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Errata

Page 122, figure D.6. has been changed to read as follows:

X

y

(b)

Figure D.6.—Projection of equivalent stress onto the upper half
of a unit radius sphere in the global coordinate system.
(a) Cauchy stress components on an infinitesimal tetrahedron.
Direction cosines: ¢ = cos o, m = sin o cos 3, n = sin o sin f3;
op = €20, + M?0y, + %G, + 2({MTyy, + MNTy, + Nl1,);
T = (loy + M1y + N1)2 + ((Ty, + MOy + 11,2 + ((Ty, + MTy, + NG,)?—0p2.
(b) Global coordinate system.
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Summary

An analytical methodology is developed to predict the probability of survival (reliability) of ceramic com-
ponents subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This
capability enables more accurate prediction of ceramic component integrity against fracture in situations such as
turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling
situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the
following features:

e Fast-fracture transient analysis (reliability analysis without slow crack growth, SCG)
Transient analysis with SCG (reliability analysis with time-dependent damage due to SCG)

e A computationally efficient algorithm to compute the reliability for components subjected to repeated
transient loading (cyclic or block loading)

e Cyclic fatigue modeling using a combined SCG and Walker fatigue law
Proof testing for transient loads

e  Weibull and fatigue parameters that are allowed to vary with temperature or time

Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull
distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of
multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component
surface (for surface-distributed flaws) or the component volume (for volume-distributed flaws). The transient
reliability analysis capability has been added to the NASA CARES/Life (Ceramics Analysis and Reliability
Evaluation of Structures/Life) code. CARES/Life was modified to interface with commercially available finite
element analysis software, such as ANSYS,' when used to model the effects of transient load histories. Examples
are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

1.0 Introduction
1.1 General Overview

Ceramics are being used, or being considered for use, for a wide variety of high-performance applications that
operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental
prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). To
use these high-technology ceramics successfully in structural applications that push the envelope of materials

'Swanson Analysis Systems, Inc., Houston, PA.
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capability, design engineers must consider that brittle materials are designed and analyzed differently than metallic
materials.

Brittle materials tend to abruptly shatter or fail catastrophically when under load. There is little or no warning
of impending failure because large cracks or damaged areas do not appear prior to rupture (except under certain
circumstances such as excessive compressive loadings). They are also susceptible to damage from impact.
Consequently, ceramic components must be handled carefully to avoid scratching or damaging their surfaces, and
they must be designed to resist damage from the impact of foreign objects as much as possible without severely
compromising performance. The strength from one ceramic component to the next tends to vary considerably, or
even greatly, because of the variability in severity and random distribution of difficult-to-control microscopic flaws
that arise from processing. In addition, the strength degrades over time because of a variety of effects, such as slow
crack growth (SCG), creep, and oxidation.

In ceramics, SCG initiates at preexisting flaws and continues until a flaw reaches a critical crack length,
whereupon unstable crack growth ensues, resulting in catastrophic component failure (Wiederhorn, 1974a). SCG
occurs because of the interaction between the environment and the high-stress fields near the crack tip. This can be
from a chemical reaction between the environment and the material constituents, from temperature affecting the
material constituents themselves, or some combination thereof. For some ceramics, SCG can be exacerbated by
cyclic loading. In this case, repetitive loading and unloading causes irreversible degradation at or near the crack
tip, thereby worsening SCG. In ceramics, SCG or fatigue-assisted SCG proceeds from inherent (existing) flaws.
Conversely, creep rupture occurs because of bulk damage in the material in the form of void nucleation (new flaw
creation) and coalescence that eventually leads to macrocracks, which can then propagate to failure (Grathwohl,
1984). Hence, for ceramics to be successfully introduced in structural applications, life prediction and design
methodologies that account for the various brittle material failure modes and that can calculate the tradeoffs
between service life, performance, and optimized material usage are required.

Because of the brittleness of ceramics and the random nature of their inherent flaws, the lifetime of ceramic
structures is predicted using probabilistic analysis and design methodologies. Several design codes such as
CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures/Life, Nemeth et al., 2003), CERAMIC/
ERICA (Peralta et al., 1996), and STAU (Heger, 1991) have been created. These codes predict the failure
probability of ceramic components subjected to fast fracture and SCG, where fast fracture refers to component
rupture in the absence of SCG and where component strength is strictly controlled by the size, distribution, and
orientation of inherent flaws relative to the imposed loading.

The purpose of this report is to describe a methodology to perform reliability analysis for generalized transient
loading (loads that vary over time—including temperature loading) for fast-fracture and SCG failure modes. This
capability, which is known as transient reliability analysis, has been added to the CARES/Life program. Prior to
this development, the SCG and cyclic fatigue theories in CARES/Life were limited to static loading and simple
constant-amplitude cyclic loading for specific waveforms, such as sawtooth or sinusoidal (Nemeth et al., 2003).
Also, the fatigue and fracture response (i.e., the parameters that describe SCG and the Weibull parameters that
describe the probabilistic distribution of strength) were not allowed to vary over time, so situations involving
fluxuating temperatures could not be properly analyzed.

A number of researchers have contributed to the development of transient reliability analysis methodology
(Paluszny and Nicholls, 1978; Barnett et al., 1967; Jakus and Ritter, 1981; Stanley and Chau, 1983; Mencik, 1984;
Briickner-Foit and Ziegler, 1999a and 1999b; and Ziegler, 1998). Paluszny and Nicholls (1978) described a
generalized algorithm for SCG where they used Wiederhorn’s power law formulation (Wiederhorn, 1974a) to
model SCG and the principle of independent action (PIA) model (Barnett et al., 1967; and Freudenthal, 1968),
which is based on the Weibull distribution (Weibull, 1939a), to predict the effect of multiaxial stress states.
Transient loads were broken into discrete time steps where the load was assumed to be constant over the duration of
the time step. However, Weibull and fatigue (power law) parameters were assumed to remain constant. Therefore,
the effects of fluctuating temperature—where Weibull and fatigue parameters varied over the temperature range—
could not be accounted for. Jakus and Ritter (1981) developed a life-prediction methodology in terms of probabil-
istic parameters for both applied stress and component strength. They assumed that the applied stress varies
according to a truncated Gaussian distribution, and they used the Weibull distribution to model strength. They also
assumed that the Weibull and SCG parameters remained constant with time. Stanley and Chau (1983) described a
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fast-fracture transient reliability prediction for non-monotonically increasing loads. They considered the previous
load history in their procedure such that failure probability never decreased when loads decreased. Mencik (1984)
developed closed-form expressions for reliability with SCG for cyclic loading waveforms such as sawtooth and
sinusoidal. Briickner-Foit and Ziegler (1999a and 1999b) and Ziegler (1998) developed a time-dependent reliability
formulation for three cases: fast fracture, SCG governed by a power law, and SCG governed by a power law with a
threshold. Briickner-Foit and Ziegler accounted for multiaxial stress states by using a methodology similar to
Batdorf’s theory (Batdorf and Crose, 1974; and Batdorf and Heinisch, 1978a). Batdorf’s theory uses principles of
fracture mechanics and assumes that strength-controlling flaws are randomly distributed and randomly oriented
microcracks. In Ziegler’s thesis (Ziegler, 1998) transient reliability was solved such that SCG parameters could vary
with time and temperature. However, the Weibull modulus (a parameter used to describe the degree of scatter in
strength) was assumed to remain constant. This algorithm was similar to that of Paluszny and Nicholls (1978) in
that the power law and Weibull distribution were used and that transient loads were broken into discrete time steps
where the load and material response (Weibull and fatigue parameters) were assumed to be constant over the
duration of the time step. Ziegler included methodology similar to that of Stanley and Chau (1983) to account for
non-monotonically increasing loads.

In this report, transient reliability analysis methodology is developed with the following capabilities:

Fast-fracture transient analysis (reliability analysis without SCG)

e Transient analysis with SCG (reliability analysis with time-dependent damage due to SCG)
Computationally efficient algorithm to compute the reliability for components subjected to repeated
transient loading (cyclic or block loading)

e Cyclic fatigue modeling using a combined SCG and Walker fatigue law (Walker, 1970; and Rahman et al.,
1998)

e Proof testing for transient loads

e  Weibull parameters and fatigue parameters that are allowed to vary with temperature or time

The effect of multiaxial stresses can be predicted with either the PIA or Batdorf theories. This report only shows
the development for using the Batdorf theory. Transient reliability analysis can be performed over the component
surface (for surface-residing flaw populations) or volume (for volume-residing flaw populations). As previous
authors have (Paluszny and Nicholls, 1978; Stanley and Chau, 1983; Briickner-Foit and Ziegler, 1999a and 1999b;
and Ziegler, 1998), we break down transient loads into discrete time steps where the loads and material response are
held constant over the time step. The technique developed herein is based on using flaw strength (as opposed to
crack length) and on maintaining the compatibility of failure probability between discrete time steps. This allows
for the introduction of Weibull parameters that can vary with time and temperature. Allowing for a variable Weibull
modulus (the parameter describing variation in component strength) is useful for materials that show R-curve

behavior (materials where fracture toughness Kj. varies with crack size—typically increasing with crack size) as a
function of temperature. The methods were refined to maintain compatibility with the uniaxial stress state for fast-
fracture (inert strength) failure probability for the Batdorf method. These methodologies have been added to the
CARES/Life code and have been made to interoperate with commercial finite element analysis (FEA) programs
such as ANSYS' (ANSYS, 2004) when transient FEA is performed.

This report describes the detailed development of a generalized transient reliability analysis methodology for
the capabilities mentioned above. This includes appendixes A to E. Appendix A contains the nomenclature for this
report. Appendix B is the numerical algorithm for transient reliability analysis. Appendix C shows an inductive
line of reasoning by which cyclic (repeated) loading is incorporated into the transient reliability formulation in a
computationally efficient manner. Appendixes D and E contain helpful background information for the readers’
convenience. Appendix D is the reproduced theory section of Nemeth et al. (2003). It explains the Batdorf and PIA
multiaxial theories for fast-fracture and time-dependent reliability analysis, as well as the Weibull and fatigue
parameter estimation methodologies. Appendix E reproduces Rahman et al. (1998), showing the combined law
formulation and parameter estimation methodology. This report also includes four example problems (section 3.0):

'Swanson Analysis Systems, Inc., Houston, PA.
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(1) a disk in thermal shock to illustrate fast-fracture transient analysis, (2) a diesel engine exhaust valve simulation
to contrast predictions for cyclic loading and proof testing, (3) the hypothetical effect of changing Weibull and
fatigue parameters over time on the reliability of alumina flexure bars in static fatigue, and (4) transient thermal
shock reliability analysis of Hexoloy SiC tubes.

1.2 Weibull Modulus Variability

The transient reliability methodology described in this report was developed to include SCG and Weibull
parameters that can vary over time and temperature. It is well known that SCG parameters can vary with tem-
perature. There is also evidence in the literature that the Weibull parameters, including the Weibull modulus (scatter
parameter), can vary as well. For example, some ceramic materials—such as silicon nitride (Wereszczak et al.,
1998; and Salem et al., 1992), alumina (Ritter and Humenik, 1979), and zirconia (Munz and Fett, 1999)—have
been reported to exhibit temperature and stress-rate dependence. The CARES/Life program (Nemeth et al., 2003)
operates under the assumption that the Weibull modulus can vary with temperature. A potential mechanism behind
this behavior was described by Kendall et al. (1986) and by Cook and Clarke (1988). They experimentally demon-
strated and theoretically showed (see fig. 1) that the Weibull modulus is influenced by R-curve behavior. Shetty and
Wang (1989), and Munz and Fett (1999) pointed out that, for R-curve behavior modeled with a power law, the
Weibull distribution for measured strengths is different from the hypothetical strength distribution based on the
fracture toughness Kj. treated as a constant with crack size (a flat R-curve). Therefore, the Weibull modulus is not
only controlled by the statistical distribution of the sizes of flaws, but is also influenced by the physics of crack
growth (fracture toughness Kj. changing with crack size).

Various mechanisms may be responsible for the change of Weibull modulus with temperature. Salem et al.
(1992) concluded, “At 1371 °C the failure origins were frequently within the volume, and the Weibull modulus
decreased to approximately 11 from a room temperature value of 19. The increased incidence of volume failure and
lower Weibull modulus were probably due to softening of the glassy secondary phases surrounding large grains, the
healing of surface flaws, and a possible loss of crack-growth resistance.” R-curve behavior can be strongly temper-
ature dependent, and just as importantly, we believe, it can be a reversible phenomena. For example, for materials

100

Weibull modulus, m
—
o

| | | I |
190 01 02 03 04 05 06

R-curve exponent, q

Figure 1.—Relationship between the R-curve and the
Weibull modulus (Cook and Clarke, 1988), where r is
a numerical constant characterizing the geometry of
localized loading, r = 1 for line-force center loading of
a linear crack, and r = 3 for the point-force center
loading of a circular crack. The exponent q character-
izes the rate at which toughness increases. (Copyright
Acta Metall.; used with permission.)
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Figure 2.—Weibull plot of failure probability Ps versus
strength ¢ for bending strength of 12Ce-TZP at room
temperature and 600 °C (Munz and Fett, 1999).
Copyright Springer-Verlag; used with permission.

toughened with an elongated (in situ reinforced) grain structure, grain bridging near the crack tip at room temper-
ature causes R-curve behavior and, hence, the Weibull strength modulus appears to be large (reduced scatter in
strength). At elevated temperatures, softening of the viscous phases between the grain boundaries can mute the
toughening effect and, consequently, lower the Weibull modulus. Lowering from an elevated temperature back to
room temperature resolidifies glassy-phase boundaries, and R-curve behavior reappears—without imparting
additional damage to the material. Transformation toughening also affects the observed Weibull modulus and is
temperature dependent, as shown in figure 2 (Munz and Fett, 1999).

In summary, developing a transient reliability analysis methodology that can include a variable Weibull
modulus is useful for materials that show R-curve behavior as a function of temperature. R-curve behavior may
or may not be a reversible phenomenon as a function of temperature. Transformation-toughened materials show
temperature-dependent (and probably reversible) R-curve behavior through changes in the materials’ crystalline
structure with temperature. Mechanically toughened materials show R-curve behavior through grain bridging near
crack tips. This may or may not be reversible depending on the conditions. For example, crack blunting or flaw
healing could irreversibly alter the response. Repeated cyclic loading could also degrade bridging ligaments in an
irreversible manner. Other examples include high-temperature corrosion (where pits may be generated on the
material surface), oxidation, erosion, creep, and impact damage. It is important to ascertain if the changing Weibull
modulus is due to reversible or irreversible changes in the material because the changing Weibull parameters
become either a function of temperature or time, respectively. The third example in this report (section 3.3) shows
the hypothetical (irreversible) effect of changing Weibull and fatigue parameters over time on the reliability of
alumina flexure bars in static fatigue. This effect is likely due to the crystallization of glassy phases between the
grains.

A limitation of the modeling in this report is that the effect of R-curve behavior on ceramic component relia-
bility is not explicitly considered. Instead, Weibull modulus variability is treated in a phenomenological manner.
However, this still is an improvement over the previous capability and represents a significant step toward having
R-curve modeling explicitly incorporated into transient reliability analysis.

A varying Weibull modulus is directly applicable under conditions where monotonic thermal or environmental
loading take place (where the temperature or environment does not change cyclically). Under such conditions, as
the temperature or environment changes, new flaws could be generated which, in turn, would cause the Weibull
parameters to vary accordingly.

2.0 Theoretical Development

The purpose of this report is to describe a generalized transient reliability analysis methodology for brittle
material components. The authors have tried to make this document as self-contained as possible. This report builds
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upon Nemeth et al. (2003), and for the readers’ convenience, the theory section of Nemeth et al. is reproduced in
appendix D. It is recommended that readers first become familiar with the nomenclature and concepts described in
this appendix. This will make the task of understanding this report substantially easier. In particular, appendix D
should be consulted when readers are trying to understand the Weibull distribution and how it relates to the Batdorf
and PIA multiaxial theories.

The transient reliability formulation depends on finding the amount of strength degradation that occurs to a flaw
from an applied loading over a specified time. The material failure probability over an elapsed amount of time for
an arbitrarily small volume of material (but larger than any embedded flaw) under stress represents the percentage
of the flaw population that has a degraded strength equal to or less than the applied far-field stress at the end of
a specified time interval (at time = #7). We define “flaw population” as a randomly distributed collection of a speci-
fied type of flaw where the size of the flaws, and hence the strength, varies. Since the strength of the strongest flaw

that will (just) fail is known (because its degraded strength at z = #is equal to the applied far-field stress at ¢ = ¢y),

calculations are performed to find the strength of that flaw at the initiation of loading (at # = #;= 0). This inert,
or intrinsic, strength of the flaw is plugged into a mathematical description of the (inert) distribution of flaw
strengths in the material element (in this case, the mathematical description is the Weibull distribution). This last
calculation yields the failure probability of the material element from the applied transient loads. The solution
process essentially involves calculations that go backward in time to solve for an initial condition.

In this methodology, the probabilistic entity is the distribution of inert flaw strengths (strength prior to SCG
at = 0). Crack growth is not treated as a stochastic process. Fracture toughness K. also is not assumed to be a
probabilistic quantity. A justification for this is that since strength (on which this methodology is based) is a
function of both crack size and fracture toughness, then variability in measured strength actually represents the
combined effect of variability in crack size and fracture toughness. So even though stochastic Kj.. is not explicitly
modeled, its behavior is captured phenomenologically in practice.

2.1 Strength Degradation Due to Slow Crack Growth

In this section, an equation is developed to describe how the strength of a flaw degrades over time due to SCG.
This equation requires that SCG parameters are constant over the elapsed time. This establishes the equation of
strength degradation over a discrete time interval and is subsequently used in the generalized methodology for
transient reliability analysis (section 2.3).

The methodology in this report depends on well-known and fundamental relations developed to describe the
conditions necessary to initiate crack growth—a field of study that is known as linear elastic fracture mechanics
(LEFM). Investigations in the area of mode-I crack extension (where the crack surfaces displace perpendicular, or
normal, to the plane of the crack from a far-field stress applied normal to the crack plane) have resulted in the
following relationship (Paris and Sih, 1965):

K; (t) = G(t) Y a(t) (D

where, in the nomenclature of this report, the parentheses with enclosed arguments indicate that the variable is a

function of the enclosed arguments, which in this case means that the variable is a function of time. The term K is
known as the stress intensity factor (at the crack tip), Y is a nondimensional constant that is a function of the crack
geometry (the shape and relative size of the crack), o(?) is the far-field uniaxial stress applied normal to a crack at
time ¢, and a(?) is the crack length at time 7. The geometry factor Y is assumed herein to be independent of crack size
and time (the crack shape is assumed not to change over time, although its size may change over time). Equation (1)
is for pure mode I (the opening mode). Similar relationships exist and are discussed, for example, in Broek (1982)
for mode-II stress intensity factors (the sliding mode—displacement of the crack surfaces in the plane of the crack
and perpendicular to the leading edge of the crack from an in-plane far-field shear stress) and mode-III stress
intensity factors (the tearing mode—where the crack surfaces displace in the plane of the crack and are parallel to
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the leading edge of the crack from an out-of-plane far-field shear stress) stress intensity factors. These factors are
denoted by Kj; and Ky, respectively, for modes II and III.

For a crack arbitrarily located within a solid body experiencing a far-field multiaxial stress state, the equivalent
(or effective) mode-I stress intensity factor is functionally defined as

Kiog(W.1)= 0104 (W,2) Y \Ja(W,1) 2)

where Kj,, is the equivalent mode-I stress intensity factor, c1,(\¥, ?) is the equivalent mode-I far-field uniaxial
stress normal to a crack located at W at time ¢, a(Y, ) is the crack length located at 'V at time 7, and W represents the
location (x, y, z) and the orientation (o, 3) of the crack within the body. In some reliability models, such as PIA, ¥
represents a location only, whereas for others, such as the Batdorf theory, ¥ = (x, y, z, o, ) for volume-residing
flaws and ¥ = (x, y, o) for surface-residing flaws. The subscript eq represents an equivalent quantity. For oy, it
represents the effect of a multiaxial stress state that has the same, or equivalent, effect as a uniaxial stress of
magnitude o applied normal to the crack face.

The critical mode-1I (effective) stress intensity factor K., is defined as the value of Kj., where unstable crack
extension is initiated from an applied far-field (equivalent) stress of magnitude Gy.4c applied normal to the crack
face. Thus,

Kiege(¥,1)= 0100 (P,1)Y yal¥, 1) 3)

where Gy is defined as the (equivalent) mode-I strength of a crack of size a. For pure modes 1, II, and IIT loading,
the critical stress intensity factors are denoted by Kj., Ky, and Ky, respectively. The term K. is known as the
fracture toughness of the material in mode I and is considered to be a material property. The term Kyo4c(\Y, ) is
expressed as a function of ¥ because Kjy is dependent on location and time (that is, it can depend on temperature,

which can be a function of time and location). For an isotropic material, it does not depend on the orientation of the
crack.

The effective stress oy, represents an equivalent normal stress on the crack face from the combined action of
the normal stress G, and the shear stress T on the crack face, oriented normal to o and B (see app. D). Shetty (1987)
performed experiments on polycrystalline ceramics and glass where he investigated crack propagation as a function

of an applied far-field multiaxial stress state. He proposed a multimodal interaction fracture criterion to empirically
fit the data, which takes the form

2
Ky C Ky,
where K denotes the stress intensity factor; K is either Ky or Kyj;, whichever is dominant; and C isthe Shetty

shear-sensitivity coefficient, with values typically in the range 0.80 < C <2.0. As C increases, the response
becomes progressively more shear insensitive. For a Griffith crack with the Shetty mixed-mode fracture criterion,
the effective stress becomes

cleq(\y,z)% cn(\P,z)+\/G%(\P,z)w[r(ql’t)r (5)

aQ
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Equations (4) and (5) are provided to help illustrate the methodology. Appendix D from Nemeth et al. (2003)
gives effective stress relations for other crack geometries and mixed-mode fracture criteria. Equation (5) does not
consider changes of crack trajectory over time. Although this is a simplifying assumption, rigorously accounting for
this effect is computationally complex and intensive. The authors assume that this assumption is adequate for most
cases of transient loading in ceramic materials where critical-sized flaws tend to be small and SCG crack velocity is
low until a crack becomes nearly critical. Two mixed-mode studies using angled grinding damaged specimens
(Salem et al., 1996; and Holland et al., 1999) tended to support the adequacy of this methodology, although more
work in this area is needed using naturally flawed specimens (versus specimens with introduced cracks).

The time-dependent formulation of crack growth depends on modeling the crack velocity. Expressing equa-
tion (3) in terms of crack length yields

Kioge(¥>1)

aV,t)=————— 6
( ) Gzleqc(LP:t)Yz ( )
Taking the derivative of equation (6) with respect to time yields
da(‘P,t) _ _ZKIZeqc(\P’t)|:dGquc(lPat):| (7)
dr Y20}, (¥,1) dr

SCG refers to the stable extension of a crack over time. Similar to stress corrosion in metals, SCG is a result of
the combination of stress at the crack tip and chemical attack or loosening of viscous phases (at high temperature)
such that chemical bonds at the crack tip break or that material displaces and the crack tip extends. The crack length
as a function of time can be expressed as a power law (Wiederhorn, 1974a) with the following form

da(dll;,t) = 4 (‘P,I)Kﬁ(qkp’t)(l{’,t) (8)

where 41(\V, ¢) and N(V, ¢) are time-dependent material parameters that also depend on the temperature and envi-
ronment. These parameters are described as a function of time and location in equation (8) because in a transient
loading analysis the temperature and/or environment can vary with time and location, thus causing them to change

accordingly. For an isotropic material, 41(Y, ) and N('P, ¢) are not a function of orientation. Equating equations (7)
and (8) gives

- 2K126qc (IP’t) dGquc (\Pa t)
Yo}, (W) dt

A (P KN (1) =

)

which, upon rearranging, yields

dGquc (lPaZ) Yzc%eqc (\P,Z)

= AR S (10)

T2k (P1)

Substituting the crack length given in equation (6) into equation (2) and then substituting that result into
equation (10) for Kp, gives
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doege (¥.1) _ A (¥, 1) oM (1) g N2, 1)y 2 (1)

dr ~20i R ()

then

AP K2 ()
-2

G{\e/gj’],t)_3 (lP= t)dcleqc (\P, t) =

N(V,t
o, r)dr (12)
So that equation (12) can be integrated with respect to strength and time, the material parameters N, 41, and
Kjeqc are assumed to be constant with respect to time (within the interval of integration). Therefore, the integration
over the time interval between the initial time #;,; and the final time #g,,, where i, < tgp, 1S

Slege (¥ tin) A (P2 gNO-2(g)
ot (1) (9.1)= [ ok (13)

where N(Y¥), A('Y), and Kjeyo('V), are no longer shown as functions of time, and the limits of integration are the
initial strength, Geyc(‘Y, fine) and the final strength Gyey (', ffin). This integral evaluates to

1

J':ﬁn o {ZSP) (‘P, t) dr N(¥)-2
cSleqc (W’tint ): = B(IP) +G{Z§f)_2 (\Patﬁn) (14)
where the fatigue parameter B is defined as
Al (T)YZ Kleqc (T) [N(\P)_z]

The fatigue exponent N is dimensionless, and the fatigue parameter B has units of stress” x time.
Equation (14) describes how the strength of an initial crack, Giege(\Y, fin), at ¢ = £ine degrades to strength

Oleqc('V, thin) at t = tg, because of the applied loading. The equation does not imply material rupture through
unstable crack growth.

2.2 Stochastic Strength Response

In this section, a relationship is established between the stochastic strength response and SCG. Modeling is
shown for predicting the failure probability of a component under transient loading when the Weibull and SCG
parameters are assumed to be held constant. The Batdorf model for predicting the failure probability response due
to multiaxial loading is also introduced. The Batdorf theory is developed in detail in appendix D reproduced from
Nemeth et al. (2003).

The Weibull distribution (Weibull, 1939a) is typically used to describe the stochastic strength response of a
brittle material. For an incremental volume of material A}V under a uniform uniaxial stress of magnitude o, such that
there is no SCG (i.e., an instantaneous applied load over an infinitesimally small time interval, or a material that
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does not react with its environment), the failure probability Py for the two-parameter Weibull distribution
(Weibull, 1939a) is expressed as

my
Pp=1-Py =1—exp —AV( ° J (16)
‘ Gor

where the strength-controlling flaws are assumed to be randomly distributed in the material volume (volume flaw
distributed), Py is the probability of survival, o, is the Weibull scale parameter, and m is the Weibull modulus
(or the scatter, or shape, parameter). The subscript /' denotes a property associated with the material volume. The
shape parameter m is a unitless measure of the dispersion of strength, whereas the scale parameter G, is the strength, at
a level of 0.6321 probability of failure, of a unit volume of material in uniform uniaxial tension. The scale parameter has
units of stress-volume' ™. This can be understood by considering that, when 6 = 6,y and AV = 1.0, then Py = 0.6321 in
equation (16). The term & in equation (16) actually represents the strength value of a flaw, and the equation is a
statement that the probability of a flaw being present in AV with a strength equal to or less than c is Pyy. For a brit-
tle material, if a flaw is present in A} with a strength equal to or less than o, then catastrophic crack propagation
ensues and the material element (and hence the body) has failed. Equation (16) describes the fast-fracture
probability of failure of the material element AV.

For a uniaxially stressed component where the magnitude of the stress changes depending on the location within
the component, the fast-fracture failure probability of the entire component is

[, om (¥)dV (17)

Py =1-exp| - =
Gor

where o('P) is a function of the location (x, y, z), and not the orientation (a, ), of a flaw within the body of the
component. Equations (16) and (17) represent the failure response at ¢ = £, = 0 (the undegraded, or pristine,
strength distribution of the flaw population).

The effect of SCG on the failure probability of the component can be found by specifying appropriate boundary
conditions for equation (14) and combining that equation with equation (17). In equation (14), the initial strength of

the flaw needs to be found for ¢ = #,; = 0, and it is assumed that the strength of the flaw at ¢ = #5,, equals the applied
equivalent stress at that moment. Therefore, any flaw that exists in the incremental volume AJ located at ¥ and

at t = t;= tgy, with strength equal to or less than Gey (Y, ffin), Will be unstable and will catastrophically propagate.
Here we use the time #/to indicate the time to failure. Equivalently, any of these same flaws that cause failure at

t = ty will have a strength less than or equal to Gyegc(‘V, fint) at £ = £in¢ = 0. This last statement means that Giege(‘Y, fint)

in equation (14), solved for #,; = 0, can be directly substituted for o in equation (17). Performing this substitution
results in

Pl )=1-Pyty)=1-exp R JVGf'ZZ,o(‘P)dV (18)
oV
where
1
Ir _N(¥) N(¥)-2
j Oleg (F,1)ds i
O1eg0(¥) == B0) +om 2 (v ) (19)
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Here, the convention of 61.4,0('Y) = O1egc(*V, fin) 1s used when £, = 0 and PpA#y) is the failure probability at
t = t. This is consistent with the convention of appendix D from Nemeth et al. (2003). Also the equivalent stress
o1eq(\V, 1) at t = tris used instead of the strength o14(V, #). This can be done because G1ey(\, 1) = o140, #y) by
definition of the condition that failure occurs at ¢ = 7. Equations (18) and (19) are shown with equivalent stress
expressions; however, only uniaxial stresses can be used there. These two equations show the effect of SCG and

transient loading on failure probability and require that Weibull and fatigue (SCG) parameters remain constant over
time. When the material parameters N and B vary over the load history, equation (19) must be solved by breaking

the time to failure #7into discrete time intervals, where N and B are held constant over a time interval but are
allowed to vary between each interval. Section 2.3 shows how this is done.

The following is a brief description of the Batdorf methodology. Appendix D from Nemeth et al. (2003) describes
this development in more detail. The following description should be sufficient for the reader to understand how SCG is
incorporated into the Batdorf multiaxial theory. The Batdorf formulation is shown henceforth throughout this report, with
the exception of appendixes B and C.

The Batdorf theory was developed to predict the effect of multiaxial stress states on component reliability (Batdorf
and Crose, 1974; and Batdorf and Heinisch, 1978a). It combines the weakest link mechanism (where the material is
analogous to links in a chain such that the weakest link in the chain causes the chain to fail) and linear elastic fracture
mechanics. It is based on the calculation of the combined probability of a (critical) flaw existing in the material with a
strength equal to or less than the effective stress (determined from the applied multiaxial stress) and having this critical
flaw being located and oriented so that it can cause the component to rupture. When this methodology is used, the fast-
fracture and time-dependent reliability of a ceramic component is expressed as

— mV(‘P)
_ B kgy (V) Oleq,0 ()
Py lts)=exp - J VJQ{—GOV o dQ dv (20)

where kpp is the normalized Batdorf crack-density coefficient for volume flaws, Geq o('F) is from equation (19)

and is the transformed critical strength at # = 0 from the applied effective stress, W represents a term that depends on
the location (x, y, z) and crack orientation (a, ), and dQ = sina da dB. The terms kgy, my, and 6, depend on the

location (x, y, z) and are independent of the orientation (o, ) for an isotropic material. The term Gy, 0('¥) depends
on the appropriate fracture criterion, crack shape, and ¢z The term kg is used in the reliability equation for

compatibility purposes. It ensures that the multiaxial Batdorf theory collapses to the basic uniaxial Weibull equa-
tion (17) in fast fracture when a uniaxial stress state is applied. The constant term 47 represents the surface area of a
sphere of unit radius. Equation (20) is a form of the Weibull distribution.

To calculate a component’s probability of survival, we use results from FEA in conjunction with equation (20).
FEA enables the discretization of the component into incremental volume elements. For enhanced numerical
accuracy, the stress state and volume associated with an element’s gaussian integration points are used. Using the
information associated with the element integration points subdivides the element into subelements, where Vg,
corresponds to the volume of an individual subelement. The stress state, temperature, and environment for each
subelement are assumed to be uniform throughout its volume. In this case, the volume integral is replaced with a
volume summation, and equation (20) takes the following form:

P (i) )= exp| - Zb Visu ,;BV(\P)J {M}my(w)@ o
isub=1 an Q GOV(IP)

isub

where ng,, is the total number of subelements.
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2.3 Generalized Transient Reliability Formulation

In this section the generalized transient reliability formulation is derived. The methodology accounts for
changing Weibull and SCG parameters over time or temperature. The solution approach shows how the reliability
formulation develops for each new time step, beginning with the first time step. In this case, only three time steps
are required before a pattern emerges such that a generalized equation can be written. The methodology shown
subsequently is also applicable to fast-fracture transient analysis.

In the following sections, not all the equations have variables expressed as functions of time ¢ and location ¥
because some expressions would have become too long and repetitive. By now, the reader should be aware of what
parameters are functions of time and/or location and orientation.

So that the time dependence of the loading and material response can be taken into account, the stress history
for each subelement isub is discretized into short time steps A¢;. The applied stress and material parameters (Weibull
and SCG parameters) are assumed to remain constant over each time step, but they are allowed to vary between
time steps. For a given time step j, the applied equivalent stress of a flaw oriented at (o, ) in a given subelement
isub is denoted by oy, j, the temperature is 7}, the scale parameter is 6,y,;, the Weibull modulus is my, the fatigue
constant is By, and the fatigue exponent is Ny ;.

The expression for the inert equivalent strength oy, o from the applied equivalent stress distribution is derived
for the first three time steps of a general fluctuating stress history that a given subelement isub experiences. From
this, a pattern for the inert strength expression emerges that can then be generalized and coded for any arbitrary
number of time steps.

2.3.1 Time step 1.—Time step 1 spans the time interval between ¢ = o= 0 and ¢ = ¢{, and the time step interval
is At; = t] — to. During this time step, henceforth denoted by Az, and for a given subelement isub, the applied
equivalent stress is Gyeg, 1, the temperature is T, the scale parameter is o,,1, the Weibull modulus is my,;, the
fatigue constant is Bgy,1, and the fatigue exponent is Ny,;. The inert strength expression (Gyeq,0)isup for the isub™
subelement corresponding to the first time step is obtained directly from equation (14). In that equation, the stress
history integral existing in the first term within the brackets is evaluated by setting the stress history ce,(‘, #) equal

to a constant applied equivalent stress Gy, 1, the initial time ¢ = #o, and the final time 7= ¢,. This means that the
integral term in equation (14) becomes equal to cf\e’g’llAtl . The inert strength at 7 = £, = 0, denoted by Gjeq 0, 1s then
given by

1

(N -2)

ot (er) (22)

Ny
3 GCleg.l Aty
Gqu,O - BBV |

Denoting parameters as a function of location and orientation ¥ is not shown here, but it is implied. The fatigue
constant for the Batdorf criterion is denoted by Bp. This is the value of B that normalizes the Batdorf criterion to the
uniaxial Weibull criterion shown in equations (18) and (19). See appendix D, section D.2.2.4, reproduced from
Nemeth (2003), for further details. Equation (22) shows the remaining (degraded) strength at the end of time step 1,
denoted by Gjeye 1(#1). The failure probability at the end of time step 1 is found by assuming that the critical strength
of the flaw is reached at the end of the time step. Hence, as discussed in the previous section for equation (19), by
setting the degraded strength term oyey,1(¢1) €qual to the applied stress oy, 1(at £ = #1) during this time step, the
probability of survival expression for the Batdorf methodology is given by

Nsub

my |
. _ o ’
Pyy (11) = exp - > Vi kBV,IJ( qu,o] dQ (23)

isub=1 4n Gor.1
Q isub
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1

Ny 1 Ny -2
Olegi A N, 2 (V-2

qull (24)

c51@(1,0 = BBVl

2.3.2 Time step 2.—Time step 2 spans the time interval between ¢ = ¢; and ¢ = #,, and the time step interval is
Aty =t — t1. During this time step, denoted by At,, and for a given subelement isub, the applied equivalent stress is
Cleq,2 the temperature is 75, the scale parameter is 6,2, the Weibull modulus is my», the fatigue constant is Bgy»,
and the fatigue exponent is Ny . The task is to compute Gy, 0, but to now include the contributions of both time
steps where , = 1.

Using equation (14) and assuming that 1, > is constant over the interval Az, yields an initial strength c1e4¢2(71)
at the beginning of time step 2 of

Ny Ny ,-2
G, 5 At V.2
leq,272 Ny -2
Oregea 1) = |40 (1) (25)
BV,2

To perform the reliability analysis for the two time steps, we assume that the strength of the strongest flaw that
will just initiate failure in the material is equal to the applied stress Gy 2 at #, = ¢ In other words, Gyeye2(22) =
Cleq,2> and equation (25) becomes

N, —
OlogaBta oy |V
Olege,2 (tl ) = By o + Oleq,2 (26)

If the material response does not vary significantly from one step to the next, the initial strength at the

beginning of time step 2, Geqe2(f1), Will be equal to the remaining strength at the end of time step 1, Gyege,1(21).
However, in real applications, changes in temperature and environment are the norm. For such cases, the remaining
strength at the end of one time step does not (necessarily) equal the initial strength of the subsequent time step even
though the crack size does not change from the end of one time step and the beginning of the next. An example of
this would be when K. changes with temperature. One can account for this situation by specifying that the percent-
tage of the flaw population (located and oriented at '¥' in a discrete volume of material) that survives at the end of
one time step will be the exact same percentage that survives at the beginning of the next time step. Notice that

this statement says nothing about strength, loading, or crack size. Rather, it is a statement saying that the survival
probability (or equivalently the failure probability) of a discrete element at 'V at the end of a time step and the
beginning of the next step are equal. In other words, compatibility of survival probability is maintained between the
time steps. This can be done by equating the survival probabilities associated with these two strengths and their
corresponding Weibull parameters. Equating the survival probabilities at the end of time step 1 to that at the
beginning of time step 2 yields
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Nsub My 1
V; — o] ,1(f1)
expl = D, T ka—e‘” } a0
1
Q

isub= Gor.1
isub
isu 27)
Nsub V- _ o] t My 2
Iege,2 \!1
=e&Xp| — Z —zub kBV,ZJI:—eqC’ ( ):| dQ
isub=1 T Gor,2
Q isub

which reduces to an expression that can be solved for Gyeqc 1(\Y, 1), which is local to ¥, and for subelement isub

my 2
my 1
my 2
Glege1(t1) = GOV’ll Otege.2(1) = GoBV,l{GIL’Z(tl)} s (28)
_ my 1 GoBV ,2
(ksy 1) GoV,2
o
_ my 2
(kBV,Z)

Equation (28) provides an expression for the degraded strength at the end of time step 1, Gieqe,1(W, #1), as a

function of the initial strength at the beginning of time step 2, o1e4¢2('Y, 71). Note that, when the Weibull parameters
remain constant, equation (28) collapses to the basic case where the remaining strength at the end of a given time
step is equal to the initial strength of the subsequent step. Also in equation (28), use of the normalized Batdorf

crack-density coefficient kpy is essential to normalize the relationship to the uniaxial stress state. The term G5y
includes the effect of kpy and is used henceforth. This is how the methodology described in this report takes into
account the transience in the Weibull parameters throughout the load history.

To obtain the expression for the inert strength at = 0, we substitute equation (26) for Gie4e2('F, #1) in equa-
tion (28) and then substitute G1eq¢,1(‘Y, 1) in equation (28) into equation (22), with the resulting expression

1

my 2 [Ny 2] Ny -2
NV,] -2 NV,Z NV,]
_ SuBV 1 Ny,-2 Oleq.2 Aty |my, [NV,z —2] Oleqll Aty 5
Gleq,0 = ~ Gleq,2 R — + —L ( 9)
my o /an’l NV,I 2 BBV P BBV |
OBV ,2 > 5

Equation (29), as expressed, can lead to decreasing inert strength as time elapses. For example, if the applied
stress decreases monotonically with time while the material gets stronger, then equation (29) can result in decreas-
ing inert strength as time elapses. This means that when this time-dependent inert strength is substituted in equation
(23), we could predict that reliability would improve as time elapsed. This is obviously incorrect since a structure’s
reliability cannot increase with time. Hence, adjustments to the methodology are necessary to ensure that the
reliability never increases with time.
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The procedure proposed here to ensure that the reliability does not improve with time is based on maximizing
the fast-fracture potential of the applied stresses oy ; of all time steps—that is, finding the applied stress with the
highest potential fast-fracture probability of failure and using a transformed value of that stress as the final strength
of the last time step. In other words, the stress history (all time steps) is transformed in such a way that the material
properties for the entire history remain constant. The material properties during the last time step (step 2) are used to
normalize (transform) the load history. In this procedure, the stress history (all time steps) is transformed using
equation (28) and the Weibull parameters of the last time step (which in this case is step 2). The largest value of
these transformed stresses is also the one with the highest fast-fracture failure probability. This value is then used as
the final strength term of the last time step. In this case for the two-time-step loading history, the applied stress
during time step 1, Gy, 1, is transformed to an equivalent value, Gjey,1 2, that is based on the Weibull parameters
of time step 2 (with the transformed value having the same probability of failure as the untransformed value).
Obviously, the stress during time step 2 remains the same since the material properties of step 2 are used to trans-
form the stresses. According to equation (28), the transformed applied stress of time step 1 on the basis of the
properties of time step 2 is

my
Oleq,l |"Mv.2
Clegl2 =CoBV2|—— (30)
CoBV 1
and this maximization for two time steps is described as
Oleq,2,T max = maX(Gqu,Lz,Gqu,z,z) G

The final strength term in equation (29) is set equal to the maximum transformed stress, Gjeg,2, 7max, Which is

equal to the maximum of either G141 2 OF Gleq2,2. The second subscript in G142 7max indicates that the stresses
during all time steps have been transformed using the Weibull parameters of the last time step (step 2), whereas the
third subscript, 7max, indicates that the maximum transformed stress during all time steps was selected. This
maximization procedure ensures that both stress magnitudes and material properties are taken into account when
maximizing the final strength term in the Gy, o inert strength formulation.

