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Summary 

 

An analytical methodology is developed to predict the probability of survival (reliability) of ceramic com-
ponents subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This 
capability enables more accurate prediction of ceramic component integrity against fracture in situations such as 
turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling 
situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the 
following features: 

 

• Fast-fracture transient analysis (reliability analysis without slow crack growth, SCG) 
• Transient analysis with SCG (reliability analysis with time-dependent damage due to SCG) 
• A computationally efficient algorithm to compute the reliability for components subjected to repeated 

transient loading (cyclic or block loading) 
• Cyclic fatigue modeling using a combined SCG and Walker fatigue law 
• Proof testing for transient loads 
• Weibull and fatigue parameters that are allowed to vary with temperature or time  
 

Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull 
distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of 
multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component 
surface (for surface-distributed flaws) or the component volume (for volume-distributed flaws). The transient 
reliability analysis capability has been added to the NASA CARES/Life (Ceramics Analysis and Reliability 
Evaluation of Structures/Life) code. CARES/Life was modified to interface with commercially available finite 
element analysis software, such as ANSYS,1 when used to model the effects of transient load histories. Examples 
are provided to demonstrate the features of the methodology as implemented in the CARES/Life program. 
 

1.0 Introduction 
 

1.1 General Overview 
 

Ceramics are being used, or being considered for use, for a wide variety of high-performance applications that 
operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental 
prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). To 
use these high-technology ceramics successfully in structural applications that push the envelope of materials 
                                                      
1Swanson Analysis Systems, Inc., Houston, PA. 
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capability, design engineers must consider that brittle materials are designed and analyzed differently than metallic 
materials. 

Brittle materials tend to abruptly shatter or fail catastrophically when under load. There is little or no warning  
of impending failure because large cracks or damaged areas do not appear prior to rupture (except under certain 
circumstances such as excessive compressive loadings). They are also susceptible to damage from impact. 
Consequently, ceramic components must be handled carefully to avoid scratching or damaging their surfaces, and 
they must be designed to resist damage from the impact of foreign objects as much as possible without severely 
compromising performance. The strength from one ceramic component to the next tends to vary considerably, or 
even greatly, because of the variability in severity and random distribution of difficult-to-control microscopic flaws 
that arise from processing. In addition, the strength degrades over time because of a variety of effects, such as slow 
crack growth (SCG), creep, and oxidation. 

In ceramics, SCG initiates at preexisting flaws and continues until a flaw reaches a critical crack length, 
whereupon unstable crack growth ensues, resulting in catastrophic component failure (Wiederhorn, 1974a). SCG 
occurs because of the interaction between the environment and the high-stress fields near the crack tip. This can be 
from a chemical reaction between the environment and the material constituents, from temperature affecting the 
material constituents themselves, or some combination thereof. For some ceramics, SCG can be exacerbated by 
cyclic loading. In this case, repetitive loading and unloading causes irreversible degradation at or near the crack  
tip, thereby worsening SCG. In ceramics, SCG or fatigue-assisted SCG proceeds from inherent (existing) flaws. 
Conversely, creep rupture occurs because of bulk damage in the material in the form of void nucleation (new flaw 
creation) and coalescence that eventually leads to macrocracks, which can then propagate to failure (Grathwohl, 
1984). Hence, for ceramics to be successfully introduced in structural applications, life prediction and design 
methodologies that account for the various brittle material failure modes and that can calculate the tradeoffs 
between service life, performance, and optimized material usage are required.  

Because of the brittleness of ceramics and the random nature of their inherent flaws, the lifetime of ceramic 
structures is predicted using probabilistic analysis and design methodologies. Several design codes such as 
CARES/Life (Ceramics Analysis and Reliability Evaluation of Structures/Life, Nemeth et al., 2003), CERAMIC/ 
ERICA (Peralta et al., 1996), and STAU (Heger, 1991) have been created. These codes predict the failure 
probability of ceramic components subjected to fast fracture and SCG, where fast fracture refers to component 
rupture in the absence of SCG and where component strength is strictly controlled by the size, distribution, and 
orientation of inherent flaws relative to the imposed loading. 

The purpose of this report is to describe a methodology to perform reliability analysis for generalized transient 
loading (loads that vary over time—including temperature loading) for fast-fracture and SCG failure modes. This 
capability, which is known as transient reliability analysis, has been added to the CARES/Life program. Prior to  
this development, the SCG and cyclic fatigue theories in CARES/Life were limited to static loading and simple 
constant-amplitude cyclic loading for specific waveforms, such as sawtooth or sinusoidal (Nemeth et al., 2003). 
Also, the fatigue and fracture response (i.e., the parameters that describe SCG and the Weibull parameters that 
describe the probabilistic distribution of strength) were not allowed to vary over time, so situations involving 
fluxuating temperatures could not be properly analyzed.  

A number of researchers have contributed to the development of transient reliability analysis methodology 
(Paluszny and Nicholls, 1978; Barnett et al., 1967; Jakus and Ritter, 1981; Stanley and Chau, 1983; Mencik, 1984; 
Brückner-Foit and Ziegler, 1999a and 1999b; and Ziegler, 1998). Paluszny and Nicholls (1978) described a 
generalized algorithm for SCG where they used Wiederhorn’s power law formulation (Wiederhorn, 1974a) to 
model SCG and the principle of independent action (PIA) model (Barnett et al., 1967; and Freudenthal, 1968), 
which is based on the Weibull distribution (Weibull, 1939a), to predict the effect of multiaxial stress states. 
Transient loads were broken into discrete time steps where the load was assumed to be constant over the duration of 
the time step. However, Weibull and fatigue (power law) parameters were assumed to remain constant. Therefore, 
the effects of fluctuating temperature—where Weibull and fatigue parameters varied over the temperature range—
could not be accounted for. Jakus and Ritter (1981) developed a life-prediction methodology in terms of probabil-
istic parameters for both applied stress and component strength. They assumed that the applied stress varies 
according to a truncated Gaussian distribution, and they used the Weibull distribution to model strength. They also 
assumed that the Weibull and SCG parameters remained constant with time. Stanley and Chau (1983) described a 
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fast-fracture transient reliability prediction for non-monotonically increasing loads. They considered the previous 
load history in their procedure such that failure probability never decreased when loads decreased. Mencik (1984) 
developed closed-form expressions for reliability with SCG for cyclic loading waveforms such as sawtooth and 
sinusoidal. Brückner-Foit and Ziegler (1999a and 1999b) and Ziegler (1998) developed a time-dependent reliability 
formulation for three cases: fast fracture, SCG governed by a power law, and SCG governed by a power law with a 
threshold. Brückner-Foit and Ziegler accounted for multiaxial stress states by using a methodology similar to 
Batdorf’s theory (Batdorf and Crose, 1974; and Batdorf and Heinisch, 1978a). Batdorf’s theory uses principles of 
fracture mechanics and assumes that strength-controlling flaws are randomly distributed and randomly oriented 
microcracks. In Ziegler’s thesis (Ziegler, 1998) transient reliability was solved such that SCG parameters could vary 
with time and temperature. However, the Weibull modulus (a parameter used to describe the degree of scatter in 
strength) was assumed to remain constant. This algorithm was similar to that of Paluszny and Nicholls (1978) in 
that the power law and Weibull distribution were used and that transient loads were broken into discrete time steps 
where the load and material response (Weibull and fatigue parameters) were assumed to be constant over the 
duration of the time step. Ziegler included methodology similar to that of Stanley and Chau (1983) to account for 
non-monotonically increasing loads.  

In this report, transient reliability analysis methodology is developed with the following capabilities: 
 

• Fast-fracture transient analysis (reliability analysis without SCG) 
• Transient analysis with SCG (reliability analysis with time-dependent damage due to SCG) 
• Computationally efficient algorithm to compute the reliability for components subjected to repeated 

transient loading (cyclic or block loading)  
• Cyclic fatigue modeling using a combined SCG and Walker fatigue law (Walker, 1970; and Rahman et al., 

1998) 
• Proof testing for transient loads 
• Weibull parameters and fatigue parameters that are allowed to vary with temperature or time  
 

The effect of multiaxial stresses can be predicted with either the PIA or Batdorf theories. This report only shows 
the development for using the Batdorf theory. Transient reliability analysis can be performed over the component 
surface (for surface-residing flaw populations) or volume (for volume-residing flaw populations). As previous 
authors have (Paluszny and Nicholls, 1978; Stanley and Chau, 1983; Brückner-Foit and Ziegler, 1999a and 1999b; 
and Ziegler, 1998), we break down transient loads into discrete time steps where the loads and material response are 
held constant over the time step. The technique developed herein is based on using flaw strength (as opposed to 
crack length) and on maintaining the compatibility of failure probability between discrete time steps. This allows 
for the introduction of Weibull parameters that can vary with time and temperature. Allowing for a variable Weibull 
modulus (the parameter describing variation in component strength) is useful for materials that show R-curve 
behavior (materials where fracture toughness KIc varies with crack size—typically increasing with crack size) as a 
function of temperature. The methods were refined to maintain compatibility with the uniaxial stress state for fast-
fracture (inert strength) failure probability for the Batdorf method. These methodologies have been added to the 
CARES/Life code and have been made to interoperate with commercial finite element analysis (FEA) programs 
such as ANSYS1 (ANSYS, 2004) when transient FEA is performed. 

This report describes the detailed development of a generalized transient reliability analysis methodology for 
the capabilities mentioned above. This includes appendixes A to E. Appendix A contains the nomenclature for this 
report. Appendix B is the numerical algorithm for transient reliability analysis. Appendix C shows an inductive  
line of reasoning by which cyclic (repeated) loading is incorporated into the transient reliability formulation in a 
computationally efficient manner. Appendixes D and E contain helpful background information for the readers’ 
convenience. Appendix D is the reproduced theory section of Nemeth et al. (2003). It explains the Batdorf and PIA 
multiaxial theories for fast-fracture and time-dependent reliability analysis, as well as the Weibull and fatigue 
parameter estimation methodologies. Appendix E reproduces Rahman et al. (1998), showing the combined law 
formulation and parameter estimation methodology. This report also includes four example problems (section 3.0): 

                                                      
1Swanson Analysis Systems, Inc., Houston, PA. 
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(1) a disk in thermal shock to illustrate fast-fracture transient analysis, (2) a diesel engine exhaust valve simulation 
to contrast predictions for cyclic loading and proof testing, (3) the hypothetical effect of changing Weibull and 
fatigue parameters over time on the reliability of alumina flexure bars in static fatigue, and (4) transient thermal 
shock reliability analysis of Hexoloy SiC tubes.  

 
1.2 Weibull Modulus Variability 

 

The transient reliability methodology described in this report was developed to include SCG and Weibull 
parameters that can vary over time and temperature. It is well known that SCG parameters can vary with tem-
perature. There is also evidence in the literature that the Weibull parameters, including the Weibull modulus (scatter 
parameter), can vary as well. For example, some ceramic materials—such as silicon nitride (Wereszczak et al., 
1998; and Salem et al., 1992), alumina (Ritter and Humenik, 1979), and zirconia (Munz and Fett, 1999)—have  
been reported to exhibit temperature and stress-rate dependence. The CARES/Life program (Nemeth et al., 2003) 
operates under the assumption that the Weibull modulus can vary with temperature. A potential mechanism behind 
this behavior was described by Kendall et al. (1986) and by Cook and Clarke (1988). They experimentally demon-
strated and theoretically showed (see fig. 1) that the Weibull modulus is influenced by R-curve behavior. Shetty and 
Wang (1989), and Munz and Fett (1999) pointed out that, for R-curve behavior modeled with a power law, the 
Weibull distribution for measured strengths is different from the hypothetical strength distribution based on the 
fracture toughness KIc treated as a constant with crack size (a flat R-curve). Therefore, the Weibull modulus is not 
only controlled by the statistical distribution of the sizes of flaws, but is also influenced by the physics of crack 
growth (fracture toughness KIc changing with crack size).  

Various mechanisms may be responsible for the change of Weibull modulus with temperature. Salem et al. 
(1992) concluded, “At 1371 °C the failure origins were frequently within the volume, and the Weibull modulus 
decreased to approximately 11 from a room temperature value of 19. The increased incidence of volume failure and 
lower Weibull modulus were probably due to softening of the glassy secondary phases surrounding large grains, the 
healing of surface flaws, and a possible loss of crack-growth resistance.” R-curve behavior can be strongly temper-
ature dependent, and just as importantly, we believe, it can be a reversible phenomena. For example, for materials  
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toughened with an elongated (in situ reinforced) grain structure, grain bridging near the crack tip at room temper-
ature causes R-curve behavior and, hence, the Weibull strength modulus appears to be large (reduced scatter in 
strength). At elevated temperatures, softening of the viscous phases between the grain boundaries can mute the 
toughening effect and, consequently, lower the Weibull modulus. Lowering from an elevated temperature back to 
room temperature resolidifies glassy-phase boundaries, and R-curve behavior reappears—without imparting 
additional damage to the material. Transformation toughening also affects the observed Weibull modulus and is 
temperature dependent, as shown in figure 2 (Munz and Fett, 1999). 

In summary, developing a transient reliability analysis methodology that can include a variable Weibull 
modulus is useful for materials that show R-curve behavior as a function of temperature. R-curve behavior may  
or may not be a reversible phenomenon as a function of temperature. Transformation-toughened materials show 
temperature-dependent (and probably reversible) R-curve behavior through changes in the materials’ crystalline 
structure with temperature. Mechanically toughened materials show R-curve behavior through grain bridging near 
crack tips. This may or may not be reversible depending on the conditions. For example, crack blunting or flaw 
healing could irreversibly alter the response. Repeated cyclic loading could also degrade bridging ligaments in an 
irreversible manner. Other examples include high-temperature corrosion (where pits may be generated on the 
material surface), oxidation, erosion, creep, and impact damage. It is important to ascertain if the changing Weibull 
modulus is due to reversible or irreversible changes in the material because the changing Weibull parameters 
become either a function of temperature or time, respectively. The third example in this report (section 3.3) shows 
the hypothetical (irreversible) effect of changing Weibull and fatigue parameters over time on the reliability of 
alumina flexure bars in static fatigue. This effect is likely due to the crystallization of glassy phases between the 
grains.  

A limitation of the modeling in this report is that the effect of R-curve behavior on ceramic component relia-
bility is not explicitly considered. Instead, Weibull modulus variability is treated in a phenomenological manner. 
However, this still is an improvement over the previous capability and represents a significant step toward having 
R-curve modeling explicitly incorporated into transient reliability analysis.  

A varying Weibull modulus is directly applicable under conditions where monotonic thermal or environmental 
loading take place (where the temperature or environment does not change cyclically). Under such conditions, as 
the temperature or environment changes, new flaws could be generated which, in turn, would cause the Weibull 
parameters to vary accordingly.  

 
2.0 Theoretical Development 

 
The purpose of this report is to describe a generalized transient reliability analysis methodology for brittle 

material components. The authors have tried to make this document as self-contained as possible. This report builds 
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upon Nemeth et al. (2003), and for the readers’ convenience, the theory section of Nemeth et al. is reproduced in 
appendix D. It is recommended that readers first become familiar with the nomenclature and concepts described in 
this appendix. This will make the task of understanding this report substantially easier. In particular, appendix D 
should be consulted when readers are trying to understand the Weibull distribution and how it relates to the Batdorf 
and PIA multiaxial theories. 

The transient reliability formulation depends on finding the amount of strength degradation that occurs to a flaw 
from an applied loading over a specified time. The material failure probability over an elapsed amount of time for 
an arbitrarily small volume of material (but larger than any embedded flaw) under stress represents the percentage 
of the flaw population that has a degraded strength equal to or less than the applied far-field stress at the end of  
a specified time interval (at time t = tf). We define “flaw population” as a randomly distributed collection of a speci-
fied type of flaw where the size of the flaws, and hence the strength, varies. Since the strength of the strongest flaw 
that will (just) fail is known (because its degraded strength at t = tf is equal to the applied far-field stress at t = tf), 
calculations are performed to find the strength of that flaw at the initiation of loading (at t = ti = 0). This inert,  
or intrinsic, strength of the flaw is plugged into a mathematical description of the (inert) distribution of flaw 
strengths in the material element (in this case, the mathematical description is the Weibull distribution). This last 
calculation yields the failure probability of the material element from the applied transient loads. The solution 
process essentially involves calculations that go backward in time to solve for an initial condition.  

In this methodology, the probabilistic entity is the distribution of inert flaw strengths (strength prior to SCG  
at t = 0). Crack growth is not treated as a stochastic process. Fracture toughness KIc also is not assumed to be a 
probabilistic quantity. A justification for this is that since strength (on which this methodology is based) is a 
function of both crack size and fracture toughness, then variability in measured strength actually represents the 
combined effect of variability in crack size and fracture toughness. So even though stochastic KIc is not explicitly 
modeled, its behavior is captured phenomenologically in practice.  
 
 

2.1 Strength Degradation Due to Slow Crack Growth 
 

In this section, an equation is developed to describe how the strength of a flaw degrades over time due to SCG. 
This equation requires that SCG parameters are constant over the elapsed time. This establishes the equation of 
strength degradation over a discrete time interval and is subsequently used in the generalized methodology for 
transient reliability analysis (section 2.3).  

The methodology in this report depends on well-known and fundamental relations developed to describe the 
conditions necessary to initiate crack growth—a field of study that is known as linear elastic fracture mechanics 
(LEFM). Investigations in the area of mode-I crack extension (where the crack surfaces displace perpendicular, or 
normal, to the plane of the crack from a far-field stress applied normal to the crack plane) have resulted in the 
following relationship (Paris and Sih, 1965):  

 
 ( ) ( ) ( )ta Yt = tK σI  (1) 

 
where, in the nomenclature of this report, the parentheses with enclosed arguments indicate that the variable is a 
function of the enclosed arguments, which in this case means that the variable is a function of time. The term KI is 
known as the stress intensity factor (at the crack tip), Y is a nondimensional constant that is a function of the crack 
geometry (the shape and relative size of the crack), σ(t) is the far-field uniaxial stress applied normal to a crack at 
time t, and a(t) is the crack length at time t. The geometry factor Y is assumed herein to be independent of crack size 
and time (the crack shape is assumed not to change over time, although its size may change over time). Equation (1) 
is for pure mode I (the opening mode). Similar relationships exist and are discussed, for example, in Broek (1982) 
for mode-II stress intensity factors (the sliding mode—displacement of the crack surfaces in the plane of the crack 
and perpendicular to the leading edge of the crack from an in-plane far-field shear stress) and mode-III stress 
intensity factors (the tearing mode—where the crack surfaces displace in the plane of the crack and are parallel to 
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the leading edge of the crack from an out-of-plane far-field shear stress) stress intensity factors. These factors are 
denoted by KII and KIII, respectively, for modes II and III. 

For a crack arbitrarily located within a solid body experiencing a far-field multiaxial stress state, the equivalent  
(or effective) mode-I stress intensity factor is functionally defined as 

 
 ( ) ( ) ( )taYttK eqeq ,  ,= , II ΨΨσΨ  (2) 

 
where KIeq is the equivalent mode-I stress intensity factor, σIeq(Ψ, t) is the equivalent mode-I far-field uniaxial 
stress normal to a crack located at Ψ at time t, a(Ψ, t) is the crack length located at Ψ at time t, and Ψ represents the 
location (x, y, z) and the orientation (α, β) of the crack within the body. In some reliability models, such as PIA, Ψ 
represents a location only, whereas for others, such as the Batdorf theory, Ψ = (x, y, z, α, β) for volume-residing 
flaws and Ψ = (x, y, α) for surface-residing flaws. The subscript eq represents an equivalent quantity. For σIeq it 
represents the effect of a multiaxial stress state that has the same, or equivalent, effect as a uniaxial stress of 
magnitude σ applied normal to the crack face.  

The critical mode-I (effective) stress intensity factor KIeqc is defined as the value of KIeq where unstable crack 
extension is initiated from an applied far-field (equivalent) stress of magnitude σIeqc applied normal to the crack 
face. Thus, 

 
 ( ) ( ) ( )taYttK eqceqc , , = , II ΨΨσΨ  (3) 

 
where σIeqc is defined as the (equivalent) mode-I strength of a crack of size a. For pure modes I, II, and III loading, 
the critical stress intensity factors are denoted by KIc, KIIc, and KIIIc, respectively. The term KIc is known as the 
fracture toughness of the material in mode I and is considered to be a material property. The term KIeqc(Ψ, t) is 
expressed as a function of Ψ because KIeqc is dependent on location and time (that is, it can depend on temperature, 
which can be a function of time and location). For an isotropic material, it does not depend on the orientation of the 
crack.  

The effective stress σIeq represents an equivalent normal stress on the crack face from the combined action of 
the normal stress σn and the shear stress τ on the crack face, oriented normal to α and β (see app. D). Shetty (1987) 
performed experiments on polycrystalline ceramics and glass where he investigated crack propagation as a function 
of an applied far-field multiaxial stress state. He proposed a multimodal interaction fracture criterion to empirically 
fit the data, which takes the form 

 

 1 = 
 

 + 
I

2

I

I
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K

K
K  (4) 

 
where K denotes the stress intensity factor; Kδ is either KII or KIII, whichever is dominant; and C  is the Shetty 
shear-sensitivity coefficient, with values typically in the range 0.80 ≤ C  ≤ 2.0. As C  increases, the response 
becomes progressively more shear insensitive. For a Griffith crack with the Shetty mixed-mode fracture criterion, 
the effective stress becomes 
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Equations (4) and (5) are provided to help illustrate the methodology. Appendix D from Nemeth et al. (2003) 
gives effective stress relations for other crack geometries and mixed-mode fracture criteria. Equation (5) does not 
consider changes of crack trajectory over time. Although this is a simplifying assumption, rigorously accounting for 
this effect is computationally complex and intensive. The authors assume that this assumption is adequate for most 
cases of transient loading in ceramic materials where critical-sized flaws tend to be small and SCG crack velocity is 
low until a crack becomes nearly critical. Two mixed-mode studies using angled grinding damaged specimens 
(Salem et al., 1996; and Holland et al., 1999) tended to support the adequacy of this methodology, although more 
work in this area is needed using naturally flawed specimens (versus specimens with introduced cracks).  

The time-dependent formulation of crack growth depends on modeling the crack velocity. Expressing equa- 
tion (3) in terms of crack length yields 

 

 ( )
( )

( ) 2I2

2
I

,

,
 = ,

Yt

tK
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eqc

eqc

Ψσ

Ψ
Ψ  (6) 

 
Taking the derivative of equation (6) with respect to time yields 
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SCG refers to the stable extension of a crack over time. Similar to stress corrosion in metals, SCG is a result of 

the combination of stress at the crack tip and chemical attack or loosening of viscous phases (at high temperature) 
such that chemical bonds at the crack tip break or that material displaces and the crack tip extends. The crack length 
as a function of time can be expressed as a power law (Wiederhorn, 1974a) with the following form 

 

 ( ) ( ) ( )( )tKtA
t

ta tN
eq , , = 

d
,d ,

I1 ΨΨ
Ψ Ψ  (8) 

 
where A1(Ψ, t) and N(Ψ, t) are time-dependent material parameters that also depend on the temperature and envi-
ronment. These parameters are described as a function of time and location in equation (8) because in a transient 
loading analysis the temperature and/or environment can vary with time and location, thus causing them to change 
accordingly. For an isotropic material, A1(Ψ, t) and N(Ψ, t) are not a function of orientation. Equating equations (7) 
and (8) gives 
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which, upon rearranging, yields  
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Substituting the crack length given in equation (6) into equation (2) and then substituting that result into  

equation (10) for KIeq gives 
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then 
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So that equation (12) can be integrated with respect to strength and time, the material parameters N, A1, and 

KIeqc are assumed to be constant with respect to time (within the interval of integration). Therefore, the integration 
over the time interval between the initial time tint and the final time tfin, where tint < tfin, is  
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where N(Ψ), A(Ψ), and KIeqc(Ψ), are no longer shown as functions of time, and the limits of integration are the 
initial strength, σIeqc(Ψ, tint) and the final strength σIeqc(Ψ, tfin). This integral evaluates to 
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where the fatigue parameter B is defined as 

 

 ( )
( ) ( ) ( ) ( ) ]2[
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 (15) 

 
The fatigue exponent N is dimensionless, and the fatigue parameter B has units of stress2 × time. 

Equation (14) describes how the strength of an initial crack, σIeqc(Ψ, tint), at t = tint degrades to strength  
σIeqc(Ψ, tfin) at t = tfin because of the applied loading. The equation does not imply material rupture through 
unstable crack growth.  
 
 

2.2 Stochastic Strength Response 
 

In this section, a relationship is established between the stochastic strength response and SCG. Modeling is 
shown for predicting the failure probability of a component under transient loading when the Weibull and SCG 
parameters are assumed to be held constant. The Batdorf model for predicting the failure probability response due  
to multiaxial loading is also introduced. The Batdorf theory is developed in detail in appendix D reproduced from 
Nemeth et al. (2003).  

The Weibull distribution (Weibull, 1939a) is typically used to describe the stochastic strength response of a 
brittle material. For an incremental volume of material ΔV under a uniform uniaxial stress of magnitude σ, such that 
there is no SCG (i.e., an instantaneous applied load over an infinitesimally small time interval, or a material that 
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does not react with its environment), the failure probability PfV for the two-parameter Weibull distribution  
(Weibull, 1939a) is expressed as 
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where the strength-controlling flaws are assumed to be randomly distributed in the material volume (volume flaw 
distributed), PsV is the probability of survival, σoV is the Weibull scale parameter, and mV is the Weibull modulus 
(or the scatter, or shape, parameter). The subscript V denotes a property associated with the material volume. The 
shape parameter mV is a unitless measure of the dispersion of strength, whereas the scale parameter σοV is the strength, at 
a level of 0.6321 probability of failure, of a unit volume of material in uniform uniaxial tension. The scale parameter has 
units of stress⋅volume1/m. This can be understood by considering that, when σ = σoV and ΔV = 1.0, then PfV = 0.6321 in 
equation (16). The term σ in equation (16) actually represents the strength value of a flaw, and the equation is a 
statement that the probability of a flaw being present in ΔV with a strength equal to or less than σ is PfV. For a brit-
tle material, if a flaw is present in ΔV with a strength equal to or less than σ, then catastrophic crack propagation 
ensues and the material element (and hence the body) has failed. Equation (16) describes the fast-fracture 
probability of failure of the material element ΔV. 

For a uniaxially stressed component where the magnitude of the stress changes depending on the location within 
the component, the fast-fracture failure probability of the entire component is 
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where σ(Ψ) is a function of the location (x, y, z), and not the orientation (α, β), of a flaw within the body of the 
component. Equations (16) and (17) represent the failure response at t = tint = 0 (the undegraded, or pristine, 
strength distribution of the flaw population).  

The effect of SCG on the failure probability of the component can be found by specifying appropriate boundary 
conditions for equation (14) and combining that equation with equation (17). In equation (14), the initial strength of 
the flaw needs to be found for t = tint = 0, and it is assumed that the strength of the flaw at t = tfin, equals the applied 
equivalent stress at that moment. Therefore, any flaw that exists in the incremental volume ΔV located at Ψ and  
at t = tf = tfin, with strength equal to or less than σIeqc(Ψ, tfin), will be unstable and will catastrophically propagate. 
Here we use the time tf to indicate the time to failure. Equivalently, any of these same flaws that cause failure at  
t = tf  will have a strength less than or equal to σIeqc(Ψ, tint) at t = tint = 0. This last statement means that σIeqc(Ψ, tint) 
in equation (14), solved for tint = 0, can be directly substituted for σ in equation (17). Performing this substitution 
results in  
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Here, the convention of σIeq,0(Ψ) = σIeqc(Ψ, tint) is used when tint = 0 and PfV(tf) is the failure probability at  
t = tf. This is consistent with the convention of appendix D from Nemeth et al. (2003). Also the equivalent stress 
σIeq(Ψ, tf) at t = tf is used instead of the strength σIeqc(Ψ, tf). This can be done because σIeq(Ψ, tf) = σIeqc(Ψ, tf) by 
definition of the condition that failure occurs at t = tf. Equations (18) and (19) are shown with equivalent stress 
expressions; however, only uniaxial stresses can be used there. These two equations show the effect of SCG and 
transient loading on failure probability and require that Weibull and fatigue (SCG) parameters remain constant over 
time. When the material parameters N and B vary over the load history, equation (19) must be solved by breaking 
the time to failure tf into discrete time intervals, where N and B are held constant over a time interval but are 
allowed to vary between each interval. Section 2.3 shows how this is done. 

The following is a brief description of the Batdorf methodology. Appendix D from Nemeth et al. (2003) describes 
this development in more detail. The following description should be sufficient for the reader to understand how SCG is 
incorporated into the Batdorf multiaxial theory. The Batdorf formulation is shown henceforth throughout this report, with 
the exception of appendixes B and C. 

The Batdorf theory was developed to predict the effect of multiaxial stress states on component reliability (Batdorf 
and Crose, 1974; and Batdorf and Heinisch, 1978a). It combines the weakest link mechanism (where the material is 
analogous to links in a chain such that the weakest link in the chain causes the chain to fail) and linear elastic fracture 
mechanics. It is based on the calculation of the combined probability of a (critical) flaw existing in the material with a 
strength equal to or less than the effective stress (determined from the applied multiaxial stress) and having this critical 
flaw being located and oriented so that it can cause the component to rupture. When this methodology is used, the fast-
fracture and time-dependent reliability of a ceramic component is expressed as 
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where BVk  is the normalized Batdorf crack-density coefficient for volume flaws, σIeq,0(Ψ) is from equation (19) 
and is the transformed critical strength at t = 0 from the applied effective stress, Ψ represents a term that depends on 
the location (x, y, z) and crack orientation (α, β), and dΩ = sinα dα dβ. The terms ,BVk  mV, and σoV depend on the 
location (x, y, z) and are independent of the orientation (α, β) for an isotropic material. The term σIeq,0(Ψ) depends 
on the appropriate fracture criterion, crack shape, and tf. The term BVk  is used in the reliability equation for  
compatibility purposes. It ensures that the multiaxial Batdorf theory collapses to the basic uniaxial Weibull equa-
tion (17) in fast fracture when a uniaxial stress state is applied. The constant term 4π represents the surface area of a 
sphere of unit radius. Equation (20) is a form of the Weibull distribution.  

To calculate a component’s probability of survival, we use results from FEA in conjunction with equation (20). 
FEA enables the discretization of the component into incremental volume elements. For enhanced numerical 
accuracy, the stress state and volume associated with an element’s gaussian integration points are used. Using the 
information associated with the element integration points subdivides the element into subelements, where Visub 
corresponds to the volume of an individual subelement. The stress state, temperature, and environment for each 
subelement are assumed to be uniform throughout its volume. In this case, the volume integral is replaced with a 
volume summation, and equation (20) takes the following form: 
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where nsub is the total number of subelements. 
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2.3 Generalized Transient Reliability Formulation 
 

In this section the generalized transient reliability formulation is derived. The methodology accounts for 
changing Weibull and SCG parameters over time or temperature. The solution approach shows how the reliability 
formulation develops for each new time step, beginning with the first time step. In this case, only three time steps 
are required before a pattern emerges such that a generalized equation can be written. The methodology shown 
subsequently is also applicable to fast-fracture transient analysis. 

In the following sections, not all the equations have variables expressed as functions of time t and location Ψ 
because some expressions would have become too long and repetitive. By now, the reader should be aware of what 
parameters are functions of time and/or location and orientation. 

So that the time dependence of the loading and material response can be taken into account, the stress history 
for each subelement isub is discretized into short time steps Δtj. The applied stress and material parameters (Weibull 
and SCG parameters) are assumed to remain constant over each time step, but they are allowed to vary between 
time steps. For a given time step j, the applied equivalent stress of a flaw oriented at (α, β) in a given subelement 
isub is denoted by σIeq,j, the temperature is Tj, the scale parameter is σoV,j, the Weibull modulus is mV,j, the fatigue 
constant is BV,j, and the fatigue exponent is NV,j.  

The expression for the inert equivalent strength σIeq,0 from the applied equivalent stress distribution is derived 
for the first three time steps of a general fluctuating stress history that a given subelement isub experiences. From 
this, a pattern for the inert strength expression emerges that can then be generalized and coded for any arbitrary 
number of time steps. 

