half of the wetted area, 
assuming the tail has flow on both sides.  This planform area is then multiplied by a historically-based value of areal 

density for the tail of 5.9 kg/m2.13 

The Gondola Group represents only the actual gondola structure. The attachment scheme to the hull is 

considered as part of the Hull Group and the internal components housed within the gondola are considered among 

the science instrument group and the internal subsystem components. For this study, the gondola design was not 

explored in detail.  However, an assumption was made for the gondola of a half-cylinder shape, approximately 0.75 

m in diameter and 1.8 m in length (as described above).  This produced a total enclosed volume for the gondola of 

approximately 0.4 m3. Allowing for ~75% internal volume margin (not including the SRGs, which are expected to 

be externally mounted), the total volume of the Titan Explorer Airship would need to be approximately 0.4 m3.  In 

addition to volume, it was necessary to estimate the mass of the gondola structure.  Based on historical data13, the 

typical terrestrial specific mass of 11 kg/m3 was increased by a factor of 7 to a “density” of 77 kg/m3 to account for 
the launch and entry loads typical terrestrial airships do not experience.  
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Table 7. Titan Explorer mission assumptions. 

No. Assumption Rationale 

1 Launch in 2018 Allows newer technologies to be developed. Allows 
full evaluation of Cassini-Huygens data. 

2 Technology cutoff (TRL-6) in 2014  Typical assumption – launch minus 4 years 

3 No special planetary protection provisions Consistent with current NASA policy. 

4 Titan orbit insertion performed via aerocapture. Reduces total launch mass 

5 Low thrust solar electric propulsion to Titan Reduces total launch mass. Eliminates need for large 
launch vehicle. Eliminates need for nuclear 
propulsion. 

6 Single Earth Gravity Assist Reduces total launch mass. Earth provides larger V 
increment than Venus. 

7 X-band as primary data return to Earth Heritage. Provides lower performance bound. Ka-
band or optical are enhancing. 

8 Total radiation dose of 25 krads behind 100 
mils of aluminum with an RDM of 2. 

From JPL Team-X Evaluation of Titan Explorer 

9 Entry Aeroshell 3.75 m diameter, biconic shape with a 70-degree 
sphere cone forebody 

C. Mission Description 

Titan Explorer mission begins with a launch in 2018 using a Delta IV H launch vehicle. The 6-year cruise to 

Titan includes a single Earth gravity assist coupled with a Solar Electric low-thrust propulsion strategy. Arrival at 

Titan yields a direct entry and subsequent mid-air deployment of the airship while the orbiter uses aerocapture to put 

itself immediately into its intended orbit. Specific details and assumptions regarding the mission are provided below 

and in Table 7.  Ensuring a “closed mission,” or one where all aspects work together, including use of existing 
launch vehicles was an underlying theme to the study.  

1. Interplanetary Cruise Phase 

Transit from Earth to near Titan requires approximately a 6-year trip time (launch on 23 April 2018, Titan arrival 
on 17 March 2024). Cruise includes all operations from the end of launch to the start of the approach phase; defined 

as 75 days prior to the arrival of the entry system containing the airship at Titan. Most of the systems are dormant 

during the cruise to Titan. Science is limited in the cruise phase to periodic health checks and calibration activities 

for each of the science instruments. Operations are limited to flying the spacecraft stack and maintaining all 

elements at the desired level of readiness. Communications during cruise are performed through the orbiter truss 

mounted X-band high gain antenna (primary) or the medium gain antenna (backup).  

Two significant events occur during cruise; Earth swingby and separation of the Solar Electric Propulsion 

Module (SEPM). The Earth swingby occurs about 22 months after launch. The Earth swingby occurs while the 

spacecraft is coasting to aid in accurate navigation to meet the current maximum acceptable probability of Earth 

impact to less than 10-6. After completion of the swingby, the ion engines are restarted and the mission continues.  

As the spacecraft stack moves away from Earth (either prior to or after the Earth swingby), the amount of 

incident solar energy decreases so that the number of operating ion engines must be reduced to be commensurate 
with the available energy. A total of five ion-engines are used in the SEPM with a total xenon load of 1057 kg. 

Operation of the ion engines is reduced as the incident solar energy is reduced as the stack moves away from the 

Sun; initially as discrete engine operations, and finally modulated as a single engine. When the stack is at about 5.2 

AU (about 17 months after the Earth swingby), the available solar energy level has diminished to the point where 

the power is sufficient to only power a single engine at 25% of its capacity so that it is no longer effective to 

continue operation of the ion engines. At that time, the SEPM is released from the spacecraft stack. During the 

remaining 30.5 months of the cruise phase (33 months to Titan, with the final 2.5 months being the approach phase), 

the spacecraft is coasting towards Titan. This approach phase is primarily focused on improving the navigated state 

and putting both the airship (in its aeroshell) and the orbiter (also in its own aeroshell) on the desired trajectories. 