Substituting the maximum transformed stress into equation (29) and subsequently equation (29) into equa-
tion (23), yields the following reliability formula for the entire component at the end of time step 2:

mV,l
N _Mmy,L
Pylr) = exp|~ 3" Vi) | [x, ()] Y2 a0 32
wlta) = expl = D A I (32)
isub=1 n
Q isub
mV,2[NV,1_2]
Ny -2 N, [ ] N,
’ V.2 my 1INy »—2 V.1
Y (‘P) B Oleg,2,T max N Oleg,2 Aty VA2 + Oleq,1 Aty (33)
: (& Ny -2 Ny 1-2
oBV.2 S, BBy S0 BBy

2.3.3 Time step 3.—Time step 3 spans the time interval between ¢ = #, and ¢ = #3, and the time step interval is
At; = t3 — tp. During this time step (A#3) and for a given element isub, the applied stress is oy, 3, the temperature is
T3, the scale parameter is 6,3, the Weibull modulus is my 3, the fatigue constant is By 3, and the fatigue exponent
isN V.3
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For time step 3, a similar procedure to that performed for time step 2 yields the expression for the inert strength
at ¢t = 0. It is assumed that the strength of the strongest flaw that will just initiate failure in the material is equal to

the maximum transformed applied stress G 1¢4,3, 7max at #3 = ¢ The initial strength at the beginning of time step 3 is

1

Np3 Ny 3-2
o, ()= Oleg3®3 | vy o2 ’ (34)
legc,3 2)= BBV 3 leq,3,T max
where the maximum transformed stress is
Oleg,3,Tmax = max(o_leq,l,S »Oleq,2,3501eq,3,3 ) (35)
and
my
GI@CIJ mV‘3
Gleq,j3 =CoBV3 | — (36)
GoBYV,j

The stresses for all the time steps are transformed using the Weibull parameters of the last time step—in this

case time step 3—to obtain G 143, 7max, Which has the highest fast-fracture probability of failure of all the time
steps. The initial strength at the beginning of time step 3 is related to the final strength of time step 2 by

my 3

Gleqc,3 (t2 ) my 2 (37)

Olege,2 (fz ) =GC0oBV,2
CoBV 3

The inert strength, G1eq 0, is found by (first) substituting equation (34) for the initial strength, oye4¢3(22), at the
beginning of time step 3 into equation (37) for the final strength, 61e4c2(22), at the end of time step 2; then (second)
substituting the final strength, G1e4¢2(22), from equation (37) into equation (25) to find the initial strength, oyegc2(11),
of time step 2; then (third) substituting equation (25) for Gy42(#1) into equation (28) to find the final strength,
Glege,1(11), at the end of time step 1; and (fourth) substituting Gye4¢,1(71) in equation (28) into equation (22) to obtain
the inert strength, oy, 0. Performing these operations and rearranging gives

mV,3[NV,2—2]
Ny -2 Ny 22 Ny 3
o _ 0BV 1 OBV 2 oM a2 Oleq 3813 my o[y 5-2]
leq,0 — I T
1 G(mV,2/mV,l)(NV,l_2) G(mV,3/mV,2)(NV,2_2) ¢q.3,1' max Bpy 3
0BV 2 0BV 3
! 38
mV,Z[NV,l_Z] Ny 1=2 (38)
(v ,-2]
Ny, my 1Ly 2 Ny,
Gqu,ZAt2 GIe‘q,lAtl
2 = T
By » Bgy
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The reliability for the entire component at the end of time step 3 is

S V b
P — _ ISU.
sV (t 3 ) exXp l z 4n

Ny 3-2

X] (‘P) _ cSleq,S,Tmax

GoBV,3

my 1

[ a0

Nsub

isub=1 b
LSU.
mV73[NV72—2]
o Ny s At mV,z[NV,rZ]
eq
NV,3 2
Sopir3 Bar3
mV,Z[NV,l_Z]
mV,l[NV,Z_Z]
Ny
Gle Aty .
OBV 2 BV,2

(39)
(40)
N,
o eVl Aty
Ny (-2
Sopir1 Bar

2.3.4 General transient reliability formulation for k number of time steps.—When a comparison is made of
the reliability formulations of equations (23) and (24) for one time step, equations (32) and (33) for two time steps,
and equations (39) and (40) for three time steps, a clear pattern emerges. It can be seen from these functions that the
transient reliability equation (when the change in material response is taken into account) is an ever-expanding
function, which adds nested terms as more time steps are considered. Hence, for & time steps

my |
Nsub v
isub Ny -2
el [
isub=1 n
Q isub
[ mV,k[NV,(k-l)—2]
Ny =2 NV,k mV,(k—l)[NV,k_z]
O g k.T o] At
X, (V) = eq,k,T max eq
cSOBV,k (])VBKVI: k2 BBV k
mV,(k—l)[NV,(k—2)72]
mV,(k—Z)[NV,(k—l)_z] my 2 [Ny 1-2]
Ny (k-1 Ny 2 Ny o—2
O leg, (k- 1) At (k1) N Oleg 22 1[Ny 22
Ny (k-1)— Ny -2
GoBV(k 1) BBV(k ) Sopirn Bro
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where the maximum transformed stress is

cSqu,k,Tmax = maX(Gqu,l,k’ Gqu,Z,k > cSqu,S-,k "“’Gleq,k,k) (43)
and
mV,j
Oleq,j |™v.k (44)

Gleq,j,k = OoBV k [
GoBV,j
where 1 <j < k. Appendix B shows the numerical algorithm of equation (42).

2.3.5 Transient reliability without SCG.—In the case where a component is manufactured using a material
resistant to SCG and thus does not degrade with time, the transient reliability formulation becomes much simpler.
Since the inherent flaws do not grow with time, one simply needs to track the applied stress history and compute the
corresponding failure probability as a function of time.

This analysis is identical to the fast-fracture analysis with the exception that it has to be done as many times as
there are time steps. Hence, a given stress history is broken into short time steps during which the stress, tempera-
ture, and environment are assumed to be constant. Then, the following equation is used to calculate the reliability

Pyy (1)) at the end of each time step j:

_ My j
sub 7. _ (&) .
Z b leg, j
PSV(tj) = eXpy— Z—;{c kBV,j G— dQ (45)
isub=1 ov,j
Q isub

It is apparent from equation (45) that the reliability increases as the applied stress decreases. Although this is
true for instantaneous fast-fracture loading, prudence should be exercised when applying that equation to time-
dependent loading when no damage occurs. For example, if a given component is subjected to decreased loading,
then equation (45) will numerically predict increased reliability for that component as time elapses. However, a
component’s reliability cannot improve with time. Hence, for cases where the loading eases at a given time step,

j + 1 (the computed reliability increases), the reliability is set equal to that at the previous time step. In other words,
decreased loading does not result in increased reliability but keeps it constant. In the case of repeated block loading
when the material does not degrade with time, the transient reliability analysis needs to be conducted for only one
load block. This is because the reliability versus time curves are identical for all load blocks since no damage takes
place.

The authors of this report developed the general transient reliability formulation initially for one, then two, then
three, and finally £ number of time steps. By showing the development of this methodology in a slow, gradual
manner, the authors hope that they have made the task of understanding this work easier for readers.

It is apparent from equations (41) to (44) that the transient reliability formulation depends on the load and
thermal/environmental history. The dependence on the thermal/environmental load history comes from the
sequential order of the exponential term my 4[Ny, (x—1)— 21/my 1[Ny — 2] and the rigid ordering of the nested
terms. When the material parameters, m and /, remain constant with time (temperature and environment do not
vary with time), the exponential terms cancel out. Under such circumstances, the transient reliability becomes
independent of both the load and the thermal/environmental history sequence, and simplification, such as Mencik’s
g-factor approach (Mencik, 1984), becomes possible. It is worth mentioning that the general transient reliability
formulation shows that the g-factor approach is only applicable under the special circumstances of constant Weibull
and fatigue parameters versus time.
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All the derivations shown earlier were based on the assumption that volume flaws control failure. When surface
flaws dominate the failure process, similar equations integrated over the surface area of the component are used to
compute the transient reliability.

2.4 Computationally Efficient Algorithm for Cyclic Loading

In many engineering applications, structural components are subjected to repeated block loading. This section
shows a computationally efficient algorithm to perform transient reliability analysis for repeated cyclic loading. The
algorithm is derived in appendix C. This methodology is shown for power law SCG, as developed in previous
sections of this report.

Before proceeding, the terminology used must be explained. In the analysis in this section and in the proof-
testing sections, a load cycle refers to a segment of the transient load history. Figure 3 shows a schematic diagram
of such a loading history where a component is subjected to Z; number of repeated load cycles. Such repeated
cyclic loading and its damage to the ceramic structural component can be incorporated into the transient reliability
analysis. An example of such a load cycle is the load history acting on a component of an aircraft from takeoff,
through cruising, to landing. This report uses a load block to indicate a collection of several load cycles. Thus, for
the aircraft example, a load block of 10 cycles represents a load history of 10 takeoffs, cruises, and landings.

A Load
toer 2tper Z1tper
< >
Load cycle 1 Load cycle 2 Load cycle Z4
< >
Load block 1

Figure 3.—Repeated cyclic loading. Number of repeated cycles, Z.
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Equations (41) to (44) are computationally inefficient when used to compute reliability for cyclic loading. For
example, if k is the number of time steps in the first load cycle (load cycle 1 in fig. 3), then equation (42) requires
kZ, time steps to calculate a reliability solution for Z; cycles. Obviously, this quickly becomes computationally
intensive when reliability solutions for large cycle counts are desired. As an alternative, the authors developed a
more computationally efficient means to perform this task—which is described in detail in appendixes B and C.
This approximation method allows for a tradeoff between solution accuracy and numerical efficiency. The method
is developed by approximating equation (42) with a truncated binomial series expansion of the form

(x+y)“:xLL +mu—1y+@xu—2)}2 +W}c“‘3y3+... (46)

where x” > yz. When x >> y, the higher order terms in the series become negligible and the series can be
approximated as a two-term expression:

(x+ ) ="+ pxu_l % when x >>y (47)

This approximation of equation (42) is generally valid after a sufficient number of time steps have been
accounted for in the calculation. What that sufficient number is depends on the level of loading, the load history,
and the number of time steps in a block. For example, (1 + 0.01)10 = 1.1046, instead of 1.1000 with equation (47),
and (1 + 0.01)0'1 = 1.0009955, instead of 1.001000 with equation (47). The level of error is on the order of 5 percent
with the two-term approximation. Certainly by 100 cycles, the two-term binomial approximation of equation (42)
would have the y term at most 0.01 the size of the x term. Also, since the exponent is likely to be between the
bounds of 0.1 and 10, the associated error is not likely to be serious beyond 100 or so cycles.

Whereas the previous solution (egs. (41) to (44)) requires £Z; calculation steps per load block with & time steps
per load cycle, the cyclic approximation method of appendix C requires kA calculation steps where A is the number
of load blocks making up the entire load history. The A solution increments are constructed such that

A
Ziotal = ) Z, (48)
=1

where Z, represents the number of load cycles within load block 1. Component survival probability is expressed as

my |

_ _ £ Visub Nya-2
Py (Ziotattr )= expy— Y =22 | (x7)™"77dO (49)
Q

isub=1
isub
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As the number of load blocks A gets smaller (for a fixed number of total cycles Ziqt,1), the computational
efficiency increases, but with some loss of accuracy. A numerical example at the end of appendix C illustrates this
tradeoff. For A = 1, equation (50) simplifies to

Ny =2 my i | Ny x-1)-2)
’ Ny Ny -2
G leq.k, Tmax Oleq.k Ziotal Aty mV‘(]H)[ ri2
Y=l = M.
OBV Sopirk Bari |,
my k- [Ny -2 my 2 [Ny 1-2] (1)
NV (k-1) _ NV,2 _ NV,l
Gqu (k- 1) ZtotalAt(k 1) |"k-2) [NV’(""I) 2] O1ea 2 Ltotal ALy my [Ny 2-2] O1eqil Ziotal Ay
+...+— 4
NV (k-1) B NV2 ZB NV1ZB
oBV(k 1) BV (k-1) OSopro Pr2 5 OoBr,1 PBV.I

(k-1)
1

This equation represents the most computationally efficient solution for repeated block loading. Unfortunately,
there does not appear to be an easy way to make any general statements regarding error. The amount of error
appears to depend on the problem. It is, therefore, up to users to determine if the error associated with equation (51)
is acceptable (see the numerical example at the end of appendix C).

It is important to point out that in equations (50) and (51) the block loading component Z appears within the
individual time steps. Mencik (1984) conversely indicates Z as a multiplier of all the time steps—which is true only
when material properties are constant over the time steps. Therefore, g-factors, as introduced by Mencik, cannot be
used except under constant Weibull and SCG parameters.

2.5 Transient Reliability and Cyclic Fatigue

In this section, the effect of cyclic fatigue (i.e., increased damage due to cyclic loading) is added to the transient
reliability analysis methodology. This new equation assumes that loading amplitude and frequency are constant, and
there is no provision for the effect of temperature history on the load cycle. Thus, this methodology does not model
thermomechanical fatigue phenomena or the effect of a fluctuating (spectrum or random) load history. The Walker
law (Walker, 1970) is used here to model the effect of cyclic fatigue; in particular, it accounts for the effect of
R-ratio (ratio of minimum stress to maximum stress) on crack growth. Overall crack growth is modeled with a
superposed SCG power law and fatigue Walker law. This work is an extension of Rahman et al. (1998) and requires
that the SCG power law fatigue exponent and the Walker law fatigue exponent be equal. Rahman et al. is repro-
duced in appendix E for the reader’s convenience and includes a procedure for parameter estimation of specimen
rupture data.

Subcritical crack growth is a complex phenomenon involving a combination of simultaneous and synergistic
failure mechanisms. These can be grouped into two classes: static effects and cyclic effects. “Static effects” refers to
the slow propagation of cracks under cyclic stresses and can be explained by the same environmental and corrosive
processes responsible for subcritical crack growth under static loads. Previous sections of this report deal entirely
with modeling associated with static effects (e.g., the power law model of SCG shown in equation (8)). Cyclic
effects are functionally dependent on the number of cycles, the peak cyclic load, the range of the stress intensity
factor, and possibly on the frequency of the loading. The subcritical crack growth phenomenon can be caused by a
variety of effects, such as debris wedging or the degradation of bridging ligaments near the crack tip, but essen-
tially it is based on the accumulation of some type of irreversible damage that enhances the crack growth. Not all
materials display cyclic effects. Glasses seem to show only static effects, whereas polycrystalline materials are more
susceptible to cyclic effects—particularly if crack growth is intergranular (around the grains) rather than transgran-
ular (through the grains). Modeling SCG using the power law is well accepted, whereas a standard procedure for
modeling cyclic effects has not been established.
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To empirically account for cyclic effects, the CARES/Life program (see app. D from Nemeth et al., 2003)
implemented the Paris law (Paris and Erdogan, 1963) and Walker law (Walker, 1970), which traditionally have
been used for metal fatigue. The Walker Law is an extension of the Paris law to account for the effect of the stress
ratio (R-ratio) on fatigue lifetime. The Walker law is expressed as

@ - AZK{Z;;%X (W,n) AKI%q (W,n) (52)
p ,

and from equation (2), for the definition of the stress intensity factor,

Kqu,max (lPa n): Gleg,max (111’ n)Y\/ a(‘P,I’l) (53)

AKleq (IP’ n) = [Gleq,max (IP’ n)_ Oleq,min (\P’ I’l)] Y‘V a(\P, ”l) (54)

where 7 is the number of cycles; 4, N, and Q are material parameters that depend on temperature; AKje('W, 1) is

the mode-I equivalent stress-intensity factor range at cycle count n and location/orientation ‘V'; Kjoy max(‘¥, n) is the
maximum mode-I equivalent stress-intensity factor (i.e., the maximum value of Kj., over cycle n at location/
orientation ‘¥'); AKje('V, n) is the range of the mode-I equivalent stress-intensity factor at #n and W¥; 61y max 18 the

peak applied far-field equivalent stress over the cycle; and Gjpg min is the minimum applied far-field equivalent
stress over the cycle. Equation (52) is easily expressed as a function of time by multiplying it by the cyclic

frequency f.:

da(‘P,Z)_f da(¥,n)
dt —Jc dn leg,max

= fudy K0 (w,7) AKE

leq (lP’t) (55)

where, for example, AKjey max(*F, ?) is the maximum value of Kj,, over the cycle n (that is associated with the
particular value of 7) at location/orientation V. It is assumed that [da('V, £)]/d¢ in equation (55) is continuous at
fractions of a cycle: that is, it is assumed that [da(V, £)]/d¢ could be computed for noninteger (real number) cycle
counts.

Rahman et al. (1998), reproduced in appendix E, describes a crack growth law that is a superposition of the
Walker law and the power law (eq. (8)). This equation has the desirable feature for ceramics that, when the loading
is static (not varying with time), the crack growth is not zero. The philosophy behind this approach is that, for
ceramics (unlike metals), cyclic loading enhances environmentally assisted SCG through the processes described at
the beginning of this section. Adding equations (8) and (55) yields the equivalent mode-I crack extension for a
superimposed power law and Walker law:

da(lP’t):AlKNl (P,1) + fuda K20 (W,1) AKE

dr leq leq.max iog (V1) (56)

where A1, A>, N1, N>, and Q are material constants that depend on the temperature and environment.
The g-factor (Mencik, 1984) (defined for constant material parameters versus time) is

t

per N
g(lP)I 1 [ Gqu(IP’t))] dt (57)

0 Gleg, max (
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where #,¢; is the period of the cycle. The crack-growth rate in equation (56) can be reexpressed with the g-factor as

da(¥P,
"(dt ) = A g(¥, t)Kleq na (F51) + fo(P,045[1- R(P, z)]QKleq i (Po2) (58)
where the R-ratio is defined as
i (W
R(w.1) = Steamin(F>0) (59)

G leq,max (\P:Z)

The terms g(\¥, 1); AKjegmax(‘Y, ); (', 0); R(Y, 1); O1egmax(‘Y, 1); and Ojeg min(‘Y, 7) are indicated as a function of
time, although they are assumed to be constant values over the period of any given cycle n. Examining equation (58)

shows that 4 g(‘I’ t)K I e; max (‘P,t) is an equivalent static (non-time-varying) term that produces the same amount

of crack growth as the periodic cyclic stress distribution over the period of the cycle.
A strength degradation equation analogous to equation (14) can be obtained from equation (58). By comparing
equations (58) and (7) and noting that

Kqu,max (\P:t) _ Gqu,max (lPat)

= (60)
Kleqc(t) Gleqc(qlat)
we can show that, analogous to equation (11),
2 Nz
dojege (Y, t) 53 Y leq,max (\P: t)
—legel 7o) IS B RPN (V7 —epmaxi >/
dr le eqe ( t)|:— 2K1eqc (f):| lg( ,t) Icqc (t)l: Glegc (\P,t)
(61)
N,
¥,1)
¥, )4, [1 - R(P, )2 K Tegmar (¥-1)
+fc( [) 2[ ( t)] quc([)|: Gquc(\Pat) :l

Following the separation of variables o1, and ¢ in equation (61), it is theoretically possible to calculate the initial
and final strength over a given time interval. However, no closed-form explicit solution exists using equation (61)
directly. A closed-form solution is desired to minimize the amount of computation involved with the reliability
analysis that is coupled with results from finite element models. A closed-form solution can be obtained if it is
assumed that the fatigue exponents for static and cyclic fatigue are identical. If Ny = N, = N, equation (61) can be

solved analogous to equation (13) over the time interval £ to #fy:

Gleqc (LP Ifin )
‘[ o310 (¥.1) =

Gleqc' (\P’tint) (62)

Lfin

bt ) (PR el )|

fint

In arriving at equation (62), we assume that the material parameters 41, 4>, N, and K, are constant over the
time interval. The integral, similar to equation (14), evaluates to
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1

o () ) 22 R ) e
S tege (¥ fint ) = B +Gﬁ§c F2(@, 16n) (63)
where
B(¥)= 2 (64)
A (\P)YZKqu:P)_Z[N( ) 2]

Equation (64) is actually identical to equation (15), the value of B(') for the power law. The convenient form
of equation (63) considerably simplifies the task of estimating the model parameters from cyclic fatigue specimen
rupture data (see app. E from Rahman et al., 1998). Because equation (63) uses a single fatigue exponent N, the
equation’s form makes cyclic loading appear to assist power-law crack growth. In other words, the equation appears
to model the underlying mechanism of crack growth as a time-dependent (not cycle-dependent) process, and the
effect of cyclic loading is only to enhance time-dependent crack growth. Also, note that there is nothing in equa-
tion (63) that prevents making the parameters 41, 4, N, B, and Q functionally dependent on the frequency.

For the Walker law by itself (independent of the power law), equations (63) and (64) become

1

N( 1-R(Y¥Y Q(l{l) in — Min W
Oleg, max( )[ B((lP)i (nf Mint ) + Gﬁg)_z (\P, Rfin ) (65)

Oleqc (IP’ Nint ) =

where

2
) R ()] (©0

and where njy is the initial number of cycles and ng, is the final number of cycles. The terms M(¥), B(V), and O(V)
are determined from cyclic fatigue experiments. (See app. E from Rahman et al. (1998) for an example.)

Equations (63) and (65) assume that material properties are constant over the time interval between #,; and #,.
The process of extending these equations to account for changing material parameters over time and temperature
is identical to that of equations (22) to (51) and, hence, is not repeated here. Instead, it is shown that equation (63)
can be presented in the same general form as equations (22), (25), and (34). Therefore, since equation (63) has the
same form as equations (22), (25), and (34), the procedure to generalize equation (63) for discrete time steps and
changing material parameters must be the same as that previously described in sections 2.3 and 2.4.

Assume that the loading cycle is broken into & discrete time steps where the material parameters and loading are

assumed to be constant over the duration of each time increment. For the jth time step,
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Gqu,j Al

Ny, Ny =2
. c A J
G?elg;jj 14+ fc[ Teq,max } (2J (1 _ R)QV,j At
v, _
: vonel (1) 67)

Clege (f(j—l))= B,
5J

where 1 <j < k and use of the location and orientation parameter ¥ is dropped. Notice in equation (67) that the
bracketed term involving the R-ratio is not history dependent. That is, regardless of the value of G1eg,max/Cleq > the
contribution of the term in square brackets containing the R-ratio will be the same. Therefore, equation (67) is not a
true thermomechanical fatigue criterion for ceramics.

Equation (67) can be generalized as

Ny, Ny -2 Ny,j Ny =2
( )_ Oleq {Uj }Atj NV,,—z( ) PITT | Oreg Mleg,j NV,j—z( ) Vol
Olege t(.f—l) - By ; +Gleqc tj - By ; +Gleqc tj (68)
y J
where
o] . 4,
Atogj =UAt; =|1+ f| —2T% = (1-R)? (At (69)
Gleq,j A, v,

The term At ; is an equivalent time increment for time step j. Equation (68) is in a form that is identical to that
of equation (14)—for a constant applied load—and to that of equations (22), (25) and (34). Because equation (63)
can be generalized as a power law expression for SCG, the methodology developed for the power law in sections
2.3 and 2.4 also applies here. Consequently, showing the generalized transient reliability formulation development
for equation (63) would be redundant. Instead, only the final formulation is shown; that formulation is analogous to

equation (51) for k time steps that define a single cycle and for 7 total cycles (so that n #; = n t,¢, is the total time).
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where the R-ratio is determined as

_ min(Gqu,laGqu,Za---,Gqu,k) (71)

max (Gleq, 1>O01eq, 25-++5O1egq, k)

R-ratio is related to AKj,,, shown in equation (54), which depends only on the applied stress, the crack size a, and

the geometry factor Y. It does not depend on any material property such as Kj.. Hence the R-ratio is only related to
the applied stress and is independent of any other temperature- or environment-dependent parameter.

Equation (70) represents the most computationally efficient form for solving the reliability equation (49) for
cyclic loading. The analogous formulation, similar to equations (48) to (50) for A load blocks, is not shown because
of the large size of the resultant equation; equation (70) should be sufficient to illustrate the methodology.

2.6 Generalized Transient Reliability Formulation for Proof Testing

In this section, the effect of proof testing is incorporated into the generalized transient reliability formulation
for power law SCG. For the sake of brevity, the analogous formulation for the combined Walker-power law is not
shown. We recommend that readers first review the proof-test methodology for static loading that is described in
appendix D reproduced from Nemeth et al. (2003). This will help readers to understand how this methodology is
applied to transient loading, where fluctuating temperatures may affect the material response (i.e., changing SCG
and Weibull parameters) over time.

A proof test assesses whether or not a given ceramic component can survive in conditions similar to or worse
than what would be expected in service. The proof test is performed prior to placing the part in service, and it
increases the likelihood that the part will survive over its intended service life. Proof testing is performed on all
parts, and those parts that survive the test without apparent damage are placed in service. In other words, the
weakest components should fail in the proof test, leaving the stronger components to be used in the service
application. The proof test should closely simulate the worst expected service loads, where the proof loads are
designed to be appropriately greater in magnitude and applied in the same direction or directions as the service
loads. In addition, the proof test should be of short duration to avoid or reduce damage to the part from SCG and
handling. Components that survive proof testing should have a higher inservice reliability than components that are

not proof tested. The components that survive the proof test should display a predictable minimum service life ¢,
where no failure should theoretically occur.

The “attenuated” probability of failure Py, assuming a volume-flaw failure mode, of a component surviving

proof testing over time #, and subjected to operational (service) loading over a time interval 7 is

PsV(fq) _ PsV(fp)_ Pyy (Zq)
Pyl,) Pl

Pray (tq)= 1- PsaV(tq)= - (72)

where ¢, = 1, + ;. The term Py(t,) is the probability of survival of a component subjected to a proof test over a time
interval denoted by 7,. The term Pg(%,) is the probability of survival of a component subjected to a proof test over
time interval #, and service loading over the time interval ;. From equation (72), the inservice reliability of the
survived components Pg,p(Z,) increases as the ratio of the proof-test stress to the service stress increases. This is

because the proof-test reliability Py)(#,) decreases as the proof-test load increases.

Because the Batdorf multiaxial methodology is used, the computation associated with equation (72) is not
performed at the component level, but rather is performed at W¥—a given location (x, y, z) and flaw orientation
(o, B). This enables computing the reliability for the situation when the proof-test loading does not mimic the
service loading. For example, the attenuated reliability can be computed for the case when the proof-test load and
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service load are misaligned or applied in different directions. Appendix D reproduced from Nemeth et al. (2003)
gives further details of using the Batdorf theory with proof testing.

The transient proof-test methodology developed herein is based on taking the applied transient stresses and
describing them as an equivalent static stress applied over an equivalent time. The magnitude of the equivalent
static stress is set equal to the peak stress found over the history of the proof-test and service life. The weakest
(lowest strength) flaw that could survive the proof test (at V) is assumed to be of a strength just greater than the

peak applied proof-test stress at £ = #,. As a result, this methodology does not consider the circumstance where the
weakest flaw that could survive the proof test is lower in strength than the peak proof-test load at the end of the
proof test (at ¢ = ,). This circumstance is considered herein as an unusual (and poorly designed) situation that can
occur only if significant SCG occurs during the proof test and if the magnitude of the proof-test load systematically
(and slowly) decays toward the end of the proof test. A well-designed proof test is of short duration, and unloading
is performed quickly so that SCG and, thus, damage to the component are minimized. In that (typical) scenario, a
component does not survive the proof test if its weakest flaw (at '¥') has a strength (significantly) less than the peak
applied stress. It is subsequently up to users to determine which of these situations best describes their proof test
and if the methodology described herein is appropriate for their situations. Figure 4 is a schematic of the proof-test
and service loading scenario that this methodology attempts to account for.

Load
A
Load Load Load block Load
block 1 block A A+1 block y
<4“—P —r < > P
1 //\ v >
\} \} \J Time
PP —r < g D E—
Load Load Load Load Load Load Load
cycle cycle cycle cycle cycle cycle cycle
1 2 zp,’to'tal 1 2 3 Zs,total
< Proof test > Service load history >

Figure 4.—Proof-test and service loading versus time. Note, each load block is shown spanning an
arbitrary number of load cycles.
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In this solution methodology, the proof-test and the service loading are described with a total of y load blocks.
Of this total, 2 load blocks are for the proof test and y — (A + 1) load blocks are for the service load. The term Z, yoal

represents the total number of proof-test load cycles, and Z ) represents the total number of service load cycles.

A
Zp,total = Zzp,L (73)
=1
Y
Za,total = ZZS,S (74)
O=A+1

The term Z,, , represents the number of cycles within proof-test load block 1, and Z; 5 represents the number of

cycles within service load block 8. The equation for the survival probability for the proof test Psj(?,) is straight-
forward and is identical to equations (48) to (50), except that it is shown here with different subscripts representing
the proof-test conditions. The component survival probability Pj{%,) at the end of proof testing is

my 1

Nsub

Pliy)=exp| - Y Hint J b, ()]} a0 (75)

isub=1 4n Q
isub
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The proof-test time steps are from 1 to «, and the service time steps are from k + 1 to {. Substituting equations
(75) and (78) into equation (72) yields the expression for the attenuated survival probability:

Nsub

Purlty)=exp| Y Vj—f’ [, ()" =[x, ()] L () do 81)
isub=1

Q isub

The Heaviside function H(*Y') in equation (81) was originally used in Nemeth et al. (2003) (see app. D) for static
loads and constant Weibull and fatigue parameters. Its use here requires expressing variables in terms of equivalent
peak static loads and equivalent times. Equivalent time is the comparable time interval for a static load situation that
has the same amount of crack growth (or same reliability) as the actual transient load situation. The Heaviside
function H(YW) in equation (81) is used, where

H(WY)=1 if cTqu,l,Tmax,s(\P) 2 cSqu,l,Tmax,p(lP)
otherwise, if

Oleq,1 ,Tmax,s(q") < Oleg,1 ,Tmax,p(\P) (82)

then

H(\P) =1 if tmin,l,es(\P) < tq,l, es(\P) - tp,l, es(\P)

and

H(\P) =0 if tmin,l, es(\P) 2 tq,l, es(\P) - tp,l, es(\P)

Figure 5 is a schematic diagram showing the relationship between the terms in equation (82). The Heaviside
function accounts for fpjy 1, ¢s('¥), the minimum effective service time interval during which reliability cannot
decrease on the basis of the properties of time step 1. It is obtained by satisfying the condition PgjA?,) = PgjA1y)
locally at ¥ (see eq. (72)). For the whole component, 7y, 1 5 denotes the minimum value of #yin 1 ¢s () when
evaluated for all . If at any location the component proof-test stress level is less than the service stress level, then
an assured minimum effective lifetime #yiy 1 o; does not exist and the component cannot be assured to survive for
any given time during service loading. Note that #,;, as used here would denote the real service time equivalent of

Imin,1,es TOT the transient loading condition. The meaning of and the subscript notation for £y 1 ¢ are explained in
the following paragraphs.

The subscript 1 in equation (82) indicates that values are transformed to equivalent values based on the
properties of time step 1. Time step 1 is arbitrarily chosen; however, both equations (75) and (78) are expressed in

terms of this property set. In equation (82), Gjeg,1,7max,p denotes the value of Gyeq « 7max converted to the properties

of time step 1. The term G 1¢4,1, 7max,p €an be computed from Gjey i, Tmax by equating fast-fracture reliabilities for
individual time steps (see eq. (28) and the described maximization procedure).

G my 1 G my x
legq,1,T max, leg,x,T max
(g [ 2aree >

GoBV 1 GoBV x

Recall that Gey i 7max 18 the maximized fast-fracture stress for the first KZ, (a1 time steps (the proof-test time
steps) expressed in terms of the properties of time step k. The maximization procedure is identical to that described
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Load

A
h : > : _ >
Proof-test duration, t, Service load duration, t;
(@)
A
c5qu,1 ,Tmax,p
Gleq,1 ,Tmax,e
< > < >
tp,1,es (see eq. (88)) t:,1,es (see eq. (90))
(b)
A
Oleq,1,Tmax,p
P 1g,1,es (See eq. (94))
< >« >
tp,1,es (see eq. (92)) te 1,es (See eq. (96))

(©)

Figure 5.—Applied and transformed stress histories at a given location ¥ in the component. These
stress histories are equivalent in the sense that they all yield the same reliability. (a) Applied load
history. (b) Transformed load history associated with equation (91). (c) Transformed load history
associated with equation (95).
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previously (see eq. (43)) except that the maximization is performed only over the proof-test time steps 1 to k. The
term Geq, 1, 7max,p €an be computed by

Gleq,1,Tmaxp = maX(Gqu,l,l »0leq,2,15+++>Oleq,i,15+++>Oleg,i,1 ) (84)
where
my i
Oleq,i |™.1
Oleq,i,]l =CoBV,| | — — (85)
G BV i

and Oy ;1 is the transformed stress during time step i, using the properties of time step 1. Similarly for the service
loading time steps,

Gleg,l,Tmax e — Max [G leg,(k+1),1>Oleg, (c+2),15--+> Oleg, (ic+i),15+++»Oleg, 1 ] (86)

The methodology to solve for fyin 1 ¢(‘Y') for the special case where Weibull and fatigue parameters do not
vary over the time steps (but loading is allowed to vary) will be examined first. For this situation, a closed-form
expression for fyin, 1 ¢5('Y') can be obtained by using the concept of g-factors as explained in Mencik (1984).
Basically, g-factors are terms with constant values that are used to express cyclic loading as an equivalent static
load applied over an effective time (see eq. (57)). For proof-test reliability, this can be expressed as

my |
" NV,1_2 NV 1 ¢ ]\]V,l_2
sub V. (¢} (O 1
leq,], Tnax» leq,,Tpax.p ~Po1s€S
Py (tp)=exp — > jub T Ry o dQ (87)
isub=1 n GoBV.1 cSoBI’/,l BBV,l
Q isub
where (compare with eq. (57))
Ny
t, & Oleg.i ’
P eq,i
Iples =tp&p1 = t_z I At; (88)
K =] CFqu,I,Tmax,p

with 7, 1 ¢,(‘P) as the effective time and g, ; as the g-factor for the proof test (both denoted in terms of property 1—
which is the same over all the time steps). Similarly, for the combination of the proof-test and the service loading,
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Ny 1-2

Nsub V. (e}
i leq,1,T max,e
PSV(tq): exp| — z isub q
isub=1 4n GoBy .1
Q
89
s (89)
N N Ny1-2
V.1 V.,
" cerq,l,Tmax,p tPJ,@S + cerq,l,Tmax,s te,l,es do
Ny1-2 B
Sopry PBVI
isub
where
; 4 o Ny
leg,i
€ q,
Teles =18l = At; (90)
tQ =1ty i=k+1 cSleq,l,TmaX,s

It is important to point out that the term for final strength in equation (89) is G1e, 1, 7max,e> NOt Oleg, 1, Tmax,g- This
condition is necessary because the final strength takes place during service history, hence it must be set equal to

Oleg,1,Tmax,c WheN Oleg 1 Tmax,p > Oleg,1,Tmax,e- Recall that G1ey 1, 7Tmax,p > Oleg, 1, Tmax,¢ 18 @ stipulation of equation (82)
in order for fijn 1 ¢5('¥) to exist. Equating equations (87) and (89) and solving for 7 | o (Which is now designated as
tmin,l,es) gives

Nyi-2
BB V1 cYqu,l,T max ,p (IP)

!min,1,es (\P):tmings,l = -1 1)

Oleg], T max & (¥) || Oteg1, 7 max & (%)

When Weibull and fatigue parameters do not vary over the time steps, then g | and g, | are constant values
regardless of the values for 7; and #,. In that situation, equation (91) can be used irrespective of 7; and #,. In addition,
rather than using equation (82) to evaluate the Heaviside function, only #,;, from equation (91) needs to be
compared with #;. If #; > ti,, the Heaviside function has a value of 1, otherwise it is 0.

When the Weibull and fatigue parameters are not constant over the time steps, then g, ; and g 1, as defined in
equations (88) and (90), respectively, no longer apply. Their equivalent g-factor form is no longer constant with
time, and an iterative procedure must be used to solve equation (91). For this more general case (where Weibull and
fatigue parameters are not constant), the effective time for the proof test can be reexpressed by equating equations
(75) and (87), resulting in

Ny -2 Ny -2
B

c B c
oBV1 V,1 leq,1,T max,p
tp,l,es = le (V)- (92)
ol GoBV,1
leq,1,T max,p ’

and reexpressing equation (78) as
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my 1
Ny -2
; Ny -2 Ny, ;
sub V. (e} (e} ’ 1
leg,1,T leg,1,T q,l.es
P, V(tq)= exp| — Z isub eq,1,T max,g 4 _leg,l.,Tmax,p do (93)
= 4n GoBY 1 o2 p
isub=1 > oBV,1 PBV1
Q
isub
so that
Ny -2
Ny1-2 Vi
c ni,1 B c
oBV,1 PBV.1 Teq,1,T max,e
Igles = N qu (lP)_ (94)
o, OBV,
leq,1,T max,p ’
Equating equations (87) and (93) then gives
Ny1—2
Bl/,l Oleq,1,T max,e (lP)
tmin,1,es (lP) =7 (‘P) 1- (\P) (95)
Olegq,1,T max,p Oleq,1,T max,p
where
zmin,l,es (\P) = tq,l,es (T) - tp,l,es (\P) (96)

Although not obvious, equations (95) and (91) are actually identical when the Weibull and fatigue parameters
do not vary between time steps. In this case, equation (95) is normalized by Gieq,1,7max,p» Whereas equation (91) is
normalized by © 14,1, 7max,¢- Making equations (95) and (96) both true requires iteratively finding the value of 7, that

satisfies the equality; however, this is computationally intensive. Fortunately, the attenuated failure probability
evaluation can be performed for the component if the sign of the inequality in equation (82) is established locally at

Y. This means that iteration is not necessary. Instead, equation (95) can be used to establish 7 1 ¢s(‘F), which is
used on the left side of the inequality in equation (82). The right side of the inequality in equation (82) is determined
by computing 7, 1 ¢;(‘t') from equation (94) and #,, 1 (V') from equation (92).

For computational efficiency (and convenience) in the CARES/Life program, the term for X}, in equation (94)
is evaluated with Giey 1, 7imax,p instead of Gjeg, 1, 7max,e- This is conservative and avoids having to evaluate X7, twice—
once for equation (78) using Gjey,1,7max,» and once for equation (94) using Gyeq, 1, 7Tmax,¢-

3.0 Examples

In this section, four example problems are provided to illustrate various aspects of the transient reliability
methodology developed in this report:

(1) Silicon nitride disks undergoing thermal shock. This problem shows the fast-fracture transient analysis
capability.

(2) Heavy-duty diesel engine exhaust valves tested in an experimental engine rig. This example is used to
contrast predictions for cyclic loading over time using the power law, the combined Walker-power law, and proof
testing.
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(3) Failure response of alumina flexure bars in static fatigue at elevated temperature. This example looks
at two possible modeling scenarios that can reproduce the failure response in an alumina material where the
material properties and failure behavior are changing over time. The example problem examines the hypothetical
effect of changing the Weibull and fatigue parameters over time on the failure probability of alumina four-point
flexure bars in static fatigue.

(4) Hexoloy SiC tubes subjected to thermal shock. This example compares experimental to predicted failure
probabilities. It also explores the effect of repeated thermal shock loading on the tube’s reliability. Transient loading
and material response were taken into account in this example.

3.1 Example 1: Thermal Shocked Disks Failing in Fast Fracture

In this example, the fast-fracture reliability response of laser-induced thermal shocked disks made of silicon
nitride is examined. The purpose here is to see if the strength response of the thermally shocked disks can be
predicted using the Weibull parameters obtained from rupture data of simple bend-bar beams. The transient fast-
fracture reliability predictions of the disk versus the instantaneous fast-fracture reliability predictions are also
compared. This example is derived from an international study (Ferber and Breder, 2001) involving laboratories
from Germany, Japan, and the United States. Phase I of that study worked to develop and verify thermal upshock
techniques in which disk specimens were centrally heated to fracture by an appropriate heating source, including a
laser, a quartz lamp, a shaped heating element, and a gas torch. Phase II of the study was a round-robin activity that
tested two silicon nitrides—AlliedSignal AS800 and Kyocera SN282—using the techniques developed in phase 1.
This example used disk results for the SN282 material from the Siemens AG organization, as provided by Rettig
(Rettig, U.: Personal communication, Aug. 2002). These disks were tested using the laser irradiation technique
described by Kirchhoff et al. (1994) and Rettig (1998). Three-point flexure bar data provided by Ferber (Ferber, M.:
Personal communication, July 2002) were also used.

Thin disks 20 mm in diameter and 0.3 mm thick were centrally heated by an 800-W laser working in
continuous-wave mode—the schematic of which is shown in figure 6. A large centrally heated area and a steep
temperature gradient near the edge was created, which yielded high tensile stresses near the edge. The specimens
were rapidly heated so that fracture would occur in less than a second. The temperature-versus-time response across
the disk was measured with a fast scanning pyrometer. The heating time and the thinness of the disk were chosen
such that through-the-thickness temperature gradients (and hence bending stresses) were negligible. Further details
regarding the experimental setup are found in Ferber and Breder (2001), Kirchoff et al. (1994), and Rettig (1998).

A total of 15 disks were fractured. The time of rupture and the radius corresponding to the location of fracture
were recorded for each specimen. Fracture stresses were computed by the study participants using the temperature
profile at the instant of fracture, the temperature-dependent elastic modulus and thermal-expansion coefficient, and
the integral equations from standard elasticity theory. Some of the disks were cut into three-point flexure specimens
in order to independently quantify the strength characteristics. Fourteen of these flexure specimens were tested at
room temperature. They had the following average dimensions: a thickness of 0.30 mm, a width of 3.25 mm, a
length of 15.00 mm, and a support span of 9.44 mm. The specimen edges were not beveled.

An ANSYS finite element model of the disk was prepared as shown in figure 7 for the CARES/Life reliability
analysis. The model comprised a 90° slice of the disk and spanned one-half the thickness (one-eighth of the disk
was modeled). Solid elements were used in the model. The disk was not constrained (other than to prevent rigid-
body motion), and thus was allowed to expand freely. Temperature-dependent thermal expansion and elastic
modulus values from Ferber and Breder (2001) were used. The thermal loading profiles versus time for two
specimens (specimens 3 and 9), as supplied by Rettig (Rettig, U.: Personal communication, Aug. 2002), were used
for the thermal loading, and the temperatures were assumed to be constant through the thickness. Specimen 3 had
the highest time to failure (0.65 s) and, hence, the highest reported fracture strength (430 MPa) from Ferber and
Breder (2001). Specimen 9 had an intermediate fracture strength (340 MPa) from Ferber and Breder (2001). For
specimen 3, figures 8 and 9 show the transient thermal profile and the transient stress analysis results from the FEA,
respectively. Figure 9 shows the tangential (circumferential) stresses versus the distance from the disk center. The
tangential stresses are compressive near the disk center and become tensile towards the disk edge. The radial
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Figure 6.—Laser upshock technique of Kirchoff et al.
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Figure 8.—Transient thermal profile for disk specimen 3.
Time steps range from 0.0 to 0.65 s. Not all time steps
are shown.
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Figure 7.—Finite element mesh of the silicon nitride disk.
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Figure 9.—Transient tangential stress profile for disk
specimen 3. Time steps range from 0.0 to 0.65 s. Not
all time steps are shown.

stresses are compressive over the entire disk and are not shown. The FEA analysis for specimen 3 consisted of

27 time steps ranging from 0.0 to 0.65 s, whereas the analysis for specimen 9 consisted of 15 time steps ranging
from 0.0 to 0.35 s. The time steps corresponded to increments where experimental measurements were obtained.
The FEA transient tangential stress results compared very well with the numerical calculations performed by the

Siemens group.

For the CARES/Life reliability analysis, the Weibull parameters obtained from the three-point flexure bars
were used to predict the strength response of the disks. The Weibull parameters are usually determined from rupture
experiments of specimens in simple tension or flexure. Regression techniques, such as least squares and maximum
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likelihood (see app. D reproduced from Nemeth et al., 2003, for more details), have been developed that can determine
these parameters from a simplified form of equation (17):

c(x y Z) my Gf my Gf my Gf my
Pry =1-expi— —= dV(—‘J =1-exp —[—J =1-exp _Ve( : J 97
V

Gr Gov Goy Sov

where ois the peak stress in the specimen, Gy is the specimen characteristic strength, and V, is known as the

effective volume. The strength gy is the value of 6 swhere 63.21 percent of experimental rupture specimens fail.
When the maximum likelihood parameter estimation method and the assumption of volume flaws were used, a

Weibull modulus mp of 11.96, a characteristic strength cgy of 612.7 MPa, and a Weibull scale parameter o, of

453.8 MPa-mm° ™ were obtained for the flexure bars tested at room temperature. The material strength of ceramics
(and hence the Weibull and fatigue parameters) are known to be temperature dependent. Ferber and Breder (2001)
shows this relationship for SN282, where the average strength gradually decreases as temperature increases.
However, this dependency was not considered in this analysis since only room temperature results were available
for the bars cut from the disks. The authors believe this is still satisfactory since, from figure 8, the temperatures
near the edge of the disk (where fracture is most likely to occur) are relatively low, so material properties should not
deviate much from room temperature values.

The transient reliability response of the disk was calculated using the room temperature values of my and o,
and the results of the FEA with equation (45). Figure 10 shows the predicted failure probability versus time for
specimens 3 and 9. These results were obtained using volume-based analysis with the Batdorf multiaxial meth-

odology, a Griffith crack (eq. (5)), and C =0.82 (eq. (4)). The plot shows straight-line segments connecting the
failure probability predictions for the various time steps. Each time step is based on analysis results from the
experimentally measured temperature profile. The solid line shows the results of the transient analysis from
equation (45), whereas the dotted line shows the results from the fast-fracture analysis of the individual time steps.
Notice that the dotted line occasionally shows a lower failure probability than a previous time step, whereas the
solid line for the transient analysis correctly does not show this trend. Also, there is a close correlation between the
transient fast-fracture results (solid line) and the single-time-step fast-fracture results (dotted line), which increases
confidence in the validity of the transient solution algorithm. The solid and dashed lines of disk 9 are virtually
coincident. Disks 3 and 9 truncated at different failure probabilities because they failed at different maximum

stresses 6. Another interesting observation is that disks 3 and 9 appear to have somewhat different failure
probability responses versus time.
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Figure 10.—Failure probability of disk specimens 3 and 9
as a function of time.
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Figure 11.—Predicted failure probability of disk versus stress using the
Weibull parameters estimated from the three-point flexure bar data.
Experimental rupture data are also shown.