2.3.1 Time step 1.—Time step 1 spans the time interval between t = t0 = 0 and t = t1, and the time step interval 
is Δt1 = t1 – t0. During this time step, henceforth denoted by Δt1, and for a given subelement isub, the applied 
equivalent stress is σIeq,1, the temperature is T1, the scale parameter is σoV,1, the Weibull modulus is mV,1, the 
fatigue constant is BBV,1, and the fatigue exponent is NV,1. The inert strength expression (σIeq,0)isub for the isubth 
subelement corresponding to the first time step is obtained directly from equation (14). In that equation, the stress 
history integral existing in the first term within the brackets is evaluated by setting the stress history σIeq(Ψ, t) equal 
to a constant applied equivalent stress σIeq,1, the initial time tint = t0, and the final time tf = t1. This means that the 
integral term in equation (14) becomes equal to 11,I

1, tVN
eq Δσ . Τhe inert strength at t = tint = 0, denoted by σIeq,0, is then 

given by 
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Denoting parameters as a function of location and orientation Ψ is not shown here, but it is implied. The fatigue 
constant for the Batdorf criterion is denoted by BB. This is the value of B that normalizes the Batdorf criterion to the 
uniaxial Weibull criterion shown in equations (18) and (19). See appendix D, section D.2.2.4, reproduced from 
Nemeth (2003), for further details. Equation (22) shows the remaining (degraded) strength at the end of time step 1, 
denoted by σIeqc,1(t1). The failure probability at the end of time step 1 is found by assuming that the critical strength 
of the flaw is reached at the end of the time step. Hence, as discussed in the previous section for equation (19), by 
setting the degraded strength term σIeqc,1(t1) equal to the applied stress σIeq,1(at t = t1) during this time step, the 
probability of survival expression for the Batdorf methodology is given by 
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2.3.2 Time step 2.—Time step 2 spans the time interval between t = t1 and t = t2, and the time step interval is 

Δt2 = t2 – t1. During this time step, denoted by Δt2, and for a given subelement isub, the applied equivalent stress is 
σIeq,2, the temperature is T2, the scale parameter is σoV,2, the Weibull modulus is mV,2, the fatigue constant is BBV,2, 
and the fatigue exponent is NV,2. The task is to compute σIeq,0, but to now include the contributions of both time 
steps where t2 = tf.  

Using equation (14) and assuming that σIeq,2 is constant over the interval Δt2, yields an initial strength σIeqc,2(t1) 
at the beginning of time step 2 of  
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To perform the reliability analysis for the two time steps, we assume that the strength of the strongest flaw that 

will just initiate failure in the material is equal to the applied stress σIeq,2 at t2 = tf. In other words, σIeqc,2(t2) = 
σIeq,2, and equation (25) becomes 
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If the material response does not vary significantly from one step to the next, the initial strength at the 

beginning of time step 2, σIeqc,2(t1), will be equal to the remaining strength at the end of time step 1, σIeqc,1(t1). 
However, in real applications, changes in temperature and environment are the norm. For such cases, the remaining 
strength at the end of one time step does not (necessarily) equal the initial strength of the subsequent time step even 
though the crack size does not change from the end of one time step and the beginning of the next. An example of 
this would be when KIc changes with temperature. One can account for this situation by specifying that the percent-
tage of the flaw population (located and oriented at Ψ in a discrete volume of material) that survives at the end of 
one time step will be the exact same percentage that survives at the beginning of the next time step. Notice that  
this statement says nothing about strength, loading, or crack size. Rather, it is a statement saying that the survival 
probability (or equivalently the failure probability) of a discrete element at Ψ at the end of a time step and the 
beginning of the next step are equal. In other words, compatibility of survival probability is maintained between the 
time steps. This can be done by equating the survival probabilities associated with these two strengths and their 
corresponding Weibull parameters. Equating the survival probabilities at the end of time step 1 to that at the 
beginning of time step 2 yields 
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which reduces to an expression that can be solved for σIeqc,1(Ψ, t1), which is local to Ψ, and for subelement isub 
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Equation (28) provides an expression for the degraded strength at the end of time step 1, σIeqc,1(Ψ, t1), as a 

function of the initial strength at the beginning of time step 2, σIeqc,2(Ψ, t1). Note that, when the Weibull parameters 
remain constant, equation (28) collapses to the basic case where the remaining strength at the end of a given time 
step is equal to the initial strength of the subsequent step. Also in equation (28), use of the normalized Batdorf 
crack-density coefficient BVk  is essential to normalize the relationship to the uniaxial stress state. The term σoBV 

includes the effect of BVk  and is used henceforth. This is how the methodology described in this report takes into 
account the transience in the Weibull parameters throughout the load history.  

To obtain the expression for the inert strength at t = 0, we substitute equation (26) for σIeqc,2(Ψ, t1) in equa- 
tion (28) and then substitute σIeqc,1(Ψ, t1) in equation (28) into equation (22), with the resulting expression 
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Equation (29), as expressed, can lead to decreasing inert strength as time elapses. For example, if the applied 

stress decreases monotonically with time while the material gets stronger, then equation (29) can result in decreas-
ing inert strength as time elapses. This means that when this time-dependent inert strength is substituted in equation 
(23), we could predict that reliability would improve as time elapsed. This is obviously incorrect since a structure’s 
reliability cannot increase with time. Hence, adjustments to the methodology are necessary to ensure that the 
reliability never increases with time. 
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The procedure proposed here to ensure that the reliability does not improve with time is based on maximizing 
the fast-fracture potential of the applied stresses σIeq,j of all time steps—that is, finding the applied stress with the 
highest potential fast-fracture probability of failure and using a transformed value of that stress as the final strength 
of the last time step. In other words, the stress history (all time steps) is transformed in such a way that the material 
properties for the entire history remain constant. The material properties during the last time step (step 2) are used to 
normalize (transform) the load history. In this procedure, the stress history (all time steps) is transformed using 
equation (28) and the Weibull parameters of the last time step (which in this case is step 2). The largest value of 
these transformed stresses is also the one with the highest fast-fracture failure probability. This value is then used as 
the final strength term of the last time step. In this case for the two-time-step loading history, the applied stress 
during time step 1, σIeq,1, is transformed to an equivalent value, σIeq,1,2, that is based on the Weibull parameters  
of time step 2 (with the transformed value having the same probability of failure as the untransformed value). 
Obviously, the stress during time step 2 remains the same since the material properties of step 2 are used to trans-
form the stresses. According to equation (28), the transformed applied stress of time step 1 on the basis of the 
properties of time step 2 is 
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and this maximization for two time steps is described as 
 

 ( )2,2,I2,1,Imax,2,I ,max eqeqTeq σσ=σ  (31) 
 

The final strength term in equation (29) is set equal to the maximum transformed stress, σIeq,2,Tmax, which is 
equal to the maximum of either σIeq,1,2 or σIeq,2,2. The second subscript in σIeq,2,Tmax indicates that the stresses 
during all time steps have been transformed using the Weibull parameters of the last time step (step 2), whereas the 
third subscript, Tmax, indicates that the maximum transformed stress during all time steps was selected. This 
maximization procedure ensures that both stress magnitudes and material properties are taken into account when 
maximizing the final strength term in the σIeq,0 inert strength formulation.  

Substituting the maximum transformed stress into equation (29) and subsequently equation (29) into equa- 
tion (23), yields the following reliability formula for the entire component at the end of time step 2: 
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2.3.3 Time step 3.—Time step 3 spans the time interval between t = t2 and t = t3, and the time step interval is 

Δt3 = t3 – t2. During this time step (Δt3) and for a given element isub, the applied stress is σIeq,3, the temperature is 
T3, the scale parameter is σoV,3, the Weibull modulus is mV,3, the fatigue constant is BBV,3, and the fatigue exponent 
is NV,3. 
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For time step 3, a similar procedure to that performed for time step 2 yields the expression for the inert strength 
at t = 0. It is assumed that the strength of the strongest flaw that will just initiate failure in the material is equal to 
the maximum transformed applied stress σ Ieq,3,Tmax at t3 = tf. The initial strength at the beginning of time step 3 is 
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where the maximum transformed stress is  
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The stresses for all the time steps are transformed using the Weibull parameters of the last time step—in this 

case time step 3—to obtain σ Ieq,3,Tmax, which has the highest fast-fracture probability of failure of all the time 
steps. The initial strength at the beginning of time step 3 is related to the final strength of time step 2 by 

 

 ( ) ( ) 2,

3,

3,

23,I
2,22,I

V

V

m
m

oBV

eqc
oBVeqc

t
t

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

σ
σ=σ  (37) 

 
The inert strength, σIeq,0, is found by (first) substituting equation (34) for the initial strength, σIeqc,3(t2), at the 

beginning of time step 3 into equation (37) for the final strength, σIeqc,2(t2), at the end of time step 2; then (second) 
substituting the final strength, σIeqc,2(t2), from equation (37) into equation (25) to find the initial strength, σIeqc,2(t1), 
of time step 2; then (third) substituting equation (25) for σIeqc,2(t1) into equation (28) to find the final strength, 
σIeqc,1(t1), at the end of time step 1; and (fourth) substituting σIeqc,1(t1) in equation (28) into equation (22) to obtain 
the inert strength, σIeq,0. Performing these operations and rearranging gives  
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The reliability for the entire component at the end of time step 3 is 
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2.3.4 General transient reliability formulation for k number of time steps.—When a comparison is made of 

the reliability formulations of equations (23) and (24) for one time step, equations (32) and (33) for two time steps, 
and equations (39) and (40) for three time steps, a clear pattern emerges. It can be seen from these functions that the 
transient reliability equation (when the change in material response is taken into account) is an ever-expanding 
function, which adds nested terms as more time steps are considered. Hence, for k time steps 
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where the maximum transformed stress is  
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where 1 ≤ j ≤ k. Appendix B shows the numerical algorithm of equation (42). 

2.3.5 Transient reliability without SCG.—In the case where a component is manufactured using a material 
resistant to SCG and thus does not degrade with time, the transient reliability formulation becomes much simpler. 
Since the inherent flaws do not grow with time, one simply needs to track the applied stress history and compute the 
corresponding failure probability as a function of time. 

This analysis is identical to the fast-fracture analysis with the exception that it has to be done as many times as 
there are time steps. Hence, a given stress history is broken into short time steps during which the stress, tempera-
ture, and environment are assumed to be constant. Then, the following equation is used to calculate the reliability 
PsV (tj) at the end of each time step j:  
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It is apparent from equation (45) that the reliability increases as the applied stress decreases. Although this is 

true for instantaneous fast-fracture loading, prudence should be exercised when applying that equation to time-
dependent loading when no damage occurs. For example, if a given component is subjected to decreased loading, 
then equation (45) will numerically predict increased reliability for that component as time elapses. However, a 
component’s reliability cannot improve with time. Hence, for cases where the loading eases at a given time step, 
j + 1 (the computed reliability increases), the reliability is set equal to that at the previous time step. In other words, 
decreased loading does not result in increased reliability but keeps it constant. In the case of repeated block loading 
when the material does not degrade with time, the transient reliability analysis needs to be conducted for only one 
load block. This is because the reliability versus time curves are identical for all load blocks since no damage takes 
place. 

The authors of this report developed the general transient reliability formulation initially for one, then two, then 
three, and finally k number of time steps. By showing the development of this methodology in a slow, gradual 
manner, the authors hope that they have made the task of understanding this work easier for readers.  

It is apparent from equations (41) to (44) that the transient reliability formulation depends on the load and 
thermal/environmental history. The dependence on the thermal/environmental load history comes from the 
sequential order of the exponential term mV,k[NV,(k–1) – 2]/mV,(k–1)[NV,k – 2] and the rigid ordering of the nested 
terms. When the material parameters, m and N, remain constant with time (temperature and environment do not 
vary with time), the exponential terms cancel out. Under such circumstances, the transient reliability becomes 
independent of both the load and the thermal/environmental history sequence, and simplification, such as Mencik’s 
g-factor approach (Mencik, 1984), becomes possible. It is worth mentioning that the general transient reliability 
formulation shows that the g-factor approach is only applicable under the special circumstances of constant Weibull 
and fatigue parameters versus time.  



NASA/TP—2005-212505 19

All the derivations shown earlier were based on the assumption that volume flaws control failure. When surface 
flaws dominate the failure process, similar equations integrated over the surface area of the component are used to 
compute the transient reliability. 

 
 

2.4 Computationally Efficient Algorithm for Cyclic Loading 
 

In many engineering applications, structural components are subjected to repeated block loading. This section 
shows a computationally efficient algorithm to perform transient reliability analysis for repeated cyclic loading. The 
algorithm is derived in appendix C. This methodology is shown for power law SCG, as developed in previous 
sections of this report. 

Before proceeding, the terminology used must be explained. In the analysis in this section and in the proof-
testing sections, a load cycle refers to a segment of the transient load history. Figure 3 shows a schematic diagram 
of such a loading history where a component is subjected to Z1 number of repeated load cycles. Such repeated 
cyclic loading and its damage to the ceramic structural component can be incorporated into the transient reliability 
analysis. An example of such a load cycle is the load history acting on a component of an aircraft from takeoff, 
through cruising, to landing. This report uses a load block to indicate a collection of several load cycles. Thus, for 
the aircraft example, a load block of 10 cycles represents a load history of 10 takeoffs, cruises, and landings.  
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Equations (41) to (44) are computationally inefficient when used to compute reliability for cyclic loading. For 
example, if k is the number of time steps in the first load cycle (load cycle 1 in fig. 3), then equation (42) requires 
kZ1 time steps to calculate a reliability solution for Z1 cycles. Obviously, this quickly becomes computationally 
intensive when reliability solutions for large cycle counts are desired. As an alternative, the authors developed a 
more computationally efficient means to perform this task—which is described in detail in appendixes B and C. 
This approximation method allows for a tradeoff between solution accuracy and numerical efficiency. The method 
is developed by approximating equation (42) with a truncated binomial series expansion of the form 

 

 ( ) ( ) ( )( )
K+

−μ−μμ
+

−μμ
+μ+=+ −μ−μ−μμμ 33221

!3
21

!2
1 yxyxyxxyx  (46) 

 
where x2 > y2. When x >> y, the higher order terms in the series become negligible and the series can be 
approximated as a two-term expression: 

 
 (x + y)μ ≈ xμ + μxμ –1 y           when x >> y (47) 
 
This approximation of equation (42) is generally valid after a sufficient number of time steps have been 

accounted for in the calculation. What that sufficient number is depends on the level of loading, the load history, 
and the number of time steps in a block. For example, (1 + 0.01)10 = 1.1046, instead of 1.1000 with equation (47), 
and (1 + 0.01)0.1 = 1.0009955, instead of 1.001000 with equation (47). The level of error is on the order of 5 percent 
with the two-term approximation. Certainly by 100 cycles, the two-term binomial approximation of equation (42) 
would have the y term at most 0.01 the size of the x term. Also, since the exponent is likely to be between the 
bounds of 0.1 and 10, the associated error is not likely to be serious beyond 100 or so cycles.  

Whereas the previous solution (eqs. (41) to (44)) requires kZ1 calculation steps per load block with k time steps 
per load cycle, the cyclic approximation method of appendix C requires kλ calculation steps where λ is the number 
of load blocks making up the entire load history. The λ solution increments are constructed such that 
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where Zι represents the number of load cycles within load block ι. Component survival probability is expressed as 
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As the number of load blocks λ gets smaller (for a fixed number of total cycles Ztotal), the computational 
efficiency increases, but with some loss of accuracy. A numerical example at the end of appendix C illustrates this 
tradeoff. For λ = 1, equation (50) simplifies to 
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This equation represents the most computationally efficient solution for repeated block loading. Unfortunately, 

there does not appear to be an easy way to make any general statements regarding error. The amount of error 
appears to depend on the problem. It is, therefore, up to users to determine if the error associated with equation (51) 
is acceptable (see the numerical example at the end of appendix C).  

It is important to point out that in equations (50) and (51) the block loading component Z appears within the 
individual time steps. Mencik (1984) conversely indicates Z as a multiplier of all the time steps—which is true only 
when material properties are constant over the time steps. Therefore, g-factors, as introduced by Mencik, cannot be 
used except under constant Weibull and SCG parameters.  

 
 

2.5 Transient Reliability and Cyclic Fatigue 
 

In this section, the effect of cyclic fatigue (i.e., increased damage due to cyclic loading) is added to the transient 
reliability analysis methodology. This new equation assumes that loading amplitude and frequency are constant, and 
there is no provision for the effect of temperature history on the load cycle. Thus, this methodology does not model 
thermomechanical fatigue phenomena or the effect of a fluctuating (spectrum or random) load history. The Walker 
law (Walker, 1970) is used here to model the effect of cyclic fatigue; in particular, it accounts for the effect of  
R-ratio (ratio of minimum stress to maximum stress) on crack growth. Overall crack growth is modeled with a 
superposed SCG power law and fatigue Walker law. This work is an extension of Rahman et al. (1998) and requires 
that the SCG power law fatigue exponent and the Walker law fatigue exponent be equal. Rahman et al. is repro-
duced in appendix E for the reader’s convenience and includes a procedure for parameter estimation of specimen 
rupture data. 

Subcritical crack growth is a complex phenomenon involving a combination of simultaneous and synergistic 
failure mechanisms. These can be grouped into two classes: static effects and cyclic effects. “Static effects” refers to 
the slow propagation of cracks under cyclic stresses and can be explained by the same environmental and corrosive 
processes responsible for subcritical crack growth under static loads. Previous sections of this report deal entirely 
with modeling associated with static effects (e.g., the power law model of SCG shown in equation (8)). Cyclic 
effects are functionally dependent on the number of cycles, the peak cyclic load, the range of the stress intensity 
factor, and possibly on the frequency of the loading. The subcritical crack growth phenomenon can be caused by a 
variety of effects, such as debris wedging or the degradation of bridging ligaments near the crack tip, but essen-
tially it is based on the accumulation of some type of irreversible damage that enhances the crack growth. Not all 
materials display cyclic effects. Glasses seem to show only static effects, whereas polycrystalline materials are more 
susceptible to cyclic effects—particularly if crack growth is intergranular (around the grains) rather than transgran-
ular (through the grains). Modeling SCG using the power law is well accepted, whereas a standard procedure for 
modeling cyclic effects has not been established. 
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To empirically account for cyclic effects, the CARES/Life program (see app. D from Nemeth et al., 2003) 
implemented the Paris law (Paris and Erdogan, 1963) and Walker law (Walker, 1970), which traditionally have 
been used for metal fatigue. The Walker Law is an extension of the Paris law to account for the effect of the stress 
ratio (R-ratio) on fatigue lifetime. The Walker law is expressed as 

 

 ( ) ( ) ( )nKnKA
n

na Q
eq

QN
eq ,,

d
,d

Imax,I2
2 ΨΔΨ=

Ψ −  (52) 

 
and from equation (2), for the definition of the stress intensity factor, 

 
 ( ) ( ) ( )naYnnK eqeq ,,, max,Imax,I ΨΨσ=Ψ  (53) 
 
 ( ) ( ) ( )[ ] ( )naYnnnK eqeqeq ,,,, min,Imax,II ΨΨσ−Ψσ=ΨΔ  (54) 
 

where n is the number of cycles; A2, N2, and Q are material parameters that depend on temperature; ΔKIeq(Ψ, n) is  
the mode-I equivalent stress-intensity factor range at cycle count n and location/orientation Ψ; KIeq,max(Ψ, n) is the 
maximum mode-I equivalent stress-intensity factor (i.e., the maximum value of KIeq over cycle n at location/ 
orientation Ψ); ΔKIeq(Ψ, n) is the range of the mode-I equivalent stress-intensity factor at n and Ψ; σIeq,max is the 
peak applied far-field equivalent stress over the cycle; and σIeq,min is the minimum applied far-field equivalent  
stress over the cycle. Equation (52) is easily expressed as a function of time by multiplying it by the cyclic  
frequency fc:  
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where, for example, ΔKIeq,max(Ψ, t) is the maximum value of KIeq over the cycle n (that is associated with the 
particular value of t) at location/orientation Ψ. It is assumed that [da(Ψ, t)]/dt in equation (55) is continuous at 
fractions of a cycle: that is, it is assumed that [da(Ψ, t)]/dt could be computed for noninteger (real number) cycle 
counts.  

Rahman et al. (1998), reproduced in appendix E, describes a crack growth law that is a superposition of the 
Walker law and the power law (eq. (8)). This equation has the desirable feature for ceramics that, when the loading 
is static (not varying with time), the crack growth is not zero. The philosophy behind this approach is that, for 
ceramics (unlike metals), cyclic loading enhances environmentally assisted SCG through the processes described at 
the beginning of this section. Adding equations (8) and (55) yields the equivalent mode-I crack extension for a 
superimposed power law and Walker law: 
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where A1, A2, N1, N2, and Q are material constants that depend on the temperature and environment.  

The g-factor (Mencik, 1984) (defined for constant material parameters versus time) is 
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where tper is the period of the cycle. The crack-growth rate in equation (56) can be reexpressed with the g-factor as 
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where the R-ratio is defined as 
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The terms g(Ψ, t); ΔKIeq,max(Ψ, t); fc(Ψ, t); R(Ψ, t); σIeq,max(Ψ, t); and σIeq,min(Ψ, t) are indicated as a function of 

time, although they are assumed to be constant values over the period of any given cycle n. Examining equation (58) 
shows that ( ) ( )tKtgA N

eq ,, 1
max,I1 ΨΨ is an equivalent static (non-time-varying) term that produces the same amount 

of crack growth as the periodic cyclic stress distribution over the period of the cycle.  
A strength degradation equation analogous to equation (14) can be obtained from equation (58). By comparing 

equations (58) and (7) and noting that 
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we can show that, analogous to equation (11),  
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 (61) 

 
Following the separation of variables σIeq and t in equation (61), it is theoretically possible to calculate the initial 

and final strength over a given time interval. However, no closed-form explicit solution exists using equation (61) 
directly. A closed-form solution is desired to minimize the amount of computation involved with the reliability 
analysis that is coupled with results from finite element models. A closed-form solution can be obtained if it is 
assumed that the fatigue exponents for static and cyclic fatigue are identical. If N1 = N2 = N, equation (61) can be 
solved analogous to equation (13) over the time interval tint to tfin : 
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In arriving at equation (62), we assume that the material parameters A1, A2, N, and KIeqc are constant over the 

time interval. The integral, similar to equation (14), evaluates to 
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where 
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Equation (64) is actually identical to equation (15), the value of B(Ψ) for the power law. The convenient form 

of equation (63) considerably simplifies the task of estimating the model parameters from cyclic fatigue specimen 
rupture data (see app. E from Rahman et al., 1998). Because equation (63) uses a single fatigue exponent N, the 
equation’s form makes cyclic loading appear to assist power-law crack growth. In other words, the equation appears 
to model the underlying mechanism of crack growth as a time-dependent (not cycle-dependent) process, and the 
effect of cyclic loading is only to enhance time-dependent crack growth. Also, note that there is nothing in equa- 
tion (63) that prevents making the parameters A1, A2, N, B, and Q functionally dependent on the frequency.  

For the Walker law by itself (independent of the power law), equations (63) and (64) become 
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where 
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and where nint is the initial number of cycles and nfin is the final number of cycles. The terms N(Ψ), B(Ψ), and Q(Ψ) 
are determined from cyclic fatigue experiments. (See app. E from Rahman et al. (1998) for an example.) 

Equations (63) and (65) assume that material properties are constant over the time interval between tint and tfin. 
The process of extending these equations to account for changing material parameters over time and temperature  
is identical to that of equations (22) to (51) and, hence, is not repeated here. Instead, it is shown that equation (63) 
can be presented in the same general form as equations (22), (25), and (34). Therefore, since equation (63) has the 
same form as equations (22), (25), and (34), the procedure to generalize equation (63) for discrete time steps and 
changing material parameters must be the same as that previously described in sections 2.3 and 2.4. 

Assume that the loading cycle is broken into k discrete time steps where the material parameters and loading are 
assumed to be constant over the duration of each time increment. For the jth time step, 
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where 1 ≤ j ≤ k and use of the location and orientation parameter Ψ is dropped. Notice in equation (67) that the 
bracketed term involving the R-ratio is not history dependent. That is, regardless of the value of σIeq,max/σIeq,j, the 
contribution of the term in square brackets containing the R-ratio will be the same. Therefore, equation (67) is not a 
true thermomechanical fatigue criterion for ceramics.  

Equation (67) can be generalized as 
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The term Δteq,j is an equivalent time increment for time step j. Equation (68) is in a form that is identical to that 

of equation (14)—for a constant applied load—and to that of equations (22), (25) and (34). Because equation (63) 
can be generalized as a power law expression for SCG, the methodology developed for the power law in sections 
2.3 and 2.4 also applies here. Consequently, showing the generalized transient reliability formulation development 
for equation (63) would be redundant. Instead, only the final formulation is shown; that formulation is analogous to 
equation (51) for k time steps that define a single cycle and for n total cycles (so that n tk = n tper is the total time). 
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where the R-ratio is determined as 
 

 
( )
( )keqeqeq

keqeqeqR
,I2,I1,I

,I2,I1,I

,...,,max

,...,,min

σσσ

σσσ
=  (71) 

 
R-ratio is related to ΔKIeq, shown in equation (54), which depends only on the applied stress, the crack size a, and 
the geometry factor Y. It does not depend on any material property such as KIc. Hence the R-ratio is only related to 
the applied stress and is independent of any other temperature- or environment-dependent parameter. 

Equation (70) represents the most computationally efficient form for solving the reliability equation (49) for 
cyclic loading. The analogous formulation, similar to equations (48) to (50) for λ load blocks, is not shown because 
of the large size of the resultant equation; equation (70) should be sufficient to illustrate the methodology. 

 
 

2.6 Generalized Transient Reliability Formulation for Proof Testing 
 
In this section, the effect of proof testing is incorporated into the generalized transient reliability formulation  

for power law SCG. For the sake of brevity, the analogous formulation for the combined Walker-power law is not 
shown. We recommend that readers first review the proof-test methodology for static loading that is described in 
appendix D reproduced from Nemeth et al. (2003). This will help readers to understand how this methodology is 
applied to transient loading, where fluctuating temperatures may affect the material response (i.e., changing SCG 
and Weibull parameters) over time.  

A proof test assesses whether or not a given ceramic component can survive in conditions similar to or worse 
than what would be expected in service. The proof test is performed prior to placing the part in service, and it 
increases the likelihood that the part will survive over its intended service life. Proof testing is performed on all 
parts, and those parts that survive the test without apparent damage are placed in service. In other words, the 
weakest components should fail in the proof test, leaving the stronger components to be used in the service 
application. The proof test should closely simulate the worst expected service loads, where the proof loads are 
designed to be appropriately greater in magnitude and applied in the same direction or directions as the service 
loads. In addition, the proof test should be of short duration to avoid or reduce damage to the part from SCG and 
handling. Components that survive proof testing should have a higher inservice reliability than components that are 
not proof tested. The components that survive the proof test should display a predictable minimum service life tmin 
where no failure should theoretically occur. 

The “attenuated” probability of failure PfaV, assuming a volume-flaw failure mode, of a component surviving 
proof testing over time tp and subjected to operational (service) loading over a time interval tε is 
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psV

qsVpsV
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qsV
qsaVqfaV

  
1  1

−
=−=−=  (72) 

 
where tq = tp + tε. The term PsV(tp) is the probability of survival of a component subjected to a proof test over a time 
interval denoted by tp. The term PsV(tq) is the probability of survival of a component subjected to a proof test over 
time interval tp and service loading over the time interval tε. From equation (72), the inservice reliability of the 
survived components PsaV(tq) increases as the ratio of the proof-test stress to the service stress increases. This is 
because the proof-test reliability PsV(tp) decreases as the proof-test load increases. 

Because the Batdorf multiaxial methodology is used, the computation associated with equation (72) is not 
performed at the component level, but rather is performed at Ψ—a given location (x, y, z) and flaw orientation  
(α, β). This enables computing the reliability for the situation when the proof-test loading does not mimic the 
service loading. For example, the attenuated reliability can be computed for the case when the proof-test load and 
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service load are misaligned or applied in different directions. Appendix D reproduced from Nemeth et al. (2003) 
gives further details of using the Batdorf theory with proof testing. 

The transient proof-test methodology developed herein is based on taking the applied transient stresses and 
describing them as an equivalent static stress applied over an equivalent time. The magnitude of the equivalent 
static stress is set equal to the peak stress found over the history of the proof-test and service life. The weakest 
(lowest strength) flaw that could survive the proof test (at Ψ) is assumed to be of a strength just greater than the 
peak applied proof-test stress at t = tp. As a result, this methodology does not consider the circumstance where the 
weakest flaw that could survive the proof test is lower in strength than the peak proof-test load at the end of the 
proof test (at t = tp). This circumstance is considered herein as an unusual (and poorly designed) situation that can 
occur only if significant SCG occurs during the proof test and if the magnitude of the proof-test load systematically 
(and slowly) decays toward the end of the proof test. A well-designed proof test is of short duration, and unloading 
is performed quickly so that SCG and, thus, damage to the component are minimized. In that (typical) scenario, a 
component does not survive the proof test if its weakest flaw (at Ψ) has a strength (significantly) less than the peak 
applied stress. It is subsequently up to users to determine which of these situations best describes their proof test 
and if the methodology described herein is appropriate for their situations. Figure 4 is a schematic of the proof-test 
and service loading scenario that this methodology attempts to account for.  
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In this solution methodology, the proof-test and the service loading are described with a total of γ load blocks. 
Of this total, λ load blocks are for the proof test and γ – (λ + 1) load blocks are for the service load. The term Zp,total 
represents the total number of proof-test load cycles, and Zε,total represents the total number of service load cycles. 

 

 ∑
λ

=ι
ι=

1
,total, pp ZZ  (73) 

 

 ∑
γ

+λ=δ
δεε =

1
,total, ZZ  (74) 

 
The term Zp,ι represents the number of cycles within proof-test load block ι, and Zε,δ represents the number of 

cycles within service load block δ. The equation for the survival probability for the proof test PsV(tp) is straight-
forward and is identical to equations (48) to (50), except that it is shown here with different subscripts representing 
the proof-test conditions. The component survival probability PsV(tp) at the end of proof testing is 
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The proof-test time steps are from 1 to κ, and the service time steps are from κ + 1 to ζ. Substituting equations 
(75) and (78) into equation (72) yields the expression for the attenuated survival probability:  
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The Heaviside function H(Ψ) in equation (81) was originally used in Nemeth et al. (2003) (see app. D) for static 

loads and constant Weibull and fatigue parameters. Its use here requires expressing variables in terms of equivalent 
peak static loads and equivalent times. Equivalent time is the comparable time interval for a static load situation that 
has the same amount of crack growth (or same reliability) as the actual transient load situation. The Heaviside 
function H(Ψ) in equation (81) is used, where 

 

 H(Ψ) = 1   if    σIeq,1,Tmax,ε(Ψ) ≥ σIeq,1,Tmax,p(Ψ) 
 

otherwise, if 
 

 σIeq,1,Tmax,ε(Ψ) < σIeq,1,Tmax,p(Ψ) (82) 
 

then 
 

 H(Ψ) = 1   if    tmin,1,es(Ψ) < tq,1, es(Ψ) – tp,1, es(Ψ) 
 

and 
 

 H(Ψ) = 0   if    tmin,1, es(Ψ) ≥ tq,1, es(Ψ) – tp,1, es(Ψ) 
 
Figure 5 is a schematic diagram showing the relationship between the terms in equation (82). The Heaviside 

function accounts for tmin,1, es(Ψ), the minimum effective service time interval during which reliability cannot 
decrease on the basis of the properties of time step 1. It is obtained by satisfying the condition PsV(tq) = PsV(tp) 
locally at Ψ (see eq. (72)). For the whole component, tmin,1,es denotes the minimum value of tmin,1,es (Ψ) when 
evaluated for all Ψ. If at any location the component proof-test stress level is less than the service stress level, then 
an assured minimum effective lifetime tmin,1,es does not exist and the component cannot be assured to survive for 
any given time during service loading. Note that tmin as used here would denote the real service time equivalent of 
tmin,1,es for the transient loading condition. The meaning of and the subscript notation for tmin,1,es are explained in 
the following paragraphs.  