Optical navigation (imaging Titan and Saturn), star trackers, and traditional RF techniques are used to improve the 

overall delivered knowledge state.  
About 7 days prior to arrival, the airship in its aeroshell, is separated from the stack. After successful separation 

of the airship entry system, the orbiter system performs a preplanned maneuver, to revise its trajectory to no longer 

be on a direct entry trajectory and to delay the arrival of the orbiter so it can serve as the critical events relay 

platform for the airship entry system. At about 5 hours prior to the start of the aerocapture maneuver, the airship 
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entry system begins its entry into the atmosphere of Titan, corresponding to an orbiter to airship separation distance 

of 110,000 km. The UHF antenna mounted on the orbiter truss is used to receive the airship entry system critical 

events data. This data is collected and stored on-board the orbiter for eventual relay to Earth. After receiving the 

indication of a successful airship deployment and mission start, a tone is transmitted via the orbiter truss mounted 

antennas to Earth indicating successful airship deployment. After continuously transmitting the deployment tone for 

10 minutes, the orbiter is rotated into its final inertial position for performing the aerocapture maneuver.  

2. Airship Deployment 

The airship entry system performs a direct, ballistic entry, into the atmosphere of Titan. A heritage approach 

blending the extensive Mars entry experience with the recent Huygens entry experience and the Cassini 

observational data provides a simple strategy for a robust entry solution. 

At 15 minutes prior to atmospheric interface, the airship thermal control system shifts thermal management of 

the SRG’s heat pipes from the truss mounted radiators to the aeroshell internally mounted phase change material 

heat sinks. The heat pipes going to the truss mounted radiators are isolated and severed, along with the cables to the 

truss mounted navigation and communication devices. Pyrotechnically actuated separation nuts are used to cut away 

the truss. When the airship entry system has reduced its speed to a local Mach number of about 1.1, a conical ribbon 

parachute is deployed using a mortar. When the system has descended to an altitude of about 15 km above the 

surface, the airship is extracted and the inflation begins (see Figure 4). 

The heatshield retaining separation nuts are actuated, however the heat shield is not allowed to fall away. A 
lowering system is used to “lower” the integrated package containing the airship and all of its systems, the airship 

inflation system (including all compressed gas tanks), and the heatshield. This lowering system is attached at the tail 

of the airship envelope. When the lowering system has achieved a separation of at least 30 meters, then the inflation 

of the airship begins. The airship inflation continues until it is about 85% inflated. At that point, the ballistic 

coefficient for the parachute and backshell combination is about twice that of the airship, inflation system, and 

heatshield combination (including the buoyancy provided by the partially inflated airship). A line-mounted cutter 

cuts the lowering line at the tail of the airship. As the airship, inflation system, and heatshield combination falls 

away, the inflation process continues. At 20 seconds after cutting away from the backshell, the heat shield is 

 

Figure 4:  Airship deployment and inflation sequence. 



 

American Institute of Aeronautics and Astronautics 

 

15

released from the airship and its inflation system. The inflation continues until the airship is fully inflated. At that 

point, the main inflation gas storage tank is dropped. Trajectory analysis has been performed to verify that none of 

these falling bodies contact each other during the nominal trajectory. With the heat shield and helium tanks cut 

away, the airship is free to continue with the rest of its deployment. At this point, the airship is fully inflated at an 

altitude of about 8 km. At this altitude, the airship is about 87% buoyant so it will continue to descend until it is 

100% buoyant at the nominal 5 km float altitude. After the airship inflation is complete, the pyrotechnically actuated 
separation nuts retaining the propulsion pods are actuated allowing the two propulsion pods to lower and latch into 

place. At this point, the entry, descent, inflation sequence is complete and the system is considered ready to begin its 

initial checkouts and system verification testing. 

3. Airship Operations 

Airship operations are built around data collection and return with the perspective of correlating the data with a 

location. As noted above, there is a 14 orbit period where the airship and orbiter communicate between 35 to 75 

minutes during each 5.2 hour orbit. After that, there is a nominal 5 day period (average) where the airship and 

orbiter cannot communicate. These two periods are used to define the airship operational architecture. Each of these 

categories is further divided into the time periods when the airship is on the Sun facing side of Titan and when the 

airship is on the side not facing the Sun. The baseline operational architecture consists of an intermittent data 

collection cycle, which is integrated with the relay data return as illustrated in Figure 2.  