Figure 11 shows the predicted failure probability response of the disk versus the maximum stress oyin the disk.
The experimentally obtained fracture stresses are overlaid for comparison. The curve for the three-point flexure

bar results represents a line of best fit to the data, as previously described (mp = 11.96 and cgy = 612.7 MPa),

that was used to obtain the Weibull parameters used for the disk reliability analysis (my = 11.96 and

G,y =453.8 MPa-mm3/m). The solid curve for the disk represents predictions based on the analysis of disk 3,

whereas the more difficult to see dashed curve is the prediction from disk 9. Notice that the disk-9 results truncate
around Pr= 0.45, consistent with figure 10. The curves for disks 3 and 9 follow nearly the same path in figure 11,
unlike the results shown in figure 10. A striking observation about figure 11 is the difference in the median strength
between the disk and the three-point flexure bar. This primarily represents the Weibull size effect: a component
with a larger amount of volume under high stress will have a lower average strength than a component with a
smaller amount of volume under high stress. This effect is a direct consequence of equation (17).

Another interesting item worth commenting on is the significant difference between the Weibull modulus m

for the three-point flexure bar rupture data (my = 11.96 and cgp= 612.7 MPa) and for the thermal shocked disk

experimental rupture data (my = 6.91 and ooy = 345.9 MPa) shown in figure 11, as determined by the CARES/Life
maximum likelihood parameter estimation. A least-squares regression (using an Excel spreadsheet) on the
CARES/Life disk prediction curves shown in figure 11 yields a Weibull modulus m of 8.72. This result is worthy
of note because under usual circumstances the Weibull modulus for the test specimen and the designed component
are presumed to be the same given that they are sampling similar flaw populations and that the effective volume V,
stays constant versus time. In other words, under usual circumstances, the Weibull modulus obtained from the
regression of the predicted disk failure probability curve versus strength would be 11.96—the same value as for the
three-point flexure specimen data. The fact that in this case the Weibull moduli between the predicted disk response
curve and the flexure bar data are significantly different can be understood by examining figure 9.

Notice that as time increases the amount of volume under high tensile stress significantly decreases. This
decreases the effective volume ¥, with time, and through the size effect, increases the predicted failure stress o
The overall effect of the effective volume changing with time is to decrease the observed (apparent) Weibull
modulus for the thermally shocked disks according to 61 The fact that CARES/Life predicts that the Weibull
modulus obtained from the failure-probability-versus-c,curve reduces to 8.7 in comparison to the flexure bar value
of 12.0, compares favorably with the experimental disk result of 6.9. In other words, some of the discrepancy in the
Weibull modulus values between the experimental disk and flexure bar results can be explained as a consequence of
the transient thermal loads and how they influence the stress distribution in the disk as a function of time. The
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difference in values (12.0 versus 8.7), therefore does not necessarily indicate some error or inconsistency. The
remainder of the difference (8.7 versus 6.9) can be explained as natural statistical variation (within 90-percent
confidence bounds).

The excellent correlation in figure 11 to experimental results must be considered within the context of the
underlying statistics, given that the effective volume V, between the three-point bend bar and the disk is large and

sensitive to the value chosen for the Weibull modulus my. Because of the relatively small number of samples tested
(in this case, 14 flexure specimens) and the large size effect, using Weibull parameters based on 5- and 95-percent
confidence bounds from the three-point flexure bar data could shift the disk predictions significantly to the left

and right of the experimental data. In general, a good design practice would be to avoid large size-effect scalings
between specimens and components unless experimental data exist for both the specimen and component such that
data-pooling practices could be taken advantage of to obtain a set of best-fit Weibull parameters.

3.2 Example 2: Heavy-Duty Diesel Exhaust Valves Undergoing Cyclic Loading

This example, involving a heavy-duty diesel ceramic exhaust valve (Corum, et al., 1996), was selected to
contrast failure probability predictions for the power law (eq. (8)), the combined Walker-power law (eq. (56)), and
a proof-test condition. The valves were made of NT-551 silicon nitride material. Table I summarizes the Weibull
and SCG parameters obtained from four-point flexure bars at three different temperatures (Andrews et al., 2000).
CARES/Life and the raw data listed in Andrews et al. (2000) were used to obtain these parameters. Data to obtain

values for the combined Walker-power law parameters did not exist, so assumed values for Oy and 4,/4| were used
(eq. (63)).

TABLE [—NT-551 FAST-FRACTURE AND SCG MATERIAL PROPERTIES

Temperature, Volume Volume Weibull Crack- Volume SCG Walker Crack-
T, Weibull Weibull scale | characteristic | velocity material R-ratio velocity
°C modulus, parameter, strength, exponent, parameter, exponent, ratio,

my ol Go, Ny BWZV, Oy AyAy

MPa-mm MPa MPa“-sec
20 9.4 1054 806 31.6 5.44x10° 32 0.65
700 9.6 773 593 86.5 1.12x10" 32 0.65
850 8.4 790 577 18.5 1.13><106 32 0.65

Fifteen valves were engine tested without failure. These valves consisted of seven longitudinally machined
valves and eight transversely machined valves. The transversely machined valves had been engine tested for
1000 hr, whereas the longitudinally machined valves had been engine tested for 166 hr. These valves were subse-
quently tested in fast fracture to examine their retained strength. For both valve-machining orientations, failure was
found to be volume induced.

Since all engine-tested valves failed because of volume flaws, the transient reliability of the valves was based
on volume analysis. Figure 12 shows the pressure variation as a function of time during a typical combustion
cycle of 0.0315 s. The pressure was applied to the valve face and other exposed surfaces within the cylinder. The
maximum pressure attained during the combustion cycle was estimated to be 15.85 MPa (Corum, et al., 1996). A
445-N (100-1b) force due to spring preload was applied to the valve stem when it was in the open position. At the
moment the valve closed, an impact force of 1335 N (300 lb) was applied to the valve stem. In addition, thermal
stresses due to the temperature distribution in the valve were superposed to the mechanical stresses.

Figure 13 shows the approximate mean thermal profile in the valve. Steady-state thermal analysis using the
ANSYS FEA code was conducted to compute these temperatures. This figure shows that the temperature is
maximum near the valve face and decays towards the valve seat and stem.

Transient reliability analysis (using egs. (49), (51), (70), (77), (80), (81), and (82)) for a PIA-style formulation
(Barnett et al.,1967; and Freudenthal, 1968) was conducted by dividing the load history into 29 time steps. During
each step, the load was assumed to be constant. The loads corresponding to these time steps were modeled within
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the ANSYS FEA program, which yielded the stress results for these 29 time steps (stress history). Figure 14
highlights the first principal thermomechanical stress distribution in the valve at the moment of maximum applied
pressure (at time step 6). From the figure, it is apparent that the maximum stress location is at the valve radius,
which is in agreement with the FEA results of Corum et al. (1996).

The valve’s stress history and other relevant terms (temperature, volume, material properties, etc.) were
subsequently read into CARES/Life. Figure 15 shows the power-law transient reliability curve as a function of time
(load cycles). As seen in the figure, the probability of failure increases with time, and it is apparent that the ceramic
valve is very reliable. Figure 16 shows these same results on a log-log scale plot for the power law and time step 6
applied as a static load for low probabilities of failure. After 1 hr of operation, the failure probability Prwas
predicted to be 6x10 (6 in 100 000 valves would have failed), whereas after 8.7 million hr of operation, the Prwas

predicted to be 9. 4x107" (94 in 100 000 valves would have failed).

A static reliability analysis using the maximum stress level during the load history (load step 6 in this analysis)
was performed and compared with the transient reliability analysis. As seen in figure 16, the static loading at the
maximum level yielded higher failure probabilities (more conservative) than for the transient loading case. Between
9 and 9x10" hr of operation, the failure probability using static maximum stress analysis was predicted to be
double the failure probability based on transient analysis. For example, transient reliability analysis predicted that
approximately 20 in 100 000 valves would have failed after 1000 hr of operation, whereas maximum static stress
reliability analysis predicted that approximately 40 in 100 000 valves would have failed. These results, showing
higher failure probabilities for static maximum loading than for transient loading, make sense since the combustion
load cycle contains a considerable duration of low to no loading for the valve.

Figure 16 also shows the predicted failure probability as a function of the number of cycles for various
scenarios. None of the tested valves failed, even though 8 of the 15 valves were tested to 1000 hr (approximately
1.1x10% cycles). Thus, the failure rate of the tested valves was less than 1 out of 8 at 1000 hr of operation. From
figure 16 it can be seen that in fast fracture (at one cycle with no SCG) about 5 out of 100 000 valves are predicted
to fail from the loading. With SCG and the power law, about 20 out of 100 000 valves are predicted to fail after
1000 hr of operation. If it is conservatively assumed that the worst-case load (time step 6) is applied over the whole
engine cycle (static loading), then about 40 out of 100 000 valves would fail after 1000 hr. When the combined
Walker-power law is used with the hypothetical parameters from table I, this rate increases to 70 out of 100 000
valves at 1000 hr. All of these rates were well below what was experimentally observed, but not enough valves
were tested to make any firm conclusions. These three scenarios were presented to contrast the predictions. The
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power law with cyclic loading predicts the least damage. The static loading scenario is predicted to be more
damaging at double the rate of the cyclic loading. The combined Walker-power law predicts the most damage
because of the enhanced cyclic fatigue effect.

The predicted failure rate can be reduced even further if proof testing is applied to prevent the weakest
components (those with the highest likelihood of failing) from being placed into service. Figure 16 also shows the
predicted results for the three various scenarios for an applied proof test of 10 000 cycles at a loading factor of 1.1
of the service loading (dashed lines in the figure). Increasing the proof-test load would reduce the attenuated
probability of failure even further.

The transient reliability methodology described in this report is based on discretizing the load history into short
time steps during which everything is assumed to remain constant. Obviously as these time steps become shorter
and shorter (the load history is divided into more and more time steps), the solution becomes more accurate. It is not
possible to suggest how many time steps should be used, since the proper selection of time steps depends on the
problem and load history at hand. Users are well advised to run a convergence analysis by running several transient
reliability computations using different sets of time steps. There will be a tradeoff between computational efficiency
and error.

3.3 Example 3: Alumina in Static Fatigue—Material Properties Changing With Time

This example examines how the reliability response of a vitreous bonded alumina is hypothetically affected by
Weibull and fatigue parameters that change over time. The two scenarios that are presented are based strictly on curve
fitting the data. The authors do not have sufficient information to physically specify which parameters are really
responsible for the change in material response with time. However, the point of this analysis is to present an analytical
model that might explain the nonlinear and changing rupture behavior of the material given that the physical parameters
that are responsible for the changing material behavior are known. This capability could be useful in modeling materials
with changing composition (or with changing physics of crack growth), including oxidation and crack blunting/healing
phenomena.

The data for the example, which were obtained from Quinn (1987), consisted of the rupture lives of the alumina
four-point flexure bars in static fatigue (loading at a constant stress level over time). The specimens had the following
average dimensions: a height of 2.2 mm, a width of 2.8 mm, a load span of 19.0 mm, and a support span of 38.0 mm.
This data set was chosen from the literature because of its nonideal behavior and because of the careful experimental
technique reported by the author, which reduced the likelihood that equipment and measurement errors would
significantly affect the results. The rupture data for the individual specimens are shown in figure 17. Testing was
performed at 1000 °C. The report stated that very little creep deformation was detected, and although fractography was
attempted, it did not reveal the source of the strength-limiting flaws.
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Two trends made these data nonideally behaved: (1) dramatically increased scatter at lower applied stresses and
(2) pronounced nonlinear behavior in the stress rupture data as the applied stresses became lower (the strength data
shifted to the right, which signified that the lives became longer than would have been predicted if the standard power
law was applicable). An ideally behaved data set would show a straight line trend, indicating that the fatigue exponent
was constant. In addition, the scatter band would appear with a constant width versus the applied stress, indicating that
the Weibull modulus was constant.

A confirmatory piece of evidence that material properties were changing with time was obtained by performing
static rupture experiments on specimens that were annealed (at no load) for either 1 or 24 hr at 1050 °C. The outcome of
these treatments (not shown herein) was that life dramatically increased versus exposure time for an applied stress level
(Quinn, 1987). Quinn indicated that the observed behavior is probably due to the partial devitrification of the material’s
glassy phase, resulting in an increased viscosity of the phase and a material with improved creep and stress rupture
behavior. Quinn cites Wiederhorn et al. (1986) to support this, although he concedes that crack blunting, healing, or
residual stress changes could also be operative.

Quinn’s data defy the conventional modeling approach since the material properties could be changing over time.
To account for this, the authors of the current report show what happens when Weibull and fatigue parameters change
with time for two cases: (1) changing the fatigue exponent N and the Weibull modulus m over time and (2) changing the
Weibull parameters (m and o) over time. Tables II and III show the sets of parameters chosen to demonstrate these
scenarios. Given the fact that no established parameter estimation techniques currently exist for this type of nonideally
behaved data, these parameters were iteratively selected to fit the data. Table II contains a set of parameters versus time
where N and m were varied to yield an improved fit to the data. Table III shows a set of parameters where m was varied
while N was kept relatively constant. Note that in both cases the scale parameter 6y depends on the Weibull modulus
and B depends on the fatigue exponent as well as the Weibull parameters. When these parameter sets are applied within
a reliability analysis, the Weibull and fatigue parameters are linearly interpolated with the log of time within the time
spans listed in the tables and are held constant outside of the time span.

TABLE II.—WEIBULL AND FATIGUE PARAMETERS ASSOCIATED WITH FIGURE 17

Time, Surface Surface Weibull Surface crack- Surface SCG
t, Weibull scale parameter, velocity exponent, | material parameter,
s modulus, GosSs Ng Bys,
2/m 2
ms MPa-mm MPa™-s
1.6 294 156.8 6.7 2711.1
31.6 15.8 152.7 13.2 9707.7
1.0><105 13.1 127.3 36.4 2276.2
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TABLE III.—WEIBULL AND FATIGUE PARAMETERS ASSOCIATED WITH FIGURE 18

Time, Surface Surface Weibull Surface crack- Surface SCG
t, Weibull scale parameter, velocity exponent, | material parameter,
S modulus, O0Ss Ng B,s,
2/m 2
ms MPa-mm MPa™-s
1.6 29.4 165.8 6.7 2711.1
31.6 7.4 263.3 8.0 23959
316.2 4.5 870.1 9.0 10 389.0

Because of the simplicity of the four-point specimen loading and geometry, results from the FEA were not needed
for the reliability analysis. Instead, a closed-form expression for the effective area 4, was used to evaluate the integral of
equation (17) for a surface flaw failure mode (see app. D reproduced from Nemeth et al., 2003). An effective area 4,

(which is analogous to the effective volume in equation (97)) of 58.0 mm? was calculated on the basis of a Weibull
modulus value of 7.7. This value was chosen because sensitivity analysis using equation (17) indicated that the
maximum error in strength for a given failure probability would be 1 percent or less for Weibull modulus values
ranging between 5.0 and 30.0. This level of error is negligible for the illustrative purposes of this example. In modeling
the transient material response using equation (42), 10 time steps are used per decade of the log of the time. Hence,
10 time steps are used between 1 and 10 s, whereas 20 time steps are used between 1 and 100 s. The time steps are log
increments of time; that is, they would appear as equally spaced increments in figure 17 with 10 steps per decade.
Figure 17 shows the predicted 10-, 50-, and 90-percent failure probability isolines for the parameters shown in
table I, and figure 18 shows 1-, 10-, 30-, 50-, 70-, 90-, and 99-percent failure probability isolines for the parameters
shown in table III. Neither plot represents an optimized set of fitted parameters. As previously stated, no established
parameter estimation techniques currently exist for this type of nonideally behaved data. Parameters were obtained by
segregating portions of the data and performing parameter estimation as described in appendix D from Nemeth et al.
(2003) for the four-point bending bar specimen as well as by further refinements by trial and error. Figure 17 shows that
the curvature in the data can be captured by changing the fatigue exponent N; however, accounting for the change in
scatter still required modifying the Weibull modulus m. Figure 18 is interesting because a satisfactory fit to the data can
be obtained by changing the Weibull modulus and scale parameter only (B changes mainly in response to these param-
eters). The kink shown in the failure probability isolines between 10 and 100 s is not purposely modeled: that is,
parameter values were not specifically selected to obtain this response. The “outlier” rupture data (data that appear to be
not part of, or not consistent with, the main body of data) at long times to failure at 70 MPa and the outlier data at short
times to failure at 60 MPa are better accounted for in this model than they are in figure 17. That is, the data points that
visually appear to be outliers are actually consistent with the flaw population failure probability response: they are
predicted to be there.

100 —

O Specimen data
A Runout data

90

80

70

60 A
99 percent

30 50 70 90

Maximum failure stress, MPa

50 | | | | | | | |
100 101 102 103 104 105 106 107 108
Time to failure, s
Figure 18.—Effect on failure probability of changing Weibull modulus, m,
with the log of time from table Ill on static fatigue rupture data of alumina
flexure bars at 1000 °C.
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The modeling assumptions that produced the results in figure 18 reasonably capture all the trends in the data as well
as or better than the approach used in figure 17. Also, both approaches required changing the Weibull modulus m to
account for the range of scatter. A changing Weibull modulus could indicate new flaw generation or changes of the
physics of crack growth associated with R-curve behavior. On the other hand, a changing fatigue exponent with time is
consistent with crack blunting/healing phenomena, where the crack-velocity relationship in equation (8) is changing
with time. In this case, further tests on the material would be needed to understand the underlying mechanism that was
driving the SCG behavior.

3.4 Example 4: Thermally Shocked Hexoloy SiC Tubes

The thermal shock problem of Hexoloy (Saint-Gobain Ceramics, Niagara Falls, NY) sintered alpha silicon
carbide (SASC) tubes was chosen in this study for four reasons:

(1) The thermal, elastic, Weibull, and SCG data for the SASC material (tables IV and V) are available.

(2) SASC SiC tubes were tested in fast fracture and thermal shock loading during earlier studies (Segall, 1992;
Shelleman et al., 1991; Jadaan, 1990; Jadaan et al., 1991 and 1994; and Jadaan and Tressler, 1993), and hence,
experimental data providing measured failure probability Py for the shocked tubes are available. By using these data

and the theory developed in this report, we can compare the measured Pyvalues with the predicted values and
demonstrate the viability of the transient methodology.

(3) The SASC material was selected because of its use in industrial applications.

(4) Multiaxial thermoelastic stress states resulting from the localized quenching of the SASC tubes are very
complex and highly transient. Such complex and transient thermal and stress states are desired in our example to
demonstrate the full potential of the proposed theory.

TABLE IV.—WEIBULL AND SCG PARAMETERS OF HEXOLOY SiC

Specimen Temperature, | Average | Weibull Volume Area SCG Volume Area
configuration °C strength, | modulus, Weibull Weibull exponent, SCG SCG
MPa m scale scale N coefficient, coefficient,
parameter, parameter, Bwry, By,
GoVs 3m GoS> ”m MPaZ-s MPaz-s
MPa-m MPa-m
. a 25 232 12.2 63.9 123.4 e e B
C-ring 1200 245 8.8 425 104.1 29.4 5826 6884
O-ring 25 - -—- -— 114.7 e I I
1200 287 9.9 -—-- 115.4 272 | - 480.3

a - . .
C-ring tested in compression.

TABLE V—THERMOELASTIC MATERIAL PROPERTIES FOR HEXOLOY SiC (Segall, 1992)
[Poisson’s ratio, 0.14.]

Temperature, 7, °C 25 200 500 700 800 900 1000 1100
Specific heat, C,, J/kg-°C 4853 | 6822 | 790.8 | 857.6 | 8982 | 9453 | 999.8 1064
Thermal conductivity, k, W/m-°C 133.5 99.9 57.8 45 41.1 37.1 36 354
Thermal diffusivity, D, cm?/s 0.872 | 0473 | 0236 | 0.172 | 0.151 | 0.128 | 0.116 0.105
Elastic modulus, E, GPa 4179 | 4159 | 4137 | - 407.1 | - 402.7 | -
Thermal expansion coefficient, o, 10°°C 3.30 4.20 490 | - 545 | - 575 | -

The experimental shock study was conducted by Segall, with the details reported in his Ph.D. thesis (Segall,
1992). However, a brief summary of the thermal shock testing procedure and results will be reiterated here for
completeness. The testing procedure involved the symmetric placement of each tube (152 mm long with an outside

NASA/TP—2005-212505 50



diameter of 43.9 mm and an inside diameter of 35.3 mm) in a furnace without restraints. Once positioned and
appropriately instrumented, the furnace was closed and the tube was internally heated to 1000 °C and allowed to
equilibrate for at least 15 min. After equilibration, the instrumentation was activated and a localized helium quench
over a 10-mm segment (central portion of the tube) was allowed to flow to the surface of the tube as shown in
figure 19. In the thermal fatigue portion of the study, when the 10-s quench (one thermal shock cycle) was
completed, the tube was reheated and the process was repeated for up to five cycles. Acoustic emissions (AE)

were continuously monitored in situ during the tests. In addition, transient internal surface temperature profiles at
distances of 0, 2, 4, 6, 8, 10, 12, 14, 20, 30, 50, and 75 mm from the quench centerline were measured (fig. 20)
using multiple thermocouples with temperature corrections (Segall, 1992). Error analysis indicated that a 1 to 3 °C
error could have resulted from data-acquisition errors, and up to 2 °C from inherent thermocouple errors.

Figure 19.—Depiction of annular gas quench on the
external surface of a tube.
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Figure 20.—Measured internal surface temperature distributions versus time for
Hexoloy tubes quenched from 1000 °C.
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The results of the SASC testing revealed a number of interesting behaviors. Post-thermal-shock fracture tests
revealed a minimal propensity for SCG or fatigue after five cycles—either the specimens showed significant crack-
ing with minimal retained strength or no damage at all. This behavior was corroborated by the in situ AE data,
which indicated that most of the damage (if any) was incurred during the first cycle. An AE energy-versus-time
plot (see fig. 21) showed that most of the damage took place during the first cycle, indicating minimal crack
extension during the last four thermal shock cycles. All tubes with high AE histories showed extensive axial-to-
circumferential crack paths with no discernible differences in the crack densities or patterns between the singly and
multiply cycled tubes. Fractography conducted on the failed tubes indicated that the majority of failures were due to
relatively large axial defects remaining from the extrusion process used to fabricate the tubes and that failures could
originate at both internal and external surfaces.

To perform the transient reliability analysis, one must know the Weibull (m, o) and SCG (&, B) parameters for
the SASC material. When a reliability analysis is performed, these parameters are obtained from simple specimens.
These simple specimens when loaded to failure should sample similar flaw populations to those existing in the tube.
Hence, C-ring and O-ring specimens cut from as-received Hexoloy tubes were tested in fast fracture (Weibull
parameters) and dynamic fatigue (SCG parameters) modes (Shelleman et al., 1991; Jadaan, 1990; Jadaan et al.,

1991 and 1994; and Jadaan and Tressler, 1993). The C-ring specimen, with maximum tensile stress existing at its
outer surface, samples flaws at the external surface of the tube; whereas the O-ring specimen, with maximum tensile
stress existing at its internal surface, samples flaws at the inner surface of the tube. Hence, when the reliability of
the tubes was modeled, the C-ring Weibull and SCG parameters were used to compute the transient probability of
failure due to external surface defects, and the O-ring Weibull and SCG parameters were used to compute the
transient probability of failure due to internal surface defects. The C-ring data were also used to compute the failure
probability due to volume defects. Table IV lists the Weibull and SCG parameters for Hexoloy SiC at ambient
temperature and 1200 °C on the basis of both volume and surface area analysis.

The ANSYS FEA program was used to compute the transient temperature and thermoelastic stresses for the
thermally shocked tube. The tubular geometry combined with the axisymmetric nature of the quench allowed the
tube to be modeled with two-dimensional axisymmetric plane55 thermal elements and axisymmetric plane42
structural solid elements. A fine mesh of 5000 elements was used to model half the tube, from the quench centerline
(y = 0) to the end of the tube (y = 0.076 m). In this mesh, the tube’s wall thickness was divided into 20 elements and
its length was divided into 250 elements.

15000 —
Cycle 1

12 000 —

9000 —

Energy, V-s

6000 —

3000 —

u Cycle 2 Cycle 3 Cycle 4 Cycle 5
0 - - . | I

Time
Figure 21.—Typical history of acoustic emission energy for a Hexoloy SiC tube quenched
from 1000 °C.
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The transient heat transfer analysis was conducted first. This involved circumferentially blasting a 5-mm-
wide region of the tube’s half length with cold air. Table V lists the thermal material properties as a function of
temperature used in the thermal FEA. The temperature distributions throughout the tube as a function of time were
needed in order to perform the transient thermoelastic stress analysis. Experimentally, only the internal temperature
distributions as a function of time were known (fig. 20). An iterative inverse heat transfer analysis was conducted
by prescribing appropriate convection film coefficients (representing thermal loads) on all surfaces for the entire
quench period of 10 s. The FEA-computed transient temperature profiles closely matched the measured ones,
especially within the critical quench zone. Figure 22 shows the FEA-calculated internal surface temperature pro-
files at the same six times that the temperatures were experimentally measured for figure 20. Adiabatic symmetry
boundary conditions were imposed at the quench centerline. In addition, nonlinear and time-varying convective
films, representing the continuous but changing thermal loading from the internal heating element as it cooled, were
imposed on the internal surface. Changing, high-coefficient convective films within the 5-mm quenching zone
(representing rapid heat loss due to quenching in that region) along with constant-convection films at the remainder
of the external and edge surfaces of the tube were also prescribed. In addition, the temperature-dependent thermal
conductivity and specific heat (table V) were tabulated within ANSYS for automatic interpolation. As can be seen
from figures 20 and 22, the internal surface thermal profiles compare relatively well, especially within the critical
quench zone.

Once the temperature profiles throughout the tube for the entire 10-s quench period were known, the transient
thermoelastic stress analysis was conducted. The elastic properties of the Hexoloy material as functions of the
temperature necessary for the structural analysis part of the study are listed in table V. Figures 23 and 24 display
the hoop-stress distributions along the external and internal surfaces of the tube as a function of time during the
10-s quench period. Figure 25 shows the hoop-stress distributions within the tube at 0 and 10 s. It can be seen from
these figures that the critical high tensile hoop stresses exist on both surfaces of the tube mainly within the 5-mm
quench zone (based on one-half of the tube’s length). The external hoop stresses were found to be higher than the
internal hoop stresses since more rapid quenching takes place there. At the quench centerline of the external surface,
the hoop stress spiked up to its maximum value of 187 MPa almost immediately (within 1 s) and then started to
decay with time until it reached 127 MPa at the end of the quench test. At the internal surface, the hoop stress was
initially compressive, but then it started to increase gradually until it reached a maximum of 106 MPa after
approximately 7 s. Note that within the quench zone, almost the entire volume of material for almost the entire
quench duration is in circumferential tension, while the rest of the tube is being subjected to either low tensile or
compressive hoop stresses.

1000 5s0000an B — w — =
/\A
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(©] A .
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5 800 e
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'E,’ S
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E 700 = 147
2 A 247
4.55
600 |— —x— 7.4
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500 | | | | | | | |
0 10 20 30 40 50 60 70 80

Axial location, mm

Figure 22.—Internal surface temperature distributions computed from finite element
analysis versus time for Hexoloy tubes quenched from 1000 °C.
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Figure 23.—External-tube-surface hoop stress distributions as function of time
during the 10-s quench period.
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Figure 24.—Internal-tube-surface hoop stress distributions as function of time
during the 10-s quench period.
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Figure 25.—Hoop-stress distributions in the quenched
tube. (a) Time, 0 s; step 1. Maximum and minimum hoop
stress, 12.7 and -11.0 MPa. (b) Time, 10 s; step 6.
Maximum and minimum hoop stress, 127.9 and
-72.2 MPa.

Figures 26 and 27 display the axial stress distributions along the external and internal surfaces of the tube as
a function of time during the 10-s quench period. Figure 28 shows the axial stress distributions within the tube at
0 and 10 s. It can be seen from these figures that the critical high tensile axial stresses exist on both surfaces of the
tube but within different regions. The external axial stresses were determined to be compressive within the quench
zone and to be tensile within the central region of the tube between 10 and 50 mm. Within that central region, the
tensile axial stress increased and shifted away from the quench plane as time elapsed. The maximum axial stress at
the external surface was computed to be 125 MPa after approximately 7 s, 20 mm from the quench plane. At the
internal surface of the tube, tensile axial stresses occurred within the quench zone and proved to be the highest of
all stresses, reaching 265 MPa after 10 s. Figure 29 shows the transient axial stress distributions along the wall
thickness at the quench centerline. In this case, approximately half of the internal volume of material was subjected
to tensile axial stress while the external half was being axially compressed. This axial stress distribution within the
quench plane is similar to that of a flexural specimen.

By combining these observations for both the hoop and axial stress distributions, one can note that within the
quench zone the internal surface of the tube is being subjected to a biaxial tensile stress state (with the axial stress
being the absolute highest), while the external surface of the tube is being subjected to tensile hoop and compressive
axial stresses. Hence, it would be expected that the internal surface would be the most critical area and that it would
contribute significantly to the failure probability of the tube.
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Figure 26.—External-tube-surface axial stress distributions as a function of time
during the 10-s quench period.
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Figure 27.—Internal-tube-surface axial stress distributions as function of time during
the 10-s quench period.
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Figure 28.—Axial stress distributions in the quenched
tube. (a) Time, 0 s. Maximum and minimum stress, 10.0
and -11.4 MPa. (b) Time, 10 s. Maximum and minimum
stress, 265.3 and -248.8 MPa.
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Figure 29.—Axial stress distribution through the tube’s wall at the quench plane as a
function of time.
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The CARES/Life code was used to compute the SASC tube failure probabilities on the basis of the volume,
internal surface, external surface, and total surface (internal and external surfaces combined) analyses. Three types
of transient reliability analyses were conducted:

(1) Transient reliability with SCG during a one-cycle shock. Because of the lack of Hexoloy material
properties in tubular form between room temperature and 1000 °C, the Weibull parameters between room tem-
perature and 800 °C were assumed to remain constant and to be equal to the room temperature values. Between 800
and 1000 °C, the parameters were also assumed to remain constant but to be equal to the 1200 °C values. It was
assumed that no SCG would take place between room temperature and 800 °C (this was done by setting the SCG
coefficient B equal to an arbitrarily large number, B = 1.0><1015). Between 800 and 1000 °C, the SCG parameters
were assumed to remain constant and to be equal to the 1200 °C values. The Hexoloy material is resistant to SCG
below 1000 °C, but little data exist to quantify that behavior. In this thermal shock test, the temperature distribution
for the entire duration remained below 1000 °C. So that the capability of the methodology described earlier could be
demonstrated, it was assumed that some SCG does occur between 800 and 1000 °C.

(2) Transient reliability without SCG for one-cycle thermal shock (fast fracture). Of course, since in this
analysis no SCG damage takes place during the load history, multiple-cycle thermal shock analysis would yield the
same failure probability as it would that for one cycle.

(3) Transient reliability with SCG after five cycles of repeated quenching. In this analysis, reversible
behavior was assumed. In other words, the Weibull modulus was assumed to vary with the temperature as cyclic
quenching took place. The scale and SCG parameters were also allowed to vary with temperature during the five-
cycle thermal fatigue load history.

Figures 30 to 33 display the transient Prbased on volume flaw analysis, internal surface flaw analysis, external
surface flaw analysis, and total surface flaw analysis (for both the internal and external surfaces), respectively. The
transient reliability analysis was performed by dividing the stress history into six time steps and assuming the stress
and temperature within each time step would remain constant. These figures include the results for all three types of
analyses just outlined. Obviously, the five cycles of tube-quenching fatigue analysis span over 50 s rather than the

10 s shown in these plots. However, for plot clarity and comparison to the Pyafter one cycle, the Prat the end of the
five-cycle quench period was plotted arbitrarily to the right of 10 s.

It can be seen from figures 30 to 33 that, with the exception of external surface analysis, the probabilities of
failure based on fast fracture (no SCG) and time-dependent behavior (with SCG) after one and five cycles were
essentially equal and ranged between 92- and 95-percent probability of failure. Initially, 14 tubes were tested

experimentally and three were found to be damaged after one quench cycle, resulting in Py= 3/14 = 21.4 percent.
Then, another set of 11 pristine tubes were tested, and six were found to be damaged after five quench cycles,

resulting in Py= 6/11 = 54.5 percent. As stated earlier, the AE study showed very little crack propagation within the
last four cycles of the quench test. All damage either occurred in the first cycle or not at all. Hence, the results of the
five-cycle test were the same as for a single-cycle test. The relatively large difference between the failure rates, the
inherent scatter of flaws within SASC, and the seemingly low propensity for fatigue suggests that a greater number
of tubes should be tested to accurately capture the failure rate for the tests conducted. Pooling the experimental
results for the one- and five-cycle quench tests gives Pr= 9/25 = 36.0 percent.

Two potential sources of error could help explain why the failure probabilities were conservatively predicted
compared with the experimental data: (1) heat transfer coefficients are notoriously difficult to measure, and hence,
the absolute accuracy of the stress analysis would be in question, and (2) fractography of fractured tubes showed
that the flaw population had a preferential orientation, which implies that the material strength was anisotropic. As
previously mentioned, fractography indicated that the majority of failures were due to relatively large axial defects
remaining from the extrusion process used to fabricate the tubes. The highest transient stresses were in the axial
direction, as shown in figure 27. This means that the weakest material flaws were oriented parallel to the highest
stresses. Hence, the weakest flaws could not fail from axial stresses. However, the transient reliability analysis did
not take this orientation effect into account, and consequently, probably overpredicted the tube probability of
failure. Note that specimen rupture data that tested the tube axial strength do not exist, and therefore, the degree of
strength anisotropy is unknown.
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Figure 30.—Transient probability of failure, Py, for thermally
shocked Hexoloy tubes based on volume flaw analysis.
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Figure 32.—Transient probability of failure, Py, for thermally
shocked Hexoloy tubes based on external-surface flaw
analysis.
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Figure 31.—Transient probability of failure, Py, for thermally
shocked Hexoloy tubes based on internal-surface flaw
analysis.
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Figure 33.—Transient probability of failure, Py, for thermally
shocked Hexoloy tubes based on total-surface flaw
analysis (for both the internal and external surfaces).

The effects of a global (hoop and axial) stress-reduction factor were examined to investigate the sensitivity of
the predicted Py to the variation in the stress (and strength) within the tube and the inverse heat-transfer analysis
used to predict them. As can be seen from figure 34, a 10-percent reduction in stress magnitudes (corresponding to
potential errors in the inverse heat transfer analysis and/or strength anisotropy) yielded a Prof 55.3 percent, which
matched the experimental observation for the five-cycle tube test. Given the potential for the material strength
anisotropy and the degree of complexity for the inverse heat-transfer analysis to affect the accuracy of the predicted
stresses, it can be argued that the predicted and measured probabilities of failure compare plausibly well.

As stated earlier, the transient reliability analysis for both volume and total surface area analyses showed no
cyclic fatigue dependence after five quench cycles. There are mainly two reasons for that behavior. First, the
Hexoloy material does not display significant SCG behavior below 1000 °C. In the current analysis, it was assumed
that no SCG behavior occurred below 800 °C. Second, because of the rapid reduction in temperature after quench-
ing and the short duration of the test cycle, the material was subjected to SCG conditions for only a few seconds,
not long enough to induce significant SCG. So that this hypothesis could be tested, the transient failure probability
of the quenched tube was computed as a function of the number of quench cycles. These computations were
performed for stress levels reduced by 10 percent to reflect the 55-percent Prmeasured after five quench cycles.
Figure 35 shows how the transient Princreased from 55 to 98 percent after 100 000 quench cycles when damage
due to SCG was taken into account. Figure 35 also shows that when SCG was not taken into account, the Py
remained constant at 55 percent and did not increase with time. This indicates very clearly that, even for ceramics
with minimal SCG behavior, ignoring the effect of crack propagation on the Pcould lead to premature failure and
nonconservative designs.
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4.0 Conclusions

A methodology for computing transient reliability in ceramic components subjected to fluctuating thermo-
mechanical loading was developed and incorporated into the CARES/Life code. This enables CARES/Life to be
used to predict component reliability for situations such as thermal shock, startup and shutdown conditions in heat
engines, and cyclic loading. The methodology accounts for varying material response, whether due to temperature
or environmental changes, by allowing Weibull and fatigue parameters to vary over the loading history. Examples
demonstrating the viability of the technique for fast fracture, cyclic loading, and proof testing were presented.

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 17, 2004
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Appendix A

Symbols
surface area
A, constant to fit experimental fatigue rupture data (eqs. (D193) and (D217))
Ag constant to fit experimental dynamic fatigue rupture data (eq. (D205))
A, effective area (see app. D, section D.2.1.4, and egs. (D70), (D71), and (D73) to (D75))
Aer modified effective area analogous to modified effective volume V¢ (see app. D, section
D.2.2.3, and egs. (D151), (D152), (D154), and (D155))
Aelr area of an individual finite element (eqgs. (D45) and (D113))
Ag gauge area of a specimen (see section D.2.1.4; for example, the area of a tensile specimen
under uniform uniaxial tension)
Aigub area of an individual subelement
Ay power-law crack-velocity parameter (eqs. (8) and (D93))
Ay Walker-law crack-velocity parameter (eqgs. (52), (55), and (D139))
A2 Anderson-Darling goodness-of-fit test statistic (eq. (D90))
A Ay/A) (eq. (E35))
A, B, C property sets (beginning of app. C)
a crack half length; penny-shaped crack radius; radius of semicircular surface crack
a(\,1) crack length located at 'V for time ¢
B fatigue parameter; subcritical crack-growth parameter (eqs. (D98) and (D140))
Bp subcritical crack-growth parameter for the Batdorf multiaxial equation (eq. (D150) and see

app. D, section D.2.2.4)

Bpgg Bjp for the surface-flaw failure mode

Bgy Bjp for the volume-flaw failure mode

B, subcritical crack-growth parameter for the NSA criterion (see app. D, section D.2.2.4)

Buws B,,, for the surface-flaw failure mode

B,y B, for the volume-flaw failure mode

Bg value of B for the surface-flaw failure mode

B, subcritical crack-growth parameter for specimen uniaxial Weibull distribution (eq. (D144) and

see app. D, section D.2.2.4)
Bys B, for the surface-flaw failure mode

Buy B, for the volume-flaw failure mode
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isub

K{(n)
Ks

value of B for the volume-flaw failure mode

subcritical crack-growth parameter for uniaxial Weibull distribution (eq. (D145) and see
app. D, section D.2.2.4)

B,, for the surface-flaw failure mode
B,, for the volume-flaw failure mode

Shetty shear sensitivity constant; Shetty’s constant in mixed-mode fracture criterion (eqs. (4),
and (D30))

combined-law estimation parameter (eq. (E36))
the contour of a circle of unit radius in two-dimensional principal stress space (eq. (D37))

Kolmogorov-Smirnov goodness-of-fit test statistic defined as D or D, whichever is the largest
(eq. D89))

Kolmogorov-Smirnov goodness-of-fit test statistic (eq. D89))

determinant function

Young’s modulus of elasticity; constant (see app. C)

scalar variable representing the random residual (eq. (E46))

exponential function ¢*

cumulative distribution function for argument o (for example, see eqgs. (D55) and (D89))
empirical distribution function for argument oy (eq. (D88))

function of the variables within the parentheses (for example, see eq. (D174))

cyclic frequency (in hertz); constant-amplitude frequency (egs. (55) and (E1))
strain-energy release rate (eq. (D26))

critical strain-energy release rate (eq. (D26))

total strain-energy release rate (eq. (D26))

strain-energy release rate for crack extension modes I, II, and III, respectively (eq. (D26))
g-factor (egs. (57), (D130), (D133), (E6), and (E45), and table D.I)

Heaviside step function (examples include egs. (82), (D19), (D43), (D238), and (E26))

total height of four-point bend bar with rectangular cross section (fig. D.4); base points or roots
of Legendre polynominals (for example see eq. (D240))

identity matrix (eq. (E51))
" value in a set (for example see eq. (D83))

isub™ value in a set of subelements (egs. (21), (D34), (D46), (D106), and (D114))
Jacobian operator, Jacobian matrix (egs. (D33), (D45), (D105), and (D113))
Kanofsky-Srinivasan confidence band factors (eq. (D91))

dominant stress-intensity factor, either Ky or Kyyp (eq. (D30))
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Kqu(\P, t)

Kleq,max(\Pa t)

Kleqc(\Pa t)

Kqug(\Pa t)

mode-I stress-intensity factor (eq. (1); also, for example, K1 = 1.3660, a"? (eq. (D54)) for a
semicircular surface crack)

mode-II stress-intensity factor (for example Ky = 1.2417 a"? (eq. (D54)) for a semicircular
surface crack)

mode-III stress-intensity factor (for example Kyjp = 0.1337 a"? (eq. (D54)) for a semicircular
surface crack)

critical mode-I stress-intensity factor (fracture toughness)
equivalent mode-I stress-intensity factor from applied multiaxial stress (egs. (2) and (D92))

range in equivalent mode-I stress-intensity factor for cycle n and location ¥ (egs. (54)
and (D139))

equivalent mode-I stress-intensity factor at time ¢ and location ¥ (egs. (2), (D92), and (E4))

maximum mode-I equivalent stress-intensity factor over the load history (egs. (53), (D139),
and (E3))

critical equivalent mode-I stress-intensity factor from applied multiaxial stress at time ¢ and
location ¥ (egs. (3) and (D95))

equivalent mode-I stress intensity factor associated with a g-factor for cyclic loading at time ¢
and location ¥ (egs. (E1), (E2), (E5), and (E6))

integer counter; number of time steps within (for example, see eq. (42))
Batdorf crack-density coefficient (eqs. (D18), (D42), and (E24))

kg for the surface-flaw failure mode

kp for the volume-flaw failure mode

Weibull crack-density coefficient (egs. (D8) and (D35))

Weibull polyaxial crack-density coefficient (egs. (D11), (D12), (D37), (D38), and (E24))
ky,p for the surface-flaw failure mode

ky,p for the volume-flaw failure mode

k,, for the surface-flaw failure mode

k,, for the volume-flaw failure mode

normalized Batdorf crack-density coefficient (eqs. (D63) and (D76))
kp for the surface-flaw failure mode

kp for the volume-flaw failure mode

likelihood function (eq. (D85))

length between outer loads in four-point bending (fig. D.4)

length between symmetrically applied inner loads in four-point bending (fig. D.4)

natural logarithm
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0, m,n direction cosines of normal to oblique plane in principal stress space for the Cauchy
infinitesimal tetrahedron (figs. D.2, D.3, and D.6; and egs. (D21) to (D23), (D47), (D48),
(D101), and (D102))

MD median deviation (see app. D, section D.2.2.5, and egs. (D197), (D198), (D209), (D210),
(D221), and (D222))

m fast-fracture (inert strength) Weibull modulus (scatter parameter) (shape parameter) (eq. (D7))

mg m for the surface-flaw failure mode

my m for the volume-flaw failure mode

m time-dependent Weibull modulus (eq. (D144))

mg m for the surface-flaw failure mode

my m for the volume-flaw failure mode

m' estimated fast-fracture Weibull modulus estimated from fatigue data (eq. (D201))

mg m' for the surface-flaw failure mode

my m' for the volume-flaw failure mode

N crack-velocity exponent (for power law, egs. (8) and (D93), and for Walker law, eq. (D139))

Ng N for the surface-flaw failure mode

Ny N for the volume-flaw failure mode

Ni, N crack-velocity exponents for power law and Walker law, respectively, when both laws are
superposed (egs. (56) and (E1))

n integer counter; total number of values in a set (for example, the total number of fractured
specimens as shown in eq. (D83)); also, the number of loading cycles (for example, see egs.
(52) to (55) and (D139))

ny number of cycles to failure (egs. (D158) and (D216))

Nfin final number of cycles (eq. (65))

gy number of gaussian integration points (for example, see eq. (D240))

Mint initial number of cycles (eq. (65))

ng cycle-dependent scale parameter (eq. (D160))

Asub total number of subelements (egs. (21), (D34), (D46), (D106), and (D114))

nr; transformed /" data number of cycles to failure at applied maximum (within the cycle)

transformed stress level o7 (eq. (D219))

nT0.50 the value of ny when Pr= 0.50 (eq. (D221))
ng characteristic number of cycles (eq. (D158))
nesT ngr for the surface-flaw failure mode
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ner