The subscript 1 in equation (82) indicates that values are transformed to equivalent values based on the 
properties of time step 1. Time step 1 is arbitrarily chosen; however, both equations (75) and (78) are expressed in 
terms of this property set. In equation (82), σIeq,1,Tmax,p denotes the value of σIeq,κ,Tmax converted to the properties 
of time step 1. The term σ Ieq,1,Tmax,p can be computed from σIeq,κ,Tmax by equating fast-fracture reliabilities for 
individual time steps (see eq. (28) and the described maximization procedure).  
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Recall that σIeq,κ,Tmax is the maximized fast-fracture stress for the first κZp,total time steps (the proof-test time 

steps) expressed in terms of the properties of time step κ. The maximization procedure is identical to that described  
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previously (see eq. (43)) except that the maximization is performed only over the proof-test time steps 1 to κ. The 
term σIeq,1,Tmax,p can be computed by  

 
 ( )1,,I1,,I1,2,I1,1,Imax,,1,I ,...,,...,,max κσσσσ=σ eqieqeqeqpTeq  (84) 
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and σIeq,i,1 is the transformed stress during time step i, using the properties of time step 1. Similarly for the service 
loading time steps, 

 

 [ ]1,,I1),(,I1),2(,I1),1(,I,max,1,I ,...,,...,,max ζ+κ+κ+κε σσσσ=σ eqieqeqeqTeq  (86) 
 

The methodology to solve for tmin,1,es(Ψ) for the special case where Weibull and fatigue parameters do not  
vary over the time steps (but loading is allowed to vary) will be examined first. For this situation, a closed-form 
expression for tmin,1,es(Ψ) can be obtained by using the concept of g-factors as explained in Mencik (1984). 
Basically, g-factors are terms with constant values that are used to express cyclic loading as an equivalent static 
load applied over an effective time (see eq. (57)). For proof-test reliability, this can be expressed as  
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where (compare with eq. (57)) 
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with tp,1,es(Ψ) as the effective time and gp,1 as the g-factor for the proof test (both denoted in terms of property 1—
which is the same over all the time steps). Similarly, for the combination of the proof-test and the service loading, 

 



NASA/TP—2005-212505 38

( )

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

Ω

⎥
⎥
⎥
⎥

⎦

⎤

σ

σ+σ
+

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎮
⎮
⎮

⌡

⌠

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

σ

σ

π

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−=

−

−
ε

Ω

−

ε∑

isub

N
m

BV
N
oBV

ese
N

Teqesp
N

pTeq

N

oBV

Teqisub
n

isub=
qsV

V

V

V

VV

V

B

tt

VtP

d

4
exp

2

1,
2

1,

,1,max,,1,I,1,max,,1,I

2

1,

max,,1,I

1

1,

1,

1,

1,1,

1,
sub

 (89) 

 
where 
 

 i

N

i Teq

ieq
es t

tt
tgtt

V

Δ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

σ

−
== ∑

ζ

+κ= εκζ

ε
εεε

1,

1 max,,1,I

,I
1,,1,  (90) 

 
It is important to point out that the term for final strength in equation (89) is σIeq,1,Tmax,ε, not σIeq,1,Tmax,q. This 

condition is necessary because the final strength takes place during service history, hence it must be set equal to 
σIeq,1,Tmax,ε when σIeq,1,Tmax,p > σIeq,1,Tmax,ε. Recall that σIeq,1,Tmax,p > σIeq,1,Tmax,ε is a stipulation of equation (82) 
in order for tmin,1,es(Ψ) to exist. Equating equations (87) and (89) and solving for tε,1,es (which is now designated as 
tmin,1,es) gives 
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When Weibull and fatigue parameters do not vary over the time steps, then gε,1 and gp,1 are constant values 

regardless of the values for tε and tp. In that situation, equation (91) can be used irrespective of tε and tp. In addition, 
rather than using equation (82) to evaluate the Heaviside function, only tmin from equation (91) needs to be 
compared with tε. If tε ≥ tmin, the Heaviside function has a value of 1, otherwise it is 0. 

When the Weibull and fatigue parameters are not constant over the time steps, then gp,1 and g ε,1, as defined in 
equations (88) and (90), respectively, no longer apply. Their equivalent g-factor form is no longer constant with 
time, and an iterative procedure must be used to solve equation (91). For this more general case (where Weibull and 
fatigue parameters are not constant), the effective time for the proof test can be reexpressed by equating equations 
(75) and (87), resulting in 
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and reexpressing equation (78) as 
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so that 
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Equating equations (87) and (93) then gives 
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where 
 

 ( ) ( ) ( )Ψ−Ψ=Ψ espesqes ttt ,1,,1,,1min,  (96) 
 

Although not obvious, equations (95) and (91) are actually identical when the Weibull and fatigue parameters 
do not vary between time steps. In this case, equation (95) is normalized by σIeq,1,Tmax,p, whereas equation (91) is 
normalized by σ Ieq,1,Tmax,ε. Making equations (95) and (96) both true requires iteratively finding the value of tε that 
satisfies the equality; however, this is computationally intensive. Fortunately, the attenuated failure probability 
evaluation can be performed for the component if the sign of the inequality in equation (82) is established locally at 
Ψ. This means that iteration is not necessary. Instead, equation (95) can be used to establish tmin,1,es(Ψ), which is 
used on the left side of the inequality in equation (82). The right side of the inequality in equation (82) is determined 
by computing tq,1,es(Ψ) from equation (94) and tp,1,es(Ψ) from equation (92).  

For computational efficiency (and convenience) in the CARES/Life program, the term for X1q in equation (94) 
is evaluated with σIeq,1,Tmax,p instead of σIeq,1,Tmax,ε. This is conservative and avoids having to evaluate X1q twice—
once for equation (78) using σIeq,1,Tmax,p and once for equation (94) using σIeq,1,Tmax,ε. 

 
 

3.0 Examples 
 

In this section, four example problems are provided to illustrate various aspects of the transient reliability 
methodology developed in this report: 

(1) Silicon nitride disks undergoing thermal shock. This problem shows the fast-fracture transient analysis 
capability.  

(2) Heavy-duty diesel engine exhaust valves tested in an experimental engine rig. This example is used to 
contrast predictions for cyclic loading over time using the power law, the combined Walker-power law, and proof 
testing.  
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(3) Failure response of alumina flexure bars in static fatigue at elevated temperature. This example looks 
at two possible modeling scenarios that can reproduce the failure response in an alumina material where the 
material properties and failure behavior are changing over time. The example problem examines the hypothetical 
effect of changing the Weibull and fatigue parameters over time on the failure probability of alumina four-point 
flexure bars in static fatigue. 

(4) Hexoloy SiC tubes subjected to thermal shock. This example compares experimental to predicted failure 
probabilities. It also explores the effect of repeated thermal shock loading on the tube’s reliability. Transient loading 
and material response were taken into account in this example.  
 

 
3.1 Example 1: Thermal Shocked Disks Failing in Fast Fracture 

 
In this example, the fast-fracture reliability response of laser-induced thermal shocked disks made of silicon 

nitride is examined. The purpose here is to see if the strength response of the thermally shocked disks can be 
predicted using the Weibull parameters obtained from rupture data of simple bend-bar beams. The transient fast-
fracture reliability predictions of the disk versus the instantaneous fast-fracture reliability predictions are also 
compared. This example is derived from an international study (Ferber and Breder, 2001) involving laboratories 
from Germany, Japan, and the United States. Phase I of that study worked to develop and verify thermal upshock 
techniques in which disk specimens were centrally heated to fracture by an appropriate heating source, including a 
laser, a quartz lamp, a shaped heating element, and a gas torch. Phase II of the study was a round-robin activity that 
tested two silicon nitrides—AlliedSignal AS800 and Kyocera SN282—using the techniques developed in phase I. 
This example used disk results for the SN282 material from the Siemens AG organization, as provided by Rettig 
(Rettig, U.: Personal communication, Aug. 2002). These disks were tested using the laser irradiation technique 
described by Kirchhoff et al. (1994) and Rettig (1998). Three-point flexure bar data provided by Ferber (Ferber, M.: 
Personal communication, July 2002) were also used. 

Thin disks 20 mm in diameter and 0.3 mm thick were centrally heated by an 800-W laser working in 
continuous-wave mode—the schematic of which is shown in figure 6. A large centrally heated area and a steep 
temperature gradient near the edge was created, which yielded high tensile stresses near the edge. The specimens 
were rapidly heated so that fracture would occur in less than a second. The temperature-versus-time response across 
the disk was measured with a fast scanning pyrometer. The heating time and the thinness of the disk were chosen 
such that through-the-thickness temperature gradients (and hence bending stresses) were negligible. Further details 
regarding the experimental setup are found in Ferber and Breder (2001), Kirchoff et al. (1994), and Rettig (1998). 

A total of 15 disks were fractured. The time of rupture and the radius corresponding to the location of fracture 
were recorded for each specimen. Fracture stresses were computed by the study participants using the temperature 
profile at the instant of fracture, the temperature-dependent elastic modulus and thermal-expansion coefficient, and 
the integral equations from standard elasticity theory. Some of the disks were cut into three-point flexure specimens 
in order to independently quantify the strength characteristics. Fourteen of these flexure specimens were tested at 
room temperature. They had the following average dimensions: a thickness of 0.30 mm, a width of 3.25 mm, a 
length of 15.00 mm, and a support span of 9.44 mm. The specimen edges were not beveled. 

An ANSYS finite element model of the disk was prepared as shown in figure 7 for the CARES/Life reliability 
analysis. The model comprised a 90° slice of the disk and spanned one-half the thickness (one-eighth of the disk 
was modeled). Solid elements were used in the model. The disk was not constrained (other than to prevent rigid-
body motion), and thus was allowed to expand freely. Temperature-dependent thermal expansion and elastic 
modulus values from Ferber and Breder (2001) were used. The thermal loading profiles versus time for two 
specimens (specimens 3 and 9), as supplied by Rettig (Rettig, U.: Personal communication, Aug. 2002), were used 
for the thermal loading, and the temperatures were assumed to be constant through the thickness. Specimen 3 had 
the highest time to failure (0.65 s) and, hence, the highest reported fracture strength (430 MPa) from Ferber and 
Breder (2001). Specimen 9 had an intermediate fracture strength (340 MPa) from Ferber and Breder (2001). For 
specimen 3, figures 8 and 9 show the transient thermal profile and the transient stress analysis results from the FEA, 
respectively. Figure 9 shows the tangential (circumferential) stresses versus the distance from the disk center. The 
tangential stresses are compressive near the disk center and become tensile towards the disk edge. The radial  
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stresses are compressive over the entire disk and are not shown. The FEA analysis for specimen 3 consisted of  
27 time steps ranging from 0.0 to 0.65 s, whereas the analysis for specimen 9 consisted of 15 time steps ranging 
from 0.0 to 0.35 s. The time steps corresponded to increments where experimental measurements were obtained. 
The FEA transient tangential stress results compared very well with the numerical calculations performed by the 
Siemens group. 

For the CARES/Life reliability analysis, the Weibull parameters obtained from the three-point flexure bars  
were used to predict the strength response of the disks. The Weibull parameters are usually determined from rupture 
experiments of specimens in simple tension or flexure. Regression techniques, such as least squares and maximum 
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likelihood (see app. D reproduced from Nemeth et al., 2003, for more details), have been developed that can determine 
these parameters from a simplified form of equation (17):  
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where σf is the peak stress in the specimen, σθV is the specimen characteristic strength, and Ve is known as the 
effective volume. The strength σθV is the value of σ f where 63.21 percent of experimental rupture specimens fail. 
When the maximum likelihood parameter estimation method and the assumption of volume flaws were used, a 
Weibull modulus mV of 11.96, a characteristic strength σθV of 612.7 MPa, and a Weibull scale parameter σoV of 
453.8 MPa-mm3/m were obtained for the flexure bars tested at room temperature. The material strength of ceramics 
(and hence the Weibull and fatigue parameters) are known to be temperature dependent. Ferber and Breder (2001) 
shows this relationship for SN282, where the average strength gradually decreases as temperature increases. 
However, this dependency was not considered in this analysis since only room temperature results were available 
for the bars cut from the disks. The authors believe this is still satisfactory since, from figure 8, the temperatures 
near the edge of the disk (where fracture is most likely to occur) are relatively low, so material properties should not 
deviate much from room temperature values. 

The transient reliability response of the disk was calculated using the room temperature values of mV and σoV  
and the results of the FEA with equation (45). Figure 10 shows the predicted failure probability versus time for 
specimens 3 and 9. These results were obtained using volume-based analysis with the Batdorf multiaxial meth-
odology, a Griffith crack (eq. (5)), and 82.0=C  (eq. (4)). The plot shows straight-line segments connecting the 
failure probability predictions for the various time steps. Each time step is based on analysis results from the 
experimentally measured temperature profile. The solid line shows the results of the transient analysis from 
equation (45), whereas the dotted line shows the results from the fast-fracture analysis of the individual time steps. 
Notice that the dotted line occasionally shows a lower failure probability than a previous time step, whereas the 
solid line for the transient analysis correctly does not show this trend. Also, there is a close correlation between the 
transient fast-fracture results (solid line) and the single-time-step fast-fracture results (dotted line), which increases 
confidence in the validity of the transient solution algorithm. The solid and dashed lines of disk 9 are virtually 
coincident. Disks 3 and 9 truncated at different failure probabilities because they failed at different maximum 
stresses σf. Another interesting observation is that disks 3 and 9 appear to have somewhat different failure 
probability responses versus time. 
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Figure 11 shows the predicted failure probability response of the disk versus the maximum stress σf in the disk. 

The experimentally obtained fracture stresses are overlaid for comparison. The curve for the three-point flexure  
bar results represents a line of best fit to the data, as previously described (mV = 11.96 and σθV = 612.7 MPa),  
that was used to obtain the Weibull parameters used for the disk reliability analysis (mV = 11.96 and  
σoV = 453.8 MPa-mm3/m). The solid curve for the disk represents predictions based on the analysis of disk 3, 
whereas the more difficult to see dashed curve is the prediction from disk 9. Notice that the disk-9 results truncate 
around Pf = 0.45, consistent with figure 10. The curves for disks 3 and 9 follow nearly the same path in figure 11, 
unlike the results shown in figure 10. A striking observation about figure 11 is the difference in the median strength 
between the disk and the three-point flexure bar. This primarily represents the Weibull size effect: a component 
with a larger amount of volume under high stress will have a lower average strength than a component with a 
smaller amount of volume under high stress. This effect is a direct consequence of equation (17). 

Another interesting item worth commenting on is the significant difference between the Weibull modulus mV 
for the three-point flexure bar rupture data (mV = 11.96 and σθV = 612.7 MPa) and for the thermal shocked disk 
experimental rupture data (mV = 6.91 and σθV = 345.9 MPa) shown in figure 11, as determined by the CARES/Life 
maximum likelihood parameter estimation. A least-squares regression (using an Excel spreadsheet) on the 
CARES/Life disk prediction curves shown in figure 11 yields a Weibull modulus mV of 8.72. This result is worthy 
of note because under usual circumstances the Weibull modulus for the test specimen and the designed component 
are presumed to be the same given that they are sampling similar flaw populations and that the effective volume Ve 
stays constant versus time. In other words, under usual circumstances, the Weibull modulus obtained from the 
regression of the predicted disk failure probability curve versus strength would be 11.96—the same value as for the 
three-point flexure specimen data. The fact that in this case the Weibull moduli between the predicted disk response 
curve and the flexure bar data are significantly different can be understood by examining figure 9.  

Notice that as time increases the amount of volume under high tensile stress significantly decreases. This 
decreases the effective volume Ve with time, and through the size effect, increases the predicted failure stress σf. 
The overall effect of the effective volume changing with time is to decrease the observed (apparent) Weibull 
modulus for the thermally shocked disks according to σf. The fact that CARES/Life predicts that the Weibull 
modulus obtained from the failure-probability-versus-σf curve reduces to 8.7 in comparison to the flexure bar value 
of 12.0, compares favorably with the experimental disk result of 6.9. In other words, some of the discrepancy in the 
Weibull modulus values between the experimental disk and flexure bar results can be explained as a consequence of 
the transient thermal loads and how they influence the stress distribution in the disk as a function of time. The 
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difference in values (12.0 versus 8.7), therefore does not necessarily indicate some error or inconsistency. The 
remainder of the difference (8.7 versus 6.9) can be explained as natural statistical variation (within 90-percent 
confidence bounds). 

The excellent correlation in figure 11 to experimental results must be considered within the context of the 
underlying statistics, given that the effective volume Ve between the three-point bend bar and the disk is large and 
sensitive to the value chosen for the Weibull modulus mV. Because of the relatively small number of samples tested 
(in this case, 14 flexure specimens) and the large size effect, using Weibull parameters based on 5- and 95-percent 
confidence bounds from the three-point flexure bar data could shift the disk predictions significantly to the left  
and right of the experimental data. In general, a good design practice would be to avoid large size-effect scalings 
between specimens and components unless experimental data exist for both the specimen and component such that 
data-pooling practices could be taken advantage of to obtain a set of best-fit Weibull parameters. 
 
 

3.2 Example 2: Heavy-Duty Diesel Exhaust Valves Undergoing Cyclic Loading 
 

This example, involving a heavy-duty diesel ceramic exhaust valve (Corum, et al., 1996), was selected to 
contrast failure probability predictions for the power law (eq. (8)), the combined Walker-power law (eq. (56)), and  
a proof-test condition. The valves were made of NT–551 silicon nitride material. Table I summarizes the Weibull 
and SCG parameters obtained from four-point flexure bars at three different temperatures (Andrews et al., 2000). 
CARES/Life and the raw data listed in Andrews et al. (2000) were used to obtain these parameters. Data to obtain 
values for the combined Walker-power law parameters did not exist, so assumed values for QV and A2/A1 were used 
(eq. (63)). 
 

TABLE I.—NT–551 FAST-FRACTURE AND SCG MATERIAL PROPERTIES 
Temperature, 

T, 
°C 

Volume 
Weibull 
modulus, 

mV 

Volume 
Weibull scale 

parameter, 
σoV, 

MPa-mm3/m 

Weibull 
characteristic 

strength, 
σθ, 

MPa 

Crack- 
velocity 

exponent,
NV 

Volume SCG 
material 

parameter, 
BwV, 

MPa2-sec 

Walker 
R-ratio 

exponent, 
QV 

Crack- 
velocity 

ratio, 
A2/A1 

 20 9.4  1054 806 31.6 5.44×105 3.2 0.65 
 700 9.6  773 593 86.5 1.12×104 3.2 0.65 
 850 8.4  790 577 18.5 1.13×106 3.2 0.65 

 
Fifteen valves were engine tested without failure. These valves consisted of seven longitudinally machined 

valves and eight transversely machined valves. The transversely machined valves had been engine tested for  
1000 hr, whereas the longitudinally machined valves had been engine tested for 166 hr. These valves were subse-
quently tested in fast fracture to examine their retained strength. For both valve-machining orientations, failure was 
found to be volume induced. 

Since all engine-tested valves failed because of volume flaws, the transient reliability of the valves was based 
on volume analysis. Figure 12 shows the pressure variation as a function of time during a typical combustion  
cycle of 0.0315 s. The pressure was applied to the valve face and other exposed surfaces within the cylinder. The 
maximum pressure attained during the combustion cycle was estimated to be 15.85 MPa (Corum, et al., 1996). A 
445-N (100-lb) force due to spring preload was applied to the valve stem when it was in the open position. At the 
moment the valve closed, an impact force of 1335 N (300 lb) was applied to the valve stem. In addition, thermal 
stresses due to the temperature distribution in the valve were superposed to the mechanical stresses. 

Figure 13 shows the approximate mean thermal profile in the valve. Steady-state thermal analysis using the 
ANSYS FEA code was conducted to compute these temperatures. This figure shows that the temperature is 
maximum near the valve face and decays towards the valve seat and stem.  

Transient reliability analysis (using eqs. (49), (51), (70), (77), (80), (81), and (82)) for a PIA-style formulation 
(Barnett et al.,1967; and Freudenthal, 1968) was conducted by dividing the load history into 29 time steps. During 
each step, the load was assumed to be constant. The loads corresponding to these time steps were modeled within  
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the ANSYS FEA program, which yielded the stress results for these 29 time steps (stress history). Figure 14 
highlights the first principal thermomechanical stress distribution in the valve at the moment of maximum applied 
pressure (at time step 6). From the figure, it is apparent that the maximum stress location is at the valve radius, 
which is in agreement with the FEA results of Corum et al. (1996).  

The valve’s stress history and other relevant terms (temperature, volume, material properties, etc.) were 
subsequently read into CARES/Life. Figure 15 shows the power-law transient reliability curve as a function of time 
(load cycles). As seen in the figure, the probability of failure increases with time, and it is apparent that the ceramic 
valve is very reliable. Figure 16 shows these same results on a log-log scale plot for the power law and time step 6 
applied as a static load for low probabilities of failure. After 1 hr of operation, the failure probability Pf was 
predicted to be 6×10–5 (6 in 100 000 valves would have failed), whereas after 8.7 million hr of operation, the Pf was 
predicted to be 9.4×10–4 (94 in 100 000 valves would have failed). 

A static reliability analysis using the maximum stress level during the load history (load step 6 in this analysis) 
was performed and compared with the transient reliability analysis. As seen in figure 16, the static loading at the 
maximum level yielded higher failure probabilities (more conservative) than for the transient loading case. Between 
9 and 9×1015 hr of operation, the failure probability using static maximum stress analysis was predicted to be 
double the failure probability based on transient analysis. For example, transient reliability analysis predicted that 
approximately 20 in 100 000 valves would have failed after 1000 hr of operation, whereas maximum static stress 
reliability analysis predicted that approximately 40 in 100 000 valves would have failed. These results, showing 
higher failure probabilities for static maximum loading than for transient loading, make sense since the combustion 
load cycle contains a considerable duration of low to no loading for the valve. 

Figure 16 also shows the predicted failure probability as a function of the number of cycles for various 
scenarios. None of the tested valves failed, even though 8 of the 15 valves were tested to 1000 hr (approximately 
1.1×108 cycles). Thus, the failure rate of the tested valves was less than 1 out of 8 at 1000 hr of operation. From 
figure 16 it can be seen that in fast fracture (at one cycle with no SCG) about 5 out of 100 000 valves are predicted 
to fail from the loading. With SCG and the power law, about 20 out of 100 000 valves are predicted to fail after 
1000 hr of operation. If it is conservatively assumed that the worst-case load (time step 6) is applied over the whole 
engine cycle (static loading), then about 40 out of 100 000 valves would fail after 1000 hr. When the combined 
Walker-power law is used with the hypothetical parameters from table I, this rate increases to 70 out of 100 000 
valves at 1000 hr. All of these rates were well below what was experimentally observed, but not enough valves 
were tested to make any firm conclusions. These three scenarios were presented to contrast the predictions. The  
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power law with cyclic loading predicts the least damage. The static loading scenario is predicted to be more 
damaging at double the rate of the cyclic loading. The combined Walker-power law predicts the most damage 
because of the enhanced cyclic fatigue effect.  

The predicted failure rate can be reduced even further if proof testing is applied to prevent the weakest 
components (those with the highest likelihood of failing) from being placed into service. Figure 16 also shows the 
predicted results for the three various scenarios for an applied proof test of 10 000 cycles at a loading factor of 1.1 
of the service loading (dashed lines in the figure). Increasing the proof-test load would reduce the attenuated 
probability of failure even further. 

The transient reliability methodology described in this report is based on discretizing the load history into short 
time steps during which everything is assumed to remain constant. Obviously as these time steps become shorter 
and shorter (the load history is divided into more and more time steps), the solution becomes more accurate. It is not 
possible to suggest how many time steps should be used, since the proper selection of time steps depends on the 
problem and load history at hand. Users are well advised to run a convergence analysis by running several transient 
reliability computations using different sets of time steps. There will be a tradeoff between computational efficiency 
and error.  

 
3.3 Example 3: Alumina in Static Fatigue—Material Properties Changing With Time 

 

This example examines how the reliability response of a vitreous bonded alumina is hypothetically affected by 
Weibull and fatigue parameters that change over time. The two scenarios that are presented are based strictly on curve 
fitting the data. The authors do not have sufficient information to physically specify which parameters are really 
responsible for the change in material response with time. However, the point of this analysis is to present an analytical 
model that might explain the nonlinear and changing rupture behavior of the material given that the physical parameters 
that are responsible for the changing material behavior are known. This capability could be useful in modeling materials 
with changing composition (or with changing physics of crack growth), including oxidation and crack blunting/healing 
phenomena. 

The data for the example, which were obtained from Quinn (1987), consisted of the rupture lives of the alumina 
four-point flexure bars in static fatigue (loading at a constant stress level over time). The specimens had the following 
average dimensions: a height of 2.2 mm, a width of 2.8 mm, a load span of 19.0 mm, and a support span of 38.0 mm. 
This data set was chosen from the literature because of its nonideal behavior and because of the careful experimental 
technique reported by the author, which reduced the likelihood that equipment and measurement errors would 
significantly affect the results. The rupture data for the individual specimens are shown in figure 17. Testing was 
performed at 1000 °C. The report stated that very little creep deformation was detected, and although fractography was 
attempted, it did not reveal the source of the strength-limiting flaws. 
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Two trends made these data nonideally behaved: (1) dramatically increased scatter at lower applied stresses and  

(2) pronounced nonlinear behavior in the stress rupture data as the applied stresses became lower (the strength data 
shifted to the right, which signified that the lives became longer than would have been predicted if the standard power 
law was applicable). An ideally behaved data set would show a straight line trend, indicating that the fatigue exponent 
was constant. In addition, the scatter band would appear with a constant width versus the applied stress, indicating that 
the Weibull modulus was constant. 

A confirmatory piece of evidence that material properties were changing with time was obtained by performing 
static rupture experiments on specimens that were annealed (at no load) for either 1 or 24 hr at 1050 °C. The outcome of 
these treatments (not shown herein) was that life dramatically increased versus exposure time for an applied stress level 
(Quinn, 1987). Quinn indicated that the observed behavior is probably due to the partial devitrification of the material’s 
glassy phase, resulting in an increased viscosity of the phase and a material with improved creep and stress rupture 
behavior. Quinn cites Wiederhorn et al. (1986) to support this, although he concedes that crack blunting, healing, or 
residual stress changes could also be operative. 

Quinn’s data defy the conventional modeling approach since the material properties could be changing over time. 
To account for this, the authors of the current report show what happens when Weibull and fatigue parameters change 
with time for two cases: (1) changing the fatigue exponent N and the Weibull modulus m over time and (2) changing the 
Weibull parameters (m and σ0) over time. Tables II and III show the sets of parameters chosen to demonstrate these 
scenarios. Given the fact that no established parameter estimation techniques currently exist for this type of nonideally 
behaved data, these parameters were iteratively selected to fit the data. Table II contains a set of parameters versus time 
where N and m were varied to yield an improved fit to the data. Table III shows a set of parameters where m was varied 
while N was kept relatively constant. Note that in both cases the scale parameter σ0 depends on the Weibull modulus 
and B depends on the fatigue exponent as well as the Weibull parameters. When these parameter sets are applied within 
a reliability analysis, the Weibull and fatigue parameters are linearly interpolated with the log of time within the time 
spans listed in the tables and are held constant outside of the time span. 
 

TABLE II.—WEIBULL AND FATIGUE PARAMETERS ASSOCIATED WITH FIGURE 17 
Time,  

t,  
s 

Surface 
Weibull 
modulus, 

mS 

Surface Weibull 
scale parameter, 

σoS, 
MPa-mm2/m 

Surface crack- 
velocity exponent, 

NS 

Surface SCG 
material parameter, 

BwS, 
MPa2-s 

1.6 29.4 156.8 6.7 2711.1 
31.6 15.8 152.7 13.2 9707.7 
1.0×10

5
 13.1 127.3 36.4 2276.2 
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TABLE III.—WEIBULL AND FATIGUE PARAMETERS ASSOCIATED WITH FIGURE 18 
Time,  

t,  
s 

Surface 
Weibull 
modulus, 

mS 

Surface Weibull 
scale parameter, 

σoS, 
MPa-mm2/m 

Surface crack- 
velocity exponent, 

NS 

Surface SCG 
material parameter, 

BwS, 
MPa2-s 

1.6 29.4 165.8 6.7 2 711.1 
31.6 7.4  263.3 8.0 2 395.9 

316.2 4.5  870.1 9.0 10 389.0 
 

Because of the simplicity of the four-point specimen loading and geometry, results from the FEA were not needed 
for the reliability analysis. Instead, a closed-form expression for the effective area Ae was used to evaluate the integral of 
equation (17) for a surface flaw failure mode (see app. D reproduced from Nemeth et al., 2003). An effective area Ae 
(which is analogous to the effective volume in equation (97)) of 58.0 mm2 was calculated on the basis of a Weibull 
modulus value of 7.7. This value was chosen because sensitivity analysis using equation (17) indicated that the 
maximum error in strength for a given failure probability would be 1 percent or less for Weibull modulus values 
ranging between 5.0 and 30.0. This level of error is negligible for the illustrative purposes of this example. In modeling 
the transient material response using equation (42), 10 time steps are used per decade of the log of the time. Hence,  
10 time steps are used between 1 and 10 s, whereas 20 time steps are used between 1 and 100 s. The time steps are log 
increments of time; that is, they would appear as equally spaced increments in figure 17 with 10 steps per decade. 

Figure 17 shows the predicted 10-, 50-, and 90-percent failure probability isolines for the parameters shown in  
table II, and figure 18 shows 1-, 10-, 30-, 50-, 70-, 90-, and 99-percent failure probability isolines for the parameters 
shown in table III. Neither plot represents an optimized set of fitted parameters. As previously stated, no established 
parameter estimation techniques currently exist for this type of nonideally behaved data. Parameters were obtained by 
segregating portions of the data and performing parameter estimation as described in appendix D from Nemeth et al. 
(2003) for the four-point bending bar specimen as well as by further refinements by trial and error. Figure 17 shows that 
the curvature in the data can be captured by changing the fatigue exponent N; however, accounting for the change in 
scatter still required modifying the Weibull modulus m. Figure 18 is interesting because a satisfactory fit to the data can 
be obtained by changing the Weibull modulus and scale parameter only (B changes mainly in response to these param-
eters). The kink shown in the failure probability isolines between 10 and 100 s is not purposely modeled: that is, 
parameter values were not specifically selected to obtain this response. The “outlier” rupture data (data that appear to be 
not part of, or not consistent with, the main body of data) at long times to failure at 70 MPa and the outlier data at short 
times to failure at 60 MPa are better accounted for in this model than they are in figure 17. That is, the data points that 
visually appear to be outliers are actually consistent with the flaw population failure probability response: they are 
predicted to be there. 
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The modeling assumptions that produced the results in figure 18 reasonably capture all the trends in the data as well 
as or better than the approach used in figure 17. Also, both approaches required changing the Weibull modulus m to 
account for the range of scatter. A changing Weibull modulus could indicate new flaw generation or changes of the 
physics of crack growth associated with R-curve behavior. On the other hand, a changing fatigue exponent with time is 
consistent with crack blunting/healing phenomena, where the crack-velocity relationship in equation (8) is changing 
with time. In this case, further tests on the material would be needed to understand the underlying mechanism that was 
driving the SCG behavior. 
 
 

3.4 Example 4: Thermally Shocked Hexoloy SiC Tubes 
 

The thermal shock problem of Hexoloy (Saint-Gobain Ceramics, Niagara Falls, NY) sintered alpha silicon 
carbide (SASC) tubes was chosen in this study for four reasons:  

 
(1) The thermal, elastic, Weibull, and SCG data for the SASC material (tables IV and V) are available.  
(2) SASC SiC tubes were tested in fast fracture and thermal shock loading during earlier studies (Segall, 1992; 

Shelleman et al., 1991; Jadaan, 1990; Jadaan et al., 1991 and 1994; and Jadaan and Tressler, 1993), and hence, 
experimental data providing measured failure probability Pf for the shocked tubes are available. By using these data 
and the theory developed in this report, we can compare the measured Pf values with the predicted values and 
demonstrate the viability of the transient methodology.  

(3) The SASC material was selected because of its use in industrial applications.  
(4) Multiaxial thermoelastic stress states resulting from the localized quenching of the SASC tubes are very 

complex and highly transient. Such complex and transient thermal and stress states are desired in our example to 
demonstrate the full potential of the proposed theory. 
 

TABLE IV.—WEIBULL AND SCG PARAMETERS OF HEXOLOY SiC 

Specimen 
configuration 

Temperature, 
°C 

Average 
strength, 

MPa 

Weibull 
modulus, 

m 

Volume 
Weibull 

scale 
parameter, 

σoV, 
MPa-m3/m 

Area 
Weibull 

scale 
parameter, 

σoS, 
MPa-m2/m 

SCG 
exponent, 

N 

Volume 
SCG 

coefficient, 
BWV, 

 

MPa2-s 

Area 
SCG 

coefficient, 
BWA, 

 

MPa2-s 

 25 232  12.2 63.9 123.4 --- ----- ----- 
C-ringa  1200 245  8.8 42.5 104.1 29.4 5826 6884 

 25 ---  --- ---- 114.7 ---- ----- ----- O-ring  1200 287  9.9 ---- 115.4 27.2 ----- 480.3 
aC-ring tested in compression. 

 
 

TABLE V.—THERMOELASTIC MATERIAL PROPERTIES FOR HEXOLOY SiC (Segall, 1992) 
[Poisson’s ratio, 0.14.] 

Temperature, T, °C 25 200 500 700 800 900 1000 1100 
Specific heat, Cp, J/kg-°C 485.3 682.2 790.8 857.6 898.2 945.3 999.8 1064 
Thermal conductivity, κ, W/m-°C 133.5 99.9 57.8 45 41.1 37.1 36 35.4 
Thermal diffusivity, D, cm2/s 0.872 0.473 0.236 0.172 0.151 0.128 0.116 0.105 
Elastic modulus, E, GPa 417.9 415.9 413.7 ----- 407.1 ----- 402.7 ----- 
Thermal expansion coefficient, α, 106/°C 3.30 4.20 4.90 ----- 5.45 ----- 5.75 ----- 

 
 
The experimental shock study was conducted by Segall, with the details reported in his Ph.D. thesis (Segall, 

1992). However, a brief summary of the thermal shock testing procedure and results will be reiterated here for 
completeness. The testing procedure involved the symmetric placement of each tube (152 mm long with an outside 
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diameter of 43.9 mm and an inside diameter of 35.3 mm) in a furnace without restraints. Once positioned and 
appropriately instrumented, the furnace was closed and the tube was internally heated to 1000 °C and allowed to 
equilibrate for at least 15 min. After equilibration, the instrumentation was activated and a localized helium quench 
over a 10-mm segment (central portion of the tube) was allowed to flow to the surface of the tube as shown in  
figure 19. In the thermal fatigue portion of the study, when the 10-s quench (one thermal shock cycle) was 
completed, the tube was reheated and the process was repeated for up to five cycles. Acoustic emissions (AE)  
were continuously monitored in situ during the tests. In addition, transient internal surface temperature profiles at 
distances of 0, 2, 4, 6, 8, 10, 12, 14, 20, 30, 50, and 75 mm from the quench centerline were measured (fig. 20) 
using multiple thermocouples with temperature corrections (Segall, 1992). Error analysis indicated that a 1 to 3 °C 
error could have resulted from data-acquisition errors, and up to 2 °C from inherent thermocouple errors.  
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The results of the SASC testing revealed a number of interesting behaviors. Post-thermal-shock fracture tests 
revealed a minimal propensity for SCG or fatigue after five cycles—either the specimens showed significant crack-
ing with minimal retained strength or no damage at all. This behavior was corroborated by the in situ AE data, 
which indicated that most of the damage (if any) was incurred during the first cycle. An AE energy-versus-time  
plot (see fig. 21) showed that most of the damage took place during the first cycle, indicating minimal crack 
extension during the last four thermal shock cycles. All tubes with high AE histories showed extensive axial-to-
circumferential crack paths with no discernible differences in the crack densities or patterns between the singly and 
multiply cycled tubes. Fractography conducted on the failed tubes indicated that the majority of failures were due to 
relatively large axial defects remaining from the extrusion process used to fabricate the tubes and that failures could 
originate at both internal and external surfaces.  