The baseline airship will navigate Titan nearly autonomously and will require robust and sophisticated 
navigational control.  Upon deployment from the entry aeroshell and successful inflation, a certain period of the 

early phase of the mission will be spent exercising key airship systems. The general goal of the aerial flight segment 

from an operational perspective is to cover as much of the surface of Titan as possible (global survey) while 

stopping to concentrate on interesting areas.  This approach will be very similar to current Mars rover exploration 

plans, but on a much larger scale.  The airship will proceed along an assigned path, moving with the wind but 

employing its propellers to keep the path somewhat independent of the wind.  This path will be uploaded to the 

airship on a periodic basis – more or less frequently depending on the current activity and its requirement for ground 

operations input.  The strength of wind gusts could obviously affect the airship as it proceeds along its path, 

therefore, the assigned trajectory will have to be corrected in real-time by the on-board guidance, navigation, and 

control system using the propellers, control surfaces, and ballonets. It is expected there will also be autonomous 

obstacle avoidance capability within the navigation system such that the assigned altitude profile can be adjusted to 
account for larger than expected surface features. 

There will be two methods for determining sites of scientific interest which will require the airship to make a 

dedicated survey either by hovering over the area (if possible, given the wind speed), circling about it, or initiating a 

ground interaction.  Prior to the uploading of the assigned airship path, sites along the path can be designated as 

“areas of interest” that will require concentrated effort by the airship.  It is expected in the first instance these areas 

have been discovered either by prior exploration (such as interesting sites previously discovered by Cassini, the 

Huygens probe, or Earth-based measurements) or by the Titan orbiter.  In the second instance, the airship had 

discovered them on a previous pass over or near the area, and having been reviewed thoroughly by the science team 

on Earth, determined to be areas marked for future in-depth exploration.  It is not expected the airship will be able to 

autonomously recognize areas of interest and therefore decide to concentrate on an area in real-time, although this 

level of autonomous technology is worth future investigation. 

Flights between 1 to 5 km above the surface are considered “routine operations” and as such can occur 
regardless of the position of the orbiter. All flights below 1 km above the surface are considered critical events such 

that the airship must maintain continuous communication with the orbiter while the airship is either descending or 

ascending. Operations at the low altitude can occur after the orbiter passes overhead, however, a change in altitude 

will not be performed. Low altitude or surface operations will only occur during the 14 orbit period when 

communications between the orbiter and the airship is feasible. Prior to completing the 14 orbit period of 

communications, the airship will ascend back to the normal float range of 1 to 5 km.  

Correlation of position with the science measurements is essential to increase the validity and fidelity of the data. 

If it is assumed that the airship uses only inertial data for propagating its state during the periods when it is not 

communicating with the orbiter means the IMU needs to propagate the state for a maximum of 6.6 days. Lateral 

position uncertainty throughout the extreme 6.6 day blackout period could be as high as plus or minus 48 km. 

Ground based corrections to the navigated position uncertainty can be performed since a direct comparison between 
propagated position (from the IMU) and the orbiter determined position can be made and back propagated to 

determine exactly where the airship has flown.  
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The crucial vertical channel is resolved through the use of direct surface altitude measurements. Coupling the 

vertical measured data with the propagated lateral position with the orbital radar altimetry data will result in a large 

degree of precision of where the science measurements were collected. 

VII. Conclusions 

An integrated assessment of a science mission to study Titan has been performed. Starting with a set of scientific 

goals and objectives, a set of observations has been defined. Further decomposition to a suite of science instruments 

followed by the details of each platform as well as the essential mission architecture has been defined. 

High level mission requirements as characterized in the original NASA Research Announcement (NRA) were to 

focus on missions whose launch dates were after 2015 and were considered “Flagship” class missions (total mission 

cost in excess of $700 million FY2005). A blend of both existing (or near term) technologies and longer term 
developmental technologies has been assumed to provide a reasonable performance bound. Legacy systems provide 

the ability to define upper bounds on mass, power, volume, and performance which illustrate there are opportunities 

for significant improvement. A key assumption in this study was to only consider existing expendable launch 

vehicles (in terms of available launch energy and the physical integration constraints).  

Various levels of maturity of the design exist within this study. Some new work was performed (primarily with 

the airship and the optional helicopter vehicles) while leveraging various other studies previously performed.14 

Results of the study indicate a combined mission including a long-lived orbiter and a short-lived in-situ aerial 

vehicle (airship or helicopter) can be implemented using existing launch vehicles coupled with either existing 

systems and components or systems currently under development with expected use dates in the 2012 type time 

frame. There are numerous opportunities for either reducing the system mass and power or increasing the overall 

system performance through a more aggressive infusion of newer technologies.  
A preference for the airship based aerial vehicle is found in its reduced implementation complexity as well as its 

greater ability to accommodate the uncertainties of the environment of Titan.  

The results of the study indicate an aerial exploration of Titan is feasible and requires minimal new technology. 

Being able to collect an extended, and potentially global, set of in-situ measurements of Titan will have many 

unanticipated changes in how we view our place in the universe. 
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