APpy
PpAt)
P fV(tp)
Ppdty)
Py

Py(1)
Py(1,)
Py(1y)
Pyqlty)
Psas(ty)
Psai(ty)

characteristic number of cycles at applied maximum (within the cycle) transformed stress
level o7 (eq. (D220))

ngr for the volume-flaw failure mode

probability random variable X equals the value x (eq. (D3))

probability of failure (Py= 1- Py)

incremental probability of failure (eq. (D13))

probability of failure at time ¢

probability of failure from proof test at time , (eq. (D228))

probability of failure from proof-test and service load at time #, (eq. (D228))

attenuated probability of failure from proof-test and service load at time ¢, (egs. (72)
and (D228))

Pp(t,) for the surface-flaw failure mode

Pp(t,) for the volume-flaw failure mode

ranked probability of failure for the i specimen (for example, see eqs. (D83) and (D198))
mean probability of failure (eq. (E44))

Pyfor the surface-flaw failure mode

APy for the surface-flaw failure mode

P((?) for the surface-flaw failure mode

P((ty) for the surface-flaw failure mode

P((t,) for the surface-flaw failure mode

Py for the volume-flaw failure mode

APy for the volume-flaw failure mode

P((1) for the volume-flaw failure mode

P((tp) for the volume-flaw failure mode

P((t,) for the volume-flaw failure mode

reliability or probability of survival (P = 1- Py

probability of survival at time ¢

probability of survival from proof test at time , (eq. (72))

probability of survival from proof-test and service load at time 7, (eq. (72))
attenuated probability of survival from proof-test and service load at time ¢, (eq. (72))
Py,(ty) for the surface-flaw failure mode

Py,(ty) for the volume-flaw failure mode
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Atey,
Ateg
I

I

P, for the surface-flaw failure mode
Py(¢) for the surface-flaw failure mode
P(t,) for the surface-flaw failure mode
P(t,) for the surface-flaw failure mode
P, for the volume-flaw failure mode
P(?) for the volume-flaw failure mode
P(t,) for the volume-flaw failure mode
P(t,) for the volume-flaw failure mode

probability of existence of a crack with strength (or critical stress) between ey and
Olege T AG|eqc in an incremental volume or area (eqs. (D13), (D14), and (D40))

AP for the surface-flaw failure mode
AP for the volume-flaw failure mode

probability of a crack with strength ey being so oriented that 61e; > Geye (€gs. (D13), (D15),
and (D41))

P for the surface-flaw failure mode

P for the volume-flaw failure mode

success probability (see paragraph above eq. (D4))

Walker-law R-ratio sensitivity exponent (eqgs. (52), (D139), and (E1))

R-ratio (ratio of minimum stress divided by maximum cyclic stress) at location ¥ where the
R-ratio is assumed to be constant with time or cycles (eq. (ES))

R-ratio (ratio of minimum stress divided by maximum cyclic stress) at # cycles and location ¥
(eq. (D140))

R-ratio (ratio of minimum stress divided by maximum cyclic stress) at time ¢ and location ¥
(eq. (59))

risk-of-rupture (eq. (D6))

number of remaining specimens in censored data analysis (eq. (D87))

finite element natural coordinates (eqs. (D33), (D45), (D105), and (D113))

term in modified Levenberg-Marquardt algorithm (eqs. (E50) and (E51))

temperature

time

equivalent (incremental) time for time step j including fatigue effects (eq. (69))

equivalent (incremental) time for an equivalent applied static stress (egs. (D134) and (D135))

time to failure (eq. (D144)
i specimen time to failure (eqs. (D195) and (D207))
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Ifin
fint
Ay
'min

tmin,l,es

tod
lods

Todv

fo

lod
tods
lodsT
lodr
toay
foavT

fos

final time

initial time

duration of time step j

service time after proof test before which no failure should occur (eq. (D235))

effective service time after proof test where no failure should occur for an applied static stress
0of O1eq,1,7max p based on the properties of time step 1 (egs. (91), (95), and (96))

time-dependent scale parameter (egs. (D146), (D148), (D150), and (E32))
time-dependent scale parameter for dynamic fatigue (eq. (D157))

t,q for the surface-flaw failure mode

t,q for the volume-flaw failure mode

t, for the surface-flaw failure mode

t, for the volume-flaw failure mode

proof-test time (eqs. (72) and (D228))

effective proof-test time for an applied static stress of Gyeq, 1, 7max p based on the properties of
time step 1 (see section 2.6 and eqs. (82), (88), and (92))

period of the cycle (eq. (D128))
total combined time in proof testing and service (eqs. (72) and (D228))

effective time for an applied static stress of Gjey,1,7max,p based on the properties of time step 1
for all time steps (service and proof test) (see section 2.6 and eq. (94))

transformed i”" specimen failure time at applied stress level 67 (eqs. (D195) and (D207))
calculated value of 77 when Pr=0.50 (eq. (D197))
time in service (see section 2.6)

effective service time for an applied static stress of Giey, 1, 7max,¢ based on the properties of time
step 1 (see fig. 5 and section 2.6)

characteristic time (egs. (D144) and (D148))

characteristic time for dynamic fatigue (eq. (D156))

ty4 for the surface-flaw failure mode

toqr for the surface-flaw failure mode

characteristic time for transformed applied stress rate (eq. (D208))
ty4 for the volume-flaw failure mode

tgqr for the volume-flaw failure mode

tg for the surface-flaw failure mode
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oSt

for

Velt

Visub

Zs,total

‘p,total

(o, B)

tor for the surface-flaw failure mode

characteristic time for transformed applied stress level (eq. (D196))

tg for the volume-flaw failure mode

tor for the volume-flaw failure mode

fatigue effect multiplier (egs. (68) and (69))

volume

effective volume (see app. D, section D.2.1.4, and egs. (D56) to (D58) and (D60) to (D62))

modified effective volume (see app. D, section D.2.2.3, and eqgs. (D146) to (D150), (E31), and
(E33))

volume of an individual finite element (eqs. (D33) and (D105))
volume of an individual subelement

gauge volume of a specimen (see section D.2.1.4; for example, the volume of a tensile
specimen under uniform uniaxial tension)

total width of four-point bend bar with rectangular cross section (after eq. (D59)); gaussian
weight function (for example, see eq. (D240))

discrete real-valued random variable (eq. (D3))
transient reliability term; for example, see equations (33), (40), and (42)
value of X for proof test (eqs. (76) and (77))

value of X for combined proof test and service load condition (egs. (79) and (80))
specific value of X (eq. (D3)); any variable (for example, see eq. (46))

location in the body of the structure; Cartesian coordinate directions
k-dimensional vector of independent variables (eq. (E46))

crack geometry correction factor or shape factor (eqgs. (1), (D92), and (E2) to (E4))

h/2 (see fig. D.4 and eq. (D59)); scalar response or dependent variable (eq. (E46)); any variable
(for example, see eq. (46))

number of load cycles—a load cycle could consist of a collection of cycles with various
amplitudes, peak loads, frequencies, wave forms, and other parameters. Z is associated with the
power-law model for crack growth.

total number of service load cycles (see section 2.6 and eq. (74))
total number of proof-test load cycles (see section 2.6 and eq. (73))

angle between G, and the stress | (or ;) on a unit radius sphere (figs. D.2 and D.6) or unit
radius circle (fig. D.3)

arguments or function of orientation angles of a flaw (figs. D.2, D.3, and D.6)

angle between the o, projection and the stress 5 (or 5,) in a plane perpendicular to 6 (or ©,);
azimuthal angle on the unit radius sphere (figs. D.2 and D.6)
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o o =

g ™M

n(o)
n (Gleqc)

ns(o)
Ns(Clege)
ni(o)

N Oleqe)
0

0.

0,

ij

gamma function

total number of load blocks (see section 2.6 and eq. (74))

applied load (fig. D.4); counter (eq. (74))

step bound (app. E2)

summation function; applied multiaxial stress state (for example, see eq. (D13))

C—x number of time steps in a service load cycle (see section 2.6 and eqgs. (80) and (81))

Weibull crack-density function (eq. (D2)); number of flaws per unit volume or area with
strength <

Batdorf crack-density function (egs. (D18) and (D42)); number of flaws per unit volume or area
with strength < 614

1n(o) for surface-distributed flaws

N(Oleqc) for surface-distributed flaws

1(o) for volume-distributed flaws

N(Oleqc) for volume-distributed flaws
vector of regression parameters (eq. (E46))
current estimate of vector 0 (eq. (E50))
new estimate of vector 0 (eq. (E50))

number of proof-test time steps in the first cycle of loading (see section 2.6 and egs. (76)
and (77))

number of load blocks (for example, see eq. (48)); argument in Poisson distribution (eq. (D3))
term in binomial series expansion (eq. (46))

scalar control variable (eq. (E51))

material Poisson’s ratio

total number of time steps (see app. C)

integer smaller than i (see eq. (C23))

applied uniaxial stress (for example, see eq. (D9))

far-field uniaxial stress applied normal to a crack at time ¢
characteristic value Gy.4('¥,t) located at ¥ (egs. (D127) and (D129))

value of the peak stress in a component at failure (determined from experimental rupture data
of simple specimen geometries such as flexure specimens or tensile specimens). Used to

characterize the Weibull parameters m and cg from the experimental rupture data of simple
specimens (eq. (D55))

i" ranked value of n specimens of oy (for example, see eq. (D83)); applied stress level

associated with the i failed specimen with failure time #;; (eq. (D195))
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(o} JA

Of1,i

Gi0

qu,O(xa Vs Z)
Gp

c711,0(111)
Sup(‘Y)

GOnp, O(\P)

Gng, O(\P)

Gy, Oy, O;

61,02, 03

01, max(‘F)

specimen fracture stress oy at time ¢ transformed back to = 0 (eq. (D144))
i" transformed fast-fracture (inert) strength of the specimen (eq. (D203))
i principal stress (i = 1, 2, or 3) applied at time ¢ transformed back to 7= 0 (eq. (D104))

i principal far-field stress (for i = 1, 2, 3) at location x, y, z transformed to time ¢ = 0 from the
combined effect of the static applied multiaxial proof-test load to time #, and the static applied
multiaxial service load from time #, until time ¢, (eq. (D233))

applied far-field stress component normal to a crack face (figs. D.2, D.3, and D.6; egs. (D11),
(D22), (D48), (D101), and (D109))

normal stress o, located at ¥ transformed to # = 0. This symbol is associated with the NSA
method (see app. D, section D.2.2.4, and explanation for eq. (D182))

applied far-field static proof-test stress component normal to a crack face until time ¢, and
located at ¥ (eq. (D231))

applied far-field static proof-test stress component normal to a crack face until time ¢, and
located at 'V that is transformed to time ¢ = 0 (eq. (D231))

applied far-field static normal stress located at ‘¥ transformed to time ¢ = 0 from the combined
effect of proof-test and service loading. The static proof-test load is applied until time ¢, and the
static service load is applied from time #, until time 7, (eq. (D234)

Weibull scale parameter (egs. (D7), (D35), (D58), and (D71))

Weibull scale parameter for time step j incorporating the effect of ks (for example, see
eq. (28))

oo, for the surface-flaw failure mode
oo, for the volume-flaw failure mode
Weibull scale parameter for the surface-flaw failure mode
Weibull scale parameter for the volume-flaw failure mode

specified level of stress for which equivalent failure times are computed (eqs. (D195) and
(D219))

threshold stress (strength) parameter (eq. (D7))
o, for the surface-flaw failure mode
o, for the volume-flaw failure mode

global coordinate system tensile/compressive stress components (fig. D.6, and eqs. (D101) and
(D102))

principal stresses (o1 > 6, > G3)

maximum principal stress within the cycle located at ¥ (eq. (E33)); eq. (D145) shows ¥
asx, y, z
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c1,0(')

G1g,0(X, ¥, 2)
G2g, 0(X, ¥, 2)
G3q, 00X, ¥, 2)

Gleg

Gqu(\P:t)

Oleq,i
Gleg,j.k
Glegq,k, Tmax
Gleg,max

O_qu,max(\y)

Gqu,maX(\P,(n or 7))

Gqu,min(\P)

cTqu,min(\P:(n or 1))

Glegq,C,Tmax

Gleg,k,Tmax

Gqu,O(lP)

Gleg,0,max

Oleg,1,Tmax,p

c71eq, 1,Tmax,e

Ist principal stress or applied uniaxial stress at time ¢ transformed back to ¢ = 0 located at ¥
(eq. (E30); eq. (D145) shows W as x, y, z

se€ Gjq,0(x, ¥, z) for i = 1: the first principal stress
see Gjq, o(x, , z) for i = 2: the second principal stress
see Gjg, o(x, , z) for i = 3: the third principal stress

equivalent (or effective) mode-I far-field stress on a crack from applied multiaxial stress that
results in modes I, I, and III crack surface displacements

equivalent mode-I far-field stress on a crack from applied multiaxial stress at time ¢ and
location ¥

equivalent mode-I far-field stress during time step j
transformed stress during time step j using the material properties of time step k& (eq. (44))
maximum transformed stress over k time steps (using the properties of step k) (eq. (43))

maximum value of Gy, for all values of ¥ (egs. (D16), (D17), and (D39))

maximum equivalent (effective) mode-I far-field stress over a defined time interval or number

of cycles located at ‘¥ (mean stress and amplitude assumed to be constant over time or cycles)
(egs. (D131), (E3), and (E4))

maximum equivalent (effective) mode-I far-field stress over a particular loading cycle or at a
defined time (over the period of the cycle at that time) located at ¥ (eqs. (53), (54), and
(D139))

minimum equivalent (effective) mode-I far-field stress over a defined time interval or number
of cycles located at ¥ (mean stress and amplitude assumed to be constant over time or cycles)

(eq. (E4))

minimum equivalent (effective) mode-I far-field stress over a particular loading cycle or at a
defined time (over the period of the cycle at that time) located at ¥ (egs. (54) and (D139))

maximum transformed stress over  time steps (using the properties of step () for the proof-test
and service load time steps (see section 2.6 and egs. (79) and (80))

maximum transformed stress over k steps (using the properties of step k) for the proof test (see
section 2.6 and egs. (76), (77), and (83))

equivalent mode-I far-field strength of a flaw located at ¥ transformed to ¢ = 0. This can also

be considered as a transformed equivalent stress to ¢ = 0 located at ‘¥ (for example, see eqs.
(19), (D97), and (E15))

maximum value of Gy, o for all values of ¥ (eq. (E23))

maximum transformed stress over the proof-test time steps (using the properties of step 1) (see
section 2.6 and eq. (84))

maximum transformed stress over the service load time steps (using the properties of step 1)
(see section 2.6 and eq. (86))
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Oleqc

Gquc(\Pa t)

Glegc, ,]'(t)

Glegg

c716(1}7(\{")
Oleqp, o('t)

Glegq, O(W)

Go

Cos
Goyr
611

Enp,O(xayaZ)

Enq,O(xayaZ)

5o

equivalent mode-I far-field strength of a flaw; equivalent (or effective) critical mode-I stress of
a flaw—oy,y is the threshold value of o1, where unstable catastrophic crack growth occurs

(eq. (D13))

equivalent critical stress oy, at time 7 and located at W (for example, see egs. (3), (D95), and

(E9)

equivalent mode-I far-field strength of a flaw at some time ¢ that occurs over the interval of
time step j (4,1 <t <) (for example, see egs. (25), (26), (28), and (37))

far-field equivalent static stress (eqgs. (D127) to (D129), (D131), and (ES))

equivalent mode-I far-field stress on a crack from the static applied multiaxial proof-test load to
time ¢, at location ‘¥ (eq. (D229))

equivalent mode-I far-field stress on a crack from the static applied multiaxial proof-test load to
time ¢, at location ¥ transformed to time 7 = 0 (eq. (D229)

equivalent mode-I far-field stress at location ¥ and transformed to time # = 0 on a crack from
the combined effect of the static applied multiaxial proof-test load to time #, and the static
applied multiaxial service load from time #, until time ¢, (eq. (D232)

Weibull fast-fracture (inert strength) characteristic strength—the value of oy where 63.21
percent of experimental rupture specimens fail; it is determined from the regression of
experimental rupture data of simple specimen geometries, such as flexure specimens or tensile
specimens, by using the Weibull distribution (eq. (D55))

og for the surface-flaw failure mode

og for the volume-flaw failure mode

average normal stress (eqs. (D11) and (D37)); this symbol is associated with the NSA method

averaged normal proof-test stress transformed to time ¢ = 0 (eq. (D231))

averaged normal test stress transformed to time ¢ = 0 from the combined effect of the proof-test
and service load (eq. (D234))

Weibull fast-fracture (inert strength) characteristic strength cg estimated from fatigue data
(eq. (D202))

op for the surface-flaw failure mode
op for the volume-flaw failure mode
applied constant uniaxial stress rate (eq. (D120))

stress rate at the point of maximum stress 67(eq. (D156))

applied stress rate associated with the i" failed specimen with fracture time #;; (eq. (D207))

specified level of stress rate for which equivalent failure times are computed (eq. (D207))

NASA/TP—2005-212505 72



Txy, Tyzs Tax
b g

Yo
Q

dQ

Q(zacleqc)

fin
g
i

L,k

applied far-field shear stress on a crack face; shear stress acting on the oblique plane whose
normal is determined by angles a and B (figs. D.2, D.3, and D.6; and egs. (D23), (D49),
(D102), and (D110))

global coordinate system shear stress components (fig. D.6, and eqs. (D101) and (D102))

represents a location (x, y, z) and (for the Batdorf method) a crack orientation (a, B); vector
representing the location and/or orientation of the crack (see eq. (D92) for further explanation)

spatial coordinates of W where oy occurs (eq. (D144))

solid angle in three-dimensional stress space for which ey > G1eyc (€q. (D15); area of a solid
angle projected onto a unit radius sphere in a stress space containing all crack orientations for
which the effective stress is greater than or equal to the critical equivalent mode-I strength Gyeye

(eq. (E25))

sin a da df (incremental area on the surface of a unit radius sphere) where 61y 2 Glege
(figs. D.2 and D.6)

Q for applied multiaxial stress state X and critical stress Gyege

arc length of an angle o projected onto a unit radius semicircle in stress space containing all the
crack orientations for which Gjey > Gjege (€gs. (D39) and (D41)))

Subscripts

attenuated quantity (for example, see Py,); applied or service load
Batdorf (for example, see k »); Batdorf

critical (for example, see Geyc); parameter (for example, see 4.)
characteristic

dynamic fatigue

effective

modified effective

element (eq. (D113))

equivalent (for example, see Gy )
equivalent static (for example, see ¢,)
failure or fracture (for example, see o or Py)
final (for example, see tfp)

gauge

.th th

i valueori term

subscript for time step number (i < j < k); it value, jth value, K" value
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int initial (for example, see #jy)

isub individual subelement

max maximum (for example, se€ Gjey max)

min minimum (for example, Se€ G1eg min)

n normal stress (see G,,); n™ value

0 scale parameter

p proof test (for example, see #,); polyaxial (for example, see k1)

q combined proof-test and service load (for example, see )

S surface-based property

s survival (for example, see Py)

T transformed value (for example, se€ Gieg £, 7max)

u uniaxial; threshold

V volume or a volume-based property (e.g., indicates volume-flaw analysis); volume (egs.
(D1), (D2), (D4) to (D18), (D20), (D34), (D56) to (D58), etc.)

w Weibull

b x coordinate direction

0 characteristic (for example, see Gg)

0 value transformed to 1 =0

I mode [—crack opening mode (for example, see K7)

II mode II—crack sliding mode (for example, see Kiy)

111 mode IIl—crack tearing mode (for example, see Kjyp)

Superscripts

T matrix transpose operation (eq. (E51))
rate (eq. (D120))

' inert distribution parameter estimated from fatigue data (egs. (D202), (D203), (D213) to (D215), and
(D225) to (D227))

A estimated parameter (eqs. (D86) and (D87))

~ modified parameter (eqs. (D144), (D147), (D149) to (D156), etc.)

- normalized quantity (for example, see ks and eq. (D62))

NASA/TP—2005-212505 74



Definitions

Batdorf component reliability model using the Weibull distribution and fracture mechanics
principles to account for the effect of multiaxial stress states on reliability (see
app. D) from Nemeth et al., 2003; Batdorf and Crose, 1974; and Batdorf and
Heinisch, 1978a, for details)

extreme fiber stress the location (point) in the body of the component where the stress is maximum

fast-fracture

(see o)

component rupture in the absence of SCG where strength is strictly controlled by
the fracture toughness and the size, distribution, and orientation of inherent flaws
(app. D from Nemeth et al., 2003).

mode [ crack opening mode

mode II crack sliding mode (in-plane shear)

mode III crack tearing mode (out-of-plane shear)

R-curve where fracture toughness Kj. varies with crack size—typically increasing with
crack size (see Broek, 1982, for introductory information)

transient reliability analysis predicting the probability of survival of a component while accounting for loads
and temperatures that can vary over time

Weibull distribution see equation (16) and Weibull (1939a and 1939b)

Acronyms and Initialisms

AD Anderson Darling (goodness-of-fit statistic) (eq. (D90))

CARES  Ceramics Analysis and Reliability Evaluation of Structures

EDF empirical distribution function (eq. (D88))

FEA finite element analysis

KS Kolmogorov-Smirnov (goodness-of-fit statistic) (eqs. (D88) and (D89))

LEFM linear elastic fracture mechanics

MEMS microelectromechanical systems

MLE maximum likelihood estimate

MOR modulus of rupture

NDE nondestructive evaluation

NSA normal stress averaging (Weibull, 1939a, and eqgs. (D11) and (D37))

PIA principle of independent action—a component reliability model based on the Weibull distribution that

accounts for multiaxial stress states by using principal stresses applied independently of one another

(see app. D from Nemeth et al., 2003; Barnett et al., 1967; and Freudenthal, 1968)
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SASC
SCG
SIF
SL

form of silicon carbide made by Carborundum
slow crack growth
stress intensity factor

significance level
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Appendix B
Numerical Method for Transient Reliability Analysis
(Weibull Technique for a Simple Uniaxial Stress State)

The numerical algorithm for transient reliability analysis follows for an applied uniform uniaxial tensile stress
and a unit volume (or area). Because of its relative simplicity, the Weibull methodology (see eq. (16)) for an
incremental volume under a uniform uniaxial stress state that varies over time and that is described with & discrete
time steps is shown here for illustration purposes. The Batdorf methodology (for transient reliability analysis) is
similar except for the additional complexity of accounting for the orientation of the flaw.

B.1 Initialize the Numerical Algorithm (for the last time step, k)

G/, T max

Mg =myp N =3 Xpp= (B1)

Go.k

B.2 Do-Loop Algorithm

Doi=(k+1),2,-1 (increment in decreasing order from (k + 1) to 2), where & is the total number of time steps)

m;i(Nioy —2) Nit ps
G AL
X = xoWe2) Dt i (B2)
Wi D p.
o.(i-1) -1
where the subscript numbers indicate the time step numbers.
B.3 End Do (Loop)
The risk of rupture ROR 1is calculated as
m
ROR=Xx"M"7y (B3)
where V' is the volume (V=1 for a unit volume). The failure probability is
Py =1-exp(— ROR) (B4)
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Appendix C
Efficient Numerical Computation for Transient
Reliability Analysis With Cyclic Loading

A computationally efficient method has been developed to perform transient reliability analysis for (constant
amplitude and frequency) cyclic loading (see eq. (50)). The technique allows for a tradeoff between solution
accuracy and numerical efficiency. This appendix shows how it was developed.

The following reasoning is based on an example using a three-time-step (per cycle) loading problem. The basis
for this formulation is the observation that a truncated binomial series expansion can be used to approximate the
contribution of successive time steps. The numerical method described in appendix B for uniaxial stress transient
reliability analysis is used here because of its simplicity.

To begin, consider a unit volume specimen being subjected to repeated transient load cycles, where each cycle
can be divided into three time steps. Over each time step, the stress and material properties are assumed to remain
constant, however stress and material properties (Weibull and SCG parameters) could vary between time steps
within the cycle. These stresses and material properties are designated by specifying three time steps to define a
single cycle:

Property set A, time step 1—01ey,4, Aly, Mg, o s Na» By
Property set 3, time step 2—01eq,b> Alp, My, Go py Np, Bp

Property set C, time step 3—Gieq,c, Ale, M, Gp er Ne, Be

Set
Na Ay
:c’ﬂvqT w=my(Ny—2)
Soa Ba v =my (Na —2)
o ClegsBs | w=my(N,~2)
Gi\?l;_sz X =me (Nb - 2)
N, y=me (Na - 2)
¢ At
_ Clegee z=mgy(N, -2)
N-2p
Go,c c

The repeated cyclic loading and the three time steps making up each cycle follow the pattern in table C.I. The
numerical algorithm described in appendix B for g total time steps encompassing &/3 total loading cycles is used to
determine the risk of rupture. Now, perform the numerical algorithm in appendix B (see eq. (B2)) for overall step

i — 1, where step i — 1 has the material properties of A from equation (B2) of the Do-Loop algorithm.

TABLE C.I.—CYCLIC LOADING PATTERN SHOWN FOR THREE CYCLES AND THREE TIME STEPS PER CYCLE

Property set associated with the time step A B C A B C A B C
Time step number within the cycle 1 2 3 1 2 3 1 2 3
Overall time step number 1 2 3 4 5 6 7 8 9
Cycle number 1 1 1 2 2 2 3 3 3

Xig=X"+a (CH
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SetE = X} ' and assume that (& — i) >> 1 such that & — i is at least 3x100 (100 load cycles). In this case for the

repeated cyclic load, E >> a, E >> b, and E >> ¢. This is because E already represents a summation of terms

a, b, and c for [§ — (i — 1)]/3 loading cycles. Because E is large relative to the terms a, b, and ¢, the exponentiation
performed on X in the numerical algorithm can be approximated by a binomial series expansion truncated to two
terms. That is, for a binomial series of the form

p(u 1) w22 +qu—3y3 o (€2)

po_ o p p-l
(e p)H =xt ety 4 o 3

where (x2 > y2). When x >> y, the higher order terms in the series become negligible and we can approximate the
series as a two-term expression:

x+p)" = M+ pLxPH y when x >>y (C3)
For the i — 1 time step,
Xi1=E+a (CH
and for the i — 2 time step in the solution algorithm in appendix B,
Xir=(E+ a)Z/y +c (Cs5)

Rewriting this using the two-term binomial expansion approximation of equation (C3) yields

zly
X, ~Ey 4+ L a(ij-i-c (C6)
E \y

For the time step i — 3 then,

EZ/y x/w
X3 :{Ez/y J{ a(£j+c:|} +b (C7)
E y

Because E >> a, then E~ Vs (E° & /E) a(z/y) + ¢; so using the two-term binomial expansion again yields

Xos = (Ez/y)x/w N (EZ/y)X/W E?/Y a(ij(ij+wc(ij+b (C8)

Ezy E y kw Ez/y w

For the i — 4 time step,

viu
(z/y)(x/w) (z/y)(x/w)
Xy = EG/MGIw) 4 LA 1 (i)JFE—C(in, +a (C9)
E y Aw EZy w

and again, if we assume that the term in parenthesis in equation (C9) is small relative to EY )(X/W), then using the
two-term binomial expansion yields
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Xy_s = EG/ W00 +|:E(2/y)(x/w)(v/u) } E /)W) a(ij[ij(lj
y A Aw

E @/ y)(x/w) E u
[ (z/ ) (x/ w)(v/u) (z/y)(x/w)
+E E NEN (C10)
EE/y)x/w) EE/y) w N\ u
—E(z/y)(x/w)(v/u) " v
| T EEa R
Now, from the definition of the terms u, v, w, x, y, and z,
my(N.~2) mo(Ny—2) my(N,~2)
E(z/y)(x/w)(v/u) — Emc(Na—Z) mb(NL.—Z) ma(Nb—Z)
(C11)
=F
So X; 4 can be simplified as
E x\v E %
Xi—4 =F+2a+ Ez/y C{;j(;j +Wb(;J (CIZ)

Note that the two steps involving property A, steps i — 1 and i — 4, simplify to a simple sum of 2a. This is useful

because it indicates that the cumulative effect of similar time steps (same time step number within the cycle as
shown in table C.I) can be described by a simple summation. Following the process further for the sake of
illustration, for the i — 5 time step, we obtain

X s=X"Y+c (C13)

zly
E x\v E %
Xi—S = {E + |:2a + EZ/)/ C(;j(;) +Wb[;j:|} +c (C14)

Using the two-term binomial expansion then gives

(z/y) (z/y) (z/y)
XIPS = E(Z/)’) + £ 2a i + E LC’ i 1 i + £ E b 1 i +c (CIS)
E y E ECY) \wlu y E EGIy)x/w) Ty, y

Simplifying yields

(z/y) (z/y)
Xis=|EGEY) + £ 2| Z 420+ £ £ AR = (C16)
E y E |[EG \u )y
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Again note the direct summation of the properties for C denoted by the term 2c¢. Also, note that the term

associated with property A represents a value transformed from that associated with the property for C. For time
step i — 6,

Xig=XF9+b (C17)

Using the two-term binomial expansion gives

" E w

| E(Z/J’) | y

[ (/) w) ]

S 2{% (C18)
E(Z/y) w

—E(Z/y)(x/w)_E(Z/y) E (v) z (xj
N b—|=|=1|+b
£G1Y) E  gGE»Ew {u )y \w

or

E)w) ] EE) 2/ ¥)r/w)
Xig=| ECem 1| E B e 2 2 | B2 e X )2 (C19)
E(Z/J’) E y A\w E(z/y) w

For time step i — 7,
Xig=X¥¢+a (C20)

Then using the two-term binomial expansion gives

X = Iy EG/»)x/w)v/u) | p(z/y)(x/w) E(z/y) a z x\v
! E(Z/y)(X/W) E(Z/y) E y A\wA\u

(z/y)(x/w)(v/u) (z/y)(x/w)
e £ 2 2|2 (C21)
E@/y)(x/w) EGEY) w M\ u

E @/ y)(x/w)(v/u) 2 v
T TR )

Simplifying gives

E x\v E \
Xi—7 = {E + |:3a + Ez/y 26{;}(;} + WZZ)(;H} (C22)

It is important to note that as the term in brackets [ ] gets large relative to X; 7 (and to smaller indices of X), the
two-term binomial approximation becomes increasingly inaccurate. Also note the obvious similarities between

expressions X; 4 and X; 7. Therefore, for the i — p time step,
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(-1 E (p=D (x)v E (p=D, (v
Xip:{E+|: 3 a+Ez/y 3 c(;](;]}_‘_gj(z/y)(x/w) 3 b(;j}+a (€23)

In this case, (i — p)/3 is the number of cycles between the i — 1 and i — p time step. If Z,= (i — p)/3 is set for the
number of cycles in the interval, then

E x\v E %
Xi—p = {E+{Zla +Wzlc(;j(;j+mzlb(;ﬂ}+a (C24)

If we use the two-term binomial expansion equation (eq. (C3)), equation (C25) below can be shown to be
equivalent to equation (C24):

viu
X=Xy +2af + 2 o
ip = ) a +Z.c +Zb +a (C25)
or
mb(Nafz)
Xip= Xl_ma(Nb_z)
(C26)
my(Ne=2) me(Np=2) my(Ng=2)
G%QZA% m(Ny=2) G&ﬁZAQ my(Ne=2) G%bZA% Mg (Np=2) G&aZA%
N,-2 N.-2 Np-2 N,-2
Go,a Ba Go,c Bc GO’Z Bb Go,a Ba

By an inductive argument for a cycle that contains & time steps, then

mV,k[NV,(kfl)*z]
m [N 2] N M N mV,(k—l)[NV,k_z]
A2l a7l v, Ny -2 3
T otz [l o 7 g
Xy =1 || XMalVra2==] 4 - —_—
i=p i Nva-2 p Nvi=2 g
Sopy,1 Br. 1 Sy i PVk
k
(C27)
mV,Z[NV,l_z]
Ny il [NV‘Z_z] Ny
. Oleg2 Z Aty Oleg.l Aty
T Nya-2 Ny -2
Copio Bra Sy Bri
2

For a more convenient expression (similar to eq. (C27)), the indices can be adjusted so that, for j =i — 1 and
e=p-1,
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[ ] mV,(k—l)[NV,(k—z)—Z]
my [Ny (r-1)—2 [N _2]
M Ny my (k)| Ny 52 Ny (k-1) (k=D k-1)
my k[NV1—2] Gleq,k Z\ Aty il 1)[ r ] Gleq,(k—l) ZlAt(k—l)
Xig=1. Xj KLV, + N, 2 Ny 02
Sopik Bri . S o7, (k-1) BV (k1)
k-1
(C28)
mV,l[NV,k—2]
my 4 [Ny 1-2]
Ny ’ ’ Ny &
I Oleg.1 Z,An Gqu,k Aty
h Ny 1-2 Ny ;=2
OBV 1 By, SV k By

Equations (C25), (C26), (C27), and (C28) were shown to be true on the basis of equation (C3)—a two-term
truncation of the binomial series. When the value of j — ¢ or i — p becomes sufficiently large relative to the total
(overall) number of time steps processed in the algorithm, equation (C3) loses accuracy. In other words, more terms
of the binomial series are needed to maintain a level of accuracy as j — ¢ or i — p becomes sufficiently large. How-
ever, using more than two terms in the series would destroy the computational simplicity and efficiency of the
methodology shown thus far. Therefore, to maintain accuracy, j — @ or i — p should be sufficiently small relative to
the total number of time steps. To obtain a complete reliability solution, we discretize the load history into A load

blocks, with each block containing Z, cycles such that
A
Ziotal = D, 20 (C29)
=1

where Z;ya1 1S the total number of cycles and each load block (see eq. (B28)) consists of Z, cycles, with each cycle
containing k time steps. Equation (C28) describes the contribution to reliability for each load block. Using the
numerical algorithm shown in equations (B1), (B2), and (B3), we can express the total contribution to reliability as
from which the risk-of-rupture is computed from equation (B3) and failure probability is calculated from equation
(B4) for the Weibull distribution and an incremental volume. Equation (C30) also plugs directly into the Batdorf
formulation, as shown in equations (48), (49), and (50).
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As the number of solution increments A gets smaller, the computational efficiency increases, but at the cost of
some loss of accuracy. For A = 1, Z = Z| = Z;,1a1 and equation (C30) simplifies to

my [NV,(k—l)_z]

Ny -2 Ny k _
Oleq e, Tyay vk O leg Zotal AL my (- [Ny 4 =2]
|| e B e
0BV k Sopik Bk '
_ mV,(kfl)[NV,(k—z)*z] _ mV,z[NV,l—Z] (C31)
mV,(k—Z)[NV,(k—l)fz] my 1[Ny 2 -2]
Ny Ny o Ny 1
Gqu (k 1) ZtotalAt(k -1) N Gqu 2 ZtotalAZZ Gleq 1 ZtotalAtl

NVkl Ny -2 NV12

OBV (k-1) BV (k1) Sopi2 Bro Copir1 Bri
dk-n 1P

Equation (C31) represents the most computationally efficient solution for repeated block (or cyclic) loading. It
is up to users to determine if the error associated with equation (C31) is acceptable (see the following numerical
example).

An example of the methodology shown in equations (C30) and (C31) is provided in tables C.II to C.V to
illustrate the tradeoff between computational efficiency and numerical accuracy using this methodology. In this
example, a 10-time-step loading sequence was used. A unit volume was assumed, and the loading was uniaxial and
uniform throughout the volume. The loading varied over each time step, and a temperature was associated with each
time step. Table C.II shows the loading sequence, and table C.III shows how the Weibull and SCG parameters
varied with temperature. These parameters were linearly interpolated at intermediate temperatures. Table C.IV
contrasts the percent error between the exact numerical solution of equation (42) with that of equation (C31) for
various cycle counts. It is interesting to note that the error was relatively small at the lower cycle counts (z = 10 and
n=100) and higher cycle counts (n > 10 000). The error was as large as —11.6 percent in this example.

TABLE C.II.—TEN-STEP TRANSIENT UNIAXIAL LOAD HISTORY
FOR A SINGLE LOAD CYCLE

Time step Time, Equivalent mode-I Temperature,

number s far-field stress, °C
Olegs
MPa

1 25 100 100

2 50 90 200

3 75 80 300

4 100 70 400

5 125 60 500

6 150 70 600

7 175 80 700

8 200 90 800

9 225 95 900

10 250 100 1000
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TABLE C.II.—TEMPERATURE-DEPENDENT MATERIAL PROPERTIES
[Material properties are linearly interpolated between temperature levels for this example.]

Temperature Volume Volume Weibull Volume crack Volume SCG
Weibull scale parameter, velocity material parameter,
modulus, oy exponent, By
my Ny
100 5 230 40 0.0021
500 9 226 36 0.021
1000 14 221 31 0.21

TABLE C.IV.—EXAMPLE OF THE EXACT SOLUTION (EQS. (41) and (42))
VERSUS THE CYCLIC APPROXIMATION METHOD (EQ. (C31))
[The results for one load block represent the least accurate
but most computationally efficient answer.]

Number of Volume probability of failure, Error,
cycles, Py, percent
" Exact solution Cyclic approximation
(eq. (41)) method
(eq. (C3D))

10° 0.16428 0.16428 0
10! 21701 21571 —6
10 28955 28037 32
10° 41831 36997 -11.6
10* 70425 68330 3.0
10° 96954 96850 1
10° 199997 99997 ~1.0x107*

TABLE C.V.—EXAMPLE OF CYCLIC APPROXIMATION METHOD FOR VARIOUS NUMBERS OF LOAD BLOCKS
USING EQUATIONS (C29) AND (C30)

[Each load block has the same number of cycles (Z, = Zital/A ).]

Number of Volume probability of failure, Py
cycles, Exact Number of load blocks, A
n solution
1 2 5 10 100 500 1000
(eq. (41))
103 0.41831 0.36997 0.39447 0.40958 0.41420 0.41796 0.41827 0.41831
105 0.96954 0.96850 0.96864 0.96877 0.96884 0.96924 0.96948 0.96951

Table C.V shows the difference in failure probability between the exact solution (eq. (42)) and the approximate
solution (eq. (C30)) for various numbers of load blocks A. From table C.V it can be observed that the solution
accuracy improves as A gets larger. Figure C.1 shows the reduction in error as A gets larger for 1000-cycle predict-
tions (the number of blocks approaches the number of cycles). At A = 100, the error becomes relatively negligible.
This still represents a 10-fold reduction in computational effort versus the exact solution. This example illustrates
the level of error that may be encountered using the cyclic approximation method. The authors are not aware of a
method to systematically specify what level of error could be expected for a given problem. It is, therefore, up to
users to perform these tradeoff comparisons to determine an acceptable level of error versus computational effort.
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Figure C.1.—Percent error for 1000 cycles from the exact
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imation method (eq. (C30)) for various numbers of load
blocks A.
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Appendix D
Excerpted Introduction and Theory Section—CARES/Life Ceramics Analysis and
Reliability Evaluation of Structures Life Prediction Program’

D.1 Introduction

Advanced ceramics have several inherent properties that must be considered in the design procedure. The most
deleterious of these properties is that ceramics are brittle materials. This lack of ductility and yielding capability
leads to low strain tolerance, low fracture toughness, and large variations in observed fracture strength. When a load
is applied, the absence of significant plastic deformation or microcracking causes large stress concentrations to
occur at microscopic flaws, which are unavoidably present as a result of materials processing operations or
inservice environmental factors. The observed scatter in component strength is caused by the variable severity of
these flaws and by the behavior of sudden catastrophic crack growth, which occurs when the crack driving force or
energy release rate reaches a critical value. In addition, the ability of a ceramic component to sustain a load
degrades over time because of a variety of effects such as oxidation, creep, stress corrosion, and cyclic fatigue.
Stress corrosion and cyclic fatigue result in a phenomenon called subcritical crack growth (SCG). SCG initiates at a
preexisting flaw and continues until a critical length is reached, causing catastrophic propagation. The SCG failure
mechanism is a load-induced phenomenon over time. It can also be a function of chemical reaction, environment,
debris wedging near the crack tip, and deterioration of bridging ligaments.

Once the factors that contribute to material failure have been identified and characterized, ceramic components
can be designed for service applications using an appropriate brittle material design methodology. For this purpose,
NASA’s integrated design computer program CARES/Life (Ceramics Analysis and Reliability Evaluation of
Structures/Life) has been developed to predict the fast-fracture and/or lifetime reliability of monolithic structural
ceramic components subjected to thermomechanical and/or proof-test loading. This design methodology combines
the statistical nature of strength-controlling flaws with fracture mechanics to allow for multiaxial stress states,
concurrent flaw populations, and SCG. CARES/Life is an extension of the CARES program (Powers et al., 1992;
Nemeth et al., 1990; Pai and Gyekenyesi, 1988; Gyekenyesi and Nemeth, 1987; and Gyekenyesi, 1986), which
predicts the fast-fracture reliability of monolithic ceramic components. The fundamental subsets of the program
include (1) fast-fracture reliability analysis, (2) inert (fast-fracture) statistical material parameter estimation,

(3) crack-growth laws to account for static and cyclic fatigue, (4) static, dynamic, and cyclic fatigue parameter
estimation, and (5) the effect of proof testing on component service probability of failure.

Because the presence of microscopic flaws causes ceramics to fail, examination of fracture surfaces can reveal
the nature of failure. Fractography of broken samples has shown that these flaws can be characterized into two
general categories: (1) defects internal or intrinsic to the material volume (volume flaws) and (2) defects extrinsic to
the material volume (surface flaws). Intrinsic defects are the result of materials processing. Extrinsic flaws can
result from grinding or other finishing operations, from chemical reaction with the environment, or from the internal
defects intersecting the external surface. The different physical nature of these flaws results in dissimilar failure
response to identical loading situations. Consequently, separate criteria must be employed to describe the effects of
the applied loads on the component surface and volume.

Because of the statistical nature of these flaw populations, the size of the stressed material surface area and
volume (known as the size effect) affects the strength. By increasing component size, the average strength is
reduced because of the increased probability of having a weaker flaw. Generally, for metals, the variation of
strength is small, and thus the scaling effect is negligible. However, for materials that display large variations of
strength, this effect is not trivial. Hence, if a ceramic design is based on material parameters obtained from smaller
size test pieces, then the effects of scaling must be taken into account, otherwise a nonconservative design will
result.

’This is a revised version of a section of Nemeth et al. (2003). Note that in this appendix some variables were renamed and some text was
edited to be more consistent with the main text of this report.
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Another consequence of the random distribution of flaws is that failure of a complex component might not be
initiated at the point of highest nominal stress. A particularly severe flaw may be located at a region of relatively
low stress, yet still be the cause of component failure. For this reason, the entire field solution of the stresses should
be considered. Clearly, it is not adequate to predict reliability only on the basis of the most highly stressed point.

Traditional analysis of the failure of materials uses a deterministic approach, where failure is assumed to occur
when some allowable stress level or equivalent stress is exceeded. The most widely used of these theories are the
maximum normal stress, maximum normal strain, maximum shear stress, and maximum distortional energy criteria
of failure. These phenomenological failure theories have been reasonably successful when applied to ductile
materials such as metals. However, these methods do not account for observed variations in ceramic component
fracture stress. Therefore, to assure high reliability in brittle material design, large factors of safety are required.
This does not allow for optimization of design since the physical phenomena that determine fracture response are
not properly modeled.

Because of its lack of a proper physical basis, the traditional approach to design is not adequate to predict the
failure of brittle materials. Consequently, Griffith (1921 and 1925) proposed a fracture theory where failure was due
to the presence of cracks of specified size and shape distributed randomly throughout the material. He assumed that
no interaction takes place between adjacent cracks and that failure occurs at the flaw with the least favorable
orientation relative to the macroscopic loading. The Griffith energy balance criterion for fracture states that crack
growth will occur if the energy release rate reaches a critical value. Griffith’s theory provides a sound physical basis
to describe the rupture process in an isotropic brittle continuum. However, it omits the effect of component size on
strength because the crack length is not treated as a probabilistic quantity.

Reliability analysis is essential for accurate failure prediction and efficient structural utilization of brittle
materials subjected to arbitrary stress states. When coupled with the weakest-link model (Weibull, 1939a), this
approach takes into account not only the size effect and loading system, but also the variability in strength due to
defect distributions. A statistical theory of failure can be readily incorporated into the finite element method of
structural analysis since each element can be made arbitrarily small such that the element stress gradient is negli-
gible. Component integrity is computed by calculating element-by-element reliability and then determining the
component survivability as the product of the individual element reliabilities.