To perform the transient reliability analysis, one must know the Weibull (m, σ0) and SCG (N, B) parameters for 
the SASC material. When a reliability analysis is performed, these parameters are obtained from simple specimens. 
These simple specimens when loaded to failure should sample similar flaw populations to those existing in the tube. 
Hence, C-ring and O-ring specimens cut from as-received Hexoloy tubes were tested in fast fracture (Weibull 
parameters) and dynamic fatigue (SCG parameters) modes (Shelleman et al., 1991; Jadaan, 1990; Jadaan et al., 
1991 and 1994; and Jadaan and Tressler, 1993). The C-ring specimen, with maximum tensile stress existing at its 
outer surface, samples flaws at the external surface of the tube; whereas the O-ring specimen, with maximum tensile 
stress existing at its internal surface, samples flaws at the inner surface of the tube. Hence, when the reliability of 
the tubes was modeled, the C-ring Weibull and SCG parameters were used to compute the transient probability of 
failure due to external surface defects, and the O-ring Weibull and SCG parameters were used to compute the 
transient probability of failure due to internal surface defects. The C-ring data were also used to compute the failure 
probability due to volume defects. Table IV lists the Weibull and SCG parameters for Hexoloy SiC at ambient 
temperature and 1200 °C on the basis of both volume and surface area analysis.  

The ANSYS FEA program was used to compute the transient temperature and thermoelastic stresses for the 
thermally shocked tube. The tubular geometry combined with the axisymmetric nature of the quench allowed the 
tube to be modeled with two-dimensional axisymmetric plane55 thermal elements and axisymmetric plane42 
structural solid elements. A fine mesh of 5000 elements was used to model half the tube, from the quench centerline 
(y = 0) to the end of the tube (y = 0.076 m). In this mesh, the tube’s wall thickness was divided into 20 elements and 
its length was divided into 250 elements.  
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The transient heat transfer analysis was conducted first. This involved circumferentially blasting a 5-mm- 
wide region of the tube’s half length with cold air. Table V lists the thermal material properties as a function of 
temperature used in the thermal FEA. The temperature distributions throughout the tube as a function of time were 
needed in order to perform the transient thermoelastic stress analysis. Experimentally, only the internal temperature 
distributions as a function of time were known (fig. 20). An iterative inverse heat transfer analysis was conducted 
by prescribing appropriate convection film coefficients (representing thermal loads) on all surfaces for the entire 
quench period of 10 s. The FEA-computed transient temperature profiles closely matched the measured ones, 
especially within the critical quench zone. Figure 22 shows the FEA-calculated internal surface temperature pro-
files at the same six times that the temperatures were experimentally measured for figure 20. Adiabatic symmetry 
boundary conditions were imposed at the quench centerline. In addition, nonlinear and time-varying convective 
films, representing the continuous but changing thermal loading from the internal heating element as it cooled, were 
imposed on the internal surface. Changing, high-coefficient convective films within the 5-mm quenching zone 
(representing rapid heat loss due to quenching in that region) along with constant-convection films at the remainder 
of the external and edge surfaces of the tube were also prescribed. In addition, the temperature-dependent thermal 
conductivity and specific heat (table V) were tabulated within ANSYS for automatic interpolation. As can be seen 
from figures 20 and 22, the internal surface thermal profiles compare relatively well, especially within the critical 
quench zone.  

Once the temperature profiles throughout the tube for the entire 10-s quench period were known, the transient 
thermoelastic stress analysis was conducted. The elastic properties of the Hexoloy material as functions of the 
temperature necessary for the structural analysis part of the study are listed in table V. Figures 23 and 24 display  
the hoop-stress distributions along the external and internal surfaces of the tube as a function of time during the  
10-s quench period. Figure 25 shows the hoop-stress distributions within the tube at 0 and 10 s. It can be seen from 
these figures that the critical high tensile hoop stresses exist on both surfaces of the tube mainly within the 5-mm 
quench zone (based on one-half of the tube’s length). The external hoop stresses were found to be higher than the 
internal hoop stresses since more rapid quenching takes place there. At the quench centerline of the external surface, 
the hoop stress spiked up to its maximum value of 187 MPa almost immediately (within 1 s) and then started to 
decay with time until it reached 127 MPa at the end of the quench test. At the internal surface, the hoop stress was 
initially compressive, but then it started to increase gradually until it reached a maximum of 106 MPa after 
approximately 7 s. Note that within the quench zone, almost the entire volume of material for almost the entire 
quench duration is in circumferential tension, while the rest of the tube is being subjected to either low tensile or 
compressive hoop stresses. 
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Figures 26 and 27 display the axial stress distributions along the external and internal surfaces of the tube as  

a function of time during the 10-s quench period. Figure 28 shows the axial stress distributions within the tube at  
0 and 10 s. It can be seen from these figures that the critical high tensile axial stresses exist on both surfaces of the 
tube but within different regions. The external axial stresses were determined to be compressive within the quench 
zone and to be tensile within the central region of the tube between 10 and 50 mm. Within that central region, the 
tensile axial stress increased and shifted away from the quench plane as time elapsed. The maximum axial stress at 
the external surface was computed to be 125 MPa after approximately 7 s, 20 mm from the quench plane. At the 
internal surface of the tube, tensile axial stresses occurred within the quench zone and proved to be the highest of  
all stresses, reaching 265 MPa after 10 s. Figure 29 shows the transient axial stress distributions along the wall 
thickness at the quench centerline. In this case, approximately half of the internal volume of material was subjected 
to tensile axial stress while the external half was being axially compressed. This axial stress distribution within the 
quench plane is similar to that of a flexural specimen.  

By combining these observations for both the hoop and axial stress distributions, one can note that within the 
quench zone the internal surface of the tube is being subjected to a biaxial tensile stress state (with the axial stress 
being the absolute highest), while the external surface of the tube is being subjected to tensile hoop and compressive 
axial stresses. Hence, it would be expected that the internal surface would be the most critical area and that it would 
contribute significantly to the failure probability of the tube. 
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The CARES/Life code was used to compute the SASC tube failure probabilities on the basis of the volume, 
internal surface, external surface, and total surface (internal and external surfaces combined) analyses. Three types 
of transient reliability analyses were conducted: 

(1) Transient reliability with SCG during a one-cycle shock. Because of the lack of Hexoloy material 
properties in tubular form between room temperature and 1000 °C, the Weibull parameters between room tem-
perature and 800 °C were assumed to remain constant and to be equal to the room temperature values. Between 800 
and 1000 °C, the parameters were also assumed to remain constant but to be equal to the 1200 °C values. It was 
assumed that no SCG would take place between room temperature and 800 °C (this was done by setting the SCG 
coefficient B equal to an arbitrarily large number, B = 1.0×1015). Between 800 and 1000 °C, the SCG parameters 
were assumed to remain constant and to be equal to the 1200 °C values. The Hexoloy material is resistant to SCG 
below 1000 °C, but little data exist to quantify that behavior. In this thermal shock test, the temperature distribution 
for the entire duration remained below 1000 °C. So that the capability of the methodology described earlier could be 
demonstrated, it was assumed that some SCG does occur between 800 and 1000 °C. 

(2) Transient reliability without SCG for one-cycle thermal shock (fast fracture). Of course, since in this 
analysis no SCG damage takes place during the load history, multiple-cycle thermal shock analysis would yield the 
same failure probability as it would that for one cycle.  

(3) Transient reliability with SCG after five cycles of repeated quenching. In this analysis, reversible 
behavior was assumed. In other words, the Weibull modulus was assumed to vary with the temperature as cyclic 
quenching took place. The scale and SCG parameters were also allowed to vary with temperature during the five-
cycle thermal fatigue load history. 

Figures 30 to 33 display the transient Pf based on volume flaw analysis, internal surface flaw analysis, external 
surface flaw analysis, and total surface flaw analysis (for both the internal and external surfaces), respectively. The 
transient reliability analysis was performed by dividing the stress history into six time steps and assuming the stress 
and temperature within each time step would remain constant. These figures include the results for all three types of 
analyses just outlined. Obviously, the five cycles of tube-quenching fatigue analysis span over 50 s rather than the 
10 s shown in these plots. However, for plot clarity and comparison to the Pf after one cycle, the Pf at the end of the 
five-cycle quench period was plotted arbitrarily to the right of 10 s. 

It can be seen from figures 30 to 33 that, with the exception of external surface analysis, the probabilities of 
failure based on fast fracture (no SCG) and time-dependent behavior (with SCG) after one and five cycles were 
essentially equal and ranged between 92- and 95-percent probability of failure. Initially, 14 tubes were tested 
experimentally and three were found to be damaged after one quench cycle, resulting in Pf = 3/14 = 21.4 percent. 
Then, another set of 11 pristine tubes were tested, and six were found to be damaged after five quench cycles, 
resulting in Pf = 6/11 = 54.5 percent. As stated earlier, the AE study showed very little crack propagation within the 
last four cycles of the quench test. All damage either occurred in the first cycle or not at all. Hence, the results of the 
five-cycle test were the same as for a single-cycle test. The relatively large difference between the failure rates, the 
inherent scatter of flaws within SASC, and the seemingly low propensity for fatigue suggests that a greater number 
of tubes should be tested to accurately capture the failure rate for the tests conducted. Pooling the experimental 
results for the one- and five-cycle quench tests gives Pf = 9/25 = 36.0 percent.  

Two potential sources of error could help explain why the failure probabilities were conservatively predicted 
compared with the experimental data: (1) heat transfer coefficients are notoriously difficult to measure, and hence, 
the absolute accuracy of the stress analysis would be in question, and (2) fractography of fractured tubes showed 
that the flaw population had a preferential orientation, which implies that the material strength was anisotropic. As 
previously mentioned, fractography indicated that the majority of failures were due to relatively large axial defects 
remaining from the extrusion process used to fabricate the tubes. The highest transient stresses were in the axial 
direction, as shown in figure 27. This means that the weakest material flaws were oriented parallel to the highest 
stresses. Hence, the weakest flaws could not fail from axial stresses. However, the transient reliability analysis did 
not take this orientation effect into account, and consequently, probably overpredicted the tube probability of 
failure. Note that specimen rupture data that tested the tube axial strength do not exist, and therefore, the degree of 
strength anisotropy is unknown.  
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The effects of a global (hoop and axial) stress-reduction factor were examined to investigate the sensitivity of 

the predicted Pf to the variation in the stress (and strength) within the tube and the inverse heat-transfer analysis 
used to predict them. As can be seen from figure 34, a 10-percent reduction in stress magnitudes (corresponding to 
potential errors in the inverse heat transfer analysis and/or strength anisotropy) yielded a Pf of 55.3 percent, which 
matched the experimental observation for the five-cycle tube test. Given the potential for the material strength 
anisotropy and the degree of complexity for the inverse heat-transfer analysis to affect the accuracy of the predicted 
stresses, it can be argued that the predicted and measured probabilities of failure compare plausibly well. 

As stated earlier, the transient reliability analysis for both volume and total surface area analyses showed no 
cyclic fatigue dependence after five quench cycles. There are mainly two reasons for that behavior. First, the 
Hexoloy material does not display significant SCG behavior below 1000 °C. In the current analysis, it was assumed 
that no SCG behavior occurred below 800 °C. Second, because of the rapid reduction in temperature after quench-
ing and the short duration of the test cycle, the material was subjected to SCG conditions for only a few seconds, 
not long enough to induce significant SCG. So that this hypothesis could be tested, the transient failure probability 
of the quenched tube was computed as a function of the number of quench cycles. These computations were 
performed for stress levels reduced by 10 percent to reflect the 55-percent Pf measured after five quench cycles. 
Figure 35 shows how the transient Pf increased from 55 to 98 percent after 100 000 quench cycles when damage 
due to SCG was taken into account. Figure 35 also shows that when SCG was not taken into account, the Pf 
remained constant at 55 percent and did not increase with time. This indicates very clearly that, even for ceramics 
with minimal SCG behavior, ignoring the effect of crack propagation on the Pf could lead to premature failure and 
nonconservative designs. 
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4.0 Conclusions 
 

A methodology for computing transient reliability in ceramic components subjected to fluctuating thermo-
mechanical loading was developed and incorporated into the CARES/Life code. This enables CARES/Life to be 
used to predict component reliability for situations such as thermal shock, startup and shutdown conditions in heat 
engines, and cyclic loading. The methodology accounts for varying material response, whether due to temperature 
or environmental changes, by allowing Weibull and fatigue parameters to vary over the loading history. Examples 
demonstrating the viability of the technique for fast fracture, cyclic loading, and proof testing were presented. 
 
 
 
Glenn Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, September 17, 2004 
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Appendix A 
Symbols 

 

A  surface area  

Ac  constant to fit experimental fatigue rupture data (eqs. (D193) and (D217))  

Ad  constant to fit experimental dynamic fatigue rupture data (eq. (D205))  

Ae effective area (see app. D, section D.2.1.4, and eqs. (D70), (D71), and (D73) to (D75)) 

Aef modified effective area analogous to modified effective volume Vef (see app. D, section 
D.2.2.3, and eqs. (D151), (D152), (D154), and (D155))  

Aelt  area of an individual finite element (eqs. (D45) and (D113))  

Ag  gauge area of a specimen (see section D.2.1.4; for example, the area of a tensile specimen 
under uniform uniaxial tension) 

Aisub  area of an individual subelement  

A1 power-law crack-velocity parameter (eqs. (8) and (D93)) 

A2 Walker-law crack-velocity parameter (eqs. (52), (55), and (D139)) 

A2 Anderson-Darling goodness-of-fit test statistic (eq. (D90)) 

A~  A2/A1 (eq. (E35)) 

A, B, C property sets (beginning of app. C) 

a crack half length; penny-shaped crack radius; radius of semicircular surface crack 

a(Ψ,t) crack length located at Ψ for time t 

B  fatigue parameter; subcritical crack-growth parameter (eqs. (D98) and (D140)) 

BB  subcritical crack-growth parameter for the Batdorf multiaxial equation (eq. (D150) and see  
app. D, section D.2.2.4) 

BBS BB for the surface-flaw failure mode 

BBV BB for the volume-flaw failure mode 

Bnw  subcritical crack-growth parameter for the NSA criterion (see app. D, section D.2.2.4) 

BnwS Bnw for the surface-flaw failure mode 

BnwV Bnw for the volume-flaw failure mode 

BS  value of B for the surface-flaw failure mode 

Bu  subcritical crack-growth parameter for specimen uniaxial Weibull distribution (eq. (D144) and 
see app. D, section D.2.2.4) 

BuS Bu for the surface-flaw failure mode 

BuV Bu for the volume-flaw failure mode 
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BV  value of B for the volume-flaw failure mode 

Bw  subcritical crack-growth parameter for uniaxial Weibull distribution (eq. (D145) and see  
app. D, section D.2.2.4) 

BwS Bw for the surface-flaw failure mode 

BwV Bw for the volume-flaw failure mode 

C  Shetty shear sensitivity constant; Shetty’s constant in mixed-mode fracture criterion (eqs. (4), 
and (D30)) 

C~  combined-law estimation parameter (eq. (E36)) 

c the contour of a circle of unit radius in two-dimensional principal stress space (eq. (D37)) 

D Kolmogorov-Smirnov goodness-of-fit test statistic defined as D+ or D–, whichever is the largest  
(eq. D89)) 

D+, D– Kolmogorov-Smirnov goodness-of-fit test statistic (eq. D89))  

det determinant function  

E Young’s modulus of elasticity; constant (see app. C) 

e scalar variable representing the random residual (eq. (E46)) 

exp(x) exponential function ex 

F(σf) cumulative distribution function for argument σf (for example, see eqs. (D55) and (D89)) 

Fn(σf) empirical distribution function for argument σf (eq. (D88)) 

f(α,β) function of the variables within the parentheses (for example, see eq. (D174)) 

fc cyclic frequency (in hertz); constant-amplitude frequency (eqs. (55) and (E1)) 

G strain-energy release rate (eq. (D26)) 

Gc critical strain-energy release rate (eq. (D26)) 

GT total strain-energy release rate (eq. (D26)) 

GI, GII, GIII strain-energy release rate for crack extension modes I, II, and III, respectively (eq. (D26)) 

g g-factor (eqs. (57), (D130), (D133), (E6), and (E45), and table D.I) 

H Heaviside step function (examples include eqs. (82), (D19), (D43), (D238), and (E26)) 

h total height of four-point bend bar with rectangular cross section (fig. D.4); base points or roots 
of Legendre polynominals (for example see eq. (D240)) 

I identity matrix (eq. (E51)) 

i ith value in a set (for example see eq. (D83)) 

isub isubth value in a set of subelements (eqs. (21), (D34), (D46), (D106), and (D114)) 

J Jacobian operator, Jacobian matrix (eqs. (D33), (D45), (D105), and (D113)) 

K(n) Kanofsky-Srinivasan confidence band factors (eq. (D91)) 

Kδ dominant stress-intensity factor, either KII or KIII (eq. (D30)) 
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KI  mode-I stress-intensity factor (eq. (1); also, for example, KI = 1.366σn a1/2 (eq. (D54)) for a 
semicircular surface crack)  

KII  mode-II stress-intensity factor (for example KII = 1.241τ a1/2 (eq. (D54)) for a semicircular 
surface crack)  

KIII  mode-III stress-intensity factor (for example KIII = 0.133τ a1/2 (eq. (D54)) for a semicircular 
surface crack)  

KIc  critical mode-I stress-intensity factor (fracture toughness)  

KIeq equivalent mode-I stress-intensity factor from applied multiaxial stress (eqs. (2) and (D92)) 

ΔKIeq(Ψ, n) range in equivalent mode-I stress-intensity factor for cycle n and location Ψ (eqs. (54)  
and (D139)) 

KIeq(Ψ, t) equivalent mode-I stress-intensity factor at time t and location Ψ (eqs. (2), (D92), and (E4)) 

KIeq,max(Ψ, t)  maximum mode-I equivalent stress-intensity factor over the load history (eqs. (53), (D139),  
and (E3))  

KIeqc(Ψ, t) critical equivalent mode-I stress-intensity factor from applied multiaxial stress at time t and 
location Ψ  (eqs. (3) and (D95))  

KIeqg(Ψ, t) equivalent mode-I stress intensity factor associated with a g-factor for cyclic loading at time t 
and location Ψ (eqs. (E1), (E2), (E5), and (E6)) 

k integer counter; number of time steps within (for example, see eq. (42)) 

kB Batdorf crack-density coefficient (eqs. (D18), (D42), and (E24)) 

kBS kB for the surface-flaw failure mode 

kBV kB for the volume-flaw failure mode 

kw Weibull crack-density coefficient (eqs. (D8) and (D35)) 

kwp Weibull polyaxial crack-density coefficient (eqs. (D11), (D12), (D37), (D38), and (E24)) 

kwpS kwp for the surface-flaw failure mode  

kwpV kwp for the volume-flaw failure mode  

kwS kw for the surface-flaw failure mode 

kwV kw for the volume-flaw failure mode 

Bk  normalized Batdorf crack-density coefficient (eqs. (D63) and (D76)) 

BSk  Bk  for the surface-flaw failure mode 

BVk  Bk  for the volume-flaw failure mode 

L likelihood function (eq. (D85)) 

L1 length between outer loads in four-point bending (fig. D.4) 

L2 length between symmetrically applied inner loads in four-point bending (fig. D.4) 

ln natural logarithm 
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R, m, n direction cosines of normal to oblique plane in principal stress space for the Cauchy 
infinitesimal tetrahedron (figs. D.2, D.3, and D.6; and eqs. (D21) to (D23), (D47), (D48), 
(D101), and (D102)) 

MD median deviation (see app. D, section D.2.2.5, and eqs. (D197), (D198), (D209), (D210), 
(D221), and (D222)) 

m  fast-fracture (inert strength) Weibull modulus (scatter parameter) (shape parameter) (eq. (D7)) 

mS  m for the surface-flaw failure mode 

mV  m for the volume-flaw failure mode 

m~  time-dependent Weibull modulus (eq. (D144)) 

Sm~  m~  for the surface-flaw failure mode 

Vm~  m~  for the volume-flaw failure mode 

m′  estimated fast-fracture Weibull modulus estimated from fatigue data (eq. (D201))  

Sm′  m′  for the surface-flaw failure mode 

Vm′  m′  for the volume-flaw failure mode 

N crack-velocity exponent (for power law, eqs. (8) and (D93), and for Walker law, eq. (D139)) 

NS  N for the surface-flaw failure mode 

NV  N for the volume-flaw failure mode 

N1, N2 crack-velocity exponents for power law and Walker law, respectively, when both laws are 
superposed (eqs. (56) and (E1)) 

n integer counter; total number of values in a set (for example, the total number of fractured 
specimens as shown in eq. (D83)); also, the number of loading cycles (for example, see eqs. 
(52) to (55) and (D139)) 

nf number of cycles to failure (eqs. (D158) and (D216)) 

nfin final number of cycles (eq. (65)) 

ngp number of gaussian integration points (for example, see eq. (D240)) 

nint initial number of cycles (eq. (65)) 

no cycle-dependent scale parameter (eq. (D160)) 

nsub total number of subelements (eqs. (21), (D34), (D46), (D106), and (D114)) 

nT,i transformed ith data number of cycles to failure at applied maximum (within the cycle) 
transformed stress level σT (eq. (D219)) 

nT,0.50 the value of nT when Pf = 0.50 (eq. (D221)) 

nθ characteristic number of cycles (eq. (D158)) 

nθST nθT for the surface-flaw failure mode 
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nθT characteristic number of cycles at applied maximum (within the cycle) transformed stress  
level σT (eq. (D220)) 

nθVT nθT for the volume-flaw failure mode 

P(X=x) probability random variable X equals the value x (eq. (D3)) 

Pf probability of failure (Pf = 1– Ps)  

ΔPf incremental probability of failure (eq. (D13))  

Pf(t)  probability of failure at time t 

Pf(tp) probability of failure from proof test at time tp (eq. (D228)) 

Pf(tq) probability of failure from proof-test and service load at time tq (eq. (D228)) 

Pfa(tq) attenuated probability of failure from proof-test and service load at time tq (eqs. (72)  
and (D228)) 

PfaS(tq) Pfa(tq) for the surface-flaw failure mode 

PfaV(tq) Pfa(tq) for the volume-flaw failure mode 

Pf,i ranked probability of failure for the ith specimen (for example, see eqs. (D83) and (D198)) 

Pf,mean mean probability of failure (eq. (E44)) 

PfS Pf for the surface-flaw failure mode  

ΔPfS ΔPf for the surface-flaw failure mode 

PfS(t) Pf(t) for the surface-flaw failure mode 

PfS(tp) Pf(tp) for the surface-flaw failure mode 

PfS(tq) Pf(tq) for the surface-flaw failure mode 

PfV Pf for the volume-flaw failure mode  

ΔPfV ΔPf for the volume-flaw failure mode 

PfV(t) Pf(t) for the volume-flaw failure mode 

PfV(tp) Pf(tp) for the volume-flaw failure mode 

PfV(tq) Pf(tq) for the volume-flaw failure mode 

Ps reliability or probability of survival (Ps = 1– Pf)  

Ps(t)  probability of survival at time t 

Ps(tp) probability of survival from proof test at time tp (eq. (72)) 

Ps(tq) probability of survival from proof-test and service load at time tq (eq. (72)) 

Psa(tq) attenuated probability of survival from proof-test and service load at time tq (eq. (72)) 

PsaS(tq) Psa(tq) for the surface-flaw failure mode 

PsaV(tq) Psa(tq) for the volume-flaw failure mode 
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PsS Ps for the surface-flaw failure mode 

PsS(t) Ps(t) for the surface-flaw failure mode 

PsS(tp) Ps(tp) for the surface-flaw failure mode 

PsS(tq) Ps(tq) for the surface-flaw failure mode 

PsV Ps for the volume-flaw failure mode 

PsV(t) Ps(t) for the volume-flaw failure mode 

PsV(tp) Ps(tp) for the volume-flaw failure mode 

PsV(tq) Ps(tq) for the volume-flaw failure mode 

ΔP1 probability of existence of a crack with strength (or critical stress) between σIeqc and  
σIeqc + ΔσIeqc in an incremental volume or area (eqs. (D13), (D14), and (D40)) 

ΔP1S ΔP1 for the surface-flaw failure mode 

ΔP1V ΔP1 for the volume-flaw failure mode 

P2 probability of a crack with strength σIeqc being so oriented that σIeq ≥ σIeqc (eqs. (D13), (D15),  
and (D41)) 

P2S P2 for the surface-flaw failure mode 

P2V P2 for the volume-flaw failure mode 

p success probability (see paragraph above eq. (D4)) 

Q Walker-law R-ratio sensitivity exponent (eqs. (52), (D139), and (E1)) 

R(Ψ) R-ratio (ratio of minimum stress divided by maximum cyclic stress) at location Ψ where the  
R-ratio is assumed to be constant with time or cycles (eq. (E8)) 

R(Ψ, n) R-ratio (ratio of minimum stress divided by maximum cyclic stress) at n cycles and location Ψ 
(eq. (D140)) 

R(Ψ, t) R-ratio (ratio of minimum stress divided by maximum cyclic stress) at time t and location Ψ 
(eq. (59)) 

ROR risk-of-rupture (eq. (D6))  

r number of remaining specimens in censored data analysis (eq. (D87)) 

r, s, t finite element natural coordinates (eqs. (D33), (D45), (D105), and (D113)) 

sc term in modified Levenberg-Marquardt algorithm (eqs. (E50) and (E51)) 

T temperature 

t time 

Δteq,j equivalent (incremental) time for time step j including fatigue effects (eq. (69)) 

Δtes equivalent (incremental) time for an equivalent applied static stress (eqs. (D134) and (D135)) 

tf time to failure (eq. (D144) 

tf,i ith specimen time to failure (eqs. (D195) and (D207)) 
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tfin final time 

tint initial time 

Δtj duration of time step j 

tmin service time after proof test before which no failure should occur (eq. (D235)) 

tmin,1,es effective service time after proof test where no failure should occur for an applied static stress 
of σIeq,1,Tmax,p based on the properties of time step 1 (eqs. (91), (95), and (96)) 

to time-dependent scale parameter (eqs. (D146), (D148), (D150), and (E32)) 

tod time-dependent scale parameter for dynamic fatigue (eq. (D157)) 

todS tod for the surface-flaw failure mode 

todV tod for the volume-flaw failure mode 

toS to for the surface-flaw failure mode 

toV to for the volume-flaw failure mode 

tp proof-test time (eqs. (72) and (D228)) 

tp,1,es effective proof-test time for an applied static stress of σIeq,1,Tmax,p based on the properties of 
time step 1 (see section 2.6 and eqs. (82), (88), and (92)) 

tper period of the cycle (eq. (D128)) 

tq total combined time in proof testing and service (eqs. (72) and (D228)) 

tq,1,es effective time for an applied static stress of σIeq,1,Tmax,p based on the properties of time step 1 
for all time steps (service and proof test) (see section 2.6 and eq. (94)) 

tT,i transformed ith specimen failure time at applied stress level σT (eqs. (D195) and (D207)) 

tT,0.5 calculated value of tT when Pf = 0.50 (eq. (D197)) 

tε time in service (see section 2.6) 

tε,1,es effective service time for an applied static stress of σIeq,1,Tmax,ε based on the properties of time 
step 1 (see fig. 5 and section 2.6) 

tθ characteristic time (eqs. (D144) and (D148)) 

tθd characteristic time for dynamic fatigue (eq. (D156)) 

tθdS tθd for the surface-flaw failure mode 

tθdST tθdT for the surface-flaw failure mode 

tθdT characteristic time for transformed applied stress rate (eq. (D208)) 

tθdV tθd for the volume-flaw failure mode 

tθdVT tθdT for the volume-flaw failure mode 

tθS tθ for the surface-flaw failure mode 
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tθST tθT for the surface-flaw failure mode  

tθT characteristic time for transformed applied stress level (eq. (D196)) 

tθV tθ for the volume-flaw failure mode 

tθVT tθT for the volume-flaw failure mode 

Uj  fatigue effect multiplier (eqs. (68) and (69))  

V  volume 

Ve  effective volume (see app. D, section D.2.1.4, and eqs. (D56) to (D58) and (D60) to (D62)) 

Vef modified effective volume (see app. D, section D.2.2.3, and eqs. (D146) to (D150), (E31), and 
(E33)) 

Velt  volume of an individual finite element (eqs. (D33) and (D105))  

Visub  volume of an individual subelement  

Vg  gauge volume of a specimen (see section D.2.1.4; for example, the volume of a tensile 
specimen under uniform uniaxial tension)  

w total width of four-point bend bar with rectangular cross section (after eq. (D59)); gaussian 
weight function (for example, see eq. (D240)) 

X discrete real-valued random variable (eq. (D3)) 

X1 transient reliability term; for example, see equations (33), (40), and (42)  

X1p value of X1 for proof test (eqs. (76) and (77)) 

X1q value of X1 for combined proof test and service load condition (eqs. (79) and (80)) 

x specific value of X (eq. (D3)); any variable (for example, see eq. (46)) 

x, y, z location in the body of the structure; Cartesian coordinate directions  

x k-dimensional vector of independent variables (eq. (E46)) 

Y  crack geometry correction factor or shape factor (eqs. (1), (D92), and (E2) to (E4)) 

y h/2 (see fig. D.4 and eq. (D59)); scalar response or dependent variable (eq. (E46)); any variable 
(for example, see eq. (46)) 

Z  number of load cycles—a load cycle could consist of a collection of cycles with various 
amplitudes, peak loads, frequencies, wave forms, and other parameters. Z is associated with the 
power-law model for crack growth.  

Zε,total  total number of service load cycles (see section 2.6 and eq. (74)) 

Zp,total  total number of proof-test load cycles (see section 2.6 and eq. (73))  

α angle between σn and the stress σ1 (or σx) on a unit radius sphere (figs. D.2 and D.6) or unit 
radius circle (fig. D.3) 

(α, β) arguments or function of orientation angles of a flaw (figs. D.2, D.3, and D.6) 

β angle between the σn projection and the stress σ2 (or σy) in a plane perpendicular to σ1 (or σx); 
azimuthal angle on the unit radius sphere (figs. D.2 and D.6)  
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Γ gamma function  

γ total number of load blocks (see section 2.6 and eq. (74)) 

δ applied load (fig. D.4); counter (eq. (74)) 

δc step bound (app. E2) 

Σ summation function; applied multiaxial stress state (for example, see eq. (D13)) 

ζ ζ–κ number of time steps in a service load cycle (see section 2.6 and eqs. (80) and (81)) 

η(σ) Weibull crack-density function (eq. (D2)); number of flaws per unit volume or area with 
strength ≤ σ  

η(σIeqc) Batdorf crack-density function (eqs. (D18) and (D42)); number of flaws per unit volume or area 
with strength ≤ σIeqc  

ηS(σ) η(σ) for surface-distributed flaws 

ηS(σIeqc) η(σIeqc) for surface-distributed flaws 

ηV(σ) η(σ) for volume-distributed flaws 

ηV(σIeqc) η(σIeqc) for volume-distributed flaws 

θ vector of regression parameters (eq. (E46)) 

θc current estimate of vector θ (eq. (E50)) 

θn  new estimate of vector θ (eq. (E50)) 

κ number of proof-test time steps in the first cycle of loading (see section 2.6 and eqs. (76)  
and (77)) 

λ number of load blocks (for example, see eq. (48)); argument in Poisson distribution (eq. (D3)) 

μ term in binomial series expansion (eq. (46)) 

μc scalar control variable (eq. (E51)) 

ν material Poisson’s ratio 

ξ total number of time steps (see app. C)  

ρ integer smaller than i (see eq. (C23))  

σ applied uniaxial stress (for example, see eq. (D9)) 

σ(t) far-field uniaxial stress applied normal to a crack at time t 

σch(Ψ) characteristic value σΙeq(Ψ,t) located at Ψ (eqs. (D127) and (D129)) 

σf value of the peak stress in a component at failure (determined from experimental rupture data 
of simple specimen geometries such as flexure specimens or tensile specimens). Used to 
characterize the Weibull parameters m and σθ from the experimental rupture data of simple 
specimens (eq. (D55)) 

σf,i ith ranked value of n specimens of σf (for example, see eq. (D83)); applied stress level 
associated with the ith failed specimen with failure time tf,i (eq. (D195)) 
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σf,0 specimen fracture stress σf at time t transformed back to t = 0 (eq. (D144)) 

σf I,i ith transformed fast-fracture (inert) strength of the specimen (eq. (D203)) 

σi,0 ith principal stress (i = 1, 2, or 3) applied at time t transformed back to t = 0 (eq. (D104)) 

σiq,0(x, y, z) ith principal far-field stress (for i = 1, 2, 3) at location x, y, z transformed to time t = 0 from the 
combined effect of the static applied multiaxial proof-test load to time tp and the static applied 
multiaxial service load from time tp until time tq (eq. (D233)) 

σn applied far-field stress component normal to a crack face (figs. D.2, D.3, and D.6; eqs. (D11), 
(D22), (D48), (D101), and (D109)) 

σn,0(Ψ) normal stress σn located at Ψ transformed to t = 0. This symbol is associated with the NSA 
method (see app. D, section D.2.2.4, and explanation for eq. (D182)) 

σnp(Ψ) applied far-field static proof-test stress component normal to a crack face until time tp and 
located at Ψ (eq. (D231))  

σnp,0(Ψ) applied far-field static proof-test stress component normal to a crack face until time tp and 
located at Ψ that is transformed to time t = 0 (eq. (D231)) 

σnq,0(Ψ) applied far-field static normal stress located at Ψ transformed to time t = 0 from the combined 
effect of proof-test and service loading. The static proof-test load is applied until time tp and the 
static service load is applied from time tp until time tq (eq. (D234) 

σo Weibull scale parameter (eqs. (D7), (D35), (D58), and (D71)) 

σoB,j Weibull scale parameter for time step j incorporating the effect of Bk (for example, see  
eq. (28)) 

σoBS,j σoB,j for the surface-flaw failure mode 

σoBV,j σoB,j for the volume-flaw failure mode 

σoS Weibull scale parameter for the surface-flaw failure mode  

σoV Weibull scale parameter for the volume-flaw failure mode  

σT specified level of stress for which equivalent failure times are computed (eqs. (D195) and 
(D219)) 

σu threshold stress (strength) parameter (eq. (D7)) 

σuS σu for the surface-flaw failure mode 

σuV σu for the volume-flaw failure mode 

σx, σy, σz global coordinate system tensile/compressive stress components (fig. D.6, and eqs. (D101) and 
(D102))  

σ1, σ2, σ3 principal stresses (σ1 ≥ σ2 ≥ σ3)  

σ1, max(Ψ) maximum principal stress within the cycle located at Ψ (eq. (E33)); eq. (D145) shows Ψ  
as x, y, z 
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σ1,0(Ψ) 1st principal stress or applied uniaxial stress at time t transformed back to t = 0 located at Ψ 
(eq. (E30); eq. (D145) shows Ψ as x, y, z 

σ1q,0(x, y, z) see σiq,0(x, y, z) for i = 1: the first principal stress 

σ2q, 0(x, y, z) see σiq, 0(x, y, z) for i = 2: the second principal stress 

σ3q, 0(x, y, z) see σiq, 0(x, y, z) for i = 3: the third principal stress 

σIeq equivalent (or effective) mode-I far-field stress on a crack from applied multiaxial stress that 
results in modes I, II, and III crack surface displacements 

σΙeq(Ψ,t) equivalent mode-I far-field stress on a crack from applied multiaxial stress at time t and 
location Ψ 

σΙeq,j equivalent mode-I far-field stress during time step j 

σIeq,j,k transformed stress during time step j using the material properties of time step k (eq. (44)) 

σIeq,k,Tmax  maximum transformed stress over k time steps (using the properties of step k) (eq. (43)) 

σΙeq,max maximum value of σΙeq for all values of Ψ (eqs. (D16), (D17), and (D39)) 

σΙeq,max(Ψ) maximum equivalent (effective) mode-I far-field stress over a defined time interval or number 
of cycles located at Ψ (mean stress and amplitude assumed to be constant over time or cycles) 
(eqs. (D131), (E3), and (E4)) 

σΙeq,max(Ψ,(n or t)) maximum equivalent (effective) mode-I far-field stress over a particular loading cycle or at a 
defined time (over the period of the cycle at that time) located at Ψ (eqs. (53), (54), and 
(D139)) 

σΙeq,min(Ψ) minimum equivalent (effective) mode-I far-field stress over a defined time interval or number 
of cycles located at Ψ (mean stress and amplitude assumed to be constant over time or cycles) 
(eq. (E4)) 

σΙeq,min(Ψ,(n or t)) minimum equivalent (effective) mode-I far-field stress over a particular loading cycle or at a 
defined time (over the period of the cycle at that time) located at Ψ (eqs. (54) and (D139)) 

σIeq,ζ,Tmax  maximum transformed stress over ζ time steps (using the properties of step ζ) for the proof-test 
and service load time steps (see section 2.6 and eqs. (79) and (80)) 

σIeq,κ,Tmax  maximum transformed stress over κ steps (using the properties of step κ) for the proof test (see 
section 2.6 and eqs. (76), (77), and (83))  

σIeq,0(Ψ) equivalent mode-I far-field strength of a flaw located at Ψ transformed to t = 0. This can also 
be considered as a transformed equivalent stress to t = 0 located at Ψ (for example, see eqs. 
(19), (D97), and (E15)) 

σΙeq,0,max maximum value of σΙeq,0 for all values of Ψ (eq. (E23)) 

σIeq,1,Tmax,p  maximum transformed stress over the proof-test time steps (using the properties of step 1) (see 
section 2.6 and eq. (84)) 

σIeq,1,Tmax,ε maximum transformed stress over the service load time steps (using the properties of step 1) 
(see section 2.6 and eq. (86)) 
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σIeqc equivalent mode-I far-field strength of a flaw; equivalent (or effective) critical mode-I stress of 
a flaw—σIeqc is the threshold value of σIeq where unstable catastrophic crack growth occurs 
(eq. (D13)) 

σΙeqc(Ψ, t) equivalent critical stress σΙeqc at time t and located at Ψ (for example, see eqs. (3), (D95), and 
(E9)) 

σIeqc,,j(t) equivalent mode-I far-field strength of a flaw at some time t that occurs over the interval of 
time step j (tj–1 < t ≤ tj) (for example, see eqs. (25), (26), (28), and (37)) 

σΙeqg far-field equivalent static stress (eqs. (D127) to (D129), (D131), and (E5)) 

σΙeqp(Ψ) equivalent mode-I far-field stress on a crack from the static applied multiaxial proof-test load to 
time tp at location Ψ (eq. (D229)) 

σΙeqp,0(Ψ) equivalent mode-I far-field stress on a crack from the static applied multiaxial proof-test load to 
time tp at location Ψ transformed to time t = 0 (eq. (D229) 

σΙeqq,0(Ψ) equivalent mode-I far-field stress at location Ψ and transformed to time t = 0 on a crack from 
the combined effect of the static applied multiaxial proof-test load to time tp and the static 
applied multiaxial service load from time tp until time tq (eq. (D232) 

σθ Weibull fast-fracture (inert strength) characteristic strength—the value of σf where 63.21 
percent of experimental rupture specimens fail; it is determined from the regression of 
experimental rupture data of simple specimen geometries, such as flexure specimens or tensile 
specimens, by using the Weibull distribution (eq. (D55))  

σθS σθ for the surface-flaw failure mode 

σθV σθ for the volume-flaw failure mode 

nσ  average normal stress (eqs. (D11) and (D37)); this symbol is associated with the NSA method 

),,(0, zyxnpσ  averaged normal proof-test stress transformed to time t = 0 (eq. (D231)) 

),,(0, zyxnqσ  averaged normal test stress transformed to time t = 0 from the combined effect of the proof-test 
and service load (eq. (D234)) 

θσ′  Weibull fast-fracture (inert strength) characteristic strength σθ estimated from fatigue data  
(eq. (D202))  

Sθσ′  θσ′  for the surface-flaw failure mode 

Vθσ′  θσ′  for the volume-flaw failure mode 

σ&  applied constant uniaxial stress rate (eq. (D120)) 

fσ&  stress rate at the point of maximum stress σf (eq. (D156)) 

iσ&  applied stress rate associated with the ith failed specimen with fracture time tf,i (eq. (D207)) 

Tσ&  specified level of stress rate for which equivalent failure times are computed (eq. (D207)) 
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τ applied far-field shear stress on a crack face; shear stress acting on the oblique plane whose 
normal is determined by angles α and β (figs. D.2, D.3, and D.6; and eqs. (D23), (D49), 
(D102), and (D110)) 

τxy, τyz, τzx global coordinate system shear stress components (fig. D.6, and eqs. (D101) and (D102))  

Ψ represents a location (x, y, z) and (for the Batdorf method) a crack orientation (α, β); vector 
representing the location and/or orientation of the crack (see eq. (D92) for further explanation) 

Ψ0 spatial coordinates of Ψ where σf occurs (eq. (D144))  

Ω solid angle in three-dimensional stress space for which σIeq ≥ σIeqc (eq. (D15); area of a solid 
angle projected onto a unit radius sphere in a stress space containing all crack orientations for 
which the effective stress is greater than or equal to the critical equivalent mode-I strength σIeqc  
(eq. (E25)) 

dΩ sin α dα dβ (incremental area on the surface of a unit radius sphere) where σIeq ≥ σIeqc  
(figs. D.2 and D.6) 

Ω(Σ,σIeqc) Ω for applied multiaxial stress state Σ and critical stress σIeqc 

ω arc length of an angle α projected onto a unit radius semicircle in stress space containing all the 
crack orientations for which σIeq ≥ σIeqc (eqs. (D39) and (D41))) 

 

 

Subscripts 

 

a attenuated quantity (for example, see Pfa); applied or service load  

B Batdorf (for example, see Bk ); Batdorf  

c critical (for example, see σIeqc); parameter (for example, see Ac) 

ch characteristic  

d dynamic fatigue  

e effective  

ef modified effective  

elt element (eq. (D113)) 

eq equivalent (for example, see σIeq) 

es equivalent static (for example, see tes) 

f failure or fracture (for example, see σf or Pf) 

fin final (for example, see tfin)  

g gauge  

i ith value or ith term 

i, j, k subscript for time step number (i ≤  j ≤  k); ith value,  jth value, kth value 
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int initial (for example, see tint)  

isub individual subelement 

max maximum (for example, see σIeq,max)  

min minimum (for example, see σIeq,min)  

n normal stress (see σn); nth value 

o scale parameter 

p proof test (for example, see tp); polyaxial (for example, see kwpV) 

q combined proof-test and service load (for example, see tq) 

S surface-based property 

s survival (for example, see Ps) 

T transformed value (for example, see σIeq,k,Tmax) 

u uniaxial; threshold 

V volume or a volume-based property (e.g., indicates volume-flaw analysis); volume (eqs.  
 (D1), (D2), (D4) to (D18), (D20), (D34), (D56) to (D58), etc.) 

w Weibull 

x x coordinate direction 

θ characteristic (for example, see σθ) 

0 value transformed to t = 0  

I mode I—crack opening mode (for example, see KI)  

II mode II—crack sliding mode (for example, see KII)  

III mode III—crack tearing mode (for example, see KIII)  

 

 

Superscripts 

 

T matrix transpose operation (eq. (E51)) 

⋅ rate (eq. (D120)) 

′ inert distribution parameter estimated from fatigue data (eqs. (D202), (D203), (D213) to (D215), and 

(D225) to (D227)) 

^ estimated parameter (eqs. (D86) and (D87)) 

~ modified parameter (eqs. (D144), (D147), (D149) to (D156), etc.) 

– normalized quantity (for example, see Bk  and eq. (D62)) 
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Definitions 

 

Batdorf component reliability model using the Weibull distribution and fracture mechanics 
principles to account for the effect of multiaxial stress states on reliability (see  
app. D) from Nemeth et al., 2003; Batdorf and Crose, 1974; and Batdorf and 
Heinisch, 1978a, for details) 

extreme fiber stress the location (point) in the body of the component where the stress is maximum  
(see σf) 

fast-fracture  component rupture in the absence of SCG where strength is strictly controlled by 
the fracture toughness and the size, distribution, and orientation of inherent flaws 
(app. D from Nemeth et al., 2003). 

mode I crack opening mode 

mode II crack sliding mode (in-plane shear) 

mode III crack tearing mode (out-of-plane shear) 

R-curve where fracture toughness KIc varies with crack size—typically increasing with 
crack size (see Broek, 1982, for introductory information) 

transient reliability analysis predicting the probability of survival of a component while accounting for loads 
and temperatures that can vary over time 

Weibull distribution  see equation (16) and Weibull (1939a and 1939b) 

 

 

Acronyms and Initialisms 

 

AD Anderson Darling (goodness-of-fit statistic) (eq. (D90)) 

CARES  Ceramics Analysis and Reliability Evaluation of Structures 

EDF empirical distribution function (eq. (D88)) 

FEA finite element analysis 

KS Kolmogorov-Smirnov (goodness-of-fit statistic) (eqs. (D88) and (D89)) 

LEFM linear elastic fracture mechanics 

MEMS microelectromechanical systems 

MLE maximum likelihood estimate 

MOR modulus of rupture 

NDE nondestructive evaluation 

NSA normal stress averaging (Weibull, 1939a, and eqs. (D11) and (D37)) 

PIA principle of independent action—a component reliability model based on the Weibull distribution that 

accounts for multiaxial stress states by using principal stresses applied independently of one another 

(see app. D from Nemeth et al., 2003; Barnett et al., 1967; and Freudenthal, 1968) 
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SASC form of silicon carbide made by Carborundum 

SCG slow crack growth 

SIF stress intensity factor 

SL significance level 
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Appendix B 
Numerical Method for Transient Reliability Analysis  

(Weibull Technique for a Simple Uniaxial Stress State) 
 
The numerical algorithm for transient reliability analysis follows for an applied uniform uniaxial tensile stress 

and a unit volume (or area). Because of its relative simplicity, the Weibull methodology (see eq. (16)) for an 
incremental volume under a uniform uniaxial stress state that varies over time and that is described with k discrete 
time steps is shown here for illustration purposes. The Batdorf methodology (for transient reliability analysis) is 
similar except for the additional complexity of accounting for the orientation of the flaw. 

 
 

B.1 Initialize the Numerical Algorithm (for the last time step, k) 
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B.2 Do-Loop Algorithm 
 

Do i = (k + 1), 2, –1 (increment in decreasing order from (k + 1) to 2), where k is the total number of time steps) 
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where the subscript numbers indicate the time step numbers. 

 
 

B.3 End Do (Loop) 
 

The risk of rupture ROR is calculated as 
 

 VXROR N
m

2
1

1

1
−=  (B3) 

 
where V is the volume (V = 1 for a unit volume). The failure probability is 

 
 ( )RORPfV −−= exp1  (B4) 
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Appendix C 
Efficient Numerical Computation for Transient  

Reliability Analysis With Cyclic Loading 
 

A computationally efficient method has been developed to perform transient reliability analysis for (constant 
amplitude and frequency) cyclic loading (see eq. (50)). The technique allows for a tradeoff between solution 
accuracy and numerical efficiency. This appendix shows how it was developed.  

The following reasoning is based on an example using a three-time-step (per cycle) loading problem. The basis 
for this formulation is the observation that a truncated binomial series expansion can be used to approximate the 
contribution of successive time steps. The numerical method described in appendix B for uniaxial stress transient 
reliability analysis is used here because of its simplicity.  

To begin, consider a unit volume specimen being subjected to repeated transient load cycles, where each cycle 
can be divided into three time steps. Over each time step, the stress and material properties are assumed to remain 
constant, however stress and material properties (Weibull and SCG parameters) could vary between time steps 
within the cycle. These stresses and material properties are designated by specifying three time steps to define a 
single cycle: 

 

 Property set A, time step 1—σIeq,a, Δta, ma, σo,a, Na, Ba 
 
 Property set B, time step 2—σIeq,b, Δtb, mb, σo,b, Nb, Bb 
 
 Property set C, time step 3—σIeq,c, Δtc, mc, σo,c, Nc, Bc 
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The repeated cyclic loading and the three time steps making up each cycle follow the pattern in table C.I. The 

numerical algorithm described in appendix B for ξ total time steps encompassing ξ/3 total loading cycles is used to 
determine the risk of rupture. Now, perform the numerical algorithm in appendix B (see eq. (B2)) for overall step  
i – 1, where step i – 1 has the material properties of A from equation (B2) of the Do-Loop algorithm. 
 

TABLE C.I.—CYCLIC LOADING PATTERN SHOWN FOR THREE CYCLES AND THREE TIME STEPS PER CYCLE 
Property set associated with the time step A B C A B C A B C 
Time step number within the cycle 1 2 3 1 2 3 1 2 3 
Overall time step number 1 2 3 4 5 6 7 8 9 
Cycle number 1 1 1 2 2 2 3 3 3 

 
 aXX uv

ii +=−
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1  (C1) 
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Set uv

iXE /= and assume that (ξ – i) >> 1 such that ξ – i is at least 3×100 (100 load cycles). In this case for the 
repeated cyclic load, E >> a, E >> b, and E >> c. This is because E already represents a summation of terms  
a, b, and c for [ξ – (i – 1)]/3 loading cycles. Because E is large relative to the terms a, b, and c, the exponentiation 
performed on X in the numerical algorithm can be approximated by a binomial series expansion truncated to two 
terms. That is, for a binomial series of the form 
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where (x2 > y2). When x >> y, the higher order terms in the series become negligible and we can approximate the 
series as a two-term expression: 

 
 (x + y)μ  ≈  xμ + μxμ–1 y        when x >> y (C3) 
 

For the i – 1 time step, 
 

 Xi–1 = E + a (C4) 
 

and for the i – 2 time step in the solution algorithm in appendix B, 
 

 Xi–2 = (E + a)z/y + c (C5) 
 

Rewriting this using the two-term binomial expansion approximation of equation (C3) yields 
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For the time step i – 3 then, 
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Because E >> a, then Ez/y >> (Ez/y/E) a(z/y) + c; so using the two-term binomial expansion again yields 
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For the i – 4 time step, 
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and again, if we assume that the term in parenthesis in equation (C9) is small relative to E(z/y)(x/w), then using the 
two-term binomial expansion yields 
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Now, from the definition of the terms u, v, w, x, y, and z, 
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So Xi–4 can be simplified as 
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Note that the two steps involving property A, steps i – 1 and i – 4, simplify to a simple sum of 2a. This is useful 

because it indicates that the cumulative effect of similar time steps (same time step number within the cycle as 
shown in table C.I) can be described by a simple summation. Following the process further for the sake of 
illustration, for the i – 5 time step, we obtain 
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Using the two-term binomial expansion then gives 
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Simplifying yields 
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Again note the direct summation of the properties for C denoted by the term 2c. Also, note that the term 
associated with property A represents a value transformed from that associated with the property for C. For time  
step i – 6, 
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Using the two-term binomial expansion gives 
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or 
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For time step i – 7, 
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Then using the two-term binomial expansion gives 
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Simplifying gives 
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It is important to note that as the term in brackets [ ] gets large relative to Xi–7 (and to smaller indices of X), the 
two-term binomial approximation becomes increasingly inaccurate. Also note the obvious similarities between 
expressions Xi–4 and Xi–7. Therefore, for the i – ρ time step, 
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In this case, (i – ρ)/3 is the number of cycles between the i – 1 and i – ρ time step. If Zι= (i – ρ)/3 is set for the 

number of cycles in the interval, then 
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If we use the two-term binomial expansion equation (eq. (C3)), equation (C25) below can be shown to be 

equivalent to equation (C24): 
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By an inductive argument for a cycle that contains k time steps, then 
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For a more convenient expression (similar to eq. (C27)), the indices can be adjusted so that, for j = i – 1 and 
ϕ = ρ – 1,  
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Equations (C25), (C26), (C27), and (C28) were shown to be true on the basis of equation (C3)—a two-term 

truncation of the binomial series. When the value of j – ϕ or i – ρ becomes sufficiently large relative to the total 
(overall) number of time steps processed in the algorithm, equation (C3) loses accuracy. In other words, more terms 
of the binomial series are needed to maintain a level of accuracy as j – ϕ or i – ρ becomes sufficiently large. How-
ever, using more than two terms in the series would destroy the computational simplicity and efficiency of the 
methodology shown thus far. Therefore, to maintain accuracy, j – ϕ or i – ρ should be sufficiently small relative to 
the total number of time steps. To obtain a complete reliability solution, we discretize the load history into λ load 
blocks, with each block containing Zι cycles such that 

  

 ∑
λ

=ι
ι=

1
total ZZ  (C29) 

 
where Ztotal is the total number of cycles and each load block (see eq. (B28)) consists of Zι cycles, with each cycle 
containing k time steps. Equation (C28) describes the contribution to reliability for each load block. Using the 
numerical algorithm shown in equations (B1), (B2), and (B3), we can express the total contribution to reliability as 
from which the risk-of-rupture is computed from equation (B3) and failure probability is calculated from equation 
(B4) for the Weibull distribution and an incremental volume. Equation (C30) also plugs directly into the Batdorf 
formulation, as shown in equations (48), (49), and (50).  
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As the number of solution increments λ gets smaller, the computational efficiency increases, but at the cost of 
some loss of accuracy. For λ = 1, Z = Z1 = Ztotal and equation (C30) simplifies to 
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Equation (C31) represents the most computationally efficient solution for repeated block (or cyclic) loading. It 
is up to users to determine if the error associated with equation (C31) is acceptable (see the following numerical 
example).  

An example of the methodology shown in equations (C30) and (C31) is provided in tables C.II to C.V to 
illustrate the tradeoff between computational efficiency and numerical accuracy using this methodology. In this 
example, a 10-time-step loading sequence was used. A unit volume was assumed, and the loading was uniaxial and 
uniform throughout the volume. The loading varied over each time step, and a temperature was associated with each 
time step. Table C.II shows the loading sequence, and table C.III shows how the Weibull and SCG parameters 
varied with temperature. These parameters were linearly interpolated at intermediate temperatures. Table C.IV 
contrasts the percent error between the exact numerical solution of equation (42) with that of equation (C31) for 
various cycle counts. It is interesting to note that the error was relatively small at the lower cycle counts (n = 10 and 
n = 100) and higher cycle counts (n ≥ 10 000). The error was as large as –11.6 percent in this example.  

 
 

TABLE C.II.—TEN-STEP TRANSIENT UNIAXIAL LOAD HISTORY 
FOR A SINGLE LOAD CYCLE 

Time step 
number 

Time, 
s 

Equivalent mode-I 
far-field stress, 

σIeq, 
MPa 

Temperature, 
°C 

 1  25 100 100 
 2  50 90 200 
 3  75 80 300 
 4  100 70 400 
 5  125 60 500 
 6  150 70 600 
 7  175 80 700 
 8  200 90 800 
 9  225 95 900 
 10  250 100 1000 
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TABLE C.III.—TEMPERATURE-DEPENDENT MATERIAL PROPERTIES 
[Material properties are linearly interpolated between temperature levels for this example.] 

Temperature Volume 
Weibull 
modulus, 

mV 

Volume Weibull 
scale parameter, 

σoV 

Volume crack 
velocity 

exponent, 
NV 

Volume SCG 
material parameter, 

BV 

100 5 230 40 0.0021 
500 9 226 36 0.021 

1000 14 221 31 0.21 
 
 
 

TABLE C.IV.—EXAMPLE OF THE EXACT SOLUTION (EQS. (41) and (42)) 
VERSUS THE CYCLIC APPROXIMATION METHOD (EQ. (C31)) 

[The results for one load block represent the least accurate  
but most computationally efficient answer.] 

Volume probability of failure, 
PfV , 

Number of 
cycles, 

n 
Exact solution 

(eq. (41)) 

Cyclic approximation 
method 

(eq. (C31)) 

Error, 
percent 

100 0.16428 0.16428 0 
101 .21701 .21571 –.6 
102 .28955 .28037 –3.2 
103 .41831 .36997 –11.6 
104 .70425 .68330 –3.0 
105 .96954 .96850 –.1 
106 .99997 .99997 –1.0×10–4 

 
 
 

TABLE C.V.—EXAMPLE OF CYCLIC APPROXIMATION METHOD FOR VARIOUS NUMBERS OF LOAD BLOCKS 
USING EQUATIONS (C29) AND (C30) 

[Each load block has the same number of cycles (Zι = Ztotal/λ ).] 
Volume probability of failure, PfV 

Number of load blocks, λ 
Number of 

cycles, 
n 

Exact 
solution 

(eq. (41)) 1 2 5 10 100 500 1000 

103 0.41831 0.36997 0.39447 0.40958 0.41420 0.41796 0.41827 0.41831 
105 0.96954 0.96850 0.96864 0.96877 0.96884 0.96924 0.96948 0.96951 

 
 
Table C.V shows the difference in failure probability between the exact solution (eq. (42)) and the approximate 

solution (eq. (C30)) for various numbers of load blocks λ. From table C.V it can be observed that the solution 
accuracy improves as λ gets larger. Figure C.1 shows the reduction in error as λ gets larger for 1000-cycle predict-
tions (the number of blocks approaches the number of cycles). At λ = 100, the error becomes relatively negligible. 
This still represents a 10-fold reduction in computational effort versus the exact solution. This example illustrates 
the level of error that may be encountered using the cyclic approximation method. The authors are not aware of a 
method to systematically specify what level of error could be expected for a given problem. It is, therefore, up to 
users to perform these tradeoff comparisons to determine an acceptable level of error versus computational effort.  
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Appendix D 
Excerpted Introduction and Theory Section—CARES/Life Ceramics Analysis and 

Reliability Evaluation of Structures Life Prediction Program23 
 
 

D.1 Introduction 
 

Advanced ceramics have several inherent properties that must be considered in the design procedure. The most 
deleterious of these properties is that ceramics are brittle materials. This lack of ductility and yielding capability 
leads to low strain tolerance, low fracture toughness, and large variations in observed fracture strength. When a load 
is applied, the absence of significant plastic deformation or microcracking causes large stress concentrations to 
occur at microscopic flaws, which are unavoidably present as a result of materials processing operations or  
inservice environmental factors. The observed scatter in component strength is caused by the variable severity of 
these flaws and by the behavior of sudden catastrophic crack growth, which occurs when the crack driving force or 
energy release rate reaches a critical value. In addition, the ability of a ceramic component to sustain a load 
degrades over time because of a variety of effects such as oxidation, creep, stress corrosion, and cyclic fatigue. 
Stress corrosion and cyclic fatigue result in a phenomenon called subcritical crack growth (SCG). SCG initiates at a 
preexisting flaw and continues until a critical length is reached, causing catastrophic propagation. The SCG failure 
mechanism is a load-induced phenomenon over time. It can also be a function of chemical reaction, environment, 
debris wedging near the crack tip, and deterioration of bridging ligaments. 

Once the factors that contribute to material failure have been identified and characterized, ceramic components 
can be designed for service applications using an appropriate brittle material design methodology. For this purpose, 
NASA’s integrated design computer program CARES/Life (Ceramics Analysis and Reliability Evaluation of 
Structures/Life) has been developed to predict the fast-fracture and/or lifetime reliability of monolithic structural 
ceramic components subjected to thermomechanical and/or proof-test loading. This design methodology combines 
the statistical nature of strength-controlling flaws with fracture mechanics to allow for multiaxial stress states, 
concurrent flaw populations, and SCG. CARES/Life is an extension of the CARES program (Powers et al., 1992; 
Nemeth et al., 1990; Pai and Gyekenyesi, 1988; Gyekenyesi and Nemeth, 1987; and Gyekenyesi, 1986), which 
predicts the fast-fracture reliability of monolithic ceramic components. The fundamental subsets of the program 
include (1) fast-fracture reliability analysis, (2) inert (fast-fracture) statistical material parameter estimation,  
(3) crack-growth laws to account for static and cyclic fatigue, (4) static, dynamic, and cyclic fatigue parameter 
estimation, and (5) the effect of proof testing on component service probability of failure. 

Because the presence of microscopic flaws causes ceramics to fail, examination of fracture surfaces can reveal 
the nature of failure. Fractography of broken samples has shown that these flaws can be characterized into two 
general categories: (1) defects internal or intrinsic to the material volume (volume flaws) and (2) defects extrinsic to 
the material volume (surface flaws). Intrinsic defects are the result of materials processing. Extrinsic flaws can 
result from grinding or other finishing operations, from chemical reaction with the environment, or from the internal 
defects intersecting the external surface. The different physical nature of these flaws results in dissimilar failure 
response to identical loading situations. Consequently, separate criteria must be employed to describe the effects of 
the applied loads on the component surface and volume. 

Because of the statistical nature of these flaw populations, the size of the stressed material surface area and 
volume (known as the size effect) affects the strength. By increasing component size, the average strength is 
reduced because of the increased probability of having a weaker flaw. Generally, for metals, the variation of 
strength is small, and thus the scaling effect is negligible. However, for materials that display large variations of 
strength, this effect is not trivial. Hence, if a ceramic design is based on material parameters obtained from smaller 
size test pieces, then the effects of scaling must be taken into account, otherwise a nonconservative design will 
result. 

                                                      
2This is a revised version of a section of Nemeth et al. (2003). Note that in this appendix some variables were renamed and some text was 
edited to be more consistent with the main text of this report.  
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Another consequence of the random distribution of flaws is that failure of a complex component might not be 
initiated at the point of highest nominal stress. A particularly severe flaw may be located at a region of relatively 
low stress, yet still be the cause of component failure. For this reason, the entire field solution of the stresses should 
be considered. Clearly, it is not adequate to predict reliability only on the basis of the most highly stressed point. 

Traditional analysis of the failure of materials uses a deterministic approach, where failure is assumed to occur 
when some allowable stress level or equivalent stress is exceeded. The most widely used of these theories are the 
maximum normal stress, maximum normal strain, maximum shear stress, and maximum distortional energy criteria 
of failure. These phenomenological failure theories have been reasonably successful when applied to ductile 
materials such as metals. However, these methods do not account for observed variations in ceramic component 
fracture stress. Therefore, to assure high reliability in brittle material design, large factors of safety are required. 
This does not allow for optimization of design since the physical phenomena that determine fracture response are 
not properly modeled.  

Because of its lack of a proper physical basis, the traditional approach to design is not adequate to predict the 
failure of brittle materials. Consequently, Griffith (1921 and 1925) proposed a fracture theory where failure was due 
to the presence of cracks of specified size and shape distributed randomly throughout the material. He assumed that 
no interaction takes place between adjacent cracks and that failure occurs at the flaw with the least favorable 
orientation relative to the macroscopic loading. The Griffith energy balance criterion for fracture states that crack 
growth will occur if the energy release rate reaches a critical value. Griffith’s theory provides a sound physical basis 
to describe the rupture process in an isotropic brittle continuum. However, it omits the effect of component size on 
strength because the crack length is not treated as a probabilistic quantity. 

Reliability analysis is essential for accurate failure prediction and efficient structural utilization of brittle 
materials subjected to arbitrary stress states. When coupled with the weakest-link model (Weibull, 1939a), this 
approach takes into account not only the size effect and loading system, but also the variability in strength due to 
defect distributions. A statistical theory of failure can be readily incorporated into the finite element method of 
structural analysis since each element can be made arbitrarily small such that the element stress gradient is negli-
gible. Component integrity is computed by calculating element-by-element reliability and then determining the 
component survivability as the product of the individual element reliabilities. 

For fast-fracture reliability analysis, the first probabilistic approach used to account for the scatter in fracture 
strength and the size effect of brittle materials was introduced by Weibull (1939a, 1939b, and 1951). This approach 
is based on the previously developed weakest-link theory (WLT) (Peirce, 1926), which is primarily attributed to 
Peirce, who proposed it while modeling yarn failure. The WLT is analogous to pulling a chain, where catastrophic 
failure occurs when the weakest link in the chain is broken. Unlike Peirce, who assumed a gaussian distribution of 
strength, Weibull assumed a unique probability density function known as the Weibull distribution. It has been 
shown (Shih, 1980) that the three-parameter Weibull distribution is a more accurate approximation of ceramic 
material behavior than the gaussian or other distributions. Since three-parameter behavior is rarely observed in  
as-processed monolithic ceramics, the CARES/Life program uses the two-parameter Weibull model in which the 
threshold stress (the value of applied stress below which the failure probability is zero) is taken as zero. The 
reliability predictions obtained using the two-parameter model are more conservative than those obtained with the 
three-parameter model. 