For fast-fracture reliability analysis, the first probabilistic approach used to account for the scatter in fracture
strength and the size effect of brittle materials was introduced by Weibull (1939a, 1939b, and 1951). This approach
is based on the previously developed weakest-link theory (WLT) (Peirce, 1926), which is primarily attributed to
Peirce, who proposed it while modeling yarn failure. The WLT is analogous to pulling a chain, where catastrophic
failure occurs when the weakest link in the chain is broken. Unlike Peirce, who assumed a gaussian distribution of
strength, Weibull assumed a unique probability density function known as the Weibull distribution. It has been
shown (Shih, 1980) that the three-parameter Weibull distribution is a more accurate approximation of ceramic
material behavior than the gaussian or other distributions. Since three-parameter behavior is rarely observed in
as-processed monolithic ceramics, the CARES/Life program uses the two-parameter Weibull model in which the
threshold stress (the value of applied stress below which the failure probability is zero) is taken as zero. The
reliability predictions obtained using the two-parameter model are more conservative than those obtained with the
three-parameter model.

To predict the fast-fracture material response under multiaxial stress states by using statistical parameters
obtained from flexural or uniaxial test specimens, Weibull proposed calculating the risk of rupture by averaging the
tensile normal stress raised to an exponent in all directions over the area of a unit radius sphere (volume flaws;
Weibull, 1939a) or over the contour of a unit radius circle (surface flaws; Gross and Gyekenyesi, 1989). Although
this approach is intuitively plausible, it is somewhat arbitrary. In addition, it lacks a closed-form solution, and
therefore, requires computationally intensive numerical modeling. Subsequently, Barnett et al. (1967) and
Freudenthal (1968) proposed an alternative approach usually referred to as the principle of independent action
(PTA) model for finding the failure probability in multidimensional stress fields. This principle states that the
Weibull survival probability of a uniformly stressed material element experiencing multiaxial loading is equal to
the product of the survival probabilities for each of the tensile principal stresses applied individually.

The PIA fracture theory is the weakest-link statistical equivalent of the maximum stress failure theory. The
Weibull method of averaging the tensile normal stress and the PIA model have been the most popular methods for
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polyaxial stress-state analysis, and they have been widely applied in brittle material design (Margetson, 1976;
Paluszny and Wu, 1977; DeSalvo, 1970; Wertz and Heitman, 1980; and Dukes, 1971). However, the Weibull and
PIA hypotheses do not specify the nature of the defect-causing failure, so there is no foundation for extrapolating to
conditions different from the original test specimen configuration. Consequently, the accuracy of these theories has
been questioned, and other statistical models have been introduced (Batdorf and Crose, 1974; Evans and Jones,
1978; and Batdorf, 1978). The ideas developed by Batdorf and Crose (1974) are important because they provide a
physical basis for incorporating the effect of multiaxial stresses into the WLT. They describe material volume and
surface imperfections as randomly oriented, noninteracting discontinuities (cracks) with an assumed regular
geometry. This enables the contributions of shear and normal forces to the fracture process to be explicitly treated.
Failure is assumed to occur when the effective stress on the weakest flaw reaches a critical level. The effective
stress is a combination of normal and shear stresses acting on the flaw. It is a function of the assumed crack
configuration, the existing stress state, and the fracture criterion employed. Accounting for the presence of shear on
the crack plane reduces the normal stress needed for fracture, yielding a more accurate reliability analysis than that
of the shear-insensitive crack model (Weibull’s method). Unlike in the deterministic Griffith failure criterion, the
size of the crack in the probabilistic approach need not be considered because it is associated with the strength of
the material.

The search for an accurate fracture criterion to predict fast-fracture response to monotonically increasing loads
leads to the field of fracture mechanics. Many authors have discussed the stress distribution around cavities of
various types under different loading conditions, and numerous criteria have been proposed to describe impending
failure. Paul and Mirandy (1976) extended Griffith’s maximum tensile stress criterion for biaxial loadings to include
three-dimensional effects due to Poisson’s ratio and flaw geometry, which could not be accounted for in Griffith’s
previous two-dimensional analysis. Other investigators (Giovan and Sines, 1979; Batdorf, 1980; Stout and Petrovic,
1984; and Petrovic and Stout, 1984) have compared results from the most widely accepted mixed-mode fracture
criteria with each other and with selected experimental data. No prevailing consensus has emerged regarding a best
theory. Also, most of the criteria predict somewhat similar results, despite the divergence of initial assumptions.
Therefore, the authors of this report concluded that several alternatives would be available for the sake of com-
parison but that the semiempirical equation developed by Palaniswamy and Knauss (1978) and Shetty (1987)
provides the most flexibility to fit the available experimental data. In addition, Shetty’s criterion can account for the
out-of-plane flaw growth that is observed under mixed-mode loadings. Finally, several different flaw geometries are
described, but the penny-shaped and semicircular crack configurations are recommended as the most accurate
representations of volume and surface defects, respectively.

A wide variety of materials, including ceramics, exhibit the phenomenon of delayed fracture or fatigue. Under
the application of a loading function of a magnitude smaller than that which induces short-term failure, there is a
regime where SCG occurs and this can lead to eventual component failure in service. SCG is a complex process
involving a combination of simultaneous and synergistic failure mechanisms. These can be grouped into two
categories: (1) crack growth due to corrosion and (2) crack growth due to mechanical effects arising from cyclic
loading. Stress corrosion is due to a stress-dependent chemical interaction between the material and its environment.
Water, for example, has a pronounced deleterious effect on the strength of glass and alumina. Higher temperatures
also tend to accelerate this process. Mechanically induced cyclic fatigue is dependent only on the number of load
cycles and not on the duration of the cycles. This phenomenon can be caused by a variety of effects, such as debris
wedging or the degradation of bridging ligaments, but essentially it is based on the accumulation of some type of
irreversible damage that tends to enhance the crack growth. Service environment, material composition, and
material microstructure determine if a brittle material will display one, none, or some combination of these fatigue
mechanisms.

Because of the complex nature of SCG, models that have been developed tend to be semiempirical and to
approximate the behavior of SCG phenomenologically. Theoretical and experimental work in this area has
demonstrated that lifetime failure characteristics can be described by considering the crack-growth rate versus the
stress-intensity factor (SIF) or the range in the SIF. This is graphically depicted as the logarithm of the rate of crack
growth versus the logarithm of the mode-I SIF. Curves of experimental data show three distinct regimes, or regions,
of growth. The first region includes the threshold behavior of the crack, where below a certain value of stress
intensity the crack growth is zero. Above this threshold level there is an approximately linear relationship of stable
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crack growth. In this second region, the crack velocity is essentially constant versus the SIF. The third region
indicates unstable crack growth as the crack velocity rapidly increases and the critical SIF is approached. For the
stress corrosion failure mechanism, region I is controlled by the rate of reaction of the corrosive species; region Il is
controlled by the diffusion of the corrosive species; and region III is unstable crack propagation. These curves are
material and environment sensitive. This model, using conventional fracture mechanics relationships, satisfactorily
describes the failure mechanisms in materials where, at high temperatures, plastic deformations and creep behave in
a linear viscoelastic manner (Evans and Wiederhorn, 1974a). In general, at high temperatures and low levels of
stress, failure is best described by creep rupture that generates new cracks (Wiederhorn and Fuller, 1985). Creep and
material healing mechanisms are not addressed in the CARES/Life code.

The most often cited models in the literature regarding SCG are based on power-law formulations. Other
theories, most notably that of Wiederhorn et al. (1980), have not achieved such widespread usage, although they
may also have a reasonable physical foundation. Power-law formulations are used to model both the stress
corrosion phenomenon and the cyclic fatigue phenomenon. This modeling flexibility, coupled with their widespread
acceptance, makes these formulations the most attractive candidates to incorporate into a design methodology. A
power-law formulation is obtained by assuming that the second crack-growth region is linear and that it dominates
over the other regions. Three power-law formulations are useful for modeling brittle materials: the power law, the
Paris law, and the Walker law. The power law (Evans and Wiederhorn, 1974a; and Wiederhorn, 1974a, pp. 613—
646) describes the crack velocity as a function of the SIF, and it implies that the crack growth is due to stress
corrosion. For cyclic fatigue, either the Paris law (Paris and Erdogan, 1963) or Walker’s modified formulation of
the Paris law (Walker, 1970, p. 1; and Dauskardt et al., 1992) is used to model the SCG. The Paris law describes the
crack growth per load cycle as a function of the range in the SIF. The Walker equation relates the crack growth per
load cycle to both the range in the crack-tip SIF and the maximum applied crack-tip SIF. It is useful for predicting
the effect of the R-ratio (the ratio of the minimum cyclic stress to the maximum cyclic stress) on the material
strength degradation.

Because SCG operates on the preexisting flaws in the material, the fast-fracture statistical theories discussed
previously are required to predict the time-dependent reliability for brittle materials. The SCG model is combined
with the two-parameter Weibull cumulative distribution function to characterize the component failure probability
as a function of service lifetime. The effects of multiaxial stresses are considered by using the PIA model, the
Weibull normal stress-averaging (NSA) method, or the Batdorf theory.

Lifetime reliability analysis accounting for SCG under cyclic and/or sustained loads is essential for the safe and
efficient utilization of brittle materials in structural design. Current life design methodology assumes that the SCG
of mixed-mode loading is based on a power function relationship existing between the crack propagation rate and
the equivalent mode-I SIF (Boehm, 1989; Hamanaka et al., 1990; Hamada and Teramae, 1990; Thiemeier, 1989;
Sturmer, 1991; and Wittig et al., 1991). The literature is sparse regarding crack-velocity measurements for mixed-
mode loadings of brittle materials. When a crack is subjected to a combined-mode loading, it extends in a curved or
kinked path that reorients the crack to a pure mode-I coplanar extension at the crack tip (Shetty and Rosenfield,
1991). The models of Boehm, Hamanaka, Homada, Thiemeier, and Sturmer do not consider this more complex
behavior because of the paucity of available data. The approach taken by these researchers is reasonable if the dura-
tion where mixed-mode loading exists at the crack tip is small in comparison to the duration where the crack tip is
extending in pure mode I. In any event, the formulations they adopted tend to yield conservative results.

For corrosion-assisted SCG, time-dependent reliability analysis for a component subjected to various cyclic
boundary load conditions can be simplified by transforming that type of loading to an equivalent static state. The
conversion, through the use of a constant called the g-factor (Evans, 1980; and Mencik, 1984), satisfies the require-
ment that both systems will cause the same crack growth. Implicit in this conversion is the validity of the crack-
growth power-law relationship. The probability of failure is then obtained with respect to the transformed
equivalent static state.

Prior to placing a component in service, confidence that it will perform reliably is usually demonstrated through
proof testing. To a great extent, this is the accepted way to assure the reliability of a component (Evans and
Wiederhorn, 1974b; Wiederhorn, 1974b; Ritter et al., 1980; Fuller et al., 1980; and Srinivasan and Seshadri, 1982).
Ideally, the boundary load conditions applied to a component under proof testing simulate those conditions a
component would be subjected to in service, and the proof-test loads are appropriately greater in magnitude over
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some fixed time interval. The significance of proof testing is that it enables specimens with a certain minimum flaw
size or larger to be eliminated from the strength distribution. Thus, an attenuated probability of failure is obtained,
and the survived components can be placed in service with greater confidence in their integrity. In practice,
however, it is often difficult, expensive, or impossible for the proof-test load conditions to exactly simulate the
service load conditions: the loads can be misaligned, or the proof-test and the service load can have different
multiaxial stress states. This situation can be accounted for when proof-testing design methodology is incorporated
into the statistical fracture theories for polyaxial stress states (Service and Ritter, 1986; Hamanaka et al., 1990; and
Brukner-Foit et al., 1994). An attenuated probability of failure is computed for the components that survive;
however, a minimum life of assured reliability may no longer be relevant.

D.2 CARES/Life Computer Program

The CARES/Life computer program predicts the reliability and the failure probability of a monolithic ceramic
component as a function of its service life. CARES/Life couples to commercially available finite element programs,
such as ANSYS, via a neutral file interface. It accounts for material failure from the SCG of preexisting flaws and
uses the Weibull distribution to describe the probabilistic distribution of strength. The computational algorithms are
written in FORTRAN 77. Finite element heat transfer and linear-elastic stress analysis are used to determine the
temperature and stress distributions in the component. Component reliability for volume (intrinsic) flaws is
determined from the finite element stress, temperature, and volume output from two-dimensional, three-
dimensional, or axisymmetric elements. Reliability for surface (extrinsic) flaws is calculated from the shell element
(or simulated shell element) stress, temperature, and area data. CARES/Life produces an optional file containing
risk-of-rupture intensities (a local measure of reliability) for graphical rendering of the structure’s critical regions.

The phenomenon of SCG is modeled with the power law, the Paris law, and the Walker law. The power law
(Evans and Wiederhorn, 1974a; and Wiederhorn, 1974a, pp. 613—646) describes the crack velocity as a function of
the SIF. For cyclic fatigue, either the Paris law (Paris and Erdogan, 1963) or Walker’s modified formulation of the
Paris law (Walker, 1970, p. 1; and Dauskardt et al., 1992) is used to model the SCG. The Paris law relates the crack
growth per load cycle to the range in the SIF. The Walker equation relates the crack growth per load cycle to both
the range in the crack-tip SIF and the maximum applied crack-tip SIF. This formulation accounts for the effect of
the R-ratio (minimum cycle stress to maximum cycle stress) on lifetime. The power law and the Paris law require
two experimentally derived fatigue parameters—/N and B—which depend on the material and environment. The
Walker equation requires three material-environmental parameters—»N, B, and Q. Steady-state cyclic loading is
accounted for by using the Walker law, using the Paris law, or employing g-factors (Mencik, 1984) in conjunction
with the power law. The g-factor approach equates variable cyclic loadings to equivalent static loadings.
CARES/Life includes the sinusoidal, square, and sawtooth loading waveforms. Typically, the use of g-factors is
appropriate for flat R-curve materials.

The probabilistic nature of material strength and the effects of multiaxial stresses are modeled by using either
the PIA, the Weibull NSA method, or the Batdorf theory. The Batdorf theory combines linear elastic fracture
mechanics with the weakest-link mechanism. It requires a user-selected flaw geometry and a mixed-mode fracture
criterion to describe volume or surface strength-limiting defects. The combination of a particular flaw shape and
fracture criterion results in an effective stress, which is a function of the far-field stresses, and acts on the crack
plane. Figure D.1 shows the fracture criteria and flaw geometries available to users for both surface- and volume-
flaw analysis. The simple PIA fracture theory does not use a crack geometry, and only tensile principal stresses
contribute to failure. The Weibull NSA method is also independent of crack geometry. The mode-I (opening mode)
crack growth is considered, and mode-II (sliding mode) and mode-III (tearing mode) effects are neglected. The
combination of a particular flaw shape and fracture criterion results in an effective stress involving far-field
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Figure D.1.—Available failure criteria and crack shapes.

principal stresses in terms of normal and shear stresses acting on the crack plane. CARES/Life includes the total
strain-energy release rate theory (coplanar crack extensions) (Batdorf and Heinisch, 1978a). Out-of-plane crack-
extension criteria are approximated by a simple semiempirical equation (Palaniswamy and Knauss, 1978; and
Shetty, 1987). This equation involves a parameter that can be varied to model the maximum tangential stress theory
(Erdogan and Sih, 1963), the minimum strain-energy-density criterion (Sih, 1974), the maximum strain-energy
release rate theory (Hellen and Blackburn, 1975; and Ichikawa, 1991), or experimental results. For comparison,
Griffith’s maximum tensile stress analysis for volume flaws is also included. The highlighted boxes in figure D.1
show the recommended fracture criteria and flaw shapes. If the normal stress acting on the flaw plane is
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compressive, then no crack growth is assumed to occur with these models. Typically, brittle materials are much
stronger in compression than in tension. It is assumed that the lower tensile strength limit will predominate over the
higher compressive limit for a typical component design. If the compressive stresses are significant, they should be
checked against limiting values from other methods.

For fast fracture, the probabilistic nature of material strength is described by the two-parameter Weibull
cumulative distribution function, which incorporates WLT. This relation postulates that inherent material flaws in
the component body (volume flaws) and on its surface (surface flaws) govern the strength response. The component
reliability is determined by integrating the stress over the body. The Weibull stress-volume integral is a function of
the scale parameter 6, and the shape parameter m. The scale parameter corresponds to the stress level at which
63.21 percent of specimens with unit volume or area would fracture. The characteristic strength og is similar to the
Weibull scale parameter except that it includes the effect of the specimen volume or area. The shape parameter (or
Weibull modulus), denoted by m, is a dimensionless quantity that measures the degree of strength dispersion of the
flaw distribution.

Weibull material parameters, the Batdorf crack-density coefficient kg, and fatigue parameters are estimated
from rupture strength data of naturally flawed specimens. The parameters are obtained from the fracture stresses of
specimens whose geometry and loading configurations are held constant (30 or more specimens are recommended).
A similar number is recommended for fatigue experiments. The CARES/Life program includes closed-form
solutions for the three- and four-point modulus-of-rupture (MOR) bending bar (Baratta et al., 1987) and the pure
tensile specimen (Liu and Brinkman, 1986) under isothermal conditions. For other conventional specimen geom-
etries, material parameters can be estimated via effective volume and area calculations (a finite element model
of the specimen geometry and loading is required).

Since the material parameters are a function of temperature, various constant-temperature data sets can be
simultaneously input and the corresponding parameter estimates can be calculated and made available for
component reliability analysis. Linear interpolation is performed to obtain values at intermediate temperatures.
More sophisticated interpolation techniques are not used because of the potential of obtaining erroneous results.
Each constant-temperature data set can consist of up to 999 specimens. In addition, each specimen can be identified
by its mode of failure—either volume flaw, surface flaw, or some other mode—so that parameter estimates for
competing failure modes can be obtained.

CARES/Life estimates fatigue parameters from naturally flawed specimens ruptured under static, cyclic, or
dynamic loading. Cyclic fatigue parameter evaluation assumes steady-state loading and a constant R-ratio
throughout the specimen. Fatigue parameters can be calculated using either the median-value technique (Jakus
et al., 1978), a least-squares regression technique, or a median-deviation regression method, which is somewhat
similar to trivariant regression (Jakus et al., 1978). The median-value technique is a well-known estimation
procedure based on regression of the median values of the fatigue data at the various stress levels or rates. The
least-squares regression technique involves a regression on all the fatigue data to establish the parameters. The
median-deviation procedure involves minimizing the median deviation (MD) of the scatter in the data versus the
crack-growth exponent N. In the CARES/Life code, this minimization is accomplished by maximizing the time-
dependent Weibull modulus versus the crack-growth exponent N. The fast-fracture strength distribution Weibull

modulus m and the characteristic strength Gg are optionally estimated from the fatigue data for a failure time of 1 s
with constant stress-rate loading (or a lifetime of 1/(N + 1) cycles). The fatigue data are transformed to an equiv-
alent fast-fracture strength distribution. This enables goodness-of-fit testing and the use of an outlier test. The
resulting goodness-of-fit statistics are applied to the original fatigue data. If inert strength fracture data are simul-
taneously input, then the Weibull parameters for these data override those calculated from time-dependent data.
For inert strength fracture (fast-fracture) data, parameter estimation of the biased Weibull modulus and
characteristic strength og can be performed for unimodal (single failure mode) or concurrent surface and volume-
flaw populations by using least-squares analysis (Johnson, 1964) or the maximum-likelihood method (Nelson,
1982). Because estimates of Weibull parameters are obtained from a finite amount of data, they contain an inherent
uncertainty that can be characterized by the bounds in which the true parameters are likely to lie. Methods have
been developed to evaluate confidence limits that quantify this range with a level of probability as a function of
sample size. For the maximum-likelihood method with a complete sample, unbiasing factors for the shape
parameter m, and 5- and 95-percent confidence limits for m and the characteristic strength oy, are provided
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(Thoman et al., 1969). For a censored sample, an asymptotic approximation of the 90-percent confidence limits is
calculated. No unbiasing of parameters or estimation of confidence limits is given when the least-squares option is
requested.

CARES/Life includes a test that identifies potential bad data (outliers) from the time-dependent or inert-strength
fracture experiments. This test, known as the Stefansky outlier test (Stefansky, 1972; and Neal et al., 1987), is based
on the normal distribution and, therefore, its application to the Weibull distribution is not rigorous. However, it
serves as a useful guideline to users. Data detected as outliers are flagged with a warning message, and any further
action is left to the discretion of users.

The ability of the hypothesized distribution to reasonably fit the empirical data is measured with the
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) goodness-of-fit tests. These tests are extensively dis-
cussed by D’ Agostino and Stephens (1986). The tests quantify discrepancies between the experimental data and
the estimated Weibull distribution by a significance level associated with the hypothesis that the data were
generated from the proposed distribution. The AD test is more sensitive than the KS test to discrepancies at low
and high probabilities of failure. The calculated significance levels are based on the assumption that the Weibull
parameters are chosen independently from the experimental data. For inert strength data, the Kanofsky-Srinivasan
90-percent confidence band values (Kanofsky and Srinivasan, 1972) about the Weibull line are given as an
additional test of the goodness-of-fit of the data to the Weibull distribution.

CARES/Life automatically calculates the other material parameters necessary for the reliability analysis. The

biased estimate of the shape parameter m and the estimated characteristic strength cg are used along with the
specimen geometry to calculate the Weibull scale parameter c,,. The Batdorf normalized crack-density coefficient
kg is computed from the selected fracture criterion, crack geometry, and the biased estimate of the shape parameter.

The relationships between the fatigue parameters (N and B) and the various failure criteria have been estab-
lished to ensure the compatibility of failure probabilities. From test specimen data (uniaxial tension, three-point
bend bar, and four-point bend bar), compatibility is derived by equating the risk-of-rupture of the uniaxial Weibull
model to the risk-of-rupture of the PIA, NSA, or Batdorf shear-sensitive, multiaxial models. This satisfies the
requirement that for a uniaxial stress state, all multiaxial models produce the same probability of failure as the
uniaxial Weibull model. The value of N is invariant, and the value of B is adjusted to satisfy this compatibility
condition.

Finite element analysis is an ideal mechanism for obtaining the stress distribution needed to calculate the
survival probability of a structure. Each element can be made arbitrarily small, such that the stresses can be taken as
constant throughout each element (or subelement). In CARES/Life, the reliability calculations are performed at the
gaussian integration points of the element. Use of the element integration points enables the element to be divided
into subelements, where integration point subvolumes, subareas, and subtemperatures are calculated. The location
of the gaussian integration point in the finite element and the corresponding weight functions are considered when
the subelement volume and area are calculated. The number of subelements in each element depends on the
integration order chosen and the element type. If the probability of survival for each element is assumed to be a
mutually exclusive event, the overall component reliability is the product of all the calculated element (or
subelement) survival probabilities.

The component reliability analysis module of the CARES/Life program uses the output from finite element
clastostatic analysis to calculate time-dependent reliability for each element. This has been implemented for various
commercial finite-element-analysis software packages—a complete list of which is not provided here because this
list is subject to change. Volume-flaw-based reliability is calculated from the volume-flaw material strength
parameters previously estimated from experimental data and the stresses, volumes, and temperatures for each solid
element. Volume-flaw analysis can be performed using brick, wedge, and tetrahedron isoparametric solid elements,
along with triangular (and optionally quadrilateral) axisymmetric isoparametric elements. Surface-flaw-based
reliability is calculated from the surface-flaw material strength parameters and individual shell element output of the
two-dimensional surface stresses, areas, and temperatures. Surface-flaw analysis can be performed using quadri-
lateral and triangular isoparametric shell elements. Modeling with axisymmetric elements generally is not enabled
for surface-flaw reliability analysis. Shell elements (or simulated shell elements) are used to identify the external
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surfaces of solid elements that correspond to the component external surfaces important to the reliability analysis.
Shell elements with exclusively membrane properties and negligible thickness (and hence stiffness) are used.

CARES/Life uses component symmetry to permit the use of the cyclic symmetry modeling option or similar
mesh-reduction schemes. CARES/Life also permits the analysis of simultaneously occurring flaw populations in a
given finite element model (multiple ceramic materials or multiple flaw population capability). Elements not
designated as brittle materials are ignored in the reliability computations. Temperature-dependent statistical material
properties are linearly interpolated at each individual element temperature. Element and nodal identification
numbers can be arbitrary. The risk-of-rupture intensity is also calculated for each element, and these values are
sorted to determine the maximum values. Element risk-of-rupture intensities are written to an importable data file to
show the regions on the component where failure has the highest likelihood of occurring.

Proof-test methodology is incorporated into the PIA, the Weibull NSA method, and the Batdorf theories,
accounting for the effect of multiaxial stresses. With the Weibull NSA and the Batdorf theory, the proof-test load
need not closely simulate the actual service conditions on the component. This is important because it allows a
reliability analysis to be performed when proof-test stresses have not been applied in the same direction and/or
location as have the service load stresses.

D.2.1 Fast-Fracture Reliability Analysis

D.2.1.1 Overview.—The use of advanced ceramic materials in structural applications requiring high component
integrity has led to the development of a time-dependent probabilistic design methodology. This method combines
three major elements: (1) linear elastic fracture mechanics theory that relates the strength of ceramics to the size,
shape, orientation, and growth of critical flaws; (2) extreme value statistics to obtain the characteristic flaw size
distribution function, which is a material property; and (3) material microstructure. Inherent to this design procedure
is that the requirement of total safety must be relaxed and that an acceptable failure probability must be specified.

The statistical nature of fracture in engineering materials can be viewed from two distinct models (Tracy, 1982).
The first was presented by Weibull and used the WLT as originally proposed by Peirce (1926). The second model
was also analyzed by Peirce (1926) and by Daniels (1945). This second model is referred to as the “bundle” or
“parallel” model. In the bundle model, a structure is viewed as a bundle of parallel fibers. Each fiber can support a
load less than its breaking strength indefinitely but will break immediately under any load equal to or greater than
its breaking strength. When a fiber fractures, a redistribution of load occurs and the structure may survive. Failure
occurs when the remaining fibers can no longer support the increased load. The weakest-link model assumes that
the structure is analogous to a chain with » links. Each link may have a different limiting strength. When a load is
applied to the structure such that the weakest link fails, then the structure fails. Observations show that advanced
monolithic ceramics closely follow the WLT. A component fails when an equivalent stress at a flaw reaches a
critical value that depends on the fracture mechanics criterion, crack configuration, crack orientation, and the crack-
density function of the material. In comparison with the bundle model, WLT is, in most cases, more conservative.

Weibull’s WLT model does not consider failure caused by purely compressive stress states. Phenomenological
observations indicate that compressive stresses do not play a major role in the failure of ceramic structures since the
compressive strength of brittle materials is significantly greater than their tensile strength. The effect of a
predominant compression on failure is assumed to be negligible in the CARES/Life program.

One of the important features of WLT is that it predicts a size effect. The number and severity of flaws present
in a structure depends on the material volume and surface area. The largest flaw in a big specimen is expected to be
more severe than the largest flaw in a smaller specimen. Another consequence of WLT is that component failure
might not be initiated at the point of highest nominal stress (Davies, 1973), as would be true for ductile materials. A
large flaw might be located in a region far removed from the most highly stressed zone. Therefore, the complete
stress solution of the component must be considered.

Classical WLT does not predict behavior in a multiaxial stress state. A number of concepts such as the PIA,
Weibull’s NSA method, and Batdorf’s model have been applied to account for polyaxial stress-state response.
Batdorf’s model (Batdorf and Crose, 1974) assumes the following: (1) microcracks in the material are the cause of
fracture, (2) cracks do not interact, (3) each crack has a critical stress that is defined as the stress normal to the crack
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plane that will cause fracture, and (4) fracture occurs under combined stresses when an effective stress acting on the
crack is equal to the critical stress. For an assumed crack shape, the effective stress can be obtained through the
application of a fracture criterion. These concepts are used in conjunction with techniques to obtain the various
statistical material parameters necessary for fast-fracture reliability analysis.

D.2.1.2 Volume-flaw reliability analysis.—Consider a stressed component containing many flaws, and assume
that failure is due to any number of independent and mutually exclusive mechanisms (links). Each link involves an
infinitesimal probability of failure. Discretize the component into # incremental links. The probability of survival
(Pgp); of the i™ link is related to the probability of failure (Pyy); of the ™ link by (Pgp); = [1 = (Pyy);], and the
resultant probability of survival of the whole structure is the product of the individual probabilities of survival:

n

Ry=11(Py), = _ﬁl[l—(va ) =1 el )] exp{ ey )l} (0D

1= i

where the subscript ¥ denotes volume-dependent terms. Assume the existence of a function (o), referred to as the
crack-density function, representing the number of flaws per unit volume having a strength equal to or less than G.
Under a local tensile stress o;, the probability of failure of the i link, representing the incremental volume AV, is
(Pw )i = [ni{o;) AV;], where the incremental volume AV is arbitrarily small such that the value of the expression
within the brackets is much less than one. Applying a uniform tensile stress o, such that ¢ = o; for all incremental
volumes AV, then from equation (D1) the resultant probability of survival for material volume ¥, where V is the
sum of all AV, is

Py =expl-n, (o) V] (D2)

Equation (D2) can also be derived from the Poisson probability density function. The Poisson density function
is described by (see Hoel et al., 1971, for example)

A exp(—A) B
PX=x)=f@=] ¥=012,.. (D3)

0 elsewhere

where A is a positive number. The real-valued function f(x) is the discrete density function of random variable X
where P(X = x) is the probability that a discrete real-valued random variable X equals a possible value x. The
Poisson distribution approximates the binomial distribution for large values of n, where n is the number of Bernoulli
trials with success probability p = A/n at each trial. Equation (D2) is obtained when P(X = 0) is computed for n =V

and p = ny(o), hence

A0 exp(—1)

ol =exp(-A) = exp[— ny (o) V] (D4)

Py =P(X=0)=

Equation (D4) calculates the probability of the event that no flaws of strength c or less are present in the material
volume ¥ and, therefore, represents the survival probability of the material under applied load c.
The probability of failure for the uniformly stressed volume V' is

Py =1-Py =1-expl-n, (o) V] (D5)
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where V is the total volume. If the stress magnitude is a function of location, then
Py :l—exp[—IVnV(c)dV}zl—exp—(RORV) (D6)

A term called the risk-of-rupture by Weibull and denoted here by the symbol ROR is commonly used in
reliability analysis. Equations similar to (D5) and (D6) are applicable to surface-distributed flaws where surface
area replaces volume and the flaw density function is surface-area dependent.

Weibull introduced a three-parameter power function for the crack-density function nj(o),

w(c){mj (D7)

Gov

where G, is the threshold stress parameter, which is usually taken as zero for ceramics. This parameter is the value
of the applied stress below which the failure probability is zero. When this parameter is zero, the two-parameter

Weibull model is obtained. The scale parameter c,j then corresponds to the stress level where 63.21 percent of
tensile specimens with unit volumes would fracture. Note from equations (D5) and (D7) for a unit volume when

(o0 — o,y) = o,y that a value of 0.6321 is obtained. The scale parameter o, has dimensions of stressx(volume)l/ "y,

where my is the shape parameter (Weibull modulus), a dimensionless parameter that measures the degree of

strength variability. As my increases, the dispersion is reduced. For large values of mj (>40), such as those obtained
for ductile metals, the magnitude of the scale parameter corresponds to the material ultimate strength. These three
statistical parameters are material properties, and they are temperature and processing dependent.

Three-parameter behavior is not commonly observed in as-processed monolithic ceramics, and statistical
estimation of the three material parameters is more involved than it is with the two-parameter model. The CARES/
Life program uses the two-parameter model. The subsequent reliability predictions are more conservative than for
the three-parameter model since we have taken the minimum strength of the material as zero.

The two-parameter crack-density function is expressed as

ny(0)=( ° J =kyy " (D8)

Goy

and when equation (D8) is substituted into equation (D6), the failure probability becomes
Py =1- exp(— K jV " de (D9)

where &, = (coy )_mV is the uniaxial Weibull crack-density coefficient. Various methods have been developed to

calculate 6,y and my for a given material by using fracture strength data from simple uniaxial specimen tests (Pai
and Gyekenyesi, 1988).

The two most common techniques for using uniaxial data to calculate Py in polyaxial stress states are the PIA
method (Barnett, et al., 1967, and Freudenthal, 1968) and the Weibull normal tensile stress-averaging method

(Weibull, 1939a). In the PIA model, the principal stresses 6| > 6, > o3 are assumed to act independently. If all
principal stresses are tensile, the probability of failure according to this approach is

Py =1- exp[— kywy , (G{"V +o5" + ngV )d V} (D10)
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Compressive principal stresses are assumed not to contribute to the failure probability. It has been shown that
this equation yields nonconservative estimates of Py in comparison with the Weibull normal stress method
(Batdorf, 1977a).

The failure probability using the Weibull normal tensile stress-averaging (NSA) method, which has been
described through an integral formulation (Gross and Gyekenyesi, 1989), can be calculated from

Py :1—exp(—ijWpV 5, de (D11)
where
J- o, dA
6, =——
j dA
A

The area integration is performed in principal stress space over the surface 4 of a sphere of unit radius for regions
where o, the projected normal stress on the surface, is tensile. The polyaxial Weibull crack-density coefficient is

kypy- The relationship between k) and k,,p is found by equating the failure probability for uniaxial loading to that
obtained for the polyaxial stress state when the latter is reduced to a uniaxial condition. The result is

by = 2my +1)kyyy (D12)

Batdorf and Crose (1974) proposed a statistical theory in which attention is focused on cracks and their failure
under stress. Flaws are taken to be uniformly distributed and randomly oriented in the material bulk. Fracture is
assumed to depend only on the tensile stress acting normal to the crack plane; hence, shear insensitivity is inherent
to the model. Subsequently, Batdorf and Heinisch (1978a) included the detrimental effects of shear traction on a
flaw plane. Their method applies fracture mechanics concepts by combining a crack geometry and a mixed-mode
fracture criterion to describe the condition for crack growth. Adopting this approach, the CARES/Life program
contains several fracture criteria and flaw shapes for volume and surface analyses (fig. D.1).

Consider a small, uniformly stressed material element of volume AV. The incremental probability of failure under
the applied multiaxial state of stress X can be written as the product of two probabilities,

APy (z,O-qucaAV): ABy Py (D13)

where APy is the probability of the existence in AV of a crack having an equivilent critical stress between Gyey- and
Olege T AGeqc- Critical stress is defined as the remote, uniaxial fracture strength of a given crack in mode-I loading.
The term oy, denotes an effective (or equivalent) critical mode-I stress from applied multiaxial stresses. The
second probability, Py, denotes the probability that a crack of critical stress Gjeq Will be oriented in a direction
such that an effective stress o1, (Which is a function of fracture criterion, stress state, and crack configuration)

satisfies the condition 61y 2 G1ege- The effective stress oy, is defined as the equivalent mode-I stress a flaw would
experience when subjected to a multiaxial stress state that results in mode-I, -II, and -III crack surface

displacements, and Gy, 18 the threshold value of 61,, where unstable catastrophic crack growth ensues.
The strength of a component containing a flaw population is related to the critical flaw size, which is implicitly
used in statistical fracture theories. Batdorf and Crose (1974) describe APy as
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a1y (Orege)

APy =AV dGquc (D14)
Olege
and P,y is expressed as
QYo
py = Ot (D15)
4n

where N j(Oeqc) 1s the Batdorf crack-density function and €X(Z, o1e4c) s the area of the solid angle projected onto

the unit radius sphere in principal stress space containing all the crack orientations for which ey > Gjege. The
constant 47 is the surface area of a unit radius sphere and corresponds to a solid angle containing all possible flaw
orientations.

The probability of survival in a volume element AV; is

(PSV )i _ exp{— AVI:J' Gleq,max Q(Z, Gleqc ) d Ny (Gleqc )d Gleqc :l} (D 1 6)

0 4n dG1eqe

where G1ogmax 18 the maximum effective stress a randomly oriented flaw could experience from the given stress
state. Hence, the component failure probability is

Py = l—exp{_J'V D’ Oleq,max Q(Z,Glech‘) ng(GquC)dGquc:l d V} (D17)

0 47 dGeqe

The Batdorf crack-density function nj{(Gyeqc) 1s @ material property, independent of stress state, and is usually
approximated by a power function (Batdorf and Heinisch, 1978a). This leads to the Batdorf crack-density function
of the form

My (O1ege )= kBy O, (D18)

where the material Batdorf crack-density coefficient £z and the Weibull modulus m are evaluated from
experimental inert strength fracture data. Batdorf and Crose (1974) initially proposed a Taylor series expansion for

N(Cleqe), but this method has computational difficulties. A more convenient integral equation approach was
formulated and extended to the use of data from four-point MOR bar tests (Rufin et al., 1984). Note that Nj{(Gjeqc)
has units of inverse volume.

Although the Weibull (eq. (D8)) and Batdorf (eq. (D18)) crack-density functions are similar in form, they are
not the same. The Weibull function simply depends on the applied uniaxial stress distribution ¢ and is the only term
other than the volume necessary to calculate Pyy. The Batdorf function depends on the mode-I strength of the crack
Glege» Which is probabilistic and must be integrated over a range of values for a given stress state. Furthermore, to
obtain Py, a crack orientation function, Py, must be considered in addition to the density function and the volume.
Finally, the Batdorf coefficient kg cannot be calculated from inert strength data until a fracture criterion and crack
shape are chosen—in contrast to the Weibull coefficient k5, which depends only on the data.

To determine a component probability of failure, one must evaluate P,y (eq. (D15)) for each elemental volume

AV, within which a uniform multiaxial stress state X is assumed. The solid angle Q(Z, 61¢4c) depends on the
selected fracture criterion, the crack configuration, and the applied stress state. For multiaxial stress states, with few
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exceptions, (U(Z, Gyqyc) must be determined numerically. For a sphere of unit radius (fig. D.2), an elemental surface
area of the sphere is d4 = sin o df da.. Project onto the spherical surface the equivalent (effective) stress

O1eq(Z, @, B). The solid angle (X, o1e4c) s the area of the sphere containing all the projected equivalent stresses
satisfying Gey > Gjeqe. Note the symmetry of oy, in principal stress space, and address the first octant of the unit
sphere, then

Q(Z,Gleqc)= J.On/zj-;/zH(cleq,cleqc)sinoc do dp (D19)

where

H(GleanquC):l Oleq cheqc

H(Gleanquc)zo Oleg <Olege

Substituting into equation (D17) and integrating with respect to 14, changes the component failure probability to
(Batdorf, 1978)

Py =1—exp[—% IVI;/ZI:/ZnV(Gqu)SinOL dot dBdV} (D20)
where

ny(cneq)= kgy oy (%, ,2,0,B)

For a given element, 61.4(x, ¥, z, a, B) is the projected equivalent stress over the unit radius sphere in principal stress
space as shown in figure D.2.

Equation (D20) circumvents the involved numerical integration of (X, 1.4) as developed in the original
CARES program (Nemeth et al., 1990). Equations (D17) and (D20) are equivalent formulations; however, equation
(D20) is more convenient for computational purposes with few exceptions (Batdorf and Crose, 1974). Therefore,
CARES/Life applies equation (D20) to obtain the component probability of failure.

Assuming a shear-insensitive condition, fracture occurs when 6,, = Gjey > Gjeqe, Where G, is the normal tensile
stress on the flaw plane. However, it is known from fracture mechanics analysis that for a flat crack, a shear stress t
applied parallel to the crack plane (mode II or IIT) also contributes to fracture. Therefore, the effective stress oy is
a function of both &, and 7.

Selecting an arbitrary plane in principal stress space (fig. D.2) and imposing equilibrium conditions yields the
following equations:

c?=(c10) +(oam)’ +(o3n)° (D21)
6, =61/? +c,m? + o302 (D22)

and
12 =062 -02 (D23)

where o is the total traction vector acting on the crack plane and the direction cosines {, m, and n are given in
figure D.2 in terms of trigonometric functions of a and f3.
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Figure D.2.—Stresses on Cauchy infinitesimal tetrahedron. (a) In principal

stress space. Direction cosines: ¢ = cos o, m = sin o cos 3, n = sin o sin P.
(b) Projected onto a plane tangent to the unit radius sphere.

From the selected fracture criterion and crack configuration, Gy, is obtained as a function of %, a., and .
Batdorf and Heinisch (1978a) give effective stress expressions for two flaw shapes by using both Griffith’s
maximum tensile stress criterion and Griffith’s total coplanar strain-energy release rate criterion Gr. Arranged in

order of increasing shear sensitivity, for the maximum tensile stress criterion the effective stress equation for a
Griffith flaw is
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1
Gw:5@n+¢g:;j (D24)

and for a penny-shaped flaw, where v is Poisson’s ratio, it is

2
1 T
Oleg = =10, +4/05+| ——— (D25)
] \/" {(1—0.5v)}

The total coplanar strain-energy release rate criterion is calculated from
GT = GI + GH + GHI (D26)

where G is the energy release rate for various crack-extension modes. In terms of SIFs, the effective stress equation

can be derived from (plane strain condition assumed) enforcing the condition Gy = G, where G, is the critical
strain-energy release rate. Thus,

2

K
KRy = K7 + K+ 1L (D27)
-V

legc

where Kj.4c denotes an equivalent Kj. from a multiaxial stress state.

For a Griffith crack, assuming that modes I and II dominate the response with K| = c,+/na and K|y =t 7ma ,
where 2a is the crack length, we have from equation (D27)

Oleg =,/02 + 12 (D28)

For a penny-shaped crack at the critical point on the crack periphery, we have K| =2¢g,+a/n and

Ky = [4r / (2 - v)l\/a/n (Sih, 1973), where a is now the crack radius. The resulting effective stress from equa-
tion (D28) is
1/2

2
_Ja2 T D29
Oleg =) +{(1 - O.SVJ (D29)

The equations given by Batdorf and Heinisch consider only self-similar (coplanar) crack extension. However, a
flaw experiencing a multiaxial stress state usually undergoes crack propagation initiated at some angle to the flaw
plane (noncoplanar crack growth). Shetty (1987) performed experiments on polycrystalline ceramics and glass,
where he investigated crack propagation as a function of an applied far-field multiaxial stress state. He modified an
equation proposed by Palaniswamy and Knauss (1978) so that it would empirically fit experimental data. This
multimodal interaction equation takes the form

2
ﬁ{ Ks j =1 (D30)
KIC CKIc
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where K3 is either Ky or Kyp, whichever is dominant, and C is a constant adjusted to best fit the data. Shetty (1987)

found a range of values of 0.80 < C < 2.0 for the materials he tested that contained large induced flaws. As C
increases, the response becomes progressively more shear insensitive.
Using this relationship with assumed mode-I and -II dominance for the Griffith crack yields

1 21\
Cleg = | On + o2 J{?j (D31)

and for a penny-shaped crack, we obtain

2
Gleq :l Gy +4|07 +|:— i } (D32)
2 c(2-v)

For a Griffith crack when C = 0.80, 0.85, 1.0, and 1.15, equation (D30) models, respectively, the following
criteria: Ichikawa’s maximum strain-energy release rate approximation (Ichikawa, 1991), the maximum tangential
stress (Erdogan and Sih, 1963), Hellen and Blackburn’s maximum strain-energy release rate formulation (Hellen
and Blackburn, 1975), and colinear crack extension.

Similarly, for a penny-shaped crack with a material having a Poisson’s ratio of about 0.22 and C = 0.80, 0.85,
1.05, and 1.10, equation (D30) models, respectively, the following criteria: Ichikawa’s maximum energy release
rate approximation (Ichikawa, 1991), the maximum tangential stress (Erdogan and Sih, 1963), Hellen and
Blackburn’s maximum strain-energy release rate formulation (Hellen and Blackburn, 1975), and colinear crack
extension.