To predict the fast-fracture material response under multiaxial stress states by using statistical parameters 
obtained from flexural or uniaxial test specimens, Weibull proposed calculating the risk of rupture by averaging the 
tensile normal stress raised to an exponent in all directions over the area of a unit radius sphere (volume flaws; 
Weibull, 1939a) or over the contour of a unit radius circle (surface flaws; Gross and Gyekenyesi, 1989). Although 
this approach is intuitively plausible, it is somewhat arbitrary. In addition, it lacks a closed-form solution, and 
therefore, requires computationally intensive numerical modeling. Subsequently, Barnett et al. (1967) and 
Freudenthal (1968) proposed an alternative approach usually referred to as the principle of independent action  
(PIA) model for finding the failure probability in multidimensional stress fields. This principle states that the 
Weibull survival probability of a uniformly stressed material element experiencing multiaxial loading is equal to  
the product of the survival probabilities for each of the tensile principal stresses applied individually.  

The PIA fracture theory is the weakest-link statistical equivalent of the maximum stress failure theory. The 
Weibull method of averaging the tensile normal stress and the PIA model have been the most popular methods for 
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polyaxial stress-state analysis, and they have been widely applied in brittle material design (Margetson, 1976; 
Paluszny and Wu, 1977; DeSalvo, 1970; Wertz and Heitman, 1980; and Dukes, 1971). However, the Weibull and 
PIA hypotheses do not specify the nature of the defect-causing failure, so there is no foundation for extrapolating to 
conditions different from the original test specimen configuration. Consequently, the accuracy of these theories has 
been questioned, and other statistical models have been introduced (Batdorf and Crose, 1974; Evans and Jones, 
1978; and Batdorf, 1978). The ideas developed by Batdorf and Crose (1974) are important because they provide a 
physical basis for incorporating the effect of multiaxial stresses into the WLT. They describe material volume and 
surface imperfections as randomly oriented, noninteracting discontinuities (cracks) with an assumed regular 
geometry. This enables the contributions of shear and normal forces to the fracture process to be explicitly treated. 
Failure is assumed to occur when the effective stress on the weakest flaw reaches a critical level. The effective 
stress is a combination of normal and shear stresses acting on the flaw. It is a function of the assumed crack 
configuration, the existing stress state, and the fracture criterion employed. Accounting for the presence of shear on 
the crack plane reduces the normal stress needed for fracture, yielding a more accurate reliability analysis than that 
of the shear-insensitive crack model (Weibull’s method). Unlike in the deterministic Griffith failure criterion, the 
size of the crack in the probabilistic approach need not be considered because it is associated with the strength of 
the material. 

The search for an accurate fracture criterion to predict fast-fracture response to monotonically increasing loads 
leads to the field of fracture mechanics. Many authors have discussed the stress distribution around cavities of 
various types under different loading conditions, and numerous criteria have been proposed to describe impending 
failure. Paul and Mirandy (1976) extended Griffith’s maximum tensile stress criterion for biaxial loadings to include 
three-dimensional effects due to Poisson’s ratio and flaw geometry, which could not be accounted for in Griffith’s 
previous two-dimensional analysis. Other investigators (Giovan and Sines, 1979; Batdorf, 1980; Stout and Petrovic, 
1984; and Petrovic and Stout, 1984) have compared results from the most widely accepted mixed-mode fracture 
criteria with each other and with selected experimental data. No prevailing consensus has emerged regarding a best 
theory. Also, most of the criteria predict somewhat similar results, despite the divergence of initial assumptions. 
Therefore, the authors of this report concluded that several alternatives would be available for the sake of com-
parison but that the semiempirical equation developed by Palaniswamy and Knauss (1978) and Shetty (1987) 
provides the most flexibility to fit the available experimental data. In addition, Shetty’s criterion can account for the 
out-of-plane flaw growth that is observed under mixed-mode loadings. Finally, several different flaw geometries are 
described, but the penny-shaped and semicircular crack configurations are recommended as the most accurate 
representations of volume and surface defects, respectively. 

A wide variety of materials, including ceramics, exhibit the phenomenon of delayed fracture or fatigue. Under 
the application of a loading function of a magnitude smaller than that which induces short-term failure, there is a 
regime where SCG occurs and this can lead to eventual component failure in service. SCG is a complex process 
involving a combination of simultaneous and synergistic failure mechanisms. These can be grouped into two 
categories: (1) crack growth due to corrosion and (2) crack growth due to mechanical effects arising from cyclic 
loading. Stress corrosion is due to a stress-dependent chemical interaction between the material and its environment. 
Water, for example, has a pronounced deleterious effect on the strength of glass and alumina. Higher temperatures 
also tend to accelerate this process. Mechanically induced cyclic fatigue is dependent only on the number of load 
cycles and not on the duration of the cycles. This phenomenon can be caused by a variety of effects, such as debris 
wedging or the degradation of bridging ligaments, but essentially it is based on the accumulation of some type of 
irreversible damage that tends to enhance the crack growth. Service environment, material composition, and 
material microstructure determine if a brittle material will display one, none, or some combination of these fatigue 
mechanisms. 

Because of the complex nature of SCG, models that have been developed tend to be semiempirical and to 
approximate the behavior of SCG phenomenologically. Theoretical and experimental work in this area has 
demonstrated that lifetime failure characteristics can be described by considering the crack-growth rate versus the 
stress-intensity factor (SIF) or the range in the SIF. This is graphically depicted as the logarithm of the rate of crack 
growth versus the logarithm of the mode-I SIF. Curves of experimental data show three distinct regimes, or regions, 
of growth. The first region includes the threshold behavior of the crack, where below a certain value of stress 
intensity the crack growth is zero. Above this threshold level there is an approximately linear relationship of stable 



NASA/TP—2005-212505 92

crack growth. In this second region, the crack velocity is essentially constant versus the SIF. The third region 
indicates unstable crack growth as the crack velocity rapidly increases and the critical SIF is approached. For the 
stress corrosion failure mechanism, region I is controlled by the rate of reaction of the corrosive species; region II is 
controlled by the diffusion of the corrosive species; and region III is unstable crack propagation. These curves are 
material and environment sensitive. This model, using conventional fracture mechanics relationships, satisfactorily 
describes the failure mechanisms in materials where, at high temperatures, plastic deformations and creep behave in 
a linear viscoelastic manner (Evans and Wiederhorn, 1974a). In general, at high temperatures and low levels of 
stress, failure is best described by creep rupture that generates new cracks (Wiederhorn and Fuller, 1985). Creep and 
material healing mechanisms are not addressed in the CARES/Life code. 

The most often cited models in the literature regarding SCG are based on power-law formulations. Other 
theories, most notably that of Wiederhorn et al. (1980), have not achieved such widespread usage, although they 
may also have a reasonable physical foundation. Power-law formulations are used to model both the stress 
corrosion phenomenon and the cyclic fatigue phenomenon. This modeling flexibility, coupled with their widespread 
acceptance, makes these formulations the most attractive candidates to incorporate into a design methodology. A 
power-law formulation is obtained by assuming that the second crack-growth region is linear and that it dominates 
over the other regions. Three power-law formulations are useful for modeling brittle materials: the power law, the 
Paris law, and the Walker law. The power law (Evans and Wiederhorn, 1974a; and Wiederhorn, 1974a, pp. 613–
646) describes the crack velocity as a function of the SIF, and it implies that the crack growth is due to stress 
corrosion. For cyclic fatigue, either the Paris law (Paris and Erdogan, 1963) or Walker’s modified formulation of 
the Paris law (Walker, 1970, p. 1; and Dauskardt et al., 1992) is used to model the SCG. The Paris law describes the 
crack growth per load cycle as a function of the range in the SIF. The Walker equation relates the crack growth per 
load cycle to both the range in the crack-tip SIF and the maximum applied crack-tip SIF. It is useful for predicting 
the effect of the R-ratio (the ratio of the minimum cyclic stress to the maximum cyclic stress) on the material 
strength degradation. 

Because SCG operates on the preexisting flaws in the material, the fast-fracture statistical theories discussed 
previously are required to predict the time-dependent reliability for brittle materials. The SCG model is combined 
with the two-parameter Weibull cumulative distribution function to characterize the component failure probability 
as a function of service lifetime. The effects of multiaxial stresses are considered by using the PIA model, the 
Weibull normal stress-averaging (NSA) method, or the Batdorf theory. 

Lifetime reliability analysis accounting for SCG under cyclic and/or sustained loads is essential for the safe and 
efficient utilization of brittle materials in structural design. Current life design methodology assumes that the SCG 
of mixed-mode loading is based on a power function relationship existing between the crack propagation rate and 
the equivalent mode-I SIF (Boehm, 1989; Hamanaka et al., 1990; Hamada and Teramae, 1990; Thiemeier, 1989; 
Sturmer, 1991; and Wittig et al., 1991). The literature is sparse regarding crack-velocity measurements for mixed-
mode loadings of brittle materials. When a crack is subjected to a combined-mode loading, it extends in a curved or 
kinked path that reorients the crack to a pure mode-I coplanar extension at the crack tip (Shetty and Rosenfield, 
1991). The models of Boehm, Hamanaka, Homada, Thiemeier, and Sturmer do not consider this more complex 
behavior because of the paucity of available data. The approach taken by these researchers is reasonable if the dura-
tion where mixed-mode loading exists at the crack tip is small in comparison to the duration where the crack tip is 
extending in pure mode I. In any event, the formulations they adopted tend to yield conservative results.  

For corrosion-assisted SCG, time-dependent reliability analysis for a component subjected to various cyclic 
boundary load conditions can be simplified by transforming that type of loading to an equivalent static state. The 
conversion, through the use of a constant called the g-factor (Evans, 1980; and Mencik, 1984), satisfies the require-
ment that both systems will cause the same crack growth. Implicit in this conversion is the validity of the crack-
growth power-law relationship. The probability of failure is then obtained with respect to the transformed 
equivalent static state. 

Prior to placing a component in service, confidence that it will perform reliably is usually demonstrated through 
proof testing. To a great extent, this is the accepted way to assure the reliability of a component (Evans and 
Wiederhorn, 1974b; Wiederhorn, 1974b; Ritter et al., 1980; Fuller et al., 1980; and Srinivasan and Seshadri, 1982). 
Ideally, the boundary load conditions applied to a component under proof testing simulate those conditions a 
component would be subjected to in service, and the proof-test loads are appropriately greater in magnitude over 
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some fixed time interval. The significance of proof testing is that it enables specimens with a certain minimum flaw 
size or larger to be eliminated from the strength distribution. Thus, an attenuated probability of failure is obtained, 
and the survived components can be placed in service with greater confidence in their integrity. In practice, 
however, it is often difficult, expensive, or impossible for the proof-test load conditions to exactly simulate the 
service load conditions: the loads can be misaligned, or the proof-test and the service load can have different 
multiaxial stress states. This situation can be accounted for when proof-testing design methodology is incorporated 
into the statistical fracture theories for polyaxial stress states (Service and Ritter, 1986; Hamanaka et al., 1990; and 
Brukner-Foit et al., 1994). An attenuated probability of failure is computed for the components that survive; 
however, a minimum life of assured reliability may no longer be relevant. 

 
 

D.2 CARES/Life Computer Program 
 

The CARES/Life computer program predicts the reliability and the failure probability of a monolithic ceramic 
component as a function of its service life. CARES/Life couples to commercially available finite element programs, 
such as ANSYS, via a neutral file interface. It accounts for material failure from the SCG of preexisting flaws and 
uses the Weibull distribution to describe the probabilistic distribution of strength. The computational algorithms are 
written in FORTRAN 77. Finite element heat transfer and linear-elastic stress analysis are used to determine the 
temperature and stress distributions in the component. Component reliability for volume (intrinsic) flaws is 
determined from the finite element stress, temperature, and volume output from two-dimensional, three-
dimensional, or axisymmetric elements. Reliability for surface (extrinsic) flaws is calculated from the shell element 
(or simulated shell element) stress, temperature, and area data. CARES/Life produces an optional file containing 
risk-of-rupture intensities (a local measure of reliability) for graphical rendering of the structure’s critical regions. 

The phenomenon of SCG is modeled with the power law, the Paris law, and the Walker law. The power law 
(Evans and Wiederhorn, 1974a; and Wiederhorn, 1974a, pp. 613–646) describes the crack velocity as a function of 
the SIF. For cyclic fatigue, either the Paris law (Paris and Erdogan, 1963) or Walker’s modified formulation of the 
Paris law (Walker, 1970, p. 1; and Dauskardt et al., 1992) is used to model the SCG. The Paris law relates the crack 
growth per load cycle to the range in the SIF. The Walker equation relates the crack growth per load cycle to both 
the range in the crack-tip SIF and the maximum applied crack-tip SIF. This formulation accounts for the effect of 
the R-ratio (minimum cycle stress to maximum cycle stress) on lifetime. The power law and the Paris law require 
two experimentally derived fatigue parameters—N and B—which depend on the material and environment. The 
Walker equation requires three material-environmental parameters—N, B, and Q. Steady-state cyclic loading is 
accounted for by using the Walker law, using the Paris law, or employing g-factors (Mencik, 1984) in conjunction 
with the power law. The g-factor approach equates variable cyclic loadings to equivalent static loadings. 
CARES/Life includes the sinusoidal, square, and sawtooth loading waveforms. Typically, the use of g-factors is 
appropriate for flat R-curve materials.  

The probabilistic nature of material strength and the effects of multiaxial stresses are modeled by using either 
the PIA, the Weibull NSA method, or the Batdorf theory. The Batdorf theory combines linear elastic fracture 
mechanics with the weakest-link mechanism. It requires a user-selected flaw geometry and a mixed-mode fracture 
criterion to describe volume or surface strength-limiting defects. The combination of a particular flaw shape and 
fracture criterion results in an effective stress, which is a function of the far-field stresses, and acts on the crack 
plane. Figure D.1 shows the fracture criteria and flaw geometries available to users for both surface- and volume-
flaw analysis. The simple PIA fracture theory does not use a crack geometry, and only tensile principal stresses 
contribute to failure. The Weibull NSA method is also independent of crack geometry. The mode-I (opening mode) 
crack growth is considered, and mode-II (sliding mode) and mode-III (tearing mode) effects are neglected. The 
combination of a particular flaw shape and fracture criterion results in an effective stress involving far-field  
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principal stresses in terms of normal and shear stresses acting on the crack plane. CARES/Life includes the total 
strain-energy release rate theory (coplanar crack extensions) (Batdorf and Heinisch, 1978a). Out-of-plane crack-
extension criteria are approximated by a simple semiempirical equation (Palaniswamy and Knauss, 1978; and 
Shetty, 1987). This equation involves a parameter that can be varied to model the maximum tangential stress theory 
(Erdogan and Sih, 1963), the minimum strain-energy-density criterion (Sih, 1974), the maximum strain-energy 
release rate theory (Hellen and Blackburn, 1975; and Ichikawa, 1991), or experimental results. For comparison, 
Griffith’s maximum tensile stress analysis for volume flaws is also included. The highlighted boxes in figure D.1 
show the recommended fracture criteria and flaw shapes. If the normal stress acting on the flaw plane is 
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compressive, then no crack growth is assumed to occur with these models. Typically, brittle materials are much 
stronger in compression than in tension. It is assumed that the lower tensile strength limit will predominate over the 
higher compressive limit for a typical component design. If the compressive stresses are significant, they should be 
checked against limiting values from other methods. 

For fast fracture, the probabilistic nature of material strength is described by the two-parameter Weibull 
cumulative distribution function, which incorporates WLT. This relation postulates that inherent material flaws in 
the component body (volume flaws) and on its surface (surface flaws) govern the strength response. The component 
reliability is determined by integrating the stress over the body. The Weibull stress-volume integral is a function of 
the scale parameter σo and the shape parameter m. The scale parameter corresponds to the stress level at which 
63.21 percent of specimens with unit volume or area would fracture. The characteristic strength σθ is similar to the 
Weibull scale parameter except that it includes the effect of the specimen volume or area. The shape parameter (or 
Weibull modulus), denoted by m, is a dimensionless quantity that measures the degree of strength dispersion of the 
flaw distribution. 

Weibull material parameters, the Batdorf crack-density coefficient kB, and fatigue parameters are estimated 
from rupture strength data of naturally flawed specimens. The parameters are obtained from the fracture stresses of 
specimens whose geometry and loading configurations are held constant (30 or more specimens are recommended). 
A similar number is recommended for fatigue experiments. The CARES/Life program includes closed-form 
solutions for the three- and four-point modulus-of-rupture (MOR) bending bar (Baratta et al., 1987) and the pure 
tensile specimen (Liu and Brinkman, 1986) under isothermal conditions. For other conventional specimen geom-
etries, material parameters can be estimated via effective volume and area calculations (a finite element model  
of the specimen geometry and loading is required). 

Since the material parameters are a function of temperature, various constant-temperature data sets can be 
simultaneously input and the corresponding parameter estimates can be calculated and made available for 
component reliability analysis. Linear interpolation is performed to obtain values at intermediate temperatures. 
More sophisticated interpolation techniques are not used because of the potential of obtaining erroneous results. 
Each constant-temperature data set can consist of up to 999 specimens. In addition, each specimen can be identified 
by its mode of failure—either volume flaw, surface flaw, or some other mode—so that parameter estimates for 
competing failure modes can be obtained. 

CARES/Life estimates fatigue parameters from naturally flawed specimens ruptured under static, cyclic, or 
dynamic loading. Cyclic fatigue parameter evaluation assumes steady-state loading and a constant R-ratio 
throughout the specimen. Fatigue parameters can be calculated using either the median-value technique (Jakus  
et al., 1978), a least-squares regression technique, or a median-deviation regression method, which is somewhat 
similar to trivariant regression (Jakus et al., 1978). The median-value technique is a well-known estimation 
procedure based on regression of the median values of the fatigue data at the various stress levels or rates. The  
least-squares regression technique involves a regression on all the fatigue data to establish the parameters. The 
median-deviation procedure involves minimizing the median deviation (MD) of the scatter in the data versus the 
crack-growth exponent N. In the CARES/Life code, this minimization is accomplished by maximizing the time-
dependent Weibull modulus versus the crack-growth exponent N. The fast-fracture strength distribution Weibull 
modulus m and the characteristic strength σθ are optionally estimated from the fatigue data for a failure time of 1 s 
with constant stress-rate loading (or a lifetime of 1/(N + 1) cycles). The fatigue data are transformed to an equiv-
alent fast-fracture strength distribution. This enables goodness-of-fit testing and the use of an outlier test. The 
resulting goodness-of-fit statistics are applied to the original fatigue data. If inert strength fracture data are simul-
taneously input, then the Weibull parameters for these data override those calculated from time-dependent data. 

For inert strength fracture (fast-fracture) data, parameter estimation of the biased Weibull modulus and 
characteristic strength σθ can be performed for unimodal (single failure mode) or concurrent surface and volume-
flaw populations by using least-squares analysis (Johnson, 1964) or the maximum-likelihood method (Nelson, 
1982). Because estimates of Weibull parameters are obtained from a finite amount of data, they contain an inherent 
uncertainty that can be characterized by the bounds in which the true parameters are likely to lie. Methods have 
been developed to evaluate confidence limits that quantify this range with a level of probability as a function of 
sample size. For the maximum-likelihood method with a complete sample, unbiasing factors for the shape 
parameter m, and 5- and 95-percent confidence limits for m and the characteristic strength σθ, are provided 
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(Thoman et al., 1969). For a censored sample, an asymptotic approximation of the 90-percent confidence limits is 
calculated. No unbiasing of parameters or estimation of confidence limits is given when the least-squares option is 
requested. 

CARES/Life includes a test that identifies potential bad data (outliers) from the time-dependent or inert-strength 
fracture experiments. This test, known as the Stefansky outlier test (Stefansky, 1972; and Neal et al., 1987), is based 
on the normal distribution and, therefore, its application to the Weibull distribution is not rigorous. However, it 
serves as a useful guideline to users. Data detected as outliers are flagged with a warning message, and any further 
action is left to the discretion of users. 

The ability of the hypothesized distribution to reasonably fit the empirical data is measured with the 
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) goodness-of-fit tests. These tests are extensively dis-
cussed by D’Agostino and Stephens (1986). The tests quantify discrepancies between the experimental data and  
the estimated Weibull distribution by a significance level associated with the hypothesis that the data were 
generated from the proposed distribution. The AD test is more sensitive than the KS test to discrepancies at low  
and high probabilities of failure. The calculated significance levels are based on the assumption that the Weibull 
parameters are chosen independently from the experimental data. For inert strength data, the Kanofsky-Srinivasan 
90-percent confidence band values (Kanofsky and Srinivasan, 1972) about the Weibull line are given as an 
additional test of the goodness-of-fit of the data to the Weibull distribution. 

CARES/Life automatically calculates the other material parameters necessary for the reliability analysis. The 
biased estimate of the shape parameter m and the estimated characteristic strength σθ are used along with the 
specimen geometry to calculate the Weibull scale parameter σo. The Batdorf normalized crack-density coefficient 

Bk is computed from the selected fracture criterion, crack geometry, and the biased estimate of the shape parameter. 
The relationships between the fatigue parameters (N and B) and the various failure criteria have been estab-

lished to ensure the compatibility of failure probabilities. From test specimen data (uniaxial tension, three-point 
bend bar, and four-point bend bar), compatibility is derived by equating the risk-of-rupture of the uniaxial Weibull 
model to the risk-of-rupture of the PIA, NSA, or Batdorf shear-sensitive, multiaxial models. This satisfies the 
requirement that for a uniaxial stress state, all multiaxial models produce the same probability of failure as the 
uniaxial Weibull model. The value of N is invariant, and the value of B is adjusted to satisfy this compatibility 
condition. 

Finite element analysis is an ideal mechanism for obtaining the stress distribution needed to calculate the 
survival probability of a structure. Each element can be made arbitrarily small, such that the stresses can be taken as 
constant throughout each element (or subelement). In CARES/Life, the reliability calculations are performed at the 
gaussian integration points of the element. Use of the element integration points enables the element to be divided 
into subelements, where integration point subvolumes, subareas, and subtemperatures are calculated. The location 
of the gaussian integration point in the finite element and the corresponding weight functions are considered when 
the subelement volume and area are calculated. The number of subelements in each element depends on the 
integration order chosen and the element type. If the probability of survival for each element is assumed to be a 
mutually exclusive event, the overall component reliability is the product of all the calculated element (or 
subelement) survival probabilities. 

The component reliability analysis module of the CARES/Life program uses the output from finite element 
elastostatic analysis to calculate time-dependent reliability for each element. This has been implemented for various 
commercial finite-element-analysis software packages—a complete list of which is not provided here because this 
list is subject to change. Volume-flaw-based reliability is calculated from the volume-flaw material strength 
parameters previously estimated from experimental data and the stresses, volumes, and temperatures for each solid 
element. Volume-flaw analysis can be performed using brick, wedge, and tetrahedron isoparametric solid elements, 
along with triangular (and optionally quadrilateral) axisymmetric isoparametric elements. Surface-flaw-based 
reliability is calculated from the surface-flaw material strength parameters and individual shell element output of the 
two-dimensional surface stresses, areas, and temperatures. Surface-flaw analysis can be performed using quadri-
lateral and triangular isoparametric shell elements. Modeling with axisymmetric elements generally is not enabled 
for surface-flaw reliability analysis. Shell elements (or simulated shell elements) are used to identify the external 
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surfaces of solid elements that correspond to the component external surfaces important to the reliability analysis. 
Shell elements with exclusively membrane properties and negligible thickness (and hence stiffness) are used. 

CARES/Life uses component symmetry to permit the use of the cyclic symmetry modeling option or similar 
mesh-reduction schemes. CARES/Life also permits the analysis of simultaneously occurring flaw populations in a 
given finite element model (multiple ceramic materials or multiple flaw population capability). Elements not 
designated as brittle materials are ignored in the reliability computations. Temperature-dependent statistical material 
properties are linearly interpolated at each individual element temperature. Element and nodal identification 
numbers can be arbitrary. The risk-of-rupture intensity is also calculated for each element, and these values are 
sorted to determine the maximum values. Element risk-of-rupture intensities are written to an importable data file to 
show the regions on the component where failure has the highest likelihood of occurring. 

Proof-test methodology is incorporated into the PIA, the Weibull NSA method, and the Batdorf theories, 
accounting for the effect of multiaxial stresses. With the Weibull NSA and the Batdorf theory, the proof-test load 
need not closely simulate the actual service conditions on the component. This is important because it allows a 
reliability analysis to be performed when proof-test stresses have not been applied in the same direction and/or 
location as have the service load stresses. 

 
 

D.2.1 Fast-Fracture Reliability Analysis 
 

D.2.1.1 Overview.—The use of advanced ceramic materials in structural applications requiring high component 
integrity has led to the development of a time-dependent probabilistic design methodology. This method combines 
three major elements: (1) linear elastic fracture mechanics theory that relates the strength of ceramics to the size, 
shape, orientation, and growth of critical flaws; (2) extreme value statistics to obtain the characteristic flaw size 
distribution function, which is a material property; and (3) material microstructure. Inherent to this design procedure 
is that the requirement of total safety must be relaxed and that an acceptable failure probability must be specified. 

The statistical nature of fracture in engineering materials can be viewed from two distinct models (Tracy, 1982). 
The first was presented by Weibull and used the WLT as originally proposed by Peirce (1926). The second model 
was also analyzed by Peirce (1926) and by Daniels (1945). This second model is referred to as the “bundle” or 
“parallel” model. In the bundle model, a structure is viewed as a bundle of parallel fibers. Each fiber can support a 
load less than its breaking strength indefinitely but will break immediately under any load equal to or greater than 
its breaking strength. When a fiber fractures, a redistribution of load occurs and the structure may survive. Failure 
occurs when the remaining fibers can no longer support the increased load. The weakest-link model assumes that 
the structure is analogous to a chain with n links. Each link may have a different limiting strength. When a load is 
applied to the structure such that the weakest link fails, then the structure fails. Observations show that advanced 
monolithic ceramics closely follow the WLT. A component fails when an equivalent stress at a flaw reaches a 
critical value that depends on the fracture mechanics criterion, crack configuration, crack orientation, and the crack-
density function of the material. In comparison with the bundle model, WLT is, in most cases, more conservative. 

Weibull’s WLT model does not consider failure caused by purely compressive stress states. Phenomenological 
observations indicate that compressive stresses do not play a major role in the failure of ceramic structures since the 
compressive strength of brittle materials is significantly greater than their tensile strength. The effect of a 
predominant compression on failure is assumed to be negligible in the CARES/Life program.  

One of the important features of WLT is that it predicts a size effect. The number and severity of flaws present 
in a structure depends on the material volume and surface area. The largest flaw in a big specimen is expected to be 
more severe than the largest flaw in a smaller specimen. Another consequence of WLT is that component failure 
might not be initiated at the point of highest nominal stress (Davies, 1973), as would be true for ductile materials. A 
large flaw might be located in a region far removed from the most highly stressed zone. Therefore, the complete 
stress solution of the component must be considered. 

Classical WLT does not predict behavior in a multiaxial stress state. A number of concepts such as the PIA, 
Weibull’s NSA method, and Batdorf’s model have been applied to account for polyaxial stress-state response. 
Batdorf’s model (Batdorf and Crose, 1974) assumes the following: (1) microcracks in the material are the cause of 
fracture, (2) cracks do not interact, (3) each crack has a critical stress that is defined as the stress normal to the crack 
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plane that will cause fracture, and (4) fracture occurs under combined stresses when an effective stress acting on the 
crack is equal to the critical stress. For an assumed crack shape, the effective stress can be obtained through the 
application of a fracture criterion. These concepts are used in conjunction with techniques to obtain the various 
statistical material parameters necessary for fast-fracture reliability analysis.  

D.2.1.2 Volume-flaw reliability analysis.—Consider a stressed component containing many flaws, and assume 
that failure is due to any number of independent and mutually exclusive mechanisms (links). Each link involves an 
infinitesimal probability of failure. Discretize the component into n incremental links. The probability of survival 
(PsV)i of the ith link is related to the probability of failure (PfV)i of the ith link by (PsV)i = [1 – (PfV)i], and the 
resultant probability of survival of the whole structure is the product of the individual probabilities of survival:  
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where the subscript V denotes volume-dependent terms. Assume the existence of a function ηV(σ), referred to as the 
crack-density function, representing the number of flaws per unit volume having a strength equal to or less than σ. 
Under a local tensile stress σi, the probability of failure of the ith link, representing the incremental volume ΔVi, is 
(PfV )i = [ηV(σi) ΔVi], where the incremental volume ΔVi is arbitrarily small such that the value of the expression 
within the brackets is much less than one. Applying a uniform tensile stress σ, such that σ = σi for all incremental 
volumes ΔVi, then from equation (D1) the resultant probability of survival for material volume V, where V is the 
sum of all ΔVi, is  
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Equation (D2) can also be derived from the Poisson probability density function. The Poisson density function 

is described by (see Hoel et al., 1971, for example) 
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where λ is a positive number. The real-valued function ƒ(x) is the discrete density function of random variable X 
where P(X = x) is the probability that a discrete real-valued random variable X equals a possible value x. The 
Poisson distribution approximates the binomial distribution for large values of n, where n is the number of Bernoulli 
trials with success probability p = λ/n at each trial. Equation (D2) is obtained when P(X = 0) is computed for n = V 
and p = ηV(σ), hence 
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Equation (D4) calculates the probability of the event that no flaws of strength σ or less are present in the material 
volume V and, therefore, represents the survival probability of the material under applied load σ. 

The probability of failure for the uniformly stressed volume V is 
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where V is the total volume. If the stress magnitude is a function of location, then 
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A term called the risk-of-rupture by Weibull and denoted here by the symbol ROR is commonly used in 

reliability analysis. Equations similar to (D5) and (D6) are applicable to surface-distributed flaws where surface 
area replaces volume and the flaw density function is surface-area dependent. 

Weibull introduced a three-parameter power function for the crack-density function ηV(σ), 
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where σuV is the threshold stress parameter, which is usually taken as zero for ceramics. This parameter is the value 
of the applied stress below which the failure probability is zero. When this parameter is zero, the two-parameter 
Weibull model is obtained. The scale parameter σoV then corresponds to the stress level where 63.21 percent of 
tensile specimens with unit volumes would fracture. Note from equations (D5) and (D7) for a unit volume when  
(σ – σuV) = σoV that a value of 0.6321 is obtained. The scale parameter σoV has dimensions of stress×(volume) ,/1 Vm  
where mV is the shape parameter (Weibull modulus), a dimensionless parameter that measures the degree of 
strength variability. As mV increases, the dispersion is reduced. For large values of mV (>40), such as those obtained 
for ductile metals, the magnitude of the scale parameter corresponds to the material ultimate strength. These three 
statistical parameters are material properties, and they are temperature and processing dependent. 

Three-parameter behavior is not commonly observed in as-processed monolithic ceramics, and statistical 
estimation of the three material parameters is more involved than it is with the two-parameter model. The CARES/ 
Life program uses the two-parameter model. The subsequent reliability predictions are more conservative than for 
the three-parameter model since we have taken the minimum strength of the material as zero. 

The two-parameter crack-density function is expressed as  
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and when equation (D8) is substituted into equation (D6), the failure probability becomes 
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where ( ) Vm

oVwVk −σ=  is the uniaxial Weibull crack-density coefficient. Various methods have been developed to 
calculate σoV and mV for a given material by using fracture strength data from simple uniaxial specimen tests (Pai 
and Gyekenyesi, 1988). 

The two most common techniques for using uniaxial data to calculate PfV in polyaxial stress states are the PIA 
method (Barnett, et al., 1967, and Freudenthal, 1968) and the Weibull normal tensile stress-averaging method 
(Weibull, 1939a). In the PIA model, the principal stresses σ1 ≥ σ2 ≥ σ3 are assumed to act independently. If all 
principal stresses are tensile, the probability of failure according to this approach is 
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Compressive principal stresses are assumed not to contribute to the failure probability. It has been shown that  
this equation yields nonconservative estimates of PfV in comparison with the Weibull normal stress method 
(Batdorf, 1977a). 

The failure probability using the Weibull normal tensile stress-averaging (NSA) method, which has been 
described through an integral formulation (Gross and Gyekenyesi, 1989), can be calculated from 
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The area integration is performed in principal stress space over the surface A of a sphere of unit radius for regions 
where σn, the projected normal stress on the surface, is tensile. The polyaxial Weibull crack-density coefficient is 
kwpV. The relationship between kwpV and kwV is found by equating the failure probability for uniaxial loading to that 
obtained for the polyaxial stress state when the latter is reduced to a uniaxial condition. The result is 
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Batdorf and Crose (1974) proposed a statistical theory in which attention is focused on cracks and their failure 
under stress. Flaws are taken to be uniformly distributed and randomly oriented in the material bulk. Fracture is 
assumed to depend only on the tensile stress acting normal to the crack plane; hence, shear insensitivity is inherent 
to the model. Subsequently, Batdorf and Heinisch (1978a) included the detrimental effects of shear traction on a 
flaw plane. Their method applies fracture mechanics concepts by combining a crack geometry and a mixed-mode 
fracture criterion to describe the condition for crack growth. Adopting this approach, the CARES/Life program 
contains several fracture criteria and flaw shapes for volume and surface analyses (fig. D.1). 