For a stressed component, the probability of failure is calculated from equation (D20). The finite element
method enables discretization of the component into incremental volume elements. CARES/Life evaluates the
failure probability at the gaussian integration points of the element or optionally at the element centroid. Using the
element integration points subdivides the element into subelements, hence each Vi, corresponds to the isub™

subelement volume. In the usual context of finite element methods, the volume of a three-dimensional element V.,
is calculated after transformation into the natural coordinate space (Bathe, 1982)

1 1 1
Ver=[_ [ | detd(r,s.t)drdsdr (D33)

where J is the Jacobian operator and 7, s, and ¢ are the natural coordinates. The subelement volume is defined as the
contribution of the integration point to the element volume in the course of the numerical integration procedure.
This means that the volume of each subelement (corresponding to a Gauss integration point) is calculated using the
shape functions inherent to the element type. The stress state in each subelement is assumed to be uniform. Powers
et al. (1992) gives further details of the subelementing procedure as used in CARES/Life. The numerical solution of
equation (D20) takes the following form:

2k Nsyb
PfV=1—exp{— ) Visub[ | AG{ZZ,(OL,B)M} } (D34)
isub=1 isub

where ngy, is the total number of subelements. If kg is element dependent, it will appear inside the brackets.
CARES/Life uses gaussian numerical integration to evaluate equation (D34). This is detailed further in section
D.23.
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D.2.1.3 Surface-flaw reliability analysis—For surface-flaw analysis (Gyekenyesi and Nemeth, 1987), many of
the equations from section D.2.1.2 remain the same, except that the statistical material parameters are a function of
surface area instead of volume and the equivalent stresses are projected onto the contour of a circle of unit radius
rather than onto the surface of a sphere of unit radius. The cracks are assumed to be randomly oriented in the plane
of the external boundary with their planes normal to the surface (Batdorf and Heinisch, 1978D).

For surface-flaw-induced failure in ceramic structures, the probability of failure for the two-parameter Weibull
distribution, which is analogous in form to equation (D9), is

Py =1—exp(— kys .[Ac’”s dAj (D35)

where k5 = (l/cso S )ms is the uniaxial Weibull surface crack-density coefficient. The subscript S denotes the terms

that are surface-area dependent. Here o, is the surface scale parameter with units of stressx (area)!/™s and A4 is the
stressed surface area. For biaxial stress states, the PIA model yields

P =1-exp [— ks J.A (G;”S +c52m5 )dA} (D36)

where 6| and o, are the principal tensile in-plane stresses acting on the surface of the structure. For the Weibull
NSA method, the failure probability is expressed as

Prs= 1—exp(—kwp5 j o dAj (D37)
where
o Iccsnmsdc
' =———
[.dc

Here ks 1s the polyaxial Weibull crack-density coefficient for surface flaws. The line integration is performed
over the contour ¢ of a circle of unit radius where the projected normal stress G, is tensile. The relationship of ks

to ks is obtained by carrying out the integration in equation (D37) for a uniaxial stress and equating the resultant
failure probability to that of equation (D35) (Pai and Gyekenyesi, 1988). This results in

ms T(ms )

Kyps =T fws (D38)

where I is the gamma function. Equation (D37) is the shear-insensitive case of the more general Batdorf polyaxial
model.

For mixed-mode fracture due to surface flaws, the Batdorf polyaxial failure probability equation (analogous to
eq. (D17)) is
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Y (2, Oleqc ) dﬂs (Gleqc )

Prs=l-exp j f Olea.max do 10 dA (D39)
‘ 470 27 Ao ege
where, analogous to equations (D14) and (D15),
dNne\Oiege
ap —aa MsOe) g (D40)
Oleqe
and
o (2,0
Prg = (—quc) (D41)
21

For randomly oriented cracks, ®(2,01¢4¢) 1s the total arc length on a circle of unit radius in principal stress space

on which the projection of the equivalent stress satisfies 1o, > Oy, and 27 is the total arc length of the circle.
Similar to cases with volume flaws, the Batdorf crack-density function is approximated by the power function,

Ng (Gleqc ): kBSG;Z;C (D42)

where kpg is the Batdorf surface crack-density coefficient.
A simplification of equation (D39) is obtained by noting the following:

(2, 61eqe )= 02” H(610q»O1eqe Jdat (D43)
where

H(Gleq,cleqc)zl Gleq cheqc

H(Gleqacleqc):() Oleq <Olege

Substituting into equation (D39) and noting symmetry (for principal stress space), we obtain

P =1 —expl:_% J‘ ) I On/ZnS(Gqu)doc dA} (D44)
where

Ng (Gleq ): kBSG;Zf; (x, Y, OC)
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Figure D.3.—Normal and shear stress as a function of o
projected onto a tangent line to a circle of unit radius
(in principal stress space). Direction cosines: ¢ = cos o,
m = sin o.

For a given element, G1.4(x, y, @) is the projected equivalent stress over the first quadrant of a circle of unit radius in
principal stress space, as shown in figure D.3. Equation (D44) circumvents the computation of o(Z, G1¢4c) and is
used to obtain the component probability of failure in CARES/Life.

The finite element method enables discretization of the surface of the component into incremental area
elements. CARES/Life evaluates the failure probability at the gaussian integration points of shell elements or
optionally at the element centroid. Using the element integration points subdivides the element into subelements,
where each A;q,, corresponds to the isub™ subelement area. The element and subelement area of a two-dimensional
element are calculated in similar fashion to the method outlined for equation (D33) except that the element area A4,
is calculated after transformation into a natural two-dimensional coordinate space:

Aoy = J._ll J.il det J(r, s)dr ds (D45)

Powers et al. (1992) gives further details of the subelementing procedure as used in CARES/Life.
The stress state in each subelement is assumed to be uniform, and the numerical formulation of equation (D44)
is
kBS Nsub T /2
P =1-expi-2-55 N 4 j , Oty (@) do (D46)

isub=1 isub

where ng, is the total number of subelements. If kgg is element dependent, it will appear inside the brackets.
CARES/Life uses gaussian numerical integration to evaluate equation (D46). This is detailed further in section
D.2.3, beginning at equation (D246).

For the plane stress condition, selecting an arbitrary plane and imposing equilibrium conditions yields the
following equations:
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o2=(o10)2+ ((szm)2 (D47)
and
G, =0] (> +0,m? (D48)

2 _

T —02

- o3 (D49)

where o is the total traction vector acting on the crack plane and the direction cosines { and m are given in
figure D.3 in terms of trigonometric functions of a.

Fracture occurs when the equivalent stress Gye4 > Gjeqe- For the shear-insensitive case, fracture depends only on
the value of the normal tensile stress such that o1, = 6,. For shear-sensitive cracks and colinear crack extension,

assuming a Griffith crack with K;=c,+na and Ky = t+/7ma, we obtain as before
Oleg =\ O3 +71° (D50)

whereas for a Griffith notch subjected to plane strain conditions with K;=1.12156,+/na and Kyjy= 1~ ma (Sih,
1973), we obtain

7951
Oleq = G2 +w12 (D51)

(1-v)

Note that the equivalent stress for the Griffith crack is dependent on modes I and II, whereas the equivalent stress
for the Griffith notch is dependent on modes I and I1I (Gyekenyesi and Nemeth, 1987).
For noncoplanar crack growth, from equation (D30) the effective stress equation for the Griffith crack is

Oleg = %[Gn +. o2+ 4(%)2 } (D52)

and for the Griffith notch is

2
GquZ% 5n+\/0%+3.1803(%j (D53)

For a semicircular surface crack, K; = 1.366 o, \/;, Kyp=1241r \/;, and Kjj; = 0.133 1:\/5 (Smith et al., 1967; and

Smith and Sorensen, 1974). Since the contribution of Ky is small, it is neglected, and thus the effective stress for
this case is

2
Cleg = % 5, +\/c% + 3.301%} (D54)

For the same stress state and identical E, the Griffith crack is the most shear sensitive, whereas the Griffith notch
and the semicircular crack give almost identical predictions.
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D.2.1.4 Material strength characterization.—Ceramic inert strength due to inherent flaws is described by
the simple Weibull uniaxial cumulative distribution function. For brittle materials, tensile strength, compressive
strength, shear strength, flexural strength, and theoretical strength all have unique meanings and different values.
The theoretical strength is defined as the tensile stress required to break atomic bonds, which typically ranges from
1/10th to 1/5th of the elastic modulus for ceramic materials. Because of processing flaws, this strength is never
obtained. In an inert environment, a much more meaningful strength measurement is the inert strength or ultimate
tensile strength in uniaxial tension or flexural testing. In flexural strength testing, the bend strength o of a ceramic
is defined as the maximum tensile stress in the beam specimen (MOR), which in this situation occurs on the
specimen surface. The main objective of the CARES/Life program is to characterize ceramic strength in terms of
either the MOR or the pure uniaxial strength, and to use this information with appropriate analysis to predict
component response under complex multiaxial stress states. This section deals with the calculation of the Weibull
scale parameter 6, and the Batdorf crack-density coefficient kp. Closed-form solutions for 6, are given for the
uniaxial tensile, three-point bending, and four-point bending specimen geometries. Also, simplified Weibull
equations are described that facilitate evaluation of Weibull parameters from experimental data. Procedures for
obtaining Weibull parameters from experimental data are described in the following section (D.2.1.5).

Typically for brittle materials, the Weibull parameters are determined from simple specimen geometry and
loading conditions, such as beams under flexure and either cylindrical or flat specimens under uniform uniaxial
tension. For fast-fracture in an inert environment, the flexural test failure probability can be expressed in terms of
the maximum stress (or extreme fiber stress) in the specimen crat the moment of fracture by using the
two-parameter Weibull form given in equations (D9) and (D35):

&)
Py =l-exp| -| — (D55)
Go

where m is the volume- or area-based fast-fracture Weibull modulus and Gy is the volume- or area-based specimen
characteristic strength. The Weibull scale parameter o, (as defined in egs. (D7) and (D35) for volume and surface
cracks, respectively) is determined from g, m, the specimen geometry, and the loading configuration. The scale
parameter G, is a material property, whereas g includes the effects of the specimen dimensions and stress
distribution. The characteristic strength og is defined as the uniform stress or extreme fiber stress at which the
probability of failure is 0.6321. The component failure behavior in fast-fracture, equation (D55), is only a function
of orand the empirically determined parameters m and cg. Procedures such as the least-squares method or

maximum-likelihood analysis are used to estimate m and cg from experimental fracture data as described in the next
section (D.2.1.5).
The uniaxial inert strength distribution for volume flaws (eq. (D9)) is expressed in terms of the extreme fiber

fracture stress o7 of the specimen by

my

Sr

Py =1-exp —Ve( : J (D56)
Goy

where an effective volume V, is defined by equating the risk of rupture, equation (D9), with equation (D55).

1 (otr )" (o |
Ve—IV[ J dV_(—Vj (D57)

Gf Coy
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Figure D.4.—Four-point bend specimen geometry; w,
beam width; 4, applied load.

The effective volume is the equivalent amount of volume under a uniform uniaxial tensile stress of magnitude

orthat is needed to give an identical failure probability as the specimen. Comparing equations (D55) and (D56) we
solve the volume-flaw scale parameter as

oy =coy V™ (D58)

For the four-point bend specimen geometry shown in figure D.4, the tensile stress distribution in the specimen
is

4xy6 s

_awor Li—Ly
(Ly = Ly )

Gy = 0<x<

2 _

x =

M —xhyoy  Litly ___,
(Li— Ly ) 2

where for the applied load o'the extreme fiber stress is oy= (3/2)[ (L} - Lz)/whz].
Substituting equation (D59) into equation (D57) and solving for the effective volume, we obtain

:W_h (Ll +mVL2)

.
© 2 (my +1)?

(D60)

The effective volume for the three-point bend specimen geometry is obtained when L, = 0 in equation (D60).
For uniaxial tensile loading, the effective volume is equal to the gauge volume Vg, which is the uniformly stressed
region where fracture is expected to occur.

When a specimen is subjected to multiaxial stresses, the PIA and Batdorf theories are used to equate the
specimen strength to the uniaxial stress state. For the PIA theory, the effective volume used with equation (D56) is

my
1
v, {EJ | V(c;"V +o) 4o )dV (D61)
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where 61 > 6, > o3 are functions of (x, y, z) and negative values are taken as zero. In this case, oy represents the
maximum principal stress found in the component. For the Batdorf theory, the effective volume used with equation
(D56) is defined as

— my
2 2 2 b 7a7 .
AEECI Oueg (320D G g aplar (D62)
T V{J0 0 or
where
Kgy =BV (D63)
ka

The term kg is the normalized Batdorf crack-density coefficient for volume flaws. It is obtained by equating the

risks of rupture of equations (D9) and (D20), the polyaxial Batdorf theory to the uniaxial Weibull model, for an
imposed uniaxial stress state or, equivalently, by equating the effective volumes in equations (D57) and (D62).

Under a uniform uniaxial stress of magnitude o1, this yields

kpy = T (D64)

my
2I5/2I5/2(Gleq(claaaﬁ)j sina do dB

G1

This equation is evaluated numerically except for two special cases where a closed-form solution is known to exist.
For the shear-insensitive fracture criterion

Gleq (Gl,(l,B) =C0$2 a (D65)
01
Substituting into equation (D64), then
kgy =2my +1 (D66)

For the coplanar strain-energy release rate criterion and the Griffith crack geometry,

o]
Again, substituting into equation (D64) gives
EBV =my +1 (D68)

For surface flaws, the uniaxial inert strength distribution (eq. (D35)) is expressed in terms of the extreme fiber
fracture stress o7 of the specimen by

mg
Sr
Prg =1-exp| — 4, [—j (D69)
where an effective area A, is defined:
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mg
do=[ |==| d4 (D70)
A Gf
Comparing equations (D55) and (D69), we solve the surface-flaw scale parameter as
- 1/msg
O,s =0¢s A (D71)

Referring to equation (D59) for the four-point bend specimen geometry (fig. D.4), we see that the tensile stress
on the beam surface, y = h/2, is

2xc Li—L
o, = XS 0<x<lizla
(L1 -1y) 2
LI_LZ L1+L2
0O.=0 <x< D72
=0y ) : (D72)
C-L) 2

Substituting equation (D72) and equation (D59) for the side surface stress distributions into equation (D70) and
performing the integration, we obtain the effective area as

L
A, = +1|(w+h)L (D73)

w+h

The effective area for the three-point bending specimen geometry is obtained when L, = 0 in equation (D73). For

uniaxial tensile loading, the effective area is equal to the specimen gauge area A4, which is the total specimen
surface area of interest.

When a specimen is subjected to multiaxial stresses, the PIA and Batdorf model risks of rupture are equated to
the uniaxial Weibull risk of rupture given by equation (D69). For the PIA model, the effective area used with
equation (D69) is

4, =($J SIA[cl(x,y)’”S roa(r.y)™ Jas (D74)

and osrepresents the maximum principal stress found on the component. For the Batdorf theory, the effective area
used with equation (D69) is

— mg
A, = 2kBSJ‘ J'Tf/2|:01eq(X,y,0€):| da bdd (D75)
m J4[70 of
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where

ks = BS. (D76)
ka

The term £ zg is the normalized Batdorf crack-density coefficient for surface flaws. In CARES/Life, the

normalized Batdorf crack-density coefficient for surface flaws is found for a uniaxially loaded specimen by
equating the risk-of-ruptures of equations (D35) and (D44), or equivalently by equating the effective areas in

equations (D70) and (D75). For a uniform uniaxial stress of magnitude o1, this yields

- yis
kps = - (D77)
) J‘ﬂ/2|:cleq(01aa)} do

This equation is evaluated numerically. A closed-form solution is known to exist for the shear-insensitive fracture
criterion (Gross and Gyekenyesi, 1989). Since

Gl

{M} =cos? o (D78)

substituting into equation (D77) gives

= :\/Ems I (ms)

ks — (D79)
I'|mg+—
[ ° 2J
For the shear-sensitive fracture criterion, Griffith crack geometry, and colinear crack extension,
Oy (01,0
{M} =cosa (D80)
o]
Again, substituting into equation (D77) gives
JrmgT [’"Zj
(D81)

bas =T
2r( 5 j
2

D.2.1.5 Estimation of statistical material strength parameters.—Selected statistical theories and equations for
Weibull parameter estimation are explained in detail in Pai and Gyekenyesi (1988). The following is a brief
description of these methods and how they are used in the CARES/Life code. For brittle materials, the Weibull
parameters are determined from repeated fracture experiments on nominally identical specimens. Typically this
involves a simple geometry and loading condition, such as beams under flexure or specimens with either a round or
rectangular cross section under uniform uniaxial tension. As a rule of thumb, a minimum of 30 specimens are
required to obtain parameter estimates with a reasonably narrow standard deviation within which the true values of
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the parameters are likely to reside. Since each specimen carries a fixed cost, experimentalists desire to use analytical
methods that maximize the information that can be gained from a data sample while using the fewest possible
number of specimens. CARES/Life accomplishes this by including efficient parameter estimation schemes as well
as statistical measures to quantify the quality of the data.

For fast-fracture, the flexural test failure probability can be expressed in terms of the extreme fiber fracture

stress o7 by using a simplified two-parameter Weibull form as described by equation (D55), where m is the volume

or area Weibull modulus and oy is the volume or area specimen characteristic strength. Although the statistical
theories and parameter estimation methods outlined in the following discussion are expressed in terms of the fast-
fracture strength distribution, these techniques are equally applicable to the time-dependent distribution.

Before computing the estimates of the statistical parameters, it is essential that we carefully examine the
available specimen data to screen them for outliers. Very often, a data set may contain one or more values that may
not belong to the overall population. The statistical procedure used to detect the outliers at different significance
levels is explained in Pai and Gyekenyesi (1988) and Stefansky (1972). This outlier test assumes that the data are
normally distributed and from a complete sample. Therefore, the application of this test to the Weibull distribution
and censored statistics is only approximate. CARES/Life improves the original technique (Pai and Gyekenyesi,
1988) by numerically integrating the #-distribution to calculate the critical values for significance levels in the range
0f 0.0 to 10.0 percent with a resolution of 0.1 percent (polynomial approximating functions are no longer used).

Various methods are available to estimate the statistical material parameters from experimental data for the
two-parameter Weibull distribution. The success of the statistical approach depends on how well the probability
density function fits the data. Two popular techniques used to evaluate the characteristic strength and shape
parameters (Gg and m) from inert strength data are least-squares analysis and the maximum-likelihood method.
Least-squares analysis is a special case of the maximum-likelihood method, where the error is normally distributed
and has a zero mean and constant variance. The least-squares method is not suitable for calculating confidence
intervals and unbiasing factors, which quantify the statistical uncertainties in the available data.

Equation (D55) can be linearized by taking the natural logarithm twice, yielding

ln{ln(ij}zln{ln[ ! ﬂzln[L] +mlnc s (D82)
Ps I—Pf [es) ’

For the least-squares analysis, it is necessary to obtain the line of best fit with slope m and an intercept that, as seen

in equation (D82), is equal to In(1/cg)"". The failure probability Pris determined by conducting fracture tests on n

specimens. The fracture stresses are ranked such that 671 < 672 <...< o7; <...< 6,. For rank regression analysis, the
probability of failure of a specimen with rank i is

i—03
Pf,i = Pf(Gf,l')zm (D83)

By taking the partial derivative of the sum of the squared residuals with respect to m and g, and by equating the

derivatives to zero, values of m and oy are calculated.

With censored data (competing failure modes), one cannot directly use the rank regression analysis as given in
equation (D83). To take into account the influence of the suspended items, Johnson (1964) developed the rank
increment technique. For this technique, all observed fracture stresses are arranged in ascending order, and rank
increment values are calculated for each failure stress from the following equation:

(n +1)— previous adjusted rank

Rank increment = (D84)

1+ number of items beyond present suspended item
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The new adjusted rank values are obtained by adding the rank increment value to the previously adjusted rank.
These adjusted rank values are then used to calculate the failure probability by using the median rank regression

equation (D83). Finally, the estimated Weibull parameters for m and cg are obtained.

Since the distribution of errors from the data is not normal, the maximum-likelihood method is often pre-
ferred in Weibull analysis. This method has certain inherent properties. The likelihood equation from which the
maximum-likelihood estimates (MLEs) are obtained will have a unique solution. In addition, as the sample size
increases, the solution converges to the true values of the parameters. Another feature of the maximum-likelihood
method is that there are no ranking functions or linear regression analysis when complete or censored samples are
analyzed. The likelihood equation for a complete sample is given by

n m Gy m—1 Gy m
L=TI [—j [LJ exp —(Lj (D85)
i=1\ 00 Go Go

The values of m and g that maximize the likelihood function L are determined by taking the partial derivative of
the logarithm of the likelihood function with respect to m and . The estimated values, 7 and Gg, are obtained by
equating the resulting expressions to zero and solving the simultaneous equations with the Newton-Raphson
iterative technique. The MLEs of m and g are designated by 71,y and 6¢) and by mgand Ggg for volume-flaw
analysis and surface-flaw analysis, respectively. For censored statistics, we have

n A

Z(Gf,i)m ln(csf,,‘) : .

i1 —> m(qf,i)—%: 0 (D86)
i=1

(G fii )m

i=1

and

I = — (D87)

where 7 is the number of remaining specimens failed by the flaw mode for which parameters are being calculated.
For a complete (uncensored) sample,  is replaced by n, which is the total size of the sample.

The MLE of the shape parameter is always a biased estimate that depends on the number of specimens in the
sample. Unbiasing of the shape parameter estimate is desired to minimize the deviation between the sample and the
true population. The unbiased estimate of m is obtained by multiplying the biased estimate with an unbiasing factor
(Thoman et al., 1969). The confidence intervals for complete samples also can be obtained (Thoman et al., 1969).
For censored samples, a rigorous method for obtaining confidence intervals has not been developed because of the
complexity of competing failure modes. Confidence bounds for censored statistics are instead estimated in the
CARES/Life code from the factors obtained from complete samples (Pai and Gyekenyesi, 1988). Confidence
bounds enable users to estimate the uncertainty in the parameters as a function of the number of specimens. Bounds
at a 90-percent confidence level (and therefore at 5 and 95 percentage points of distribution of the MLEs of the
parameters) have been incorporated into the CARES/Life program, with data taken from Thoman et al. (1969).

Subjective judgement is needed to test the goodness of fit of the data to the assumed distribution. When
graphical techniques are used, it can be very difficult to decide if the hypothesized distribution is valid, especially
for small sample sizes. Therefore, many statistical tests have been developed to quantify the degree of correlation
of the experimental data to the proposed distribution. In general, a statistic is a numerical value computed from a
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random sample of the total population. The difference between an empirical distribution function (EDF) and a
hypothesized distribution function is called an EDF statistic. There are two major classes of EDF statistics, and they
differ in the manner in which the functional (vertical) difference between the EDF and the proposed distribution
function is considered. The KS goodness-of-fit statistic D belongs to the supremum class and is very effective

for small samples. It uses the largest vertical difference between the two distribution functions to determine the

goodness of fit. For the KS test, the sample is arranged in ascending order, and the EDF denoted by F,(c)) is a step
function obtained from the following expressions:

GriS6y<os(s) and i=1,2,3.,n-1 (D88)

where 671 <of2 < ... of; ... < 07, are the ordered fracture stresses from a sample of size n. The statistic D is obtained
by initially evaluating two other statistics, D and D~ (the largest vertical difference when F,(c)) is greater than the
distribution function F(cy), where F(cy) = Prin eq. (D55), and the largest vertical difference when F,(cy) is smaller
than F(o)), respectively). All three statistics are calculated by using the following expressions:

D" =

- o)
D- =‘F(cf,,-)—ﬂ‘ i=1,2,...n (D89)
n

D = max(DJr ,D‘)

For ceramics design, the F(cy;)’s are equal to P/s and are calculated from equation (D55).

On the other hand, the AD statistic A belongs to the quadratic class and is a more powerful goodness-of-fit
statistic. It evaluates the discrepancy between the two distributions through squared differences and the use of an
appropriate weighting function. The statistic A is given by

A2 =—n—(ljzn: @i-Din Flo 1 J+inll- Flo 1 (10} (D90)

nJia

and again, F(oy;) are the predicted failure probabilities obtained from equation (D55).

Corresponding significance levels SL are calculated from the D and A7 statistics. From previous surveys (Pai
and Gyekenyesi, 1988), there is no specific mention of an absolute accepted significance level. Therefore, users
must be subjective, using their own judgment in either accepting or rejecting the hypothesis that the data fit a
Weibull distribution. However, a higher value of SL indicates that the data fit the distribution more closely. In
CARES/Life, the significance level is calculated with the assumption that the Weibull parameters are calculated
independent of the observed strength data. However, the Weibull parameters are actually estimates based on the
experimental data, and hence the assumption of independence is violated. We recommend that the significance level
be viewed as a relative measure of goodness of fit and not as an absolute measure.

For complete samples, the 90-percent Kanofsky-Srinivasan confidence band values about the proposed distri-
bution are also calculated to ascertain the fit of the data. These values are similar to the KS statistic D centered
around the EDF. The bands are generated by
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Confidence bands = [F(csf )— K(n), F(cf )+ K(n)]

where F(oy) is the failure probability obtained by substituting the Weibull parameters in equation (D55). The
Kanofsky functions, denoted by K(#n), are described in Abernethy et al. (1983).
Some limitations are intrinsic to a purely statistical approach to design. One problem occurs when the design
stress is well below the range of experimental data, as shown in figure D.5. Extrapolation of the Weibull
distribution into this regime may yield erroneous results if other phenomena are present. When two flaw
populations exist concurrently, but only one (population A4) is active in the strength regime tested, the predicted
failure probability may be incorrect. Furthermore, if the threshold strength is not zero, the strength may be
underestimated. Finally, an approach based only on statistics can allow for stress-state effects only in an empirical

Design e
stress,

- Assumed zero

,6” threshold

strength
| !’( “~—Data |
| [ 4 range
| A
|/
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4 \
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Figure D.5.—Limitations of experimental data extrapolation and statistical approach to design.
(a) Basic data. (b) Nonzero threshold strength. (c) Undetected flaw populations. (d) Stress

state effects.

NASA/TP—2005-212505

118



D.2.2 Time-Dependent Reliability Analysis

D.2.2.1 Overview.—For ceramics and glasses, the ability to sustain a load degrades over time because of a
variety of possible effects, such as oxidation, creep, stress corrosion, and cyclic fatigue. Stress corrosion and cyclic
fatigue are representatives of a phenomenon called SCG, which initiates on a preexisting flaw and continues until a
critical length is reached, causing catastrophic propagation. This occurs when the equivalent mode-I SIF K., equals

the fracture toughness Kj.. The SCG failure mechanism is load induced over time. It can also be a function of the
chemical reaction with the environment, debris wedging near the crack tip, the progressive deterioration of bridging
ligaments, and other factors. Because of this complexity, the models that have been developed tend to be
semiempirical and approximate the phenomenological behavior of SCG.

The previous equations in this appendix assumed that no SCG occurred prior to failure, and all failures were
assumed to be independent of the time and history of previous thermal-mechanical loadings. The effects of time-
dependent SCG on component reliability will now be addressed. Creep and material healing mechanisms are not
addressed. Proof testing (Evans and Wiederhorn, 1974b) will improve the reliability of a survived component. This
form of testing results in an attenuated probability of failure and a predicted minimum life expectancy of the
survived components under the service load. This subject is discussed in section D.2.2.6.

For the analysis of time-dependent reliability, in addition to the Weibull shape and scale parameters, the
material-environmental fatigue parameters (N and B) are required. The derivations that follow develop the time-
dependent probability of failure based on the mode-I equivalent stress distribution due to thermal-mechanical
loading at time #;, transformed to its equivalent stress distribution at time # = 0. Determination of the fatigue
parameters is discussed in section D.2.2.5.

Investigations in the area of mode-I crack extension (Paris and Sih, 1965) have resulted in the following
relationship:

Kiog(¥,1)= 0104 (W,0) Y Ja(W, 1) (D92)

where Kj, is the equivalent mode-I SIF and oy, is the equivalent mode-I far-field stress normal to a crack. The
parameter Y is a function of crack geometry and can vary with SCG; however, we assume that Y is a fixed
geometric constant, a(*P,?) is the appropriate crack length at time ¢, and W represents a location (x, y, z) within the
body and the orientation (a, ) of the crack. In some models, such as the Weibull and PIA, ¥ represents a location
(x, y, z) only. The equations presented in this section are based on the Batdorf theory and the PIA model. For the
Batdorf theory, W = (x, y, z, a, B) for volume-flaw analysis and ¥ = (x, y, o) for surface-flaw analysis. For the PIA
model, ¥ = (x, y, z) for volume-flaw analysis and ¥ = (x, y) for surface-flaw analysis.

The crack growth as a function of the equivalent mode-I SIF is assumed to follow a power-law relationship:

da(‘P,t)zAl KN

T g (¥.1) (D93)

where 4] and N are material and environmental parameters. Parameters 41 and N are typically temperature
dependent, and hence for a nonuniform temperature distribution, they are a function of location (x, y, z). In the

following equations, 41 and N are shown for isothermal conditions. Substituting equation (D92) into equation (D93)
yields

da(¥,?)

TR ofe, (WY NaV2 (W 1) (D94)

The relationship at time 7 between a(¥,) and a mode-I critical effective stress oyo40(*V,?) is
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K 2
a(xy,t)z( I;qc] 012, (%.0) (D95)

Differentiating equation (D95) and substituting into equation (D94) results in

N-2
jGngC(‘P,t‘f) (‘P t)dcl _ gy y? leac Kle‘]c J' y N (\P Z)d (D96)
cleqc(‘l‘,t 0) quc eqc 9 0 qu

where Gieqe o('V, £ = 0) is the transformed critical equivalent stress distribution at # = 0, and cje4c(', #y) is the critical
equivalent stress distribution in the component at time ¢ = ¢ At the time of failure ¢ = #;; the critical equivalent stress
(strength) of the crack oye4c('¥, #y) just equals the equivalent applied stress oe,(¥, #y). With this condition, an
expression can be obtained for a transformed equivalent stress at time ¢ = 0, henceforth denoted by Gyq,0('Y), where
Gl1eq,0(F) = O1e4(‘Y, t = 0) = G1eqe(W, £ = 0). The transformed equivalent stress (Thiemeier, 1989, and Wittig et al.,
1991) is

j ’c{\e’q(‘lf,t)dt (v=2)
Orgol¥)=| ~ ol 2 () ©97)
where
2
_ (D98)
4 Y2KY2(N-2)

and N and B are the material and environmental fatigue parameters. The dimensionless fatigue parameter N is
independent of the fracture criterion, and the parameter B has units of stress” x time. In CARES/Life, the value of B
is adjusted to satisfy the requirement that for a uniaxial stress state, all models produce the same probability of
failure. The determination of these parameters is addressed in section D.2.2.5.

D.2.2.1.1 Time-dependent volume-flaw reliability analysis: CARES/Life computes the time-dependent
reliability of a ceramic component, assuming a crack-density distribution that is a function of the critical effective
stress distribution. The crack-density coefficient is now time dependent. For volume-flaw analysis, the crack-
density function is expressed as

nu[o(W)]= ksy oty o(¥) (D99)

where kgy and my are material constants and the transformed effective stress Gyeq 0('V) is expressed as

1
G{ZV lII t (NV_Z)

Gleq0(¥)= rop 2 (v.ey) (D100)

Bpy

where Ny and Bpy are material fatigue parameters. Note that the parameters my, 6oy, Ny, and By are not shown as
functions of location (x, y, z), which they potentially are if the temperature distribution throughout the body is
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nonuniform. Based on a probability-of-failure model, a subscripted fatigue parameter, such as Bgy for the Batdorf

model, is computed. The parameter By is directly proportional to B. The various model-dependent subscripted
fatigue parameters are all directly proportional to B. They are evaluated by satisfying the requirement that for a
uniaxial stress state, all models produce the same probability of failure. For large values of N, all model fatigue
parameters tend to B. The relationship between the B subscripted parameters is discussed in section D.2.2.4.

If the boundary load direction and/or location changes with time, the principal stress vectors change direction
with respect to a fixed global coordinate system. If this occurs, the permanent reference axis becomes the fixed
global coordinate system. The normal and shear stresses are computed with respect to the global coordinate system.
The normal stress is

c,=1%c, +m2(5y +n2c, +2(€m Ty +MNT,, +nl sz) (D101)
and the shear stress is
=(€c5x +M Ty +n1:zx)2+(€txy +mo, +nrzy)2+(€ Ty tMT), +ncz)2—cs% (D102)

where (, m, and n are the direction cosines defined in figure D.6. Symmetry conditions permit the integration of the
equivalent mode-I stress projection over the upper half of the spherical surface as shown in figure D.6.
The time-dependent probability of failure for the Batdorf model is

Pﬂ/(tf)zl—exp[ kBVJ. J.ZHJ-H/Z quo s1nocdochdV} (D103)

where G1¢4,0(') is the transformed effective stress distribution as given in equation (D100), and 61,40 (V) is

dependent on the appropriate fracture criterion, crack shape, and time to failure # The fracture criteria and crack
shapes available for time-dependent analysis are identical to those used for fast fracture analysis. The available
fracture criteria are the Weibull NSA criterion (a shear-insensitive case of the Batdorf theory), the maximum tensile
stress criterion, the total coplanar strain-energy release rate criterion, and the noncoplanar crack-extension (Shetty)
criterion.

For the PIA model, the probability of failure is

Pyles)=1- exp{ ~kwr [ [c;'jg (W)+ o5 ()+ o5y ()| V} (D104)
where
1
I;f GINV (x,y,z,1)dt Ny=2
Gi,o(‘P): 5, +GZNV_2(x,y,z,tf)
w

and i = 1, 2, 3. The principal tensile stress distributions are c1(x, y, z, ), 62(x, ¥, z, f), and 63(x, y, z, ).
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y

(b)
Figure D.6.—Projection of equivalent stress onto the upper half
of a unit radius sphere in the global coordinate system.
(a) Cauchy stress components on an infinitesimal tetrahedron.
Direction cosines: ¢ = cos o, m = sin o cos 3, n = sin o sin f3;
Op = €205 + M20y, + N0, + 2((MTyy, + MNT,, + N1,);
T = (loy + M1y, + N)2 + ((Ty + MOy + N2 + ((Ty, + MTy, + N6,)?-0p2.
(b) Global coordinate system.

For a stressed component, the probability of failure for volume-flaw analysis is calculated from equa-
tion (D103). The finite element method enables discretization of the component into incremental volume
elements. CARES/Life evaluates the reliability at the gaussian integration points of the element or, optionally,
at the element centroid. Using the element integration points subdivides the element into subelements, hence each
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. h .
Visub corresponds to the isub" subelement volume. In the usual context of finite element methods, the volume of a
three-dimensional element V', is calculated after transformation into the natural coordinate space (Bathe, 1982):

I p1 pl
Ver=[_ [ [ detd(r,s.1)drdsdr (D105)

where J is the Jacobian operator and 7, s, and ¢ are the natural coordinates. The subelement volume is defined as the
contribution of the integration point to the element volume in the course of the numerical integration procedure. The
volume of each subelement (corresponding to a Gauss integration point) is calculated using the shape functions
inherent to the element type. The stress state in each subelement is assumed to be uniform. Powers et al. (1992)
gives further details of the subelementing procedure as used in CARES/Life. The numerical solution of equation
(D103) takes the following form:

Pyltr)=1- exp{

Nsub

2n o /2
Vieub U I qu 0 smoc da dBj ] (D106)
isub=1 isub
where ngy, is the total number of subelements. If kg is element dependent, it would appear inside the brackets.
CARES/Life uses gaussian numerical integration to evaluate equation (D106). This is detailed further in section
D.2.3, except that in this case the integration is performed over one-half of the unit radius sphere since a global
coordinate system reference frame is used.

D.2.2.1.2 Time-dependent surface-flaw reliability analysis: CARES/Life computes the time-dependent
reliability of a ceramic component assuming a crack-density distribution that is a function of the critical effective
stress distribution. The crack-density coefficient is now time-dependent. For surface-flaw analysis, the crack-
density function is expressed as

ns[o(W)]= ks opis () (D107)

where kgg and mg are material parameters and the transformed effective stress, Gyey 0, 1S expressed as

/S _N Ng-2
J‘O Gle; (T;Z)d . N 2( ) §
ops .ty (D108)

Gqu,O (\P): BBS

where Ny and Bpg are material fatigue parameters. Note that the parameters mg, 6,5, Ns, and Bgg are not shown as a
function of location (x, y), which they potentially are if the temperature distribution on the surface is nonuniform.
On the basis of a probability-of-failure model, a subscripted fatigue parameter, such as Bpg for the Batdorf model, is

computed. The parameter By is directly proportional to B. The various model-dependent subscripted fatigue param-
eters are all directly proportional to B. They are evaluated by satisfying the requirement that for a uniaxial stress
state, all models produce the same probability of failure. For large values of &, all model fatigue parameters tend
to B. The relationship between the B subscripted parameters is discussed in section D.2.2.4.

If the boundary load direction and/or location changes with time, the principal stress vectors change direction
with respect to a fixed global coordinate system. If this occurs, the permanent reference axis becomes the fixed
global coordinate system. The normal and shear stresses are computed with respect to the global coordinate system.
The normal stress is
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Gn=£20x+m20y+2€mrxy (D109)

and the shear stress is

1:2=(€Gx+mryx)2+(€txy+mcy)2—o% (D110)

where { and m are the direction cosines. Symmetry conditions permit the projection of the equivalent mode-I stress
over half of the perimeter of the unit radius circle.
The probability of failure for the Batdorf model is

Pfs(tf)=1—exp{—k%SJ-AJ-;IG;Z;,O(‘P)dOLdA} (D111)

where G1.4,0(') is the transformed effective stress distribution as given in equation (D108). The distribution

Gleq,0('F) 1s dependent on the appropriate fracture criterion, crack shape, and time to failure # The criteria and crack
shapes available for time-dependent analysis are identical to those used for fast fracture. The fracture criteria are the
Weibull NSA criterion (a shear-insensitive case of the Batdorf theory), the total coplanar strain-energy release rate
criterion, and the noncoplanar crack-extension (Shetty) criterion.

For the PIA model, the probability of failure is

Prslep)=1- exp{ . IA [c;’jg (¥)+ohs (‘I’)]dA} (D112)

where

1
Ng—2

;f ols (x, y,1)dt

ci0(¥)= B +0!NS‘2(x,y,zf)
w

i=1,2; and o((x, y, ¥) and o(x, y, t) are the principal tensile stress distributions.

The finite element method enables discretization of the surface of the component into incremental area
elements. CARES/Life evaluates the reliability at the gaussian integration points of shell elements or, optionally, at
the element centroids. Using the element integration points subdivides the element into subelements, where each
Ajsup corresponds to the isub™ subelement area. The area of a two-dimensional element and subelement are
calculated in similar fashion to the method outlined for equation (D105) except that the element area 4, is
calculated after transformation into a natural two-dimensional coordinate space:

Aoy = j ilj_ll det J(r,s)dr ds (D113)

Powers et al. (1992) gives further details of the subelementing procedure as used in CARES/Life.
The stress state in each subelement is assumed to be uniform, and the numerical formulation of equation
(D111)is
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Nsub

k
Pfs(zf)=1—exp{_%5 > Aigus [J.:cs;';fl’o(‘ll)da] b} (D114)
ISu

isub=1

where ngyy, is the total of number of subelements. If kgg is element dependent, it appears inside the brackets.
CARES/Life uses gaussian numerical integration to evaluate equation (D114). This is detailed further in section
D.2.3, except that in this case the integration is performed over one-half of the unit radius circle since a global
coordinate system reference frame is used.

D.2.2.1.3 Static fatigue: Static fatigue is defined as the application of a constant load over a period of time. For
static fatigue, the mode-I equivalent stress is independent of time, and from equation (D97),

62 (¥ N_2
Gleq,o(‘P)=Gqu(‘P)rGIqu()+l ]N : (D115)

For volume-flaw analysis (by symmetry, integrating over one octant of the unit radius sphere), the probability
of failure for the Batdorf model is

Py (tf ) = l—exp{ﬂjy Ion/zj.;/zcﬁz O(W)sina da df dV} (D116)
: T ,

For the PIA model, the probability of failure is
Py liy)=1- exp{— kv [ [c;'jg (W)+ o5 (¥)+ o ()| V} (D117)

where

1

Ny Ny -2
o; " (x,y,2)t _ v
ci,o(‘P)=[—’ (By LA 2(x,y,z)]

wl

for the principal stresses denoted by i =1, 2, 3.
The probability of failure for surface flaws is analogous to that for volume flaws. For the Batdorf model, the
probability of failure is expressed as

_ — 2kBS 75/2
Prsles)= l—exp[—n J ], ot o(®)de dA} (D118)
For the PIA model, the probability of failure is
— mg mg
Prsles)=1- exp{— kus | [GLO (W)+ohs (‘{J)]dA} (D119)

where
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for the principal stresses i = 1, 2.
D.2.2.1.4 Dynamic fatigue: Dynamic fatigue is defined as the application of a constant stress rate G(T)over a
period of time ¢. Assuming the applied stress is zero at time ¢ = 0, then

O1eq (P.1)=6(¥)t (D120)

Substituting equation (D120) into equation (D97) results in

J.;f [5(w):]Y de N=2
B

Gleq0(¥)= +lo(w)e V2 (DI121)

At the time of failure 7 = #; equation (D120) can be restated as o, (‘P, tr ): c's(‘P)t £~ Substituting this expression

into equation (D97) results in

ol (W1, )t N-2
cleq,o(\P){ s o) (D122)

For volume flaws, the Batdorf probability-of-failure equation is

Py (tf )= 1- exp{— Zk%jy jon/zjon/z G;ZZ,O (¥)sina da dBdV} (D123)

For the PIA model, the probability of failure is
Pylis)=1- exp{— kv [, [c{f’g (¥)+ ol (¥)+oy (‘}’)]dV} (D124)

where

1

N, _
Gi,o(‘P)=[ ol byt )ty +GNV_2(x,y,sz)]NV 2

(NV+1)BWV l

for the principal stresses where i = 1, 2, 3.
For surface flaws, the Batdorf model probability of failure is
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_ 2 kBS /2
Pjs(tf)—l—exp{—TjA'[o cﬁfi’o(‘P)d(di} (D125)
For the PIA model, the probability of failure is
Pty )=1-exp { s | [c;'jg (W)+o55 (\P)]dA} (D126)

where

1

olVs (x,y,tf)tf _ Ng-2
Gi,O(T)Z[mJ"GzNS ()

for the principal stresses where i = 1, 2.

D.2.2.1.5 Cyclic fatigue: Cyclic fatigue is the repeated application of a loading sequence. Analysis of the time-
dependent probability of failure for a component subjected to various cyclic boundary load conditions is simplified
by transforming that type of loading to an equivalent static state. The conversion satisfies the requirement that both
systems will cause the same crack growth (Mencik, 1984). Implicit in this conversion is the validity of the crack-
growth equation (D93). The probability of failure is obtained with respect to the transformed static state.

The fatigue parameters can also be determined from cyclic loaded specimens via transformation to an equiva-
lent static state. Since static and cyclic tests can yield different results when the fatigue parameters are being
determined, the type of loading used should simulate as closely as possible the service conditions. This is discussed
in more detail in section D.2.2.5.

Evans (1980) and Mencik (1984) defined g-factors g('V), for various types of cyclic loading, that are used to
convert the cyclic load pattern to an equivalent static state. For periodic loading, #,¢; is the time interval of one
cycle, and oy46('Y) is the equivalent static stress acting over the same time interval, Zer, as the applied cyclic stress
O1eq('Y, ). The equivalent static stress is defined as

Orege (¥)=g(¥)!" 04 (¥) (D127)

where 6.,('Y) is a characteristic value of 61.4(', 7). Over one cycle where both load systems cause the same crack
growth,

2 cr
Oty (¥)tper = [ "ol (P.1)ds (D128)
where
J.(;percs{\efq (w,t)d¢
Sege (¥)= p =o}(¥)g(¥) (D129)
per
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and the g-factor is

J’ tper |:Gleq (\Pa Z):|N dt

o)=L oal?) (D130)

t per

In CARES/Life, the characteristic value 6¢,('t) of o1ey(\V, ?) is taken as Gyeg,max('Y), the maximum stress of the
periodic load over the cycle time interval #,e,. For a periodic load over an extended time ¢,

ter
jop o, (W.1)ds

t
G{qu (\P)l‘l :jol G{Zq(\y,t)dl‘ =1 ; :g(‘}’)cﬁq’max (\{/)tl (D131)
per

When more than one type of loading is applied to a component, such as a periodic cyclic load and a static load, the
g-factor is based on the effective variation of the combined loading. The g-factor can vary from element to element,
and the stress-volume integration is performed over the hemisphere of the unit radius sphere for volume flaws and
on the perimeter of the unit radius semicircle for surface flaws.

For n multiple, but different, cyclic loadings over an interval of time #, = #;,

ol o (¥)is :J.(;loﬁq(‘l’,t)dt+I;zGﬁq(‘l’,t)dt+....+J.:il off (¥.1)ds (D132)
Thus,
Olege (V)1 =icf2q,max,,~ (¥)gi(¥)ar (D133)
-
where
At =t; —t;_
and

J’ti Gleq,i ("P,l) th
li-1| Oleg,max,i (\P)

gi(\P): AL
1

where e max,i(‘Y) 1s the maximum value of o1,('V') over Az;.
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Another approach by Mencik is to define an equivalent static time ¢,, during which a characteristic stress
(ocp is chosen as the maximum stress Gy max('t)) would cause the same crack growth as the applied cyclic stress
Gl1eq('V, 1) during time Az. Thus,

AZ 14 cr
Oy max () At (V) =— 0" ofy, (W.r)dr=cf, . (¥)e(¥)ar (D134)
per
or
Ates (V)= (W) At (D135)
For multiple, but different, cyclic loading over an interval of time ¢r= Aty + Aty + ... + At
G{\éq,max (\P )[Ates,l (\P )+ Ates,Z (IP )+ e T Ates,n (lP )]:
0_{\e’q,max (IP )[gl (lP )Atl + 82 (T)AtZ Tt gy (IP )Atn ] (D136)
or
n n
D A (¥)=" 2i(¥)As (D137)

In this case, G1eg,max 1 the maximum value of Gy, over 7, and Giey max replaces Gleqmax,; in the calculation of g;(*¥).
Mencik (1984) lists g-factors for a variety of waveforms. Table D.I lists the g-factors for various loadings and
waveforms supported by CARES/Life. A simple closed-form expression for the sine wave is not available, and
consequently, a numerical evaluation is required.
CARES/Life adopts the approach of equation (D131) to compute the time-dependent reliability. Equation
(D131), the static equivalent stress distribution, is substituted into equation (D97) where the time # is replaced by #.

Hence,
1

[gw)oaq,max ()t 1]

Glegq,0 (‘P): O leq,max (\P) (D138)

B

Formulations for other failure models are developed analogously.

NASA/TP—2005-212505 129



TABLE D.I.—g-FACTORS FOR WAVEFORMS WITH VARIOUS LOADINGS

[H(t,C):lfortZC; H(:,C)=0fort < C; o), 20.]

Loading function, g-factor, Waveform
Oleg (¢ N
leg ( ) 1 Lper | Oleg (tper )
g=— — | dt
Lper ©0 O lequmax
Static fatigue
Gleq = constant 1 Oleq

Dynamic fatigue
Gleq (t) =6t

Cyclic square wave
Gleq =01 [H(.0)- H 1))+ o, [H (1) - H et

% per

)

Sine wave
| —0C | 2mt
#] sin| 2™ +[

2 per

O] + 04
2

510

)

Cyclic saw-tooth wave

oy ()= 2= o o) a1 2
fper 2

—2(01 —G”)t tper 1

+ —+201 — 01 H t, —H(t,tper)

fper 2 |

Positive half pulse of sine wave

Oreq )= [c 1 sin[ tzm ]]{H(z‘,o)— H(r,

per

per

7]

1

t per

J

N +1

o] +0q; +(C71 —Gll)SiIl
Iper

2n

per

t]d

N

20]

N
S

G1 =01
O

(N+1)(01 —011)

N+1

)

o

t

D.2.2.2 Application of the Paris and Walker laws.—This section considers the more general case of reliability

modeling where the applied loading varies as a function of time. SCG is a complex phenomenon involving a

combination of simultaneous and synergistic failure mechanisms. These can be grouped into two classes: static
effects and cyclic effects. Static effects refer to the slow propagation of cracks under cyclic stresses and may be
explained by the same environmental and corrosive processes responsible for SCG under static loads. Cyclic effects
are functionally dependent on the number of cycles and on the duration of each cycle. The SCG phenomenon can be
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caused by a variety of effects, such as debris wedging or the degradation of bridging ligaments, but essentially it is
based on the accumulation of some type of irreversible damage that tends to enhance the crack growth. Not all
materials display cyclic effects. Glasses seem to show only static effects, whereas polycrystalline materials are more
susceptible to cyclic effects. Modeling for cyclic effects is based on phenomenological criteria (Paris law and
Walker law) traditionally used for metal fatigue.

Using g-factors with the power-law formulation to predict component life is an unconservative practice for
materials prone to cyclic damage. To empirically model cyclic effects in ceramic materials, Dauskardt et al. (1990a
and 1992) suggest the use of the Paris power-law expression (Paris and Erdogan, 1963), which has traditionally
been used in metals design. Dauskardt et al. (1992) use the Walker modification of the Paris law (Walker, 1970,

p- 1) to describe the crack-growth increment per cycle as

da(¥,n)
n

=4y KN (W,n)AKE

leg,max legq

(¥,n) (D139)

where 7 is the number of cycles,
Kqu,maX (l{l’ l’l) = Oleg,max (\P’ n)YV a (T’ n)
and AKj,, ('Y, n) represents the range of the equivalent SIF over the load cycle.

AK1eq (‘P, n)z AG ¢4 (‘P, n) leai‘l‘, n ) = [Gleq’max (‘P, n)— O leg,min (‘P, n)] leai‘l‘, n )

and 45, N, and Q are the cyclic fatigue parameters determined from experiments. The Paris law is obtained when N
and Q are equal in value. The subscripts “max” and “min” indicate the maximum and minimum cycle stress,
respectively. The integration of equation (D139) parallels that of equation (D93), yielding

" © N-2
[ 1= ROPA] 0 (o)
Gleq,0 ("P, ny ): 3 +G{\e[¢;§nax (‘P,nf) (D140)
where
_ 2
A Y? K{Zq—cz (N-2)

where nrdenotes the number of cycles to failure, B is now expressed in units of stress” x cycle (B is determined
from cyclic data), and the R-ratio (defined as the ratio of the minimum to maximum cyclic stress) is

R )= Cttin (V1)
’ Oleg,max (IP,I’Z)

For a periodic cyclic stress, R(‘¥,n) and 61y min(‘Y, 7) are independent of n, hence
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1

2 _ 0 N-2
) Gleq,max(‘{’)g R(‘P)] s +1 (D141)

Gleq,0 (LP: nyg ) = Oleq,max (\P

When R =1 (the static fatigue case), there is no time-dependent degradation of material strength due to cyclic
effects. When R < 0, compressive stresses are present, which depending on the material, may or may not further
degrade the strength. If no further degradation of strength occurs when R < 0, R should be set to zero in equation
(D141). The probability of failure for cyclic fatigue using the Batdorf model for volume-flaw analysis is

Py (nf):1—exp[@hj:/zj:/zoﬁz’o (W,n )sin o da.dB dV} (D142)

Analogously, equations may be derived for the PIA model or for surface-flaw analysis.

The Paris law should be used with prudence. Assuming that the static effects and cyclic effects are mutually
exclusive events, the component reliability can be described as the product of the reliabilities calculated for each of
these phenomena:

(D143)

Scombined _PSstaticeffecls PScycliceffects

thus when R = 1, degradation due to static fatigue is accounted for.

D.2.2.3 Material failure characterization for static, cyclic, or dynamic loading.—For time-dependent fracture
under static or cyclic fatigue loading, failure probability can be expressed in terms of the specimen time to failure ¢
by using the two-parameter specimen uniaxial Weibull model (Paluszny and Nicholls, 1978)

m N n m
S0 Gf(\PO)g(LPO)tf tr

Peltr)=1- - == =1- —| = =1- - = D144

f (f ) CXp ( o j exp [ B,o)~? exp o ( )
where

i = fp =—8 o)
- (v-2) G_Gy ¥o)e(¥o)
and
o2 (¥o) g0 )ty

For static loading, g(‘¥') = 1. At location ¥, 6/(\Y,) is the maximum static or cyclic failure stress in the specimen,
g(‘¥P,) is the g-factor at that location, o is the characteristic strength, o is the transformed static inert strength, m
is a modified Weibull modulus, and 7y is the volume or area specimen characteristic time. Henceforth, o/('¥,) is

replaced by o, where location at ¥, is implied. The characteristic time is analogous to the characteristic strength.
Equation (D144) allows the specimen time-dependent failure response to be described with a simple Weibull

equation that is a function only of 7rand the empirically determined parameters m and fy. Procedures such as the
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least-squares method or maximum-likelihood analysis can be used to estimate these parameters from experimental
fracture data as described in section D.2.1.5.

For static or cyclic fatigue, if we use the uniaxial time-dependent Weibull distribution for volume flaws with the
g-factor approach of equation (D130), and for

Glz,max(x’yaz)g(x,y,z)tf .
BWV
then
Pﬂ/(lf)Zl—exp _TIVJ‘VGZ[(’; (x,y,z)dV o145
Oop
where
_
G{Yglax(x’yaz)g(x,y,z)tf Ny-2
G1,0 (x,,2)=

BWV

and o indicates the first principal stress. For the case when the g-factor is constant throughout the specimen,
henceforth denoted by g, equation (D145) can be expressed in terms of the maximum static or cyclic failure stress

orin the specimen by multiplying the numerator and denominator by G? Ny, Thus,

tr "
Py ey )=1-exp —Vef(ﬁJ (D146)
o
where
Ny -2
_BWV Golg
lov =—"n,
80y
and
o1 mae (5 2) |
Vo =[ | SR B2 gy (D147)

The term V,ris the modified effective volume when the applied stress distribution is normalized with respect to or.
All expressions previously derived for 7, are still applicable for 7,y with the exception that 7y Ny should be

substituted for my (see section D.2.2.4). For a constant g-factor, comparing equations (D144) and (D146) yields the
time-dependent scale parameter relationship:
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tov =toy V™ (D148)

The modified effective volume that is used with equation (D146) and the PIA model is
1 my Ny
my N, N, N,
Ve = (G_] IV [o;’jgla; (x,3.2)+ 657N (x,p,2)+ S50 (x, .2 ]dV (D149)
f
where the principal stresses are
G1,max (x: Vs Z)Z G2, max (xa V> Z) 2 O3 max (x: Vs Z) =20

For the Batdorf theory, the modified effective volume analogous with equation (D146) is defined as

2k 712 ¢ 72 Gteqmax (¥) ™"
BV eq,max .
Ver = J. '[ j { } sino. do df pdV (D150)
and
-2
Bpy o,y
tOV - NV
80y

For surface flaws, the resulting equations are similar to those equations previously derived. Integration is
performed over the specimen surface, and the modified effective area 4,7is obtained.

tr\"S
Prsey)=1-exp| - Aef£ f] (D151)
fos
where
Ng—2
— B wS 605
OS g GNS
S
For the uniaxial Weibull distribution
fligN§g
c ,
g = A{—Lm:‘ oy )} d4 (D152)
A
The time-dependent scale parameter is
tos =los A;]/F’S (D153)
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The modified effective area for the PIA model is

msNS
A = ( J I [ O mas (%: +szjix(x y)]dA (D154)

For the Batdorf theory, the modified effective area is

— msNS
2| o ¥
Ay :y‘ij j“/ WLX() do bd4 (D155)
' T 4140 Gf
and
Bps G()Ss—Z
tos =
Ng
g9¢

Similar to cyclic fatigue, for dynamic fatigue the specimen time to failure can be expressed using the two-
parameter Weibull form as

p m(N+1)
Pr=1-exp| - [fJ (D156)
tod

where

(N+1)B,c)~? v
loa = g

N
Sy

tris the time to failure, and 7, is the characteristic time (the subscript d indicates dynamic fatigue). Note that for
dynamic fatigue (constant stress-rate loading) the g-factor has a value of 1/(NV + 1). For volume flaws, substituting

1/(Ny + 1) for the g-factor and rearranging equation (D146) gives

¢ ﬁV(NV"'l)
S
Pty )=1-exp —Ve,{ j (D157)

Lodv
where

1/(Ny+1)
Ny-2
_ (NV+1) WVGOII// Vl/mV
loav = Ny =loavV o
Sy

Note that in equation (D157), oy denotes the maximum stress in the specimen and & is the stressing rate at that
location. The derivation for surface flaws follows a similar line of reasoning.
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For the Paris law, the relation analogous to equation (D144) is

n

Py =1-exp —(i} (D158)

where n7is the cycles to failure and ng is a characteristic number of cycles. Similar to equation (D145)

Pﬂ/(nf)zl—exp[;Tichfg(x,y,z)dV] (D159)
oV

where

1
Gﬁ[glax(x,y,z)(l_R)NV nf Ny-=2

BwV

GI,O(an’aZ)Z

Similar to equation (D146) then,

it j (D160)

noy

Py (ny)=1-exp| - Vef[

where
Ny-2
Byy o,y 1/
Noy =—————=ngy V"
T =RV S o

The derivation for surface flaws follows a similar line of reasoning.

D.2.2.4 Fatigue parameter risk-of-rupture compatibility.—To ensure compatibility of failure probabilities, one
must establish the relationships between the fatigue parameters (N and B) and the various failure criteria. From uni-
axial test specimen data (simple tension, three-point bend, or four-point bend), compatibility is derived by equating
the risk of rupture of the specimen uniaxial Weibull equation to the uniaxial Weibull model, the PIA model, the
Weibull NSA, or the Batdorf shear-sensitive formulation.

For volume-flaw analysis, the probabilities of failure for the various approaches mentioned previously are

my
(o)
Specimen uniaxial Weibull Pr=l-exp|— (ﬁj
Goy
Uniaxial Weibull P;=1-exp {— kyy IV ol (x,»,z)dV }

3
PIA model Pr=1-exp {— kyy IV[Z Glf'j(t)/ (x,y, z) }d V}
i=1
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NSA Py =1—exp{ —kypy IVE}'ZS (x,y,z)dV }

2 ¢ m/2
Batdorf model Py =1—exp[—£kBVJ.VJ.On/ j;/ Gi"ezo(‘l’)sinoc do dp dV}
T ;

The subscript 0 denotes the transformed stress to time ¢ = 0.

The basis for compatibility-of-failure probabilities is the requirement that all expressions produce the same
probability of failure for a uniaxial stress state as that obtained from the specimen uniaxial Weibull equation. The
value of N remains invariant, whereas the value of B is adjusted to satisfy this requirement. The approach is similar
to that used to obtain the relationships of the crack-density coefficients for fast-fracture reliability analysis. The
most common experimental test specimens used in the evaluation of the fatigue parameters are the uniaxial tension,
three-point bend, and four-point bend geometries. The fatigue parameters N and B are obtained from the data based
solely on the maximum stress in the specimen at fracture orand the time to failure 7.

For the specimen uniaxial Weibull equation, the time-dependent transformation equations are

1
O'NV Zf Ny=2

Static fatigue Gro=
BuV
1
. ‘ Gyv ts Ny-2
Dynamic fatigue Cro=|—o>—7—-=
' By (Ny +1)
1
o oy gty | N2
Cyclic fatigue Cro=|——

BuV

if it is assumed that Gztf/B >> 1, where fris the time to fracture, g is the g-factor used with cyclic loading, oris the
maximum tensile stress in the specimen at fracture, and B,y is the fatigue parameter obtained from the specimen
uniaxial Weibull equation. Equating the risk of rupture of the specimen uniaxial Weibull model with the uniaxial
Weibull model risk of rupture gives

Ny " N iy

G, tr o; " (x,v,z)t

it f =I it yN _)Zf av (D161)
Gell//izBuV g By GOI'//

then
i ny Ny

BwV ’ :LJ. Gl(an/aZ) dv = Vef (D162)
B,y V,JdVv or Ve
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where

Vez(ﬂj V =IV{M} dv (D163)

[o)2)7g Gr

For V.4 the static equivalent stress distribution G;(x, y, z) is normalized with respect to the maximum equivalent
static tensile stress orat ¢ Thus, V,rfor a given specimen configuration is similar to V, for the same specimen, with
the exception that the exponent associated with Vris my Ny, whereas the exponent associated with V,, is my. When
there is no stress gradient in the specimen, then V, and V,rare equivalent. When stress gradients exist throughout
the specimen, then these terms are not equal. For the three- and four-point bend specimens (for three-point bend, the

inner span L, is set equal to zero), equating the risk of rupture of the specimen uniaxial Weibull equation with that
of the uniaxial Weibull expression yields

1/ my

M;h(LlJr"NWNVLz) Ver Wty
€
By =Buy - =Buy (_J (D164)
Ve (1+ iy Ny ¥ v,
where
wh (Ll + mVLz)
Vo= ———F7F—=2
2 (1+I’}’IV)2
and

o W_h(Ll +I1NiVNVL2)
72 (1+ iy Ny ¥

For the PIA model, the relationship between B,y and B,y is

~ 71 N i N my N,
(BWV JMV — LJ' |:61 (X,y,Z)}my ' +|:M:|WW ' +|:M:|MV ' dv = Vef (D165)
v V,

B,y Ve, Cr of Gf e

Equating the risk of rupture of the specimen uniaxial Weibull to the Batdorf risk of rupture yields the relationship
between Bgy and B,y:

iy _ A N niy Ny
Bgy | _ 1 MI I“/ I“/ Oeg () sino do dp dV (D166)
B,y v, T Vdo 0 Of

where o1.4('V) represents the static equivalent stress distribution. For the Weibull NSA method, B,y is substituted
for Bgy, and oy,,0(V) is substituted for oeq o(*F).
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The relationship between B,,;» and Bpy is established by equating the risk of ruptures for the uniaxial Weibull
model and the Batdorf model:

my Ny
B I {Gleq(x’yaz):| dv
14

my o
@ w j _ / . (D167)
BY 2072 o Ny
2kBVj j i j i { e } sino, dow d bdV
For the uniaxial stress state, this expression becomes strictly a function of the fracture criterion. This can be
demonstrated with a shear-insensitive fracture criterion (equivalent to the Weibull NSA method), where
Gleg(¥)=01eq (x, 1, 2) cos? (D168)
so that
S1eg (x..2) "™
eq 2
B my J. Vl: o :| dv
W = ~ (D169)
By 2k, Ol (X, 7,2) O
BVJ. g U I cos2m Ny o sina, dot dB)dV
T vV or 0 0
combined with equation (D66) then
my ~
2 1
By | _2my Nyl (D170)
BBV 2mV +1
For colinear crack extension with a Griffith crack,
Cleg (‘P)zcleq (x, y,z) cosa (D171)
so that
oteg (r..2) "™
eq s Vs
B ny ,f V|: o :l L
LI - = (D172)
Bgy 2% Gleq (X, 7,2) Ny n2em/2 -
BVI g U I cos™Nr g sinow dot dBJdV
T Y cr 0 Jo
combined with equation (D68) then
my ~
(BWVJ _ mVNV—i—l (D173)
BBV my +1

For an arbitrary fracture criterion expressed as some function of the flaw orientation,
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Gqu(\P)ZGqu (x,y,z)f(a,[}) (D174)

then

(BWJV: - n (D175)
Bpy ZEBVU.;I I;I f’ﬁVNV(a,B)sinocdochj

For surface-flaw analysis, the relationship between the specimen uniaxial Weibull fatigue parameter B, and the

uniaxial Weibull parameter B,,5, the Weibull NSA parameter B,,,s, and the Batdorf parameter Bgg is obtained in a
similar manner to that used for the volume-flaw analysis. Equating the risk of rupture of the specimen uniaxial
Weibull equation to the uniaxial Weibull equation yields

NS mg NS mg
c tr o, S (x, )t
TN I ( Ny)_ 7| g D176)
Ge; BuS 4 BWSGOSS
then
i mgNsg
Bys : :LJ' G](x,y) d4 = Aef (D177)
Bys 4,74 Sf Ae
where

4, {%Jms :L{M} da (D178)

Gos Gf

For 4.y, the static equivalent stress distribution 61(x, y) is normalized with respect to the maximum equivalent static
tensile stress orat ¢ Thus, 4,rfor a given specimen configuration is similar to 4, for the same specimen with the
exception that the exponent associated with 4.ris mgNg , whereas the exponent associated with 4, is mg. When
there is no stress gradient on the specimen, then 4, and 4.rare equivalent. When stress gradients exist throughout
the specimen, then these terms are not equal.

For the four-point bend specimen (L, = 0 for the three-point bend solution),

L +mSL2)(h+W+mSw)
(l+ms)2

A, = ( (D179)

Equating the risk of rupture of the specimen uniaxial Weibull equation to the uniaxial Weibull formulation yields

Vmsg 1/t
~ ~ A S
By = Bys (Ll +m5N5L2)(i1+W+ meNS)] :Bus[ ef} (D180)
Ae (1+7isNs
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For the PIA model, the relationship between B,,g and B,s is

fiig msNg nigNg
(Mj myy {_Gl(x’z)} {M} an=2 (D181

BuS Ae Gf Gf Ae

Equating the risk of rupture of the specimen uniaxial Weibull equation to the Batdorf risk of rupture yields the
relationship between Bgg and B,g

m — mgN.
N Nl .
T A

BuS Ae 0 Gr

where o1.4('V) represents the static equivalent stress distribution. For the Weibull NSA method, By, is substituted
for Bgy and G, o('P) is substituted for Gyeg,0('F).

The relationship between B,,s and Bpg is established by equating the risk of ruptures of the uniaxial Weibull
model and the Batdorf model

e

mg
B c
(Bwsj _ f _ (D183)
BS - mgiNg
2 2( Oy (¥
kBSJ' J'n/ qu( ) do |d4
TC Al Y0 or
For the uniaxial stress state, this expression becomes strictly a function of the fracture criterion. This can be
demonstrated with a shear-insensitive fracture criterion (equivalent to the Weibull NSA method), where
1o (V)= O1eq (x, y)cos? a (D184)
so that
figN,
j Gqu(xay) e d4
B nig A o/
2] ~ (D153)
BS - SIVS
ZkBSJ‘ Gqu(xay) J‘n/zcoszrﬁSNSOLdOL a4
e A Gr 0
combined with equation (D79) then
~ 1
B\ Ng r(mSNS)r(mS +2)
(BLSJ = 1 (D186)
BS (NS —2)r(7715NS +2j r(ms)

For colinear crack extension with a Griffith crack
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Oleg (‘P) =Oleq (x, y) cosa (D187)

so that

e

mg o
(_?S ] -— ﬁst (D188)
® 2kps I Oleq (x.7) U & cos’sNs ¢ da} dA4
m Y4 of 0
combined with equation (D81) then
. i NS r(mSgsjr[mS2+lj
(BLS] - —— (D189)
m +
B (vg —2)r] =225 r[’”sj
2 2
For an arbitrary fracture criterion expressed as some function of the flaw orientation,
O1eg(¥) = G1eq (x, ) / (01) (D190)
then
fiis
(B nS J = L (D191)
Bps

2k [J‘ ;/2 fmsNs (a) dOL:l

D.2.2.5 Evaluation of fatigue parameters from inherently flawed specimens.—The lifetime reliability of
structural ceramic components depends on the history of the loading, the component geometry, the distribution of
preexisting flaws, and the parameters that characterize SCG. These crack-growth parameters must be measured
under conditions representative of the service environment. When determining fatigue parameters from the rupture
data of naturally flawed specimens, the statistical effects of the flaw distribution must be considered along with the
strength degradation effects of SCG. A more direct approach is to calculate fatigue parameters from velocity
measurements of an induced crack of known configuration, thereby eliminating the statistical aspects of the flaw
population from the experiment. The weakness of this approach, however, is the difficulty of getting a notched or
indented specimen to behave in a manner identical to that of the naturally flawed specimen. CARES/Life was
developed on the basis that fatigue parameters are most accurately obtained from naturally flawed specimens. In the
following discussion, three methods are described to estimate these parameters from fatigue data: the median-value
technique, a least-squares regression technique, and the median-deviation (MD) technique, a modification to a
method from Jakus et al. (1978). These methods are described in terms of volume-flaw analysis for static (or
constant amplitude and frequency cyclic) fatigue. Only the MD technique is discussed for dynamic (constant
stressing rate) fatigue using the power-law formulation and the Paris law methodology for constant amplitude and
frequency cyclic loading. Analogous relations for surface flaws are easily developed by replacing the effective
volume with the effective area.

D.2.2.5.1 Static and cyclic fatigue parameter evaluation: When equation (D146) is rearranged for static fatigue
or constant amplitude and frequency cyclic loading at a fixed level of reliability, the specimen time to failure for
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volume flaws is expressed as a function of the maximum stress oy in the specimen (for cyclic loading this
corresponds t0 Giey max at the highest stressed point in the specimen)

Ny-=2
BWVGOII// —N,
iy = e T (D192)

Ver

& 1
In|
[I—Pﬂ/J

The g-factor is assumed to be constant throughout the specimen and for all loading levels. The terms between the
brackets are simplified by replacing them with a constant, yielding

tp=AcoM (D193)

Equation (D193) is a convenient expression from which to fit experimental data, thus 4. and Ny can be considered
as material-environmental parameters. Taking the logarithm of equation (D193) yields

1l‘llf=h’lAC—NV ll’le (D194)

Linear regression analysis of the experimental data is used to solve equation (D194) for the slope —Ny and the
intercept In 4. The fatigue parameter estimation techniques in CARES/Life estimate A, and Ny for a probability of
failure fixed at 50 percent (Py = 0.50).

For the median-value technique, CARES/Life uses the median value at each individual stress level as the
data points. Using equation (D194) and performing a least-squares linear regression on the set of median values
estimates the line corresponding to a failure probability of 50 percent with slope —Ny and intercept In 4. Details of
the least-squares solution technique are given in Pai and Gyekenyesi (1988). The median-value estimation method
is the least efficient fatigue parameter estimation technique in CARES/Life (i.e., the estimated parameter has the
largest confidence interval for a given sample size).

Another fatigue parameter estimation method incorporated in CARES/Life is the least-squares regression
technique. This method is similar to the median-value technique except that linear regression using equation (D194)
is performed with all the fatigue data points (instead of only the median values). The fatigue parameter Ny is
obtained from the slope of the regression line. Assuming that the experimental data are at a sufficient number of
discrete levels of applied stress, CARES/Life transforms all the data failure times #; to an equivalent failure time ¢7;
at an equivalent single level of stress, o7. Equating the failure probabilities calculated from equation (D146) for data
number 7 yields

Ny

Sfi

tT,i = tf,i (G—J (D195)
T
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where the subscript 7T indicates a transformed value. In CARES/Life, the value of o7 is the lowest level of applied
stress in the data set. With all the data transformed to the various values ¢7;, CARES/Life performs a Weibull
parameter estimation as described in section D.2.1.5, solving equation (D144) for my and tyy7. Substituting into
equation (D193) for a time to failure corresponding to a 50-percent probability of failure yields

1 l/mV
1 iy N —2[111( J
B,y _
A, =toyrop’|In b _ 2wV 0oy 1-0.50 (D196)
1-0.50 g Ver

where

Ny-=2
BWV Go[’//

T =
g GTV Ve;m"

The third option in CARES/Life for estimating fatigue parameters is a modification to a method used by
Jakus et al. (1978). This estimation technique is referred to as the MD procedure. In this procedure, the fatigue
parameters and Weibull modulus are determined by minimizing the median deviation of the logarithm of the time.

The characteristic strength ooy is assumed to be known. From equation (D195), the fatigue data are transformed to a
single stress level for an assumed value of Ny. Using equation (D144) and the previously mentioned least-squares or
maximum-likelihood estimation methods, we obtain the Weibull parameters iy and fgy7. With these parameters,

the median value (¢7,0.5) is calculated (i.e., the value for 7 when Py = 0.50). Using the transformed fatigue data as a
discrete variable, we can define the median deviation (using absolute values) as

k
1
MDz—E Inty; —1In|¢ In
k T {GVT( 1-0.50

i=1

) = EZP“ trj —Intrs0 (D197)

i=1

for the k data points. The MD is a measure of dispersion or scatter about the median. It can also be obtained for the

continuous variable defined by the Weibull parameters 7y and t9y7 for ranked probabilities of failure Py;.

k my

l/mV 1
1 k ln leyr[ln ! J —In 1705 1 k 1 Pfl
MD=-Y" 1- Py, - ;Z (D198)
i=1 =1 ni

1-0.5

The value of Ny for which the MD is a minimum establishes the solution. The scatter of the distribution is measured
with the Weibull modulus my since for a fixed value of & the expression inside the brackets of equation (D198) is a
constant. CARES/Life minimizes equation (D198) by maximizing my versus Ny. This process is iterative, covering

an appropriate range of values of Ny. After a solution for Ny is obtained, equation (D196) is used to calculate 4...
The MD procedure was investigated with Monte-Carlo simulations of static fatigue data. For sample sizes of 20

and 30 specimens each, 10 000 simulations were run where the fast-fracture Weibull modulus m randomly varied

between 2.0 and 30.0, N randomly varied between 10.0 and 60.0, and the number of stress levels randomly varied
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between 2 and the sample size. The parameters ¢, and By were fixed at 100.0 and 10 000.0/(N + 1), respectively.
The results of the simulations were compared with estimates calculated using the median-value technique for the
same fracture data. Examination of the 90-percent confidence intervals indicated that the MD procedure yielded
better results than the median-value technique. Using MLE gave better results than using least-squares estimation
with the MD procedure. For the crack-growth exponent N, the 90-percent confidence interval from the MD
procedure (with MLE) was about 70 percent of the range of the median-value 90-percent confidence interval, with
no bias indicated with either estimator. For the crack-growth constant By, the 90-percent confidence interval for the
MD procedure was dramatically smaller than the median-value 90-percent confidence interval—with negligible bias
indicated with the MD method and significant negative bias indicated with the median-value method.

The fatigue parameter B,,;r can be obtained by comparing equations (D192) and (D193) for a 50-percent
probability of failure

1/ iy
_ A8 { Ve (D199)

BWV =
Ny -2
%oV {m& (1)50)

Alternatively, B,,y can be obtained by equating equations (D144) and (D145):

N, 1/m
B loy ngV Vej/' g
wlV = NV_Z
Oy

(D200)

Information on the underlying inert strength distribution also can be obtained from the fatigue data. Using
equation (D195) to transform all the fatigue data to a single Weibull distribution and performing least-squares or

maximum-likelihood analysis establishes the parameters 71 and #gp7. The fast-fracture Weibull modulus is then
solved as

my = iy (Ny —2) (D201)

where the superscript ' denotes a fast-fracture parameter estimated from fatigue data. The fast-fracture characteristic

strength cgy cannot be estimated from the fatigue data. CARES/Life calculates a characteristic strength, oy, on the
basis of an extrapolation of the fatigue data to a specific failure time. This time is arbitrarily fixed at 1/(N + 1)
seconds for static loading (equivalent to 1.0 s for dynamic loading). From equation (D195) then,

oy =or [torr (Ny + 1) (D202)

Much more statistical uncertainty is associated with the determination of the Weibull modulus than with the
characteristic strength for fast-fracture testing.

With the calculated quantities oy and my, the fatigue data can be transformed to an equivalent inert strength
distribution by equating the risk of rupture of equations (D55) and (D144) for the various transformed fatigue data

values
1

tr: \N,=2
G'1; =Gy (—t L ] " (D203)
orrT
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where o'y ; represents the i™ transformed inert fracture strength of the specimen. Plotting the ranked values 'y ;, for

In In (1/1 —Pyy) versus In o, gives useful visual information for the analyst. With cgy, my, and the various ¢’ ;
values, CARES/Life performs the outlier test and determines the KS and AD goodness-of-fit statistics, as explained
in section D.2.1.5. The outlier test and goodness-of-fit statistics in this case are also valid for the transformed
fatigue data (denoted with the subscript 7) and the original fatigue data. Hence, the calculated goodness-of-fit
significance levels measure the hypothesis that fatigue data were generated from the parameters Ny, 4., and mp.

D.2.2.5.2 Dynamic fatigue parameter evaluation: The fatigue parameter estimation methodology for dynamic
fatigue is similar to the power-law formulation for static and cyclic fatigue. When equation (D157) is rearranged for
a fixed level of reliability, the specimen failure stress o for volume flaws is expressed as a function of the stress
rate & at the highest stressed point in the component:

Y(Ny+1)

(Ny +1) By o)

o= e &V/(Ny+) (D204)

Ver

1
In
(H’W]

The terms between the brackets are simplified by replacing them with a constant, yielding

o= Ay V(N +1) (D205)

Equation (D205) is a convenient expression from which to fit experimental data, thus A; and Ny can be considered
as material-environmental parameters. Taking the logarithm of equation (D205) yields

Ino,=Indy + Iné (D206)

Ny +1

The median-value, least-squares, and MD techniques are used to solve equation (D206) as previously discussed for
static and cyclic loadings.
Assuming that experimental data are at a sufficient number of discrete levels of stress rates, CARES/Life

transforms all the data failure times #;; to equivalent failure times #7,; at a fixed stress rate 67 . Equating the failure
probabilities calculated from equation (D156) for data number i yields

JNV/(NV+1)
(D207)

Oi
Iri=tyi| —
or

where the subscript 7 indicates a transformed value and 7,; =6 7 ; / G; . In CARES/Life, the value of Gy is the

lowest stress rate in the data set. With all the data transformed to the various values ¢7; (and thus, able to be
characterized by a single Weibull distribution), CARES/Life performs Weibull parameter estimation as described in
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section D.2.1.5, solving equation (D156) for iy (N v+ 1) and fgp7. Substituting into equation (D205) for a time to
failure corresponding to a 50-percent probability of failure yields

| iy 1/(Ny +1)
Vi Y V(N 1) In
Ny 1 g Ny—2| \1-0.50
Aa =417 |10 155 =1(Ny +1) By o) v, (D208)
: ¢
where
1/(Ny+1)
vy +1)Boni,VVV N
loavr = iy
GT Vef

The MD method for estimating fatigue parameters minimizes the median deviation of the logarithm of the time

to failure. From equation (D207), the fatigue data are transformed to a single stress rate for an assumed value of Ny.
Equation (D156) and the previously mentioned least-squares or maximum-likelihood estimation methods are used

to obtain the Weibull parameters 1), (N v+ 1) and fggy7. With these parameters, the median value (77 5) is calcu-

lated (i.e., the value for /7 when Py = 0.50). When the transformed fatigue data are used as discrete variables, MD is
defined as

1

k — k
MD :%2 Int7;—In| taqpr (m 1 (1) 50) iy (Ny +1) :%Z [In 7 ~Int7,050 (D209)
i=1 R i=1

for the & data points. The MD is a measure of dispersion or scatter about the median. It can also be obtained for the
continuous variable defined by the Weibull parameters m) (N v+ 1) and tggy for ranked probabilities of failure Py;.

1 1

e = k
1 1 iy (Ny +1) 1

MD=—"> |In| ¢ In —In¢ = — D210
kz HdVT( J r.0.05 (NV ) kzl‘ (D210)

In
1-0.5

The value of Ny for which the MD is a minimum establishes the solution. The scatter of the distribution is measured
with the Weibull modulus my (N v+ 1) since for a fixed value of k the expression inside the brackets of equation

(D210) is a constant. CARES/Life minimizes equation (D210) by maximizing my (N v+ 1) versus Ny. This process

is iterative, covering an appropriate range of values of Ny. After a solution for Ny is obtained, equation (D208) is

used to calculate 4.

The MD procedure was investigated with Monte-Carlo simulations of dynamic fatigue data. For sample sizes of
20 and 30 specimens each, 10 000 simulations were run where the fast-fracture Weibull modulus m randomly varied
between 2.0 and 30.0, N randomly varied between 10.0 and 60.0, and the number of stress rates randomly varied

between 2 and the sample size. The parameters o,y and B were fixed at 100.0 and 10 000.0/(N + 1), respectively.
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The results of the simulations were compared with estimates calculated using the median-value technique for the
same fracture data. The conclusions reached with dynamic fatigue simulations were identical to those obtained with
the static fatigue simulations.

The fatigue parameter B,,) can be obtained by comparing equations (D204) and (D205) for a 50-percent
probability of failure

l/ my
Np+1
4, v [ Ver

B,y = =) 0 (D211)
(N v +1) oV In
1-0.50
Alternatively, B,,y can be obtained by equating equations (D156) and (D157):
Zévdl/V‘Fl GNV Vl/m,/
B,y = =) (D212)
(pJV +]) oV

Information on the underlying inert strength distribution can also be obtained from the fatigue data. Using
equation (D207) to transform all the fatigue data to a single Weibull distribution and performing least-squares or

maximume-likelihood analysis establishes the parameters ) (N v+ 1) and fgy7. The fast-fracture Weibull modulus
is then solved as

mpy =iy (Ny —2) (D213)

where the superscript ' denotes a fast-fracture parameter estimated from fatigue data. The fast-fracture characteristic

strength 6o cannot be estimated from the fatigue data. CARES/Life calculates a characteristic strength, gy, based

on extrapolation of the dynamic fatigue data to a specific time. This time is arbitrarily fixed at 1.0 s. From equation
(D207)

oy =6 (N Ny (D214)

Much more statistical uncertainty is associated with the determination of the Weibull modulus than with the
characteristic strength for fast-fracture testing.

With the calculated quantities oy and my, the fatigue data can be transformed to an equivalent inert strength
distribution by equating the risk of rupture of equations (D55) and (D156) for the various data values,

Ny+l

tr: Ny—-2
G'r1;=Chy (t L J g (D215)
0dVT

where c'q ; represents the ™ transformed inert fracture strength of the specimen. Plotting the ranked values 67 ;,

for In In(1/1 —Pyy) versus In o, gives useful visual information for the analyst. With 6§y, m/, and the various 6’y ;
values, CARES/Life performs the outlier test and determines the KS and AD goodness-of-fit statistics, as explained
in section D.2.1.5. The outlier test and goodness-of-fit statistics in this case are also valid for the transformed
fatigue data (denoted with subscript 7) and the original fatigue data. Hence the calculated goodness-of-fit

significance levels measure the hypothesis that fatigue data were generated from the parameters Ny, 4,4, and my.
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D.2.2.5.3 Cyclic fatigue parameter evaluation: Fatigue parameter estimation for the Paris law is identical to the
power-law formulation for cyclic fatigue except that time is replaced with cycles and the g-factor is replaced with
1- R)N. Note that this section does not address Walker-law parameter estimation. For this parameter estimation

technique, cyclic data are required at two or more applied loading levels and the R ratio must be held constant for
all the data. Equation (D158) is rearranged for steady-state cyclic loading at a fixed level of reliability, and the

specimen number of cycles to failure nfor volume flaws is expressed as a function of the maximum static equiv-
alent stress oyin the specimen (67 = Gjeg,max) at the highest stressed point in the component.

By GNI}/_Z -N
ny = 9 Ty P 4 (D216)
V.
(l—R)NV ef

1
In
[1—1’ij

The terms between the brackets are simplified by replacing them with a constant, yielding

np=A, c;.NV (D217)

Equation (D217) is a convenient expression from which to fit experimental data; thus, 4. and Ny can be considered
as material-environmental parameters. Taking the logarithm of equation (D217) yields

Inny=In4. —Nylnc, (D218)

The median-value, least-squares, and MD techniques are used to solve equation (D218) as previously discussed for
the power-law methodology.

Assuming that the experimental data are at a sufficient number of discrete levels of applied stress, all the
data cycles to failure ny; are transformed to an equivalent number of cycles ny; at an equivalent single level of
(maximum within the cycle) stress o7. Equating the failure probabilities calculated from equation (D160) for data
number 7 yields

Gf,i Ny
nT,i = I’lf,l‘ (D219)

where the subscript 7 indicates a transformed value. In CARES/Life, the value of o7 is the lowest level of applied

(maximum within the cycle) stress in the data set. With all the data transformed to the various values nr;,
CARES/Life performs Weibull parameter estimation as described in section D.2.1.5, solving equation (D158) for

my and ngy7. Substituting into equation (D217) for the number of cycles corresponding to a 50-percent probability
of failure yields
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In|
1 HV’"V BwVGéVVV 2( [1-0.50) (D220)

where

Npy-2
BWV GOII//

neyr = =
e
The MD method for estimating fatigue parameters minimizes the MD of the logarithm of the number of cycles.
From equation (D219), the fatigue data are transformed to a single stress level for an assumed value of Ny. Equation
(D158) and the previously mentioned least-squares or maximum-likelihood estimation methods are used to obtain

the Weibull parameters 71 and ngy7. With these parameters, the median value n7, 50, is calculated (i.e., the value

for ny when Py, = 0.50). Using the transformed fatigue data as a discrete variable yields a definition of MD as

1 k 1 1/ my 1 k
MD=—> |\Innp;—In| n In =— > |lnny; —Inn D221
Y OVT( 1—0.50] g2 i = ol (D221)

for the k data points, where MD is a measure of dispersion, or scatter, about the median. It can also be obtained for
the continuous variable defined by the Weibull parameters 72y and ngyr for ranked probabilities of failure P;.

1
MD = ! Z In ngyT (h’l ! } —In nr 0.50|= Z f ! (D222)
kia 1=Pri =1{ | In
1-0.5

The value of Ny for which the MD is a minimum establishes the solution. The scatter of the distribution is measured
with the Weibull modulus my since for a fixed value of & the expression inside the brackets of equation (D222) is a

constant. CARES/Life minimizes equation (D222) by maximizing my versus Ny. This process is iterative, covering

an appropriate range of values of Ny. After a solution for Ny is obtained, equation (D220) is used to calculate 4...

The fatigue parameter B,,) can be obtained by comparing equations (D216) and (D217) for a 50-percent
probability of failure:

1/ iy

Ac (1 — R)NV ’V Vef
Ny-2
o In !
1-0.50

Alternatively, B,,y can be obtained by equating equations (D158) and (D160):

B,y = (D223)
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wV = NV—2
Sor

(D224)

Information on the underlying inert strength distribution can also be obtained from the fatigue data. Using equation
(D219) to transform all the fatigue data to a single Weibull distribution and performing least-squares or maximum-

likelihood analysis establishes the parameters my and ngyr. The fast-fracture Weibull modulus is then solved as
my =iy (Ny —2) (D225)

where the superscript ' denotes a fast-fracture parameter estimated from fatigue data. The fast-fracture characteristic

strength cgjr cannot be estimated from the fatigue data. CARES/Life calculates a characteristic strength oy based
on extrapolation of the fatigue data to a specific number of cycles. This number is arbitrarily fixed at 1/(N + 1)
cycles.

ooy =or[nerr (Ny + 1)/ (D226)

Much more statistical uncertainty is associated with the determination of the Weibull modulus than with the
characteristic strength for fast-fracture testing.

With the calculated quantities oy and my, the fatigue data can be transformed to an equivalent inert strength
distribution by equating the risk of rupture of equations (D55) and (D158) for the various data values

1
nr; JNV—Z

eyt

c'n; =0py ( (D227)

where 6’y ; represents the i™ transformed inert fracture strength of the specimen. Plotting the ranked values ¢'g ;,

for In In(1/1 — Pyy) versus In & gives useful visual information for the analyst. With 6y, m/, and the various 6’y ;
values, CARES/Life performs the outlier test and determines the KS and AD goodness-of-fit statistics, as explained
in section D.2.1.5. The outlier test and goodness-of-fit statistics in this case are also valid for the transformed
fatigue data (denoted with the subscript 7) and the original fatigue data. Hence, the calculated goodness-of-fit

significance levels measure the hypothesis that fatigue data were generated from the parameters Ny, 4., and mp.
D.2.2.6 Proof-testing effect on component service probability of failure.—Prior to placing a component in
service, confidence that it will perform reliably is usually demonstrated through proof testing. Another method,
nondestructive evaluation (NDE), is used to remove components with discernable but unacceptable flaw sizes
(Wiederhorn and Fuller, 1985). Ideally, the boundary conditions applied to a component under proof testing
simulate those conditions the component would be subjected to in service, and the proof-test loads are appropriately

greater in magnitude over a fixed time interval #,. After proof testing, the survived component is placed in service

with greater confidence in its integrity and a predictable minimum service life #,;, with reliability equal to one.