Consider a small, uniformly stressed material element of volume ΔV. The incremental probability of failure under 
the applied multiaxial state of stress Σ can be written as the product of two probabilities, 

 
 ( ) VVeqcfV PPVP 21I   ,, Δ=Δσ∑Δ  (D13) 
 
where ΔP1V is the probability of the existence in ΔV of a crack having an equivilent critical stress between σIeqc and  
σIeqc + ΔσIeqc. Critical stress is defined as the remote, uniaxial fracture strength of a given crack in mode-I loading. 
The term σIeqc denotes an effective (or equivalent) critical mode-I stress from applied multiaxial stresses. The 
second probability, P2V, denotes the probability that a crack of critical stress σIeqc will be oriented in a direction 
such that an effective stress σIeq (which is a function of fracture criterion, stress state, and crack configuration) 
satisfies the condition σIeq ≥ σIeqc. The effective stress σIeq is defined as the equivalent mode-I stress a flaw would 
experience when subjected to a multiaxial stress state that results in mode-I, -II, and -III crack surface 
displacements, and σIeqc is the threshold value of σIeq where unstable catastrophic crack growth ensues. 

The strength of a component containing a flaw population is related to the critical flaw size, which is implicitly 
used in statistical fracture theories. Batdorf and Crose (1974) describe ΔP1V as 
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and P2V is expressed as 
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where ηV(σIeqc) is the Batdorf crack-density function and Ω(Σ, σIeqc) is the area of the solid angle projected onto 
the unit radius sphere in principal stress space containing all the crack orientations for which σIeq ≥ σIeqc. The 
constant 4π is the surface area of a unit radius sphere and corresponds to a solid angle containing all possible flaw 
orientations. 

The probability of survival in a volume element ΔVi is 
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where σIeq,max is the maximum effective stress a randomly oriented flaw could experience from the given stress 
state. Hence, the component failure probability is 
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The Batdorf crack-density function ηV(σIeqc) is a material property, independent of stress state, and is usually 
approximated by a power function (Batdorf and Heinisch, 1978a). This leads to the Batdorf crack-density function 
of the form 
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where the material Batdorf crack-density coefficient kBV and the Weibull modulus mV are evaluated from 
experimental inert strength fracture data. Batdorf and Crose (1974) initially proposed a Taylor series expansion for 
ηV(σIeqc), but this method has computational difficulties. A more convenient integral equation approach was 
formulated and extended to the use of data from four-point MOR bar tests (Rufin et al., 1984). Note that ηV(σIeqc) 
has units of inverse volume. 

Although the Weibull (eq. (D8)) and Batdorf (eq. (D18)) crack-density functions are similar in form, they are 
not the same. The Weibull function simply depends on the applied uniaxial stress distribution σ and is the only term 
other than the volume necessary to calculate PfV. The Batdorf function depends on the mode-I strength of the crack 
σIeqc, which is probabilistic and must be integrated over a range of values for a given stress state. Furthermore, to 
obtain PfV, a crack orientation function, P2V, must be considered in addition to the density function and the volume. 
Finally, the Batdorf coefficient kBV cannot be calculated from inert strength data until a fracture criterion and crack 
shape are chosen—in contrast to the Weibull coefficient kwV, which depends only on the data. 

To determine a component probability of failure, one must evaluate P2V (eq. (D15)) for each elemental volume 
ΔVi, within which a uniform multiaxial stress state Σ is assumed. The solid angle Ω(Σ, σIeqc) depends on the 
selected fracture criterion, the crack configuration, and the applied stress state. For multiaxial stress states, with few 
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exceptions, Ω(Σ, σIeqc) must be determined numerically. For a sphere of unit radius (fig. D.2), an elemental surface 
area of the sphere is dA = sin α dβ dα. Project onto the spherical surface the equivalent (effective) stress  
σIeq(Σ, α, β). The solid angle Ω(Σ, σIeqc) is the area of the sphere containing all the projected equivalent stresses 
satisfying σIeq ≥ σIeqc. Note the symmetry of σIeq in principal stress space, and address the first octant of the unit 
sphere, then 
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Substituting into equation (D17) and integrating with respect to σIeqc, changes the component failure probability to 
(Batdorf, 1978) 
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where 
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For a given element, σIeq(x, y, z, α, β) is the projected equivalent stress over the unit radius sphere in principal stress 
space as shown in figure D.2. 

Equation (D20) circumvents the involved numerical integration of Ω(Σ, σIeqc) as developed in the original 
CARES program (Nemeth et al., 1990). Equations (D17) and (D20) are equivalent formulations; however, equation 
(D20) is more convenient for computational purposes with few exceptions (Batdorf and Crose, 1974). Therefore, 
CARES/Life applies equation (D20) to obtain the component probability of failure. 

Assuming a shear-insensitive condition, fracture occurs when σn = σIeq ≥ σIeqc, where σn is the normal tensile 
stress on the flaw plane. However, it is known from fracture mechanics analysis that for a flat crack, a shear stress τ 
applied parallel to the crack plane (mode II or III) also contributes to fracture. Therefore, the effective stress σIeq is 
a function of both σn and τ. 

Selecting an arbitrary plane in principal stress space (fig. D.2) and imposing equilibrium conditions yields the 
following equations: 

 

 ( ) ( ) ( )2
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1

2      nm σ+σ+σ=σ l  (D21) 
 

        232221 nmn σ+σ+σ=σ l  (D22) 
 

and 
 

 222     nσ−σ=τ  (D23) 
 

where σ is the total traction vector acting on the crack plane and the direction cosines R, m, and n are given in  
figure D.2 in terms of trigonometric functions of α and β.  
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From the selected fracture criterion and crack configuration, σIeq is obtained as a function of Σ, α, and β. 

Batdorf and Heinisch (1978a) give effective stress expressions for two flaw shapes by using both Griffith’s 
maximum tensile stress criterion and Griffith’s total coplanar strain-energy release rate criterion GT. Arranged in 
order of increasing shear sensitivity, for the maximum tensile stress criterion the effective stress equation for a 
Griffith flaw is 
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 ( )22I      
2
1  τ+σ+σ=σ nneq  (D24) 

 
and for a penny-shaped flaw, where ν is Poisson’s ratio, it is 
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The total coplanar strain-energy release rate criterion is calculated from  

 
 IIIIII       GGGGT ++=  (D26) 
 
where G is the energy release rate for various crack-extension modes. In terms of SIFs, the effective stress equation 
can be derived from (plane strain condition assumed) enforcing the condition GT = Gc, where Gc is the critical 
strain-energy release rate. Thus, 
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where KIeqc denotes an equivalent KIc from a multiaxial stress state. 

For a Griffith crack, assuming that modes I and II dominate the response with aK n πσ=I  and aK πτ=  II , 
where 2a is the crack length, we have from equation (D27)  

 
 22I     τ+σ=σ neq  (D28) 
 

For a penny-shaped crack at the critical point on the crack periphery, we have πσ= /2I aK n  and 
( )[ ] π−τ= /2/4II aνK  (Sih, 1973), where a is now the crack radius. The resulting effective stress from equa- 

tion (D28) is  
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The equations given by Batdorf and Heinisch consider only self-similar (coplanar) crack extension. However, a 

flaw experiencing a multiaxial stress state usually undergoes crack propagation initiated at some angle to the flaw 
plane (noncoplanar crack growth). Shetty (1987) performed experiments on polycrystalline ceramics and glass, 
where he investigated crack propagation as a function of an applied far-field multiaxial stress state. He modified an 
equation proposed by Palaniswamy and Knauss (1978) so that it would empirically fit experimental data. This 
multimodal interaction equation takes the form 
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where Kδ is either KII or KIII, whichever is dominant, and C  is a constant adjusted to best fit the data. Shetty (1987) 
found a range of values of 0.80 ≤ C  ≤ 2.0 for the materials he tested that contained large induced flaws. As C  
increases, the response becomes progressively more shear insensitive. 

Using this relationship with assumed mode-I and -II dominance for the Griffith crack yields 
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and for a penny-shaped crack, we obtain 
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For a Griffith crack when C  = 0.80, 0.85, 1.0, and 1.15, equation (D30) models, respectively, the following 

criteria: Ichikawa’s maximum strain-energy release rate approximation (Ichikawa, 1991), the maximum tangential 
stress (Erdogan and Sih, 1963), Hellen and Blackburn’s maximum strain-energy release rate formulation (Hellen 
and Blackburn, 1975), and colinear crack extension.  

Similarly, for a penny-shaped crack with a material having a Poisson’s ratio of about 0.22 and C  = 0.80, 0.85, 
1.05, and 1.10, equation (D30) models, respectively, the following criteria: Ichikawa’s maximum energy release 
rate approximation (Ichikawa, 1991), the maximum tangential stress (Erdogan and Sih, 1963), Hellen and 
Blackburn’s maximum strain-energy release rate formulation (Hellen and Blackburn, 1975), and colinear crack 
extension. 

For a stressed component, the probability of failure is calculated from equation (D20). The finite element 
method enables discretization of the component into incremental volume elements. CARES/Life evaluates the 
failure probability at the gaussian integration points of the element or optionally at the element centroid. Using the 
element integration points subdivides the element into subelements, hence each Visub corresponds to the isubth 
subelement volume. In the usual context of finite element methods, the volume of a three-dimensional element Velt 
is calculated after transformation into the natural coordinate space (Bathe, 1982) 
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where J is the Jacobian operator and r, s, and t are the natural coordinates. The subelement volume is defined as the 
contribution of the integration point to the element volume in the course of the numerical integration procedure. 
This means that the volume of each subelement (corresponding to a Gauss integration point) is calculated using the 
shape functions inherent to the element type. The stress state in each subelement is assumed to be uniform. Powers 
et al. (1992) gives further details of the subelementing procedure as used in CARES/Life. The numerical solution of 
equation (D20) takes the following form: 
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where nsub is the total number of subelements. If kBV is element dependent, it will appear inside the brackets. 
CARES/Life uses gaussian numerical integration to evaluate equation (D34). This is detailed further in section 
D.2.3. 
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D.2.1.3 Surface-flaw reliability analysis.—For surface-flaw analysis (Gyekenyesi and Nemeth, 1987), many of 
the equations from section D.2.1.2 remain the same, except that the statistical material parameters are a function of 
surface area instead of volume and the equivalent stresses are projected onto the contour of a circle of unit radius 
rather than onto the surface of a sphere of unit radius. The cracks are assumed to be randomly oriented in the plane 
of the external boundary with their planes normal to the surface (Batdorf and Heinisch, 1978b). 

For surface-flaw-induced failure in ceramic structures, the probability of failure for the two-parameter Weibull 
distribution, which is analogous in form to equation (D9), is 
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where ( ) Sm

oSwSk σ= /1  is the uniaxial Weibull surface crack-density coefficient. The subscript S denotes the terms 
that are surface-area dependent. Here σoS is the surface scale parameter with units of Sm1)area(stress×  and A is the 
stressed surface area. For biaxial stress states, the PIA model yields  
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where σ1 and σ2 are the principal tensile in-plane stresses acting on the surface of the structure. For the Weibull 
NSA method, the failure probability is expressed as 
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where 
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Here kwpS is the polyaxial Weibull crack-density coefficient for surface flaws. The line integration is performed 
over the contour c of a circle of unit radius where the projected normal stress σn is tensile. The relationship of kwpS 
to kwS is obtained by carrying out the integration in equation (D37) for a uniaxial stress and equating the resultant 
failure probability to that of equation (D35) (Pai and Gyekenyesi, 1988). This results in 
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where Γ is the gamma function. Equation (D37) is the shear-insensitive case of the more general Batdorf polyaxial 
model. 

For mixed-mode fracture due to surface flaws, the Batdorf polyaxial failure probability equation (analogous to 
eq. (D17)) is 
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where, analogous to equations (D14) and (D15), 
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For randomly oriented cracks, ω(Σ,σIeqc) is the total arc length on a circle of unit radius in principal stress space 

on which the projection of the equivalent stress satisfies σIeq ≥ σIeqc, and 2π is the total arc length of the circle. 
Similar to cases with volume flaws, the Batdorf crack-density function is approximated by the power function, 

 
 ( ) Sm

eqcBSeqcS k II   σ=ση  (D42) 

where kBS is the Batdorf surface crack-density coefficient. 
A simplification of equation (D39) is obtained by noting the following: 
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Substituting into equation (D39) and noting symmetry (for principal stress space), we obtain 
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where 
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For a given element, σIeq(x, y, α) is the projected equivalent stress over the first quadrant of a circle of unit radius in 
principal stress space, as shown in figure D.3. Equation (D44) circumvents the computation of ω(Σ, σIeqc) and is 
used to obtain the component probability of failure in CARES/Life.  

The finite element method enables discretization of the surface of the component into incremental area 
elements. CARES/Life evaluates the failure probability at the gaussian integration points of shell elements or 
optionally at the element centroid. Using the element integration points subdivides the element into subelements, 
where each Aisub corresponds to the isubth subelement area. The element and subelement area of a two-dimensional 
element are calculated in similar fashion to the method outlined for equation (D33) except that the element area Aelt 
is calculated after transformation into a natural two-dimensional coordinate space: 
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Powers et al. (1992) gives further details of the subelementing procedure as used in CARES/Life. 

The stress state in each subelement is assumed to be uniform, and the numerical formulation of equation (D44) 
is  

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ αασ

π
−−= ∫∑

π 2

0 I
1=

d )(   2exp 1  
sub

Sm
eq

isub
isub

n

isub

BS
fS AkP  (D46) 

 
where nsub is the total number of subelements. If kBS is element dependent, it will appear inside the brackets. 
CARES/Life uses gaussian numerical integration to evaluate equation (D46). This is detailed further in section 
D.2.3, beginning at equation (D246). 

For the plane stress condition, selecting an arbitrary plane and imposing equilibrium conditions yields the 
following equations: 
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and 
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2

1 mn σ+σ=σ l  (D48) 
 

 222     nσ−σ=τ  (D49) 
 

where σ is the total traction vector acting on the crack plane and the direction cosines R and m are given in  
figure D.3 in terms of trigonometric functions of α.  

Fracture occurs when the equivalent stress σIeq ≥ σIeqc. For the shear-insensitive case, fracture depends only on 
the value of the normal tensile stress such that σIeq = σn. For shear-sensitive cracks and colinear crack extension, 
assuming a Griffith crack with KI = σn aπ  and KII = , aπτ  we obtain as before 

 
 22I     τ+σ=σ neq  (D50) 

 
whereas for a Griffith notch subjected to plane strain conditions with KI = 1.1215 an πσ  and KIII = aπτ  (Sih, 
1973), we obtain 
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Note that the equivalent stress for the Griffith crack is dependent on modes I and II, whereas the equivalent stress 
for the Griffith notch is dependent on modes I and III (Gyekenyesi and Nemeth, 1987). 

For noncoplanar crack growth, from equation (D30) the effective stress equation for the Griffith crack is 
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and for the Griffith notch is 
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For a semicircular surface crack, KI = 1.366 σn ,a  KII = 1.241 , aτ  and KIII = 0.133 aτ  (Smith et al., 1967; and 
Smith and Sorensen, 1974). Since the contribution of KIII is small, it is neglected, and thus the effective stress for 
this case is 
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For the same stress state and identical ,C  the Griffith crack is the most shear sensitive, whereas the Griffith notch 
and the semicircular crack give almost identical predictions.  
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D.2.1.4 Material strength characterization.—Ceramic inert strength due to inherent flaws is described by  
the simple Weibull uniaxial cumulative distribution function. For brittle materials, tensile strength, compressive 
strength, shear strength, flexural strength, and theoretical strength all have unique meanings and different values. 
The theoretical strength is defined as the tensile stress required to break atomic bonds, which typically ranges from 
1/10th to 1/5th of the elastic modulus for ceramic materials. Because of processing flaws, this strength is never 
obtained. In an inert environment, a much more meaningful strength measurement is the inert strength or ultimate 
tensile strength in uniaxial tension or flexural testing. In flexural strength testing, the bend strength σf of a ceramic 
is defined as the maximum tensile stress in the beam specimen (MOR), which in this situation occurs on the 
specimen surface. The main objective of the CARES/Life program is to characterize ceramic strength in terms of 
either the MOR or the pure uniaxial strength, and to use this information with appropriate analysis to predict 
component response under complex multiaxial stress states. This section deals with the calculation of the Weibull 
scale parameter σo and the Batdorf crack-density coefficient kB. Closed-form solutions for σo are given for the 
uniaxial tensile, three-point bending, and four-point bending specimen geometries. Also, simplified Weibull 
equations are described that facilitate evaluation of Weibull parameters from experimental data. Procedures for 
obtaining Weibull parameters from experimental data are described in the following section (D.2.1.5). 

Typically for brittle materials, the Weibull parameters are determined from simple specimen geometry and 
loading conditions, such as beams under flexure and either cylindrical or flat specimens under uniform uniaxial 
tension. For fast-fracture in an inert environment, the flexural test failure probability can be expressed in terms of 
the maximum stress (or extreme fiber stress) in the specimen σf at the moment of fracture by using the 
two-parameter Weibull form given in equations (D9) and (D35): 
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where m is the volume- or area-based fast-fracture Weibull modulus and σθ is the volume- or area-based specimen 
characteristic strength. The Weibull scale parameter σo (as defined in eqs. (D7) and (D35) for volume and surface 
cracks, respectively) is determined from σθ, m, the specimen geometry, and the loading configuration. The scale 
parameter σo is a material property, whereas σθ includes the effects of the specimen dimensions and stress 
distribution. The characteristic strength σθ is defined as the uniform stress or extreme fiber stress at which the 
probability of failure is 0.6321. The component failure behavior in fast-fracture, equation (D55), is only a function 
of σf and the empirically determined parameters m and σθ. Procedures such as the least-squares method or 
maximum-likelihood analysis are used to estimate m and σθ from experimental fracture data as described in the next 
section (D.2.1.5). 

The uniaxial inert strength distribution for volume flaws (eq. (D9)) is expressed in terms of the extreme fiber 
fracture stress σf of the specimen by 
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where an effective volume Ve is defined by equating the risk of rupture, equation (D9), with equation (D55). 
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The effective volume is the equivalent amount of volume under a uniform uniaxial tensile stress of magnitude 

σf that is needed to give an identical failure probability as the specimen. Comparing equations (D55) and (D56) we 
solve the volume-flaw scale parameter as 
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For the four-point bend specimen geometry shown in figure D.4, the tensile stress distribution in the specimen 
is 
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where for the applied load δ the extreme fiber stress is σf = (3/2)[δ (L1 – L2)/wh2]. 

Substituting equation (D59) into equation (D57) and solving for the effective volume, we obtain 
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The effective volume for the three-point bend specimen geometry is obtained when L2 = 0 in equation (D60). 
For uniaxial tensile loading, the effective volume is equal to the gauge volume Vg, which is the uniformly stressed 
region where fracture is expected to occur. 

When a specimen is subjected to multiaxial stresses, the PIA and Batdorf theories are used to equate the 
specimen strength to the uniaxial stress state. For the PIA theory, the effective volume used with equation (D56) is 
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where σ1 ≥ σ2 ≥ σ3 are functions of (x, y, z) and negative values are taken as zero. In this case, σf represents the 
maximum principal stress found in the component. For the Batdorf theory, the effective volume used with equation 
(D56) is defined as 
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where 
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The term BVk is the normalized Batdorf crack-density coefficient for volume flaws. It is obtained by equating the 
risks of rupture of equations (D9) and (D20), the polyaxial Batdorf theory to the uniaxial Weibull model, for an 
imposed uniaxial stress state or, equivalently, by equating the effective volumes in equations (D57) and (D62). 
Under a uniform uniaxial stress of magnitude σ1, this yields 
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This equation is evaluated numerically except for two special cases where a closed-form solution is known to exist. 
For the shear-insensitive fracture criterion 
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Substituting into equation (D64), then 
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For the coplanar strain-energy release rate criterion and the Griffith crack geometry, 
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Again, substituting into equation (D64) gives 
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For surface flaws, the uniaxial inert strength distribution (eq. (D35)) is expressed in terms of the extreme fiber 
fracture stress σf of the specimen by  
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where an effective area Ae is defined: 
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Comparing equations (D55) and (D69), we solve the surface-flaw scale parameter as 
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Referring to equation (D59) for the four-point bend specimen geometry (fig. D.4), we see that the tensile stress 
on the beam surface, y = h/2, is 
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Substituting equation (D72) and equation (D59) for the side surface stress distributions into equation (D70) and 
performing the integration, we obtain the effective area as 
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The effective area for the three-point bending specimen geometry is obtained when L2 = 0 in equation (D73). For 
uniaxial tensile loading, the effective area is equal to the specimen gauge area Ag, which is the total specimen 
surface area of interest. 

When a specimen is subjected to multiaxial stresses, the PIA and Batdorf model risks of rupture are equated to 
the uniaxial Weibull risk of rupture given by equation (D69). For the PIA model, the effective area used with 
equation (D69) is 

 

 ( ) ( )[ ]  d ,  ,1  21∫ σ+σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
=

A
mm

f

m

e AyxyxA SS

S

 (D74) 

 
and σf represents the maximum principal stress found on the component. For the Batdorf theory, the effective area 
used with equation (D69) is 
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where 
 

 
wS

BS
BS k

kk   =  (D76) 

 
The term BSk is the normalized Batdorf crack-density coefficient for surface flaws. In CARES/Life, the 

normalized Batdorf crack-density coefficient for surface flaws is found for a uniaxially loaded specimen by 
equating the risk-of-ruptures of equations (D35) and (D44), or equivalently by equating the effective areas in 
equations (D70) and (D75). For a uniform uniaxial stress of magnitude σ1, this yields 
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This equation is evaluated numerically. A closed-form solution is known to exist for the shear-insensitive fracture 
criterion (Gross and Gyekenyesi, 1989). Since 
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substituting into equation (D77) gives 
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For the shear-sensitive fracture criterion, Griffith crack geometry, and colinear crack extension, 
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Again, substituting into equation (D77) gives 
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D.2.1.5 Estimation of statistical material strength parameters.—Selected statistical theories and equations for 
Weibull parameter estimation are explained in detail in Pai and Gyekenyesi (1988). The following is a brief 
description of these methods and how they are used in the CARES/Life code. For brittle materials, the Weibull 
parameters are determined from repeated fracture experiments on nominally identical specimens. Typically this 
involves a simple geometry and loading condition, such as beams under flexure or specimens with either a round or 
rectangular cross section under uniform uniaxial tension. As a rule of thumb, a minimum of 30 specimens are 
required to obtain parameter estimates with a reasonably narrow standard deviation within which the true values of 
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the parameters are likely to reside. Since each specimen carries a fixed cost, experimentalists desire to use analytical 
methods that maximize the information that can be gained from a data sample while using the fewest possible 
number of specimens. CARES/Life accomplishes this by including efficient parameter estimation schemes as well 
as statistical measures to quantify the quality of the data.  

For fast-fracture, the flexural test failure probability can be expressed in terms of the extreme fiber fracture 
stress σf by using a simplified two-parameter Weibull form as described by equation (D55), where m is the volume 
or area Weibull modulus and σθ is the volume or area specimen characteristic strength. Although the statistical 
theories and parameter estimation methods outlined in the following discussion are expressed in terms of the fast-
fracture strength distribution, these techniques are equally applicable to the time-dependent distribution.  

Before computing the estimates of the statistical parameters, it is essential that we carefully examine the 
available specimen data to screen them for outliers. Very often, a data set may contain one or more values that may 
not belong to the overall population. The statistical procedure used to detect the outliers at different significance 
levels is explained in Pai and Gyekenyesi (1988) and Stefansky (1972). This outlier test assumes that the data are 
normally distributed and from a complete sample. Therefore, the application of this test to the Weibull distribution 
and censored statistics is only approximate. CARES/Life improves the original technique (Pai and Gyekenyesi, 
1988) by numerically integrating the t-distribution to calculate the critical values for significance levels in the range 
of 0.0 to 10.0 percent with a resolution of 0.1 percent (polynomial approximating functions are no longer used). 

Various methods are available to estimate the statistical material parameters from experimental data for the 
two-parameter Weibull distribution. The success of the statistical approach depends on how well the probability 
density function fits the data. Two popular techniques used to evaluate the characteristic strength and shape 
parameters (σθ and m) from inert strength data are least-squares analysis and the maximum-likelihood method. 
Least-squares analysis is a special case of the maximum-likelihood method, where the error is normally distributed 
and has a zero mean and constant variance. The least-squares method is not suitable for calculating confidence 
intervals and unbiasing factors, which quantify the statistical uncertainties in the available data. 

Equation (D55) can be linearized by taking the natural logarithm twice, yielding 
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For the least-squares analysis, it is necessary to obtain the line of best fit with slope m and an intercept that, as seen 
in equation (D82), is equal to ln(1/σθ)m. The failure probability Pf is determined by conducting fracture tests on n 
specimens. The fracture stresses are ranked such that σf,1 < σf,2 <…< σf,i <…< σf,n. For rank regression analysis, the 
probability of failure of a specimen with rank i is 
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By taking the partial derivative of the sum of the squared residuals with respect to m and σθ, and by equating the 
derivatives to zero, values of m and σθ are calculated. 

With censored data (competing failure modes), one cannot directly use the rank regression analysis as given in 
equation (D83). To take into account the influence of the suspended items, Johnson (1964) developed the rank 
increment technique. For this technique, all observed fracture stresses are arranged in ascending order, and rank 
increment values are calculated for each failure stress from the following equation: 
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The new adjusted rank values are obtained by adding the rank increment value to the previously adjusted rank. 
These adjusted rank values are then used to calculate the failure probability by using the median rank regression 
equation (D83). Finally, the estimated Weibull parameters for m and σθ are obtained. 

Since the distribution of errors from the data is not normal, the maximum-likelihood method is often pre- 
ferred in Weibull analysis. This method has certain inherent properties. The likelihood equation from which the 
maximum-likelihood estimates (MLEs) are obtained will have a unique solution. In addition, as the sample size 
increases, the solution converges to the true values of the parameters. Another feature of the maximum-likelihood 
method is that there are no ranking functions or linear regression analysis when complete or censored samples are 
analyzed. The likelihood equation for a complete sample is given by 
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The values of m and σθ that maximize the likelihood function L are determined by taking the partial derivative of 
the logarithm of the likelihood function with respect to m and σθ. The estimated values,   m̂  and θσ̂ , are obtained by 
equating the resulting expressions to zero and solving the simultaneous equations with the Newton-Raphson 
iterative technique. The MLEs of m and σθ are designated by Vm̂ and Vθσ̂ and by Sm̂ and Sθσ̂ for volume-flaw 
analysis and surface-flaw analysis, respectively. For censored statistics, we have 
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where r is the number of remaining specimens failed by the flaw mode for which parameters are being calculated. 
For a complete (uncensored) sample, r is replaced by n, which is the total size of the sample. 

The MLE of the shape parameter is always a biased estimate that depends on the number of specimens in the 
sample. Unbiasing of the shape parameter estimate is desired to minimize the deviation between the sample and the 
true population. The unbiased estimate of m is obtained by multiplying the biased estimate with an unbiasing factor 
(Thoman et al., 1969). The confidence intervals for complete samples also can be obtained (Thoman et al., 1969). 
For censored samples, a rigorous method for obtaining confidence intervals has not been developed because of the 
complexity of competing failure modes. Confidence bounds for censored statistics are instead estimated in the 
CARES/Life code from the factors obtained from complete samples (Pai and Gyekenyesi, 1988). Confidence 
bounds enable users to estimate the uncertainty in the parameters as a function of the number of specimens. Bounds 
at a 90-percent confidence level (and therefore at 5 and 95 percentage points of distribution of the MLEs of the 
parameters) have been incorporated into the CARES/Life program, with data taken from Thoman et al. (1969). 

Subjective judgement is needed to test the goodness of fit of the data to the assumed distribution. When 
graphical techniques are used, it can be very difficult to decide if the hypothesized distribution is valid, especially 
for small sample sizes. Therefore, many statistical tests have been developed to quantify the degree of correlation  
of the experimental data to the proposed distribution. In general, a statistic is a numerical value computed from a 
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random sample of the total population. The difference between an empirical distribution function (EDF) and a 
hypothesized distribution function is called an EDF statistic. There are two major classes of EDF statistics, and they 
differ in the manner in which the functional (vertical) difference between the EDF and the proposed distribution 
function is considered. The KS goodness-of-fit statistic D belongs to the supremum class and is very effective  
for small samples. It uses the largest vertical difference between the two distribution functions to determine the 
goodness of fit. For the KS test, the sample is arranged in ascending order, and the EDF denoted by Fn(σf) is a step 
function obtained from the following expressions: 
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where σf,1 < σf,2 < ... σf,i ... < σf,n are the ordered fracture stresses from a sample of size n. The statistic D is obtained 
by initially evaluating two other statistics, D+ and D– (the largest vertical difference when Fn(σf) is greater than the 
distribution function F(σf), where F(σf) = Pf in eq. (D55), and the largest vertical difference when Fn(σf) is smaller 
than F(σf), respectively). All three statistics are calculated by using the following expressions: 
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For ceramics design, the F(σf,i)’s are equal to Pf’s and are calculated from equation (D55). 

On the other hand, the AD statistic A2 belongs to the quadratic class and is a more powerful goodness-of-fit 
statistic. It evaluates the discrepancy between the two distributions through squared differences and the use of an 
appropriate weighting function. The statistic A2 is given by 
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and again, F(σf,i) are the predicted failure probabilities obtained from equation (D55). 

Corresponding significance levels SL are calculated from the D and A2 statistics. From previous surveys (Pai 
and Gyekenyesi, 1988), there is no specific mention of an absolute accepted significance level. Therefore, users 
must be subjective, using their own judgment in either accepting or rejecting the hypothesis that the data fit a 
Weibull distribution. However, a higher value of SL indicates that the data fit the distribution more closely. In 
CARES/Life, the significance level is calculated with the assumption that the Weibull parameters are calculated 
independent of the observed strength data. However, the Weibull parameters are actually estimates based on the 
experimental data, and hence the assumption of independence is violated. We recommend that the significance level 
be viewed as a relative measure of goodness of fit and not as an absolute measure. 

For complete samples, the 90-percent Kanofsky-Srinivasan confidence band values about the proposed distri-
bution are also calculated to ascertain the fit of the data. These values are similar to the KS statistic D centered 
around the EDF. The bands are generated by 
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 ( ) ( ) ( ) ( )[ ]nKFnKF ff    ,    bands Confidence +σ−σ=  (D91) 

 
where F(σf) is the failure probability obtained by substituting the Weibull parameters in equation (D55). The 
Kanofsky functions, denoted by K(n), are described in Abernethy et al. (1983). 

Some limitations are intrinsic to a purely statistical approach to design. One problem occurs when the design 
stress is well below the range of experimental data, as shown in figure D.5. Extrapolation of the Weibull 
distribution into this regime may yield erroneous results if other phenomena are present. When two flaw 
populations exist concurrently, but only one (population A) is active in the strength regime tested, the predicted 
failure probability may be incorrect. Furthermore, if the threshold strength is not zero, the strength may be 
underestimated. Finally, an approach based only on statistics can allow for stress-state effects only in an empirical 
fashion. 
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D.2.2 Time-Dependent Reliability Analysis 
 
D.2.2.1 Overview.—For ceramics and glasses, the ability to sustain a load degrades over time because of a 

variety of possible effects, such as oxidation, creep, stress corrosion, and cyclic fatigue. Stress corrosion and cyclic 
fatigue are representatives of a phenomenon called SCG, which initiates on a preexisting flaw and continues until a 
critical length is reached, causing catastrophic propagation. This occurs when the equivalent mode-I SIF KIeq equals 
the fracture toughness KIc. The SCG failure mechanism is load induced over time. It can also be a function of the 
chemical reaction with the environment, debris wedging near the crack tip, the progressive deterioration of bridging 
ligaments, and other factors. Because of this complexity, the models that have been developed tend to be 
semiempirical and approximate the phenomenological behavior of SCG.  

The previous equations in this appendix assumed that no SCG occurred prior to failure, and all failures were 
assumed to be independent of the time and history of previous thermal-mechanical loadings. The effects of time-
dependent SCG on component reliability will now be addressed. Creep and material healing mechanisms are not 
addressed. Proof testing (Evans and Wiederhorn, 1974b) will improve the reliability of a survived component. This 
form of testing results in an attenuated probability of failure and a predicted minimum life expectancy of the 
survived components under the service load. This subject is discussed in section D.2.2.6. 

For the analysis of time-dependent reliability, in addition to the Weibull shape and scale parameters, the 
material-environmental fatigue parameters (N and B) are required. The derivations that follow develop the time-
dependent probability of failure based on the mode-I equivalent stress distribution due to thermal-mechanical 
loading at time tf, transformed to its equivalent stress distribution at time t = 0. Determination of the fatigue 
parameters is discussed in section D.2.2.5. 

Investigations in the area of mode-I crack extension (Paris and Sih, 1965) have resulted in the following 
relationship:  
 
 ( ) ( ) ( )taYttK eqeq ,  ,  , II ΨΨσ=Ψ  (D92) 
 
where KIeq is the equivalent mode-I SIF and σIeq is the equivalent mode-I far-field stress normal to a crack. The 
parameter Y is a function of crack geometry and can vary with SCG; however, we assume that Y is a fixed 
geometric constant, a(Ψ,t) is the appropriate crack length at time t, and Ψ represents a location (x, y, z) within the 
body and the orientation (α, β) of the crack. In some models, such as the Weibull and PIA, Ψ represents a location 
(x, y, z) only. The equations presented in this section are based on the Batdorf theory and the PIA model. For the 
Batdorf theory, Ψ = (x, y, z, α, β) for volume-flaw analysis and Ψ = (x, y, α) for surface-flaw analysis. For the PIA 
model, Ψ = (x, y, z) for volume-flaw analysis and Ψ = (x, y) for surface-flaw analysis. 