The objective of the following analysis is to predict the attenuated probability of failure of a component in
service after proof testing and the minimum life expectancy of the proof-tested component. This concept will then
be extended to predict the component reliability for off-axis proof testing (misaligned and dissimilar multiaxial
loads). All derivations in this section are for static fatigue and volume flaws. If the proof-test and service stress
distributions are cyclic, the g-factor approach is required to transform the stresses to their equivalent static stresses.
Analogous relationships may be developed for the surface-flaw solution.
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The attenuated probability of failure Py, of a component surviving proof testing for time #, and subjected to an

in-service equivalent static stress distribution oje,(‘¥) over a time interval (¢, — #,) is (Weibull, 1939b, Evans and
Wiederhorn, 1974b)

Parl) ="t Tt w225

1_P.fV(tp)

The term Pyy(ty) is the probability of failure of a survived component subjected to a proof-test static equivalent
stress distribution, Gyeq,('¥), over a time interval denoted by ¢,. The term PpAt,) is the probability of failure of a
survived component subjected to a proof-test static equivalent stress distribution Gye,('Y) over time interval 7, and

an in-service static equivalent stress distribution c1.4(V) over time interval 7, — #,. The reliability of the survived
component increases as the ratio of the proof-test stress to the service stress increases.
For the Batdorf model, the probability of failure of a given component over time interval #, is

Py l,)=1-exp {_”‘%IVH/ZIJ/ZG%’O (¥)sin o dat dBdV} (D229)

where, from equation (D97), the transformed proof-test stress distribution over time interval #, is

()
c
Glegp,0 (\P) = M]ZTVP + Gi\elgp_z (lP)
For the PIA model,
Py (t,)=1-exp [— kv [ | (cm +oyr o+ )dV } (D230)
where
1
Ny ¢ Ny -2
Gip0(W)= w+ o 2(x,.2) .
w

for principal stresses i = 1, 2, 3, where 61,(x, , z), 62,(x, ¥, 2), and 63,(x, y, z) are the proof-test principal tensile
stress distributions.
Alternatively, the probability of failure based on the Weibull NSA method is

Pﬂ,(zp):1—exp[—kWijV6,’fpﬁo(x,y,z)dV} (D231)

where
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and

The term 6;’;”0 (x, v, z) is the proof-test average normal stress from the projection of 6,,,(‘Y'), the normal stress, over

the surface area of a unit radius sphere (eq. (D11)).
The probability of failure of a given component over time interval ¢, is calculated as follows for the Batdorf
model

Py, )=1-exp {@ j ) I ;‘/ 2 I ;‘/ ZcﬁVq 2.0 (¥)sin o dot dBdV} (D232)
where
1
NV NV Ny-2
o |\, —¢ c V)t v
Gleqq,O(lP)Z qu( )(q BZT qup( ) 4 +0—i\efg_2(\{l)
For the PIA model,
Py (ty)=1—exp [— Koy V(Gi’ff,o royry+ og"qﬁo)dV } (D233)
where
1
NV s t,—t + NV s Vs t NV_Z
Gig0(¥)= o (3.2l sz o) (r2:2)tp +6M 2 (x, y,2)
w

for principal stresses i = 1, 2, 3, where 6(x, y, z), 62(x, y, z), and o3(x, v, z) are the principal tensile stress
distributions. For the Weibull NSA method,

Py t,)=1- exp[ ~tpr [ S x, y,z)dV} (D234)

where
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E:lnql/,()(xayaz):

and

Ny N _ Ny N Ny=2
Gnq,o(‘{') o ( )(tq tp)"'cnp( )tp+0',],vV_2(‘I’) r

where 6;’;’/0 (x,y,z)is the average transformed normal stress from the projection of the transformed normal stress

distribution 6,4 o(*f') over a unit radius sphere. After determining the values of PyAz,) and PpAt,), the service-
component-attenuated probability of failure Py, j(t,) is computed. Depending on the magnitude of the service load

and time of application, PpAt,) can be less than Pp(%,). For this case, the attenuated probability of failure Pr,y is 0.
The minimum life expectancy of a survived component for a static equivalent stress distribution is obtained by

satisfying the condition PpAt,) = PpAty). For the Batdorf model, equating equations (D232) and (D229) results in

Ny -2
By Gleqp(lp)}
timin = -1 (D235)
i o%eq (‘P) { Oleq (\P)

min

where the subscript “min” denotes the smallest value of the term in equation (D235) for all ¥ throughout the
component. If at any location the component proof-test stress level is less than the service stress level, then an
assured minimum lifetime #,,;, does not exist and the component cannot be guaranteed to survive for any given time
during service loading. When the proof-test loading is identical to the service loading, except for the magnitude of
the loads, then the minimum value for equation (D235) occurs at the maximum stress point in the component.
Analogous relations for #j, may be obtained for the PIA model and the Weibull NSA method.

D.2.2.7 Proof testing—off-axis loading.—Often, the proof-test loading does not exactly simulate the service
loading. In such cases, the component stress distribution during testing differs from that during service, resulting in
what is known as off-axis loading (misaligned and dissimilar loadings). Equation (D228) must then be applied
locally at ¥ to calculate the attenuated failure probability, and the Batdorf model or Weibull’s NSA method are
applied. Regions where the service stress is compressive are assumed not to fail.

For off-axis loading, the load direction and/or load boundary differ from the service load condition, and
modeling is now with respect to a global coordinate system (see eqs. (D101), (D102), (D109), and (D110)). For the
Batdorf model, the probability of failure for a given component over time interval ¢, is then

— 2 2
Pﬂ/(tp)zl—exp|: key [ 1.7, o o o smadadBdV} (D236)
and the probability of failure over time interval 7, is

—k 2n 0 /2 .
Pﬁ(zq)zl—exp[TBVjVjo [, oltgol® )smocdoadBdV} (D237)
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where Gjeqp,0('V) and o1e44,0('V) are the previously defined transformed stress distributions. Substituting equations
(D236) and (D237) into equation (D228) and simplifying yields the expression for the attenuated failure probability

PfaV(tq)zl—eXp{ 274 j j ’n j i 2[ o o(¥ cﬁ“’[p’o(‘l’)]H(‘P)sinadadBdV} (D238)

where
H(¥)=1 015y (¥)2 0100 (¥)
If
G1eg (V)< O1egp (¥)
then

H(Y)=1 tymin(¥)<t, —t,
H)=0 tmn(¥)2t, -1,

The Heaviside function is introduced to account for #y,j,, which is now evaluated locally at ‘P’

D.2.3 Gaussian Numerical Integration Procedure for the Batdorf Theory

For volume flaws integrating over one-eighth of the unit sphere,

Nsub

Pyles)=1- expl—ﬂ ) ’S“bU “/2J' /2 oy o( )sinadadBJ } (D239)
isub

isub=1

Refer to figure D.2 (also fig. D.6) for the definitions of angles o and . The integration of the unit sphere of
equation (D239) can be performed using gaussian numerical integration or Legendre-Gauss quadrature. The
gaussian numerical integration formula is

Imf(x)dx=—(xz_’“)nz ,f{ ite X12)+X2+X1} (D240)

%1 2 =

where w; are the gaussian weights and 4, are the base points or roots of Legendre polynomials, the values of which
are obtained from standard mathematical tables for a given ng, number of points. For a constant angle o,

Tep

docJ‘ GquoaB)SlnadB da(n/Z szchler( )smoc doc[ ijcheqo( )smoc (D241)

where z; is a transformed value for angle B defined as
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hi(n/2-0)+n/2+0 =k, +1)

Zj= 5 -T2 (D242)
Then,
/2 ¢ n/2 . 2-0 &
I; J.(:E ;ZCV]O( )s1nocdocd[3 (n/ jzwk smuk (‘JZW]Gquo(uk ZJ)

= (D243)

2 Mep Ngp
=Tlc—6 ZWij)Sin(Uk)GﬁZ,o(uk,Zj)

k=1j=1

where u, is a transformed value for angle o defined by

i (m/2-0)+m/2+0  n(hy +1)
2 4

(D244)

and again, wy, are the gaussian weights and /4, are the base points or roots of Legendre polynomials obtained from
standard mathematical tables. Consequently, combining equation (D239) with equation (D243) results in a
numerical algorithm for volume-flaw failure probability of

Msub Ngp Negp

PfV(tf)zl—eXp kBV Z Vieub ZZ(wkwj)sin(uk)cﬁg’o(uk,zj)
isub=1 k=1j=1

_ Tc(hk +1)
4

isub

Likewise, for surface-distributed flaws for one-fourth of the unit circle (see fig. D.3),

Nsub 2
pﬁ(tf)zl_exp{ 2SSt U ci';;,o(‘l’)da] b} (D246)
su

isub=1

Nep

I;/z quo(o‘) (n/z sz Wi quo( ) ( jZWJGquO( ) (D247)

where z; is a transformed value for angle o defined by

Chi(m/2-0)+ /240 nlh; +1)
I 2 4

(D248)
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Consequently, combining equation (D246) with equation (D247) results in a numerical algorithm for surface-
flaw failure probability of

k Nsub Ngp
Prsley)=1-exp =25 37 A | Dowjopen o))
isub=1 Jj=1 isub (D249)
mlh; +1

CARES/Life defaults to ng, = 15, although values for 30 and 50 points are available for increased sampling
precision.
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Appendix E
Revised Version of Life Prediction and Reliability Analysis of Ceramic Structures
Under Combined Static and Cyclic Fatigue’

Sharif Rahman
The University of lowa
lowa City, lowa 52242

Noel N. Nemeth and John P. Gyekenyesi
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

E.1 Summary

This appendix presents a computational methodology for life prediction and time-dependent reliability analysis
of ceramic structures under combined effects of static and cyclic fatigue. It involves (1) a crack-growth equation
representing damage contributions from both static and cyclic fatigue, (2) a multivariate nonlinear regression model
for performing parameter estimation from fatigue data generated by small specimens, and (3) the Batdorf model for
structural reliability analysis. A linear superposition of crack-growth rates obtained from the power-law and
Walker-law equations was used. The model assumes that the time-dependent and cycle-dependent crack-growth
formulation exponents are identical, and that loading frequency and amplitude do not vary over time. For the
parameter estimation, the regression was performed using a nonlinear least-squares method and a modified
Levenberg-Marquardt algorithm. A numerical example is presented to illustrate the parameter estimation
component of this methodology. The results suggest that the predicted stress-life curves based on the proposed
model can correlate better with experimental data when compared with either the power-law or the Walker-law
models individually.

E.2 Introduction

The catastrophic failure of ceramic materials can be caused by subcritical crack growth (SCG) of preexisting
natural flaws. In other words, under the action of a load, a flaw can grow in a stable manner until a critical
dimension is reached, then uncontrolled and catastrophic crack propagation ensues. Hence, understanding SCG
behavior under static, dynamic, and cyclic loads is important for the reliable design of ceramic structures. The SCG
phenomenon may arise from a variety of physical processes. For example, the crack growth may occur because of
the interaction of the environment with the high stress fields near the crack tip (static fatigue) or because of
mechanically induced degradation from cyclic fatigue loading (cyclic fatigue). Until about 1990, the general
perception was that ceramic materials are largely insensitive to mechanical degradation under cyclic loads (Evans,
1980; Evans and Fuller, 1974; and Evans and Linzer, 1976). Hence, the SCG rate and lifetime for cyclic loading
were predicted from the results of static fatigue. This was substantiated by cyclic experiments on glass and
porcelain materials (Evans and Fuller, 1974). However, several studies suggest that polycrystalline ceramics and
ceramic composites can be susceptible to cyclic fatigue degradation (Ritchie and Dauskardt, 1991; Kishimoto,
1991; and Suresh, 1990). Such degradation cannot be explained by environmental interaction alone, but rather is
due to a mechanically induced effect associated with the repeated loading and unloading of the applied forces.

3This is a revised version of Rahman et al. (1998). Note that in this appendix some variables were renamed and some text was edited to be more consistent with
the main text of this report.
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Under these conditions, the experimentally measured lifetimes, as observed for alumina, are shorter by several
orders of magnitude than can be predicted from static tests (Chen and Knapp, 1974; Pabst et al., 1980; and Fett et
al., 1991 and 1993). A dependency of lifetime on cyclic loading frequency was observed that is in contrast to the
predictions of static tests (Fett et al., 1993; and Krohn and Hasselman, 1972). Test data verifying enhanced crack-
growth rate under cyclic loading compared with static loading now exist for other brittle monolithic ceramics (e.g.,
silicon nitride—Hoshide et al., 1988; Kawakubo and Komeya, 1987; Horibe, 1988; Masuda et al., 1988; Ueno,
1990; and Mutoh et al., 1991), toughened ceramics (e.g., magnesia-partially-stabilized zirconia—Dauskardt et al.,
1987, 1990a, and 1990b; Swain and Zelizko, 1986; Zelizko et al., 1988; Zelizko and Swain, 1988; Suresh and
Brockenbrough, 1988; Jensen et al., 1989; Sylva and Suresh, 1989; Steffen et al., 1990; and Bowman et al., 1987),
sintered zirconia (e.g., yttria-stabilized zirconia—Liu and Chen, 1991a, 1991b, and 1992), and reinforced alumina
(Dauskardt et al., 1993).

To predict the susceptibility of a load-bearing ceramic part to catastrophic failure, simple phenomenological
models are used that are calibrated to experimental results involving many specimens. The variability in strength
observed from nominally identical parts is described with the Weibull distribution. For static fatigue, a power-law
relationship (Evans and Wiederhorn, 1974a) is typically employed to characterize the crack-growth rate as a func-
tion of the stress-intensity factor (SIF). For cyclic fatigue, either the Paris law (Paris and Erdogan, 1963) or Walker
law (Walker, 1970, pp. 1-14) is used to define the kinetics of SCG. Integration of such a relationship (either power
law, Paris law, or Walker law) with the Weibull distribution is used to calculate the time-dependent reliability of
a component.

Although much has been learned about the individual mechanisms of SCG, not enough research has been
performed on the combined effects of static and cyclic fatigue. For a real component in service, SCG is a complex
phenomenon that may involve simultaneous and synergistic failure mechanisms. Hence, material strength degrada-
tion due to SCG may be a combination of damage from both time-dependent and cycle-dependent crack growth.
Currently, methods are available only to characterize static or cyclic fatigue working independently. Under these
conditions, the inert and fatigue parameters can be easily calculated using the aforementioned laws and standard
parameter estimation techniques. However, not many models exist to characterize SCG under the combined effects
of static and cyclic fatigue. Consequently, the reliability of ceramic structures is not well understood when there are
damage contributions from both types of fatigue.

This report proposes a computational methodology for time-dependent reliability analysis of ceramic structures
under the combined effects of static and cyclic fatigue. It is based on (1) a crack-growth equation including damage
contributions from both static and cyclic fatigue, (2) a multivariate nonlinear regression model for performing
parameter estimation from fatigue data generated by small simply loaded specimens, and (3) the Batdorf model
for structural reliability analysis. A linear superposition of crack-growth rates obtained from the power-law and
Walker-law equations was used to model fatigue effects. For the parameter estimation, the regression was per-
formed using a nonlinear least-squares method and a modified Levenberg-Marquardt algorithm to calculate the
optimized parameters. The model was tested with experimental data available in the literature. Finally, a closed-
form expression was derived for the transformed inert strength, which can be used for fatigue reliability analysis.
A numerical example is presented to illustrate the parameter estimation component of this methodology.

E.3 Combined Static and Cyclic Fatigue
E.3.1 Crack-Growth Equation

Traditionally, the power law (Evans and Wiederhorn, 1974a) has been used to characterize crack growth under
static and cyclic loading, and more recently, the Walker law (Walker, 1970, pp. 1-14) has been used to characterize
crack growth under cyclic (fatigue) loading. For combined static and cyclic fatigue, assume that the crack-growth
rates by each of these two growth mechanisms can be superposed linearly to yield

da(V,¢ -
o) 0 2, . 0,1 gl
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where ¢ is time; ¥ is a vector representing the location and/or orientation of the crack in the body; a is the
appropriate crack length at time ¢ and V; f. is constant-amplitude frequency; 41, 4, N1, N,, and Q are material
parameters that depend on temperature and environment; K., ('Y, 7) is the mode-I equivalent SIF at time 7 and 'V,
Kieg,max 18 the maximum mode-I equivalent SIF (i.e., when the stress reaches maximum over the cycle); and

AKjey(\W, 1) is the range of the mode-I equivalent SIF over the cycle. From linear-elastic fracture mechanics, these
SIFs can be expressed as

Kqug(LP:t): Gleqg (‘P)Y\/ai‘l’,tj (E2)

Kqu,max (\P: t) = Oleg,max (\P)Y\/ a(‘P, [j (E3)
AKqu (\P: t) = [Gleq,max (lP) — Oleg,min (\P)]Y\/ a(lPa ! j (E4)

where Gegmax (‘P) is the far-field equivalent maximum normal stress, Gleg,min (‘) is the far-field equivalent
minimum normal stress, Y is a geometric factor, and Gyeqe('Y) is the far-field equivalent static stress given by

Glegg (\P) = gl/Nl (lP)Gqu,maX (\P) (ES)

with the g-factor defined as

o(w)- ! J "’T cleq(\y,t))rl i (E6)

per Gleq, max (IP

where o1 (¥, 7) is the time-dependent cyclic load. In equation (ES), it is assumed that the equivalent static stress
distribution Gjege (V) produces the same amount of crack growth as the periodic cyclic stress distribution over the

time interval (period) #per (Mencik, 1984). See table D.1 from Nemeth et al. (2003), Mencik (1984), and Gross et al.
(1996) for a list of g-factors for various types of loading conditions. Equations (E2) to (E4) are used to express the
crack-growth rate in equation (E1) as

da(\¥,t
% = Alg(\P)Kqu,max (‘P,t)Nl + chZ [1 — R(\IJ)]Q Kqu,max (‘P,t)Nz (E7)
where
i (P
R(¥)= Sleganin () =)
O leq,max (LP)

is known as the stress ratio.
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E.3.2 Inert Strength

To predict the time-dependent failure probability under fatigue loading, one must calculate the inert strength
Gleq,0('P): that is, the effective (equivalent applied) stress at time ¢ = 0. Given a crack-growth equation (such as
eq. (E7)), the critical equivalent stress Gyeq4c('Y, #) at time to failure #rcan be transformed to its equivalent effective
stress O1eq,0('Y) for £ = 0. Let opeye('Y, 1) denote the critical stress (or strength) at time £ when the SIF reaches the
equivalent mode-I plane strain fracture toughness of the material at crack initiation Kj.4.. Using equation (E2) gives

Kleqc = Gquc(\P’t)Y a(‘P,t) (E9)
On inversion,
2
K
a(‘P,t)z[ le"cj ! (E10)
Y Gleqc (‘I’ t)

da(‘P,t) - Kleqc ? 1 dGquc(lyﬂt) (E11)
dr Y ) o}, (V) d
Comparing equations (E7) and (E11) and noting that
Kleq max (lP t) cSleq max (\P Z‘) (E12)
K legc Oleqe (lPa t )
we can show that
_2(Kleqc )2 1 dGquC (‘P,l‘) _
Y ) o (W) dt 1)
N, | Oleg,max (‘Pat) M 0 Gleg,max (‘“Pat) N
Alg(lP)KIeéc T ar +fCA2[1_R( )] Kquc T (A

Gquc(lPat) Gleqc(\Pat)

If one follows the separation of variables (ce4('Y, ) and 7) in equation (E13), it is theoretically possible to

calculate the inert strength Gye4c 0 (), but no closed-form explicit solution exists using equation (E13) directly. A
closed-form solution is desired in order to minimize the amount of computation involved with reliability analysis—
especially with large finite element models. However, if it is assumed that the fatigue exponents for static and cyclic

fatigue are identical, a relatively simple closed-form expression can be obtained. For example, if N| = N, = N,
equation (E13) becomes

Gleqc(qj tf) 1 t
J f420) f\e]qc(ty )dC1ege = ~3 {Alg(‘P)+ fer[1-R(P) }YZK{quG{Xq i (‘P)J dr (E14)
Gleqc‘ lI”,l 0 0

which can be solved for the inert strength as
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1
V) 00+ 2 [ R

Gleq0(¥)= - vofl2(Wey) (E15)
where 61.4,0(Y) = O1e4c(F, 1= 0) and
2
- (E16)
-2
42K 2(N-2)

It must be emphasized that equations (E15) and (E16) impose a single value of fatigue exponent over all
conditions of static and cyclic fatigue. Although this is a significant limitation imposed on the proposed
methodology, it can be argued that it, nonetheless, represents an improvement over the previous practice of using
either a pure power-law or Walker-law formulation. Also, the convenient form of equation (E15) considerably
simplifies the task of estimating the model parameters from cyclic fatigue specimen rupture data.

For

cy%eq,max (‘P){g(‘{’) + fe fj [1 - R(\P)]Q }t.f

>>1 E17
2 (E17)

Equation (E15) can be further approximated by

1

ol Ol 12 |

Oleq.0(¥)= = (E18)
Equation (E18) neglects the strength of the material (at z = #7), but the simplified equation is very useful for
parameter estimation as described later.
By setting either A, = 0 or 4; = 0 in equation (E1), one can easily check that equation (E18) reduces to
1
o (W)g(W), T2
Cleq.0 (‘P) _ [ leg,max (B ) S (E19)
2
= E20
A V2K Y-2(N -2) (E20)
and
L
o (P)f.[1-R(W)Cr, | N2
Oleg0(¥) = {—L7= Vell= Ry (E21)

B
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2

T Y2KN-2(N-2)

(E22)

for crack growth under pure static fatigue and pure cyclic fatigue, respectively. Equations (E19) to (E22) match the
existing solutions (see app. D, reproduced from Nemeth et al., 2003) for the power-law and Walker-law models for
static and cyclic fatigue, respectively.

E.4 Time-Dependent Reliability Analysis

Time-dependent reliability is based on the mode-I equivalent stress distribution transformed to its equivalent
stress distribution at time ¢ = 0. In this study, a closed-form expression for the transformed stress (inert stress) under
the combined effects of static and cyclic fatigue crack growth was developed (see eq. (E18)). It involves various
fatigue parameters, such as A1, 4>, B, N, and Q, that must be estimated from the fatigue data generated by small,
simply loaded specimens. Details of parameter estimation are given later. In this section, the reliability model is
briefly described with the assumption of first volume flaws and then surface flaws in ceramic structures.

E.4.1 Volume-Flaw Analysis

The probability of failure for a ceramic component using the Batdorf model for volume flaws is (Batdorf and
Crose, 1974; Batdorf and Heinisch, 1978a; and Batdorf, 1977b)

Gleq,0,max d _
P/(t)=1-expi— J EMdcleqc v (E23)

4 doieme
1% 0 q

where V' is the volume, 1 is the crack-density function, Gyeg,0,max i the maximum value of 6140 (V) for all values

of ¥, and Q is the area of a solid angle projected onto a unit radius sphere in principal stress space containing all
crack orientations for which the effective stress is greater than or equal to the critical equivalent mode-I strength

Glege- The crack-density distribution is a function of the critical effective stress distribution. For volume-flaw
analysis, the crack-density function is expressed as

ﬂ(G legc ) = kBGﬁqc (E24)

where kp and m are material constants. The solid angle € is expressed as

2T
0= J J H(G1¢q.0>Glege )sin o dot dP (E25)

where

0 Oleq,0 < Olege

H(Gleq,O »Oleqge ) = {1 (E26)

Gleq,0 2 Glege
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and o and [ are the radial and azimuthal angles, respectively, on the unit radius sphere. The transformed equivalent
stress G1e4,0 (V) is dependent on the appropriate fracture criterion, crack shape, and time to failure ¢z Equation (E23)

can be simplified by integrating ey, yielding the time-dependent probability of failure for volume-flaw analysis,
and is given by Batdorf (1977b):

kp

Py =1-exp| ——
s P ZTEJ
v

E.4.2 Surface-Flaw Analysis

2T
J J Oleq.0(¥)" sinado dB dV (E27)

0 0

The probability of failure for a ceramic component using the Batdorf model for surface flaws is (Batdorf and
Crose, 1974; Batdorf and Heinisch, 1978a; and Batdorf, 1977b)

Gleq,0,max
Pr(t)=1-exp —J U ' gmdccr]dfl (E28)
A

0 n do,,

where A is the surface area and o is the arc length of an angle o projected onto a unit radius semicircle in principal
stress space containing all of the crack orientations for which the effective stress is greater than or equal to the
critical stress. Analogous to the argument for volume flaws, equation (E28) can be reformulated, yielding (Batdorf,
1978)

Pf(t):l—exp —k—BJ
T

T
J Oleq.0(¥)" dow d4 (E29)
A

0

For both volume and surface-flaw analyses, the fracture criteria and crack shapes available for time-dependent
analysis are identical to those used for fast-fracture analysis in CARES/Life (Ceramics Analysis and Reliability
Evaluation of Structures/Life; see app. D, reproduced from Nemeth et al., 2003). These fracture criteria include
Weibull normal stress averaging (Weibull, 1939a; a shear-insensitive case of the Batdorf theory), the total coplanar
strain-energy release rate (Batdorf and Heinisch, 1978a), and the noncoplanar crack-extension (Shetty) criterion
(Shetty, 1987).

For a stressed component, the probability of failure can be calculated by equation (E27) or (E29), depending on
the type of flaws. The finite element method enables discretization of the component into incremental volume
elements (volume flaws) and area elements (surface flaws). CARES/Life evaluates the reliability at the gaussian
integration points of the element. The subelement volume is defined as the contribution of the numerical integration
procedure. The volume or area of each subelement (corresponding to a gaussian integration point) is calculated
using shape functions inherent to the element type (Powers et al., 1992). If it is assumed that the probability of
survival for each element is a mutually exclusive event, the overall component reliability is then the product of all
the calculated element (or subelement) survival probabilities.

E.5 Estimation of Fatigue Parameters
Lifetime reliability of structural ceramic components depends on the loading history, the component geometry,

the distribution of preexisting flaws, and the parameters that characterize SCG. These crack-growth parameters
must be measured under conditions representative of the service environment. When fatigue parameters are being
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determined from the rupture data of naturally flawed small specimens, the statistical effects of flaw distribution
must be considered along with the strength degradation effects of SCG. In this study, a multivariate nonlinear least-
squares method was developed to estimate the fatigue parameters. This method is described in terms of volume-
flaw analysis. An analogous formulation can easily be developed for surface flaws by replacing the effective
volume with the effective area.

For combined static and cyclic fatigue, using the uniaxial time-dependent Weibull distribution for volume

flaws, the failure probability Pris (see app. D, reproduced from Nemeth et al., 2003)

o

Py = 1_exp[—cimj c{'jo(‘P)dV} (E30)
V

where o1  is the transformed principal stress back to time 7 = 0, V' is the volume, and m and & are the shape and
scale parameters of the Weibull distribution. For the case when the g-factor is constant throughout the specimen,
henceforth denoted by g, equation (E30) can be expressed in terms of the maximum failure stress 6rin the specimen

by multiplying the numerator and denominator by Gme/ N=2, Thus,

l‘f ﬁ
Pf :1—exp _Vef Z— (E31)
o
where
N-2
= ABC’O (E32)
{g +f. 221 R)Q}GfN
A
where
N
¥) | N-2
Ver = {—Gl’m‘”‘( )} av (E33)
Of
v

is the modified effective volume when the applied stress distribution is normalized with respect to 64, and where

61,max('¥) is the maximum principal stress within the cycle located at '¥'. (Note that g, f., and R are assumed to be
constant throughout the specimen. Rearranging equation (E31) yields

BGN -2
(= 0 . (E34)

N-2

g+ fo 2 (1-R)C SLLES o/
4 ln( ! ]

1-Py

which represents an equation for specimen time to failure as a function of failure stress for a fixed value of failure
probability. On simplifying this expression,
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tr= ¢ (E35)

{g +f.A(1-R)? JGfN

where 4 = Ay [ 4y and C are constants with

C= (E36)

1
In
(1_PfJ

Equation (E35) is a convenient stress-life equation that can be used to fit experimental data from specimens
under combined static and cyclic fatigue. For pure time-dependent crack growth and pure cycle-dependent crack
growth, respectively, the corresponding equations become

tp=—— (E37)

and
ty = g
[fc(l—R)Q ]Gf N

(E38)

which correspond to power-law and Walker-law equations for crack-growth rate, respectively. Regardless of what
equation is used, a multiple regression analysis is needed to estimate the model parameters. Table E.I summarizes
the independent and dependent variables for various fatigue mechanisms and corresponding parameters that can be

estimated from equations (E35), (E37), and (E38). The term émean in table E.I indicates a parameter for a best-fit

regression line through the data for the mean probability of failure Prpean in equation (E36). In this study, both a
linear least-squares method (for the first iteration) and a nonlinear least-squares method (for subsequent iterations)
were used to estimate these fatigue parameters. For the nonlinear problem, a modified Levenberg-Marquardt
algorithm (Levenberg, 1944; Marquardt, 1963; and Dennis and Schnabel, 1983) was used to calculate the
parameters. An IMSL software version of this algorithm (Visual Numerics, 2004) was subsequently used with the
CARES/Life program to perform the parameter estimation.

TABLE E.I.—_REGRESSION VARIABLES AND PARAMETERS FOR VARIOUS DAMAGE MECHANISMS

Damage mechanism Crack-growth model Independent Dependent Model
variables variable parameters
Time-dependent Power law of R t (ijean, N
Cycle-dependent Walker law os R, f; ty Gmean’ N, O
Combined methodology Proposed law (eq. (E1)) a of R, f. { 5meam N, O, 1

?Proposed methodology is limited to the case where N; and N, are identical in value.

The methodology developed for the parameter estimation is based on using the natural log expression of
equation (E35). This was done to decrease the sensitivity of the model to certain numerical conditions. Additional
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relations were added to estimate the inert-strength Weibull modulus as well as to consider the effect of runout data
(unfailed specimens) on the parameter estimates. The inert-strength Weibull modulus can be estimated from the
fatigue data by transforming all the data to a single R-ratio and applied stress. Equating the probabilities of failure in
equation (E34) for a transformed data point at the lowest applied peak cyclic stress and R = 1.0 (static fatigue), with
the untransformed point, gives

N
It = [gi + [ A(l- R; )Q]tﬁ(sz (E39)

where 7'is used to denote the transformed data for the i specimen number. The transformed data are (in theory)
Weibull distributed as shown by equation (E31). A least-squares or maximum-likelihood Weibull parameter
estimation (as employed in the CARES/Life code) can then be performed to obtain an estimate of the Weibull
exponent m/(N — 2). The inert-strength Weibull modulus m can be calculated since the estimates of N and m/(N — 2)
are determined from the solution algorithm.

Runout (i.e., censored or suspended) data can be accounted for by using the method of Johnson (Johnson, 1964;
and Abernethy, 1993). This method requires ranking the data from lowest to highest probability of failure. Equation
(E39) can be used to rank data from lowest to highest transformed time to failure, which is analogous to ranking by
probability. The median rank formula is

=03
Prlin )= n+0.4 (E40)

which is used in conjunction with Johnson’s adjusted rank increment formula,

(n +1)— (previous adjusted rank)

Rank increment = (E41)

1+ (number of items beyond present suspended item)

to adjust the ranked probability of failure of the ™ lowest transformed failure time for the 1 total number of
specimens. Equations (E39), (E40), and (E41) enable a failure probability to be assigned to each ruptured specimen.

On this basis, equation (E36) can be used to calculate C; for each data point relative to the mean (average) line

parameter estimate Gmean obtained from the Levenberg-Marquardt algorithm. This is necessary in order to
determine the residual of each data point, as explained in section E.8. The following summarizes the steps taken to
obtain a convergent solution. This process is iterative.

Step 1.—Use a multiple linear regression routine with the Walker law (eq. (E38)) to obtain a set of initial
parameter estimates.

Step 2.—Use the results from step 1 as seed values for the Levenberg-Marquardt algorithm for the combined
fatigue model (egs. (E35) and (E36)). Table E.I shows the parameters obtained for the combined model from the
Levenberg-Marquardt algorithm. The residual term for this step is the difference between the natural log of the time
to failure of the discrete data point and the natural log of the predicted value for the mean line ((N?mean, Pfmean) time

to failure fpean.
Step 3.—Obtain the inert-strength Weibull modulus m using equation (E39) in conjunction with either the least-
squares method or maximum-likelihood regression for the following Weibull form:

m
tr.r \N-2
Py =1—exp| —| =L (E42)
7,0

This step also uses equation (E40) to establish the order of the transformed data (from lowest to highest).
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Step 4.—Determine the value of Pfyean using the transformed data from equation (E39) and the Weibull mean
value formula:

N-=-2
1T mean = tT,OF (1 + m ) (E43)

where I" is the gamma function. Substitute #7,mean for 77,7in equation (E42) and calculate Pryean.

Step 5.—Associate a probability of failure Py; for each data point i using the median and/or adjusted rank
formulas outlined in equations (E40) and (E41). Note that runout data do not have a probability of failure associated
with them (the residuals for runouts are not calculated); however, the runout data do affect the rank increment
adjustment (eq. (E41)) for failed specimens.

Step 6.—Determine C ; for each data point / using Py;, C mean»> Pfmean> and equation (E36):

N=-2

1 m
1n(}
_¢ (1-7r,) (E44)

i mean
ln(1 j
(1 -P f,mean )

Step 7.—Employ the Levenberg-Marquardt algorithm to obtain a new set of parameter estimates. The residual
term (see section E.8) for this step is the difference between the natural log of the time to failure of the discrete data

™

point i versus the natural log of the predicted value of the time to failure using 51' with equation (E35).

Step 8.—Repeat steps 3 to 7 until parameter estimates converge (the difference between the previous estimates
and the new estimates reaches a sufficiently small tolerance).

The parameter estimation methodology and the theoretical formulation of the reliability model presented in this
report has been implemented into CARES/Life. Commercial finite element programs, such as ANSY'S, can be used
with CARES/Life. Using these new capabilities, one can perform durability and reliability analyses of ceramic
structures under the combined effects of static and fatigue damage. All of the results presented in this report were
obtained by using CARES/Life.

E.6 Numerical Example

This example demonstrates the estimation of fatigue parameters from rupture data generated by cyclically
loaded specimens. The experimental data were originally produced and analyzed by Liu and Chen (1991a and
1991b) and later used as an example problem with CARES/Life (Nemeth et al., 1993 and 2003). These data are
reexamined herein using the proposed fatigue model and parameter estimation capability. Furthermore, this
reexamination demonstrates parameter estimation capability for the Walker law and power law for multiple levels
of R-ratio.

The material used in the experiments was 3-mol%-yttria-stabilized tetragonal zirconia (3Y-TZP) with a grain
size of about 0.38 um. Cyclic fatigue experiments for various levels of R-ratio were performed on smooth-surfaced
uniaxial tensile specimens. Five specimens each were tested at R-ratios of 0.8, 0.5, and 0.0; and six specimens were
tested at an R-ratio of —1.0. A triangular cyclic stress wave form was used at a frequency of 1 Hz for 10° cycles or
until failure occurred. The tensile specimens had a 16-mm-gauge length and 6-mm-gauge diameter. Fractographic
examination showed that failure most frequently occurred at or near the surface and that the failure origins were
pore-type flaws.

Table E.II shows 21 test data sets of time to failure for various combinations of failure stress and R-ratio. There

were three specimens that did not fail in 10 s or cycles (runout data). These runout data were included in the
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parameter estimation analysis. Further details on these experimental data can be obtained from Liu and Chen (1991a

and 1991b).

Table E.III shows the fatigue parameters estimated with CARES/Life assuming three stress-life relations

represented by equations (E35), (E37), and (E38). These equations are based on the crack-growth rate modeled by
the combined law, the power law, and the Walker law, respectively. The g-factor used for the power law and the
combined law formulations with the triangular waveform is (see table D.1)

1

(1-R)(N +1) R=0
I—RNH

R 0

TABLE E.II.—EXPERIMENTAL FATIGUE

DATA FOR YTTRIA-STABILIZED ZIRCONIA

[Liu and Chen, 1991a. Frequency, 1 Hz.]
R-ratio Time to failure, Maximum
s failure stress,
MPa
-1 87 500
79 500
1391 450
1026 450
5447 400
29 658 400
0 2954 500
2713 500
73 500
11 690 400
*100 000 400
0.5 250 600
1 665 600
19 945 500
54 824 500
*100 000 400
0.8 15 600
284 600
3206 500
10523 500
100 000 400

®Runout data were used in the analysis.
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TABLE E.III.—ESTIMATED MULTIVARIATE REGRESSION PARAMETERS FOR YTTRIA-STABILIZED ZIRCONIA

Crack-growth model Regression parameter
Parameter estimation Material or R-ratio A»/A ratio, Weibull
constant, environmental sensitivity i modulus,
amm fatigue exponent, m
(see eq. (E36)) e"p‘;\‘]wm’ 0
Power law 64.2 9.3 (a) (a) 3.2
Power law® 147.1 22.4 (a) (a) 22.8
Walker law 80.7 11.8 1.2 (a) 6.3
Walker law® 130.8 20.0 2.5 (a) 18.6
Proposed law (eq. (E1)) 111.9 16.8 32 0.65 13.6
Fast fracture (a) (a) (a) (a) 14.0

*Not applicable.

For R = 0.8 and 0.5 data only.

‘For R =0.0 and —1.0 data only.

Four-point bending bar inert strength results from Nemeth et al. (1993).

Table E.III also shows the estimated Weibull modulus m obtained from the fatigue data. These values can be
compared with the inert-strength Weibull modulus obtained from four-point bending bar experiments (Liu and
Chen, 1991a and 1991b; and Nemeth et al., 1993).

Figure E.1 compares the life (at a failure probability of Pfpean) predicted using the power-law model (eq.
(E37)) with the experimental data for various stresses and R-ratios. A visual inspection reveals that the quality of fit
to the data does not appear to be very good. The slope (which represents the fatigue exponent) appears to be too
steep, yielding a low value for the fatigue exponent N. Also, as the R-ratio becomes smaller, the deviation from the
data tends to increase. This trend is not apparent for R = 0.5, but it is apparent when R = 0 and —1. In this case, the
deviation from the data progresses in a nonconservative manner (life is overpredicted for a given stress level). These
experimental results for R = 0 and —1 seem to indicate that some cyclic degradation is present.

Figure E.2 compares the life predicted using the Walker-law model (eq. (E38)) with the same experimental data
as in figure E.1. The visual fit to the data is somewhat improved relative to figure E.1, although the slope still
appears too steep. As the R-ratio becomes smaller, the Walker law predicts that the damage increases. This
prediction is consistent with the trends of this particular set of data, except for the R = 0.5 data.

Figure E.1.—Stress-life curves for 3Y-TZP using the power-
law model (eq. (E37)); parameter estimation constant, In o]
(see eq. (36)), 64.2; fatigue exponent, N, 9.3; constant-
amplitude frequency, f, 1 Hz.
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Figure E.3.—Stress-life curves for 3Y-TZP using the pro- Figure E.4.—Stress-life curves for 3Y-TZP using separate
posed combined-law model (eq. (E35)); parameter estima- models: (1) power law—eq. (37); parameter estimation
tion constant, In C (see eq. (36)), 111.9; fatigue exponent, constant, In C (eq. (36)), 147.1; fatigue exponent, N, 22.4
N, 16.8; R-ratio sensitivity factor A, 0.65; R-ratio sensitivity for R-ratios of 0.8 and 0.5, and (2) Walker law—eq. (38);
exponent, Q, 3.2; constant-amplitude frequency, f., 1 Hz. In C, 130.8; fatigue exponent, N, 20.0; R-ratio sensitivity

exponent, Q, 2.5 for R-ratios of 0.0 and -1.0. Constant-
amplitude frequency, f;, 1 Hz.

Contrasting figures E.1 and E.2 shows the difference between the power and Walker models. As the R-ratio
becomes smaller, the amount of cumulative damage for the power law is less than that for the Walker law. In other
words, the two laws have opposite trends in predicting the effect of R-ratio on the strength of the material. It is
interesting to note that the fatigue data oscillated some on this shift pattern when the R-ratio increased from —1 to
0.8. Hence, both models failed to capture this experimental behavior completely.

Figure E.3 compares the life predicted using the proposed combined model (eq. (E35)) with the fatigue data.
The predicted stress-life curves are in better agreement with the experimental data regardless of the R-ratio; also, the
slope of the lines appears to be significantly improved. Although the predictions are similar to those for the Walker-
law model for R-ratios of —1 and 0 (as expected), they are in better agreement with the data for R-ratios of 0.5 and
0.8 when compared with the previous models. This is obviously due to the inclusion of crack-growth rates
contributed by both static and cyclic fatigue mechanisms in equation (E1). In addition, the predicted stress-life
curves were able to show the oscillatory trend with respect to the R-ratio exhibited by the experimental data. This is
an encouraging result, but more fatigue data involving various frequencies and R-ratios need to be analyzed in order
to make a substantial claim on the accuracy of the proposed model.

Figure E.4 shows the mean regression lines for both the power and Walker models when they are used
separately. In this case, the Levenberg-Marquardt algorithm was used twice to estimate parameters (see table E.III).
The power-law model was used for data with R-ratios of 0.8 and 0.5, whereas the Walker-law model was used for
data with R-ratios of 0.0 and —1.0. This was done to test the ability of either model to fit to better-behaved data
(better behaved in terms of the ability of the model to account for the R-ratio effect). In other words, the lack of fit
to data shown in figures E.1 and E.2 was more likely due to the limitations of the models than to shortcomings or
errors in implementing the Levenberg-Marquardt algorithm.

Regarding the data itself, figure E.4 indicates that the fatigue exponents are approximately equivalent for the
power-law- and Walker-law-analyzed data, although the data are too few to draw any firm conclusions regarding
this observation. Also, from table E.III, the Weibull modulus obtained from the fatigue data varied widely from
model to model. It is interesting to note that the cases of poor fit to the fatigue data (figs. E.1 and E.2) gave the
lowest estimated Weibull modulus. The Weibull modulus estimated from the combined model correlated well with
that of the four-point bending bar inert strength data in Nemeth et al. (1993). Finally, figure E.4 may lend some
credence to the assertion in Nemeth et al. (2003) that taking the product of a power-law reliability model and a
Walker-law reliability model could yield acceptable results in combined cyclic and static fatigue loading situations.
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E.7 Summary and Conclusions

A computational methodology was developed for the life prediction and time-dependent reliability analysis of
ceramic structures under the combined effects of static and cyclic fatigue. It is based on (1) a crack-growth equation
involving damage contributions from both static and cyclic fatigue, (2) a multivariate nonlinear regression analysis
of fatigue data for parameter estimation, and (3) the Batdorf model for predicting structural reliability. For the
parameter estimation, the regression was performed using the nonlinear least-squares method and a modified
Levenberg-Marquardt algorithm to calculate the optimized model parameters. A numerical example was presented
to illustrate the parameter estimation component of this methodology. The results show that the predicted stress-life
curves based on the proposed model agree better with the experimental data than the predictions of existing models
do. However, the proposed model assumes that the fatigue exponents due to static and cyclic fatigue are the same.
Hence, a potential enhancement to this methodology may include further generalization to account for dissimilar
fatigue exponents.
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E.8 Appendix—Nonlinear Least-Squares Method by
Levenberg-Marquardt Algorithm

Consider a nonlinear regression model given by
y=fx;0)+e (E46)

where fis a nonlinear function, x € ¥ is a k-dimensional vector of independent variables, y € ‘R is a scalar
response or dependent variable, ® € R is a p-dimensional vector of regression parameters, and e € R is a scalar
variable representing a random residual. Let y; and x; denote the i values of yandx fori=1,2, ..., n, where n is
the total number of independent observations (data). Given a parameter vector 0, let e(0) = [e1(0), e2 0), ..., €,(0)]
denote an n-dimensional vector of residuals in which the i residual is

e;=yi—f(x;; 0) (E47)

Define a norm of the vector e(0) given by
c 2
e(®)]=>"e:(0) (E48)
i=1

which represents a sum of the square of all residuals. A value of 0 that minimizes ||e(9)|| is known as the least-

squares estimate of 0. This can be mathematically stated as
C 2
min |e(0 or min ) e;(0 E49
in [e(0)] in 2, (0) (E49)
The minimization problem defined by equation (E49) can be solved by a modified Levenberg-Marquardt
algorithm. In this algorithm, given a current estimate 0., a new estimate 6,, is given by
0,=0.+s, (E50)

where s, € R satisfies the following equation

b0 360, s, =306, ) <fo.) (Es1)

In equation (E51), J(B,) is an n x p Jacobian matrix evaluated at 0., I is a p x p identity matrix, L. is a scalar
control variable, and T is the matrix transpose operation. The algorithm uses a “trust region” approach with a step

bound of 3. A solution of the equations is first obtained for p. = 0. If ||s c || <98, , this update is accepted. Otherwise,

L. is set to a positive value and another solution is obtained. Further details of this algorithm are given by
Levenberg (1944), Marquardt (1963), and Dennis and Schnabel (1983).
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