The crack growth as a function of the equivalent mode-I SIF is assumed to follow a power-law relationship: 
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where A1 and N are material and environmental parameters. Parameters A1 and N are typically temperature 
dependent, and hence for a nonuniform temperature distribution, they are a function of location (x, y, z). In the 
following equations, A1 and N are shown for isothermal conditions. Substituting equation (D92) into equation (D93) 
yields 
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The relationship at time t between a(Ψ,t) and a mode-I critical effective stress σIeqc(Ψ,t) is 
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Differentiating equation (D95) and substituting into equation (D94) results in 
 

 ( )
( )
( ) ( )∫∫ Ψσ−=σΨσ

−Ψσ

=Ψσ
− ffeqc

eqc

t N
eq

N
eqct

t eqc
N
eqc tt

K
YAt

0 I

2
I21

,

0, I
3

I d , 
2

   d, I

I
 (D96) 

 
where σIeqc,0(Ψ, t = 0) is the transformed critical equivalent stress distribution at t = 0, and σIeqc(Ψ, tf) is the critical 
equivalent stress distribution in the component at time t = tf. At the time of failure t = tf, the critical equivalent stress 
(strength) of the crack σIeqc(Ψ, tf) just equals the equivalent applied stress σIeq(Ψ, tf). With this condition, an 
expression can be obtained for a transformed equivalent stress at time t = 0, henceforth denoted by σIeq,0(Ψ), where 
σIeq,0(Ψ) = σIeq(Ψ, t = 0) = σIeqc(Ψ, t = 0). The transformed equivalent stress (Thiemeier, 1989, and Wittig et al., 
1991) is 
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where 
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and N and B are the material and environmental fatigue parameters. The dimensionless fatigue parameter N is 
independent of the fracture criterion, and the parameter B has units of stress2 × time. In CARES/Life, the value of B 
is adjusted to satisfy the requirement that for a uniaxial stress state, all models produce the same probability of 
failure. The determination of these parameters is addressed in section D.2.2.5.  

D.2.2.1.1 Time-dependent volume-flaw reliability analysis: CARES/Life computes the time-dependent 
reliability of a ceramic component, assuming a crack-density distribution that is a function of the critical effective 
stress distribution. The crack-density coefficient is now time dependent. For volume-flaw analysis, the crack-
density function is expressed as 
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where kBV and mV are material constants and the transformed effective stress σIeq,0(Ψ) is expressed as 
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where NV and BBV are material fatigue parameters. Note that the parameters mV, σ0V, NV, and BBV are not shown as 
functions of location (x, y, z), which they potentially are if the temperature distribution throughout the body is 
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nonuniform. Based on a probability-of-failure model, a subscripted fatigue parameter, such as BBV for the Batdorf 
model, is computed. The parameter BBV is directly proportional to B. The various model-dependent subscripted 
fatigue parameters are all directly proportional to B. They are evaluated by satisfying the requirement that for a 
uniaxial stress state, all models produce the same probability of failure. For large values of N, all model fatigue 
parameters tend to B. The relationship between the B subscripted parameters is discussed in section D.2.2.4. 

If the boundary load direction and/or location changes with time, the principal stress vectors change direction 
with respect to a fixed global coordinate system. If this occurs, the permanent reference axis becomes the fixed 
global coordinate system. The normal and shear stresses are computed with respect to the global coordinate system. 
The normal stress is 
 
 ( )zxyzxyzyxn nmnmnm τ+τ+τ+σ+σ+σ=σ        2        222 lll  (D101) 
 
and the shear stress is 
 
 ( ) ( ) ( ) 22222                         nzyzxzzyyxyzxyxx nmnmnm σ−σ+τ+τ+τ+σ+τ+τ+τ+σ=τ lll  (D102) 
 
where R, m, and n are the direction cosines defined in figure D.6. Symmetry conditions permit the integration of the 
equivalent mode-I stress projection over the upper half of the spherical surface as shown in figure D.6.  

The time-dependent probability of failure for the Batdorf model is 
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where σIeq,0(Ψ) is the transformed effective stress distribution as given in equation (D100), and σIeq,0 (Ψ) is 
dependent on the appropriate fracture criterion, crack shape, and time to failure tf. The fracture criteria and crack 
shapes available for time-dependent analysis are identical to those used for fast fracture analysis. The available 
fracture criteria are the Weibull NSA criterion (a shear-insensitive case of the Batdorf theory), the maximum tensile 
stress criterion, the total coplanar strain-energy release rate criterion, and the noncoplanar crack-extension (Shetty) 
criterion. 

For the PIA model, the probability of failure is 
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where  
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and i = 1, 2, 3. The principal tensile stress distributions are σ1(x, y, z, t), σ2(x, y, z, t), and σ3(x, y, z, t). 
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For a stressed component, the probability of failure for volume-flaw analysis is calculated from equa- 

tion (D103). The finite element method enables discretization of the component into incremental volume  
elements. CARES/Life evaluates the reliability at the gaussian integration points of the element or, optionally,  
at the element centroid. Using the element integration points subdivides the element into subelements, hence each 
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Visub corresponds to the isubth subelement volume. In the usual context of finite element methods, the volume of a 
three-dimensional element Velt is calculated after transformation into the natural coordinate space (Bathe, 1982): 
 

 ( )∫ ∫ ∫− − −
=

1

1

1

1

1

1
d d d ,,det   tsrtsrVelt J  (D105) 

 
where J is the Jacobian operator and r, s, and t are the natural coordinates. The subelement volume is defined as the 
contribution of the integration point to the element volume in the course of the numerical integration procedure. The 
volume of each subelement (corresponding to a Gauss integration point) is calculated using the shape functions 
inherent to the element type. The stress state in each subelement is assumed to be uniform. Powers et al. (1992) 
gives further details of the subelementing procedure as used in CARES/Life. The numerical solution of equation 
(D103) takes the following form: 
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where nsub is the total number of subelements. If kBV is element dependent, it would appear inside the brackets. 
CARES/Life uses gaussian numerical integration to evaluate equation (D106). This is detailed further in section 
D.2.3, except that in this case the integration is performed over one-half of the unit radius sphere since a global 
coordinate system reference frame is used. 

D.2.2.1.2 Time-dependent surface-flaw reliability analysis: CARES/Life computes the time-dependent 
reliability of a ceramic component assuming a crack-density distribution that is a function of the critical effective 
stress distribution. The crack-density coefficient is now time-dependent. For surface-flaw analysis, the crack-
density function is expressed as 
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where kBS and mS are material parameters and the transformed effective stress, σIeq,0, is expressed as 
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where NS and BBS are material fatigue parameters. Note that the parameters mS, σoS, NS, and BBS are not shown as a 
function of location (x, y), which they potentially are if the temperature distribution on the surface is nonuniform. 
On the basis of a probability-of-failure model, a subscripted fatigue parameter, such as BBS for the Batdorf model, is 
computed. The parameter BBS is directly proportional to B. The various model-dependent subscripted fatigue param-
eters are all directly proportional to B. They are evaluated by satisfying the requirement that for a uniaxial stress 
state, all models produce the same probability of failure. For large values of N, all model fatigue parameters tend  
to B. The relationship between the B subscripted parameters is discussed in section D.2.2.4. 

If the boundary load direction and/or location changes with time, the principal stress vectors change direction 
with respect to a fixed global coordinate system. If this occurs, the permanent reference axis becomes the fixed 
global coordinate system. The normal and shear stresses are computed with respect to the global coordinate system. 
The normal stress is  
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 xyyxn mm τ+σ+σ=σ   2       22 ll  (D109) 
 
and the shear stress is 
 
 ( ) ( ) 2222               nyxyyxx mm σ−σ+τ+τ+σ=τ ll  (D110) 

 
where R and m are the direction cosines. Symmetry conditions permit the projection of the equivalent mode-I stress 
over half of the perimeter of the unit radius circle.  

The probability of failure for the Batdorf model is 
 

 ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ αΨσ

π
−−= ∫ ∫

π
 d d  exp  1  

0 0,IA
m
eq

BS
ffS AktP S  (D111) 

 
where σIeq,0(Ψ) is the transformed effective stress distribution as given in equation (D108). The distribution 
σIeq,0(Ψ) is dependent on the appropriate fracture criterion, crack shape, and time to failure tf. The criteria and crack 
shapes available for time-dependent analysis are identical to those used for fast fracture. The fracture criteria are the 
Weibull NSA criterion (a shear-insensitive case of the Batdorf theory), the total coplanar strain-energy release rate 
criterion, and the noncoplanar crack-extension (Shetty) criterion. 

For the PIA model, the probability of failure is 
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where 
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i = 1, 2; and σ1(x, y, t) and σ2(x, y, t) are the principal tensile stress distributions. 

The finite element method enables discretization of the surface of the component into incremental area 
elements. CARES/Life evaluates the reliability at the gaussian integration points of shell elements or, optionally, at 
the element centroids. Using the element integration points subdivides the element into subelements, where each 
Aisub corresponds to the isubth subelement area. The area of a two-dimensional element and subelement are 
calculated in similar fashion to the method outlined for equation (D105) except that the element area Aelt is 
calculated after transformation into a natural two-dimensional coordinate space: 
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Powers et al. (1992) gives further details of the subelementing procedure as used in CARES/Life. 

The stress state in each subelement is assumed to be uniform, and the numerical formulation of equation  
(D111) is  
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where nsub is the total of number of subelements. If kBS is element dependent, it appears inside the brackets. 
CARES/Life uses gaussian numerical integration to evaluate equation (D114). This is detailed further in section 
D.2.3, except that in this case the integration is performed over one-half of the unit radius circle since a global 
coordinate system reference frame is used. 

D.2.2.1.3 Static fatigue: Static fatigue is defined as the application of a constant load over a period of time. For 
static fatigue, the mode-I equivalent stress is independent of time, and from equation (D97), 
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For volume-flaw analysis (by symmetry, integrating over one octant of the unit radius sphere), the probability 

of failure for the Batdorf model is 
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For the PIA model, the probability of failure is 
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where 
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for the principal stresses denoted by i = 1, 2, 3.  

The probability of failure for surface flaws is analogous to that for volume flaws. For the Batdorf model, the 
probability of failure is expressed as 
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For the PIA model, the probability of failure is 
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where 
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for the principal stresses i = 1, 2. 

D.2.2.1.4 Dynamic fatigue: Dynamic fatigue is defined as the application of a constant stress rate ( )Ψσ& over a 
period of time t. Assuming the applied stress is zero at time t = 0, then 

 
 ( ) ( )tteq    ,I Ψσ=Ψσ &  (D120) 

 
Substituting equation (D120) into equation (D97) results in 
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At the time of failure t = tf, equation (D120) can be restated as ( ) ( ) .   ,I ffeq tt Ψσ=Ψσ &  Substituting this expression 
into equation (D97) results in 
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For volume flaws, the Batdorf probability-of-failure equation is 
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For the PIA model, the probability of failure is  
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where 
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for the principal stresses where i = 1, 2, 3. 

For surface flaws, the Batdorf model probability of failure is 
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For the PIA model, the probability of failure is 
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where 
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for the principal stresses where i = 1, 2. 

D.2.2.1.5 Cyclic fatigue: Cyclic fatigue is the repeated application of a loading sequence. Analysis of the time-
dependent probability of failure for a component subjected to various cyclic boundary load conditions is simplified 
by transforming that type of loading to an equivalent static state. The conversion satisfies the requirement that both 
systems will cause the same crack growth (Mencik, 1984). Implicit in this conversion is the validity of the crack-
growth equation (D93). The probability of failure is obtained with respect to the transformed static state. 

The fatigue parameters can also be determined from cyclic loaded specimens via transformation to an equiva-
lent static state. Since static and cyclic tests can yield different results when the fatigue parameters are being 
determined, the type of loading used should simulate as closely as possible the service conditions. This is discussed 
in more detail in section D.2.2.5.  

Evans (1980) and Mencik (1984) defined g-factors g(Ψ), for various types of cyclic loading, that are used to 
convert the cyclic load pattern to an equivalent static state. For periodic loading, tper is the time interval of one 
cycle, and σIeqg(Ψ) is the equivalent static stress acting over the same time interval, tper, as the applied cyclic stress 
σIeq(Ψ, t). The equivalent static stress is defined as 
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where σch(Ψ) is a characteristic value of σIeq(Ψ, t). Over one cycle where both load systems cause the same crack 
growth, 
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and the g-factor is 
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In CARES/Life, the characteristic value σch(Ψ) of σIeq(Ψ, t) is taken as σIeq,max(Ψ), the maximum stress of the 

periodic load over the cycle time interval tper. For a periodic load over an extended time t1, 
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When more than one type of loading is applied to a component, such as a periodic cyclic load and a static load, the 
g-factor is based on the effective variation of the combined loading. The g-factor can vary from element to element, 
and the stress-volume integration is performed over the hemisphere of the unit radius sphere for volume flaws and 
on the perimeter of the unit radius semicircle for surface flaws. 

For n multiple, but different, cyclic loadings over an interval of time tn = tf, 
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Thus, 
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where σIeq,max,i(Ψ) is the maximum value of σIeq(Ψ) over Δti. 
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Another approach by Mencik is to define an equivalent static time tes during which a characteristic stress  
(σch is chosen as the maximum stress σIeq,max(Ψ)) would cause the same crack growth as the applied cyclic stress 
σIeq(Ψ, t) during time Δt. Thus, 
 
 ( ) ( ) ( ) ( ) ( ) tgtt

t
tt N

eq
t N

eqes
N
eq ΔΨΨσ=Ψσ

Δ
=ΨΔΨσ ∫     d ,     max,I0 I

per
max,I

per  (D134) 

 
or 
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For multiple, but different, cyclic loading over an interval of time tf = Δt1 + Δt2 + ... + Δtn 
 

 
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]nn
N
eq

neseses
N
eq

tgtgtg

ttt

ΔΨ++ΔΨ+ΔΨΨσ

=ΨΔ++ΨΔ+ΨΔΨσ

... 

....

2211max,I

,2,1,max,I

 (D136) 
 
or 
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In this case, σIeq,max is the maximum value of σIeq over tn and σIeq,max replaces σIeq,max,i in the calculation of gi(Ψ). 

Mencik (1984) lists g-factors for a variety of waveforms. Table D.I lists the g-factors for various loadings and 
waveforms supported by CARES/Life. A simple closed-form expression for the sine wave is not available, and 
consequently, a numerical evaluation is required.  

CARES/Life adopts the approach of equation (D131) to compute the time-dependent reliability. Equation 
(D131), the static equivalent stress distribution, is substituted into equation (D97) where the time t1 is replaced by tf. 
Hence, 
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Formulations for other failure models are developed analogously.  
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TABLE D.I.—g-FACTORS FOR WAVEFORMS WITH VARIOUS LOADINGS  
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Positive half pulse of sine wave 
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D.2.2.2 Application of the Paris and Walker laws.—This section considers the more general case of reliability 

modeling where the applied loading varies as a function of time. SCG is a complex phenomenon involving a 
combination of simultaneous and synergistic failure mechanisms. These can be grouped into two classes: static 
effects and cyclic effects. Static effects refer to the slow propagation of cracks under cyclic stresses and may be 
explained by the same environmental and corrosive processes responsible for SCG under static loads. Cyclic effects 
are functionally dependent on the number of cycles and on the duration of each cycle. The SCG phenomenon can be 
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caused by a variety of effects, such as debris wedging or the degradation of bridging ligaments, but essentially it is 
based on the accumulation of some type of irreversible damage that tends to enhance the crack growth. Not all 
materials display cyclic effects. Glasses seem to show only static effects, whereas polycrystalline materials are more 
susceptible to cyclic effects. Modeling for cyclic effects is based on phenomenological criteria (Paris law and 
Walker law) traditionally used for metal fatigue. 

Using g-factors with the power-law formulation to predict component life is an unconservative practice for 
materials prone to cyclic damage. To empirically model cyclic effects in ceramic materials, Dauskardt et al. (1990a 
and 1992) suggest the use of the Paris power-law expression (Paris and Erdogan, 1963), which has traditionally 
been used in metals design. Dauskardt et al. (1992) use the Walker modification of the Paris law (Walker, 1970,  
p. 1) to describe the crack-growth increment per cycle as 
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where n is the number of cycles,  
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and ΔKIeq(Ψ, n) represents the range of the equivalent SIF over the load cycle. 
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and A2, N, and Q are the cyclic fatigue parameters determined from experiments. The Paris law is obtained when N 
and Q are equal in value. The subscripts “max” and “min” indicate the maximum and minimum cycle stress, 
respectively. The integration of equation (D139) parallels that of equation (D93), yielding 
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where nf denotes the number of cycles to failure, B is now expressed in units of stress2 × cycle (B is determined 
from cyclic data), and the R-ratio (defined as the ratio of the minimum to maximum cyclic stress) is 
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For a periodic cyclic stress, R(Ψ,n) and σIeq,min(Ψ, n) are independent of n, hence  
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When R = 1 (the static fatigue case), there is no time-dependent degradation of material strength due to cyclic 
effects. When R < 0, compressive stresses are present, which depending on the material, may or may not further 
degrade the strength. If no further degradation of strength occurs when R < 0, R should be set to zero in equation 
(D141). The probability of failure for cyclic fatigue using the Batdorf model for volume-flaw analysis is 
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Analogously, equations may be derived for the PIA model or for surface-flaw analysis.  

The Paris law should be used with prudence. Assuming that the static effects and cyclic effects are mutually 
exclusive events, the component reliability can be described as the product of the reliabilities calculated for each of 
these phenomena: 
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thus when R = 1, degradation due to static fatigue is accounted for. 

D.2.2.3 Material failure characterization for static, cyclic, or dynamic loading.—For time-dependent fracture 
under static or cyclic fatigue loading, failure probability can be expressed in terms of the specimen time to failure tf 
by using the two-parameter specimen uniaxial Weibull model (Paluszny and Nicholls, 1978) 
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where 
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For static loading, g(Ψ) = 1. At location Ψo, σf (Ψo) is the maximum static or cyclic failure stress in the specimen, 
g(Ψo) is the g-factor at that location, σθ is the characteristic strength, σf,0 is the transformed static inert strength, m ˜ 
is a modified Weibull modulus, and tθ is the volume or area specimen characteristic time. Henceforth, σf(Ψo) is 
replaced by σf , where location at Ψo is implied. The characteristic time is analogous to the characteristic strength. 
Equation (D144) allows the specimen time-dependent failure response to be described with a simple Weibull 
equation that is a function only of tf and the empirically determined parameters m ˜ and tθ. Procedures such as the 
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least-squares method or maximum-likelihood analysis can be used to estimate these parameters from experimental 
fracture data as described in section D.2.1.5. 

For static or cyclic fatigue, if we use the uniaxial time-dependent Weibull distribution for volume flaws with the 
g-factor approach of equation (D130), and for 
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and σ1 indicates the first principal stress. For the case when the g-factor is constant throughout the specimen, 
henceforth denoted by g, equation (D145) can be expressed in terms of the maximum static or cyclic failure stress 
σf in the specimen by multiplying the numerator and denominator by .

~
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The term Vef is the modified effective volume when the applied stress distribution is normalized with respect to σf. 
All expressions previously derived for Ve are still applicable for Vef with the exception that VV Nm~ should be 
substituted for mV (see section D.2.2.4). For a constant g-factor, comparing equations (D144) and (D146) yields the 
time-dependent scale parameter relationship: 
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The modified effective volume that is used with equation (D146) and the PIA model is  
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where the principal stresses are 
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For the Batdorf theory, the modified effective volume analogous with equation (D146) is defined as 
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For surface flaws, the resulting equations are similar to those equations previously derived. Integration is 

performed over the specimen surface, and the modified effective area Aef is obtained. 
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For the uniaxial Weibull distribution 
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The time-dependent scale parameter is  
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The modified effective area for the PIA model is 
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For the Batdorf theory, the modified effective area is 
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Similar to cyclic fatigue, for dynamic fatigue the specimen time to failure can be expressed using the two-

parameter Weibull form as 
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tf is the time to failure, and tθd is the characteristic time (the subscript d indicates dynamic fatigue). Note that for 
dynamic fatigue (constant stress-rate loading) the g-factor has a value of 1/(N + 1). For volume flaws, substituting 
1/(NV + 1) for the g-factor and rearranging equation (D146) gives 
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Note that in equation (D157), σf denotes the maximum stress in the specimen and σ&⋅  is the stressing rate at that 
location. The derivation for surface flaws follows a similar line of reasoning. 
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For the Paris law, the relation analogous to equation (D144) is 
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where nf is the cycles to failure and nθ is a characteristic number of cycles. Similar to equation (D145)  
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Similar to equation (D146) then, 
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The derivation for surface flaws follows a similar line of reasoning.  

D.2.2.4 Fatigue parameter risk-of-rupture compatibility.—To ensure compatibility of failure probabilities, one 
must establish the relationships between the fatigue parameters (N and B) and the various failure criteria. From uni-
axial test specimen data (simple tension, three-point bend, or four-point bend), compatibility is derived by equating 
the risk of rupture of the specimen uniaxial Weibull equation to the uniaxial Weibull model, the PIA model, the 
Weibull NSA, or the Batdorf shear-sensitive formulation. 

For volume-flaw analysis, the probabilities of failure for the various approaches mentioned previously are 
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The subscript 0 denotes the transformed stress to time t = 0. 

The basis for compatibility-of-failure probabilities is the requirement that all expressions produce the same 
probability of failure for a uniaxial stress state as that obtained from the specimen uniaxial Weibull equation. The 
value of N remains invariant, whereas the value of B is adjusted to satisfy this requirement. The approach is similar 
to that used to obtain the relationships of the crack-density coefficients for fast-fracture reliability analysis. The 
most common experimental test specimens used in the evaluation of the fatigue parameters are the uniaxial tension, 
three-point bend, and four-point bend geometries. The fatigue parameters N and B are obtained from the data based 
solely on the maximum stress in the specimen at fracture σf and the time to failure tf. 

For the specimen uniaxial Weibull equation, the time-dependent transformation equations are 
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Cyclic fatigue 
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if it is assumed that σ2tf /B >> 1, where tf is the time to fracture, g is the g-factor used with cyclic loading, σf is the 
maximum tensile stress in the specimen at fracture, and BuV is the fatigue parameter obtained from the specimen 
uniaxial Weibull equation. Equating the risk of rupture of the specimen uniaxial Weibull model with the uniaxial 
Weibull model risk of rupture gives 
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where 
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For Vef, the static equivalent stress distribution σ1(x, y, z) is normalized with respect to the maximum equivalent 
static tensile stress σf at tf. Thus, Vef for a given specimen configuration is similar to Ve for the same specimen, with 
the exception that the exponent associated with Vef is VV Nm~ , whereas the exponent associated with Ve is mV. When 
there is no stress gradient in the specimen, then Ve and Vef are equivalent. When stress gradients exist throughout 
the specimen, then these terms are not equal. For the three- and four-point bend specimens (for three-point bend, the 
inner span L2 is set equal to zero), equating the risk of rupture of the specimen uniaxial Weibull equation with that 
of the uniaxial Weibull expression yields 
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For the PIA model, the relationship between BwV and BuV is  
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Equating the risk of rupture of the specimen uniaxial Weibull to the Batdorf risk of rupture yields the relationship 
between BBV and BuV: 
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where σIeq(Ψ) represents the static equivalent stress distribution. For the Weibull NSA method, BnwV is substituted 
for BBV, and σIn,0(Ψ) is substituted for σIeq,0(Ψ). 
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The relationship between BwV and BBV is established by equating the risk of ruptures for the uniaxial Weibull 
model and the Batdorf model: 
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For the uniaxial stress state, this expression becomes strictly a function of the fracture criterion. This can be 
demonstrated with a shear-insensitive fracture criterion (equivalent to the Weibull NSA method), where 
 
 ( ) ( ) ασ=Ψσ  cos ,,  2II zyxeqeq  (D168) 
 
so that 
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combined with equation (D66) then 
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For colinear crack extension with a Griffith crack, 
 
 ( ) ( ) ασ=Ψσ  cos ,,  II zyxeqeq  (D171) 
 
so that 
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combined with equation (D68) then 
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For an arbitrary fracture criterion expressed as some function of the flaw orientation, 
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 ( ) ( ) ( )βασ=Ψσ , ,,  II fzyxeqeq  (D174) 
 
then 
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For surface-flaw analysis, the relationship between the specimen uniaxial Weibull fatigue parameter BuS and the 

uniaxial Weibull parameter BwS, the Weibull NSA parameter BnwS, and the Batdorf parameter BBS is obtained in a 
similar manner to that used for the volume-flaw analysis. Equating the risk of rupture of the specimen uniaxial 
Weibull equation to the uniaxial Weibull equation yields 
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then 
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where 
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For Aef, the static equivalent stress distribution σ1(x, y) is normalized with respect to the maximum equivalent static 
tensile stress σf at tf. Thus, Aef for a given specimen configuration is similar to Ae for the same specimen with the 
exception that the exponent associated with Aef is SS Nm~ , whereas the exponent associated with Ae is mS. When 
there is no stress gradient on the specimen, then Ae and Aef are equivalent. When stress gradients exist throughout 
the specimen, then these terms are not equal. 

For the four-point bend specimen (L2 = 0 for the three-point bend solution), 
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Equating the risk of rupture of the specimen uniaxial Weibull equation to the uniaxial Weibull formulation yields 
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For the PIA model, the relationship between BwS and BuS is  
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Equating the risk of rupture of the specimen uniaxial Weibull equation to the Batdorf risk of rupture yields the 
relationship between BBS and BuS 
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where σIeq(Ψ) represents the static equivalent stress distribution. For the Weibull NSA method, BnwV is substituted 
for BBV and σn,0(Ψ) is substituted for σIeq,0(Ψ). 

The relationship between BwS and BBS is established by equating the risk of ruptures of the uniaxial Weibull 
model and the Batdorf model 

 

 

( )

( )
Ak

A
yx

B
B

A

Nm

f

eqBS

A

Nm

f

eq
m

BS

wS
SS

SS

S

dd2

d
,

~
2

0
I

~
I

~

∫ ∫

∫

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
α⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

Ψσ

π

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

σ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

π

 (D183) 

 
For the uniaxial stress state, this expression becomes strictly a function of the fracture criterion. This can be 
demonstrated with a shear-insensitive fracture criterion (equivalent to the Weibull NSA method), where 
 
 ( ) ( ) ασ=Ψσ  cos , 2II yxeqeq  (D184) 
 
so that 
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combined with equation (D79) then 
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For colinear crack extension with a Griffith crack 



NASA/TP—2005-212505 142

 
 ( ) ( ) ασ=Ψσ  cos ,II yxeqeq  (D187) 
 
so that 
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combined with equation (D81) then 
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For an arbitrary fracture criterion expressed as some function of the flaw orientation, 
 
 ( ) ( ) ( )ασ=Ψσ fyxeqeq  ,II  (D190) 
 
then 
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D.2.2.5 Evaluation of fatigue parameters from inherently flawed specimens.—The lifetime reliability of 

structural ceramic components depends on the history of the loading, the component geometry, the distribution of 
preexisting flaws, and the parameters that characterize SCG. These crack-growth parameters must be measured 
under conditions representative of the service environment. When determining fatigue parameters from the rupture 
data of naturally flawed specimens, the statistical effects of the flaw distribution must be considered along with the 
strength degradation effects of SCG. A more direct approach is to calculate fatigue parameters from velocity 
measurements of an induced crack of known configuration, thereby eliminating the statistical aspects of the flaw 
population from the experiment. The weakness of this approach, however, is the difficulty of getting a notched or 
indented specimen to behave in a manner identical to that of the naturally flawed specimen. CARES/Life was 
developed on the basis that fatigue parameters are most accurately obtained from naturally flawed specimens. In the 
following discussion, three methods are described to estimate these parameters from fatigue data: the median-value 
technique, a least-squares regression technique, and the median-deviation (MD) technique, a modification to a 
method from Jakus et al. (1978). These methods are described in terms of volume-flaw analysis for static (or 
constant amplitude and frequency cyclic) fatigue. Only the MD technique is discussed for dynamic (constant 
stressing rate) fatigue using the power-law formulation and the Paris law methodology for constant amplitude and 
frequency cyclic loading. Analogous relations for surface flaws are easily developed by replacing the effective 
volume with the effective area.  

D.2.2.5.1 Static and cyclic fatigue parameter evaluation: When equation (D146) is rearranged for static fatigue 
or constant amplitude and frequency cyclic loading at a fixed level of reliability, the specimen time to failure for 
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volume flaws is expressed as a function of the maximum stress σf in the specimen (for cyclic loading this 
corresponds to σIeq,max at the highest stressed point in the specimen) 
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The g-factor is assumed to be constant throughout the specimen and for all loading levels. The terms between the 
brackets are simplified by replacing them with a constant, yielding 
 
 VN

fcf At −σ=   (D193) 

 
Equation (D193) is a convenient expression from which to fit experimental data, thus Ac and NV can be considered 
as material-environmental parameters. Taking the logarithm of equation (D193) yields 
 
 fVcf NAt σ−= ln    ln ln  (D194) 
 
Linear regression analysis of the experimental data is used to solve equation (D194) for the slope –NV and the 
intercept ln Ac. The fatigue parameter estimation techniques in CARES/Life estimate Ac and NV for a probability of 
failure fixed at 50 percent (PfV = 0.50). 

For the median-value technique, CARES/Life uses the median value at each individual stress level as the  
data points. Using equation (D194) and performing a least-squares linear regression on the set of median values 
estimates the line corresponding to a failure probability of 50 percent with slope –NV and intercept ln Ac. Details of 
the least-squares solution technique are given in Pai and Gyekenyesi (1988). The median-value estimation method 
is the least efficient fatigue parameter estimation technique in CARES/Life (i.e., the estimated parameter has the 
largest confidence interval for a given sample size). 

Another fatigue parameter estimation method incorporated in CARES/Life is the least-squares regression 
technique. This method is similar to the median-value technique except that linear regression using equation (D194) 
is performed with all the fatigue data points (instead of only the median values). The fatigue parameter NV is 
obtained from the slope of the regression line. Assuming that the experimental data are at a sufficient number of 
discrete levels of applied stress, CARES/Life transforms all the data failure times tf,i to an equivalent failure time tT,i 
at an equivalent single level of stress, σT. Equating the failure probabilities calculated from equation (D146) for data 
number i yields 
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where the subscript T indicates a transformed value. In CARES/Life, the value of σT is the lowest level of applied 
stress in the data set. With all the data transformed to the various values tT,i, CARES/Life performs a Weibull 
parameter estimation as described in section D.2.1.5, solving equation (D144) for Vm~ and tθVT. Substituting into 
equation (D193) for a time to failure corresponding to a 50-percent probability of failure yields 
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The third option in CARES/Life for estimating fatigue parameters is a modification to a method used by  

Jakus et al. (1978). This estimation technique is referred to as the MD procedure. In this procedure, the fatigue 
parameters and Weibull modulus are determined by minimizing the median deviation of the logarithm of the time. 
The characteristic strength σθV is assumed to be known. From equation (D195), the fatigue data are transformed to a 
single stress level for an assumed value of NV. Using equation (D144) and the previously mentioned least-squares or 
maximum-likelihood estimation methods, we obtain the Weibull parameters Vm~ and tθVT. With these parameters, 
the median value (tT,0.5) is calculated (i.e., the value for tT when PfV = 0.50). Using the transformed fatigue data as a 
discrete variable, we can define the median deviation (using absolute values) as 
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for the k data points. The MD is a measure of dispersion or scatter about the median. It can also be obtained for the 
continuous variable defined by the Weibull parameters Vm~ and tθVT for ranked probabilities of failure Pf,i. 

 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−= ∑∑
==

θ
k

i

if

V

k

i

T

m

if
VT P

km
t

P
t

k
MD

V

1

,

1

5.0,

~/1

,

5.01
1ln

1
1ln

ln1
~
1ln

1
1lnln1  (D198) 

 
The value of NV for which the MD is a minimum establishes the solution. The scatter of the distribution is measured 
with the Weibull modulus Vm~ since for a fixed value of k the expression inside the brackets of equation (D198) is a 
constant. CARES/Life minimizes equation (D198) by maximizing Vm~ versus NV. This process is iterative, covering 
an appropriate range of values of NV. After a solution for NV is obtained, equation (D196) is used to calculate Ac. 

The MD procedure was investigated with Monte-Carlo simulations of static fatigue data. For sample sizes of 20 
and 30 specimens each, 10 000 simulations were run where the fast-fracture Weibull modulus m randomly varied 
between 2.0 and 30.0, N randomly varied between 10.0 and 60.0, and the number of stress levels randomly varied 
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between 2 and the sample size. The parameters σoV and BU were fixed at 100.0 and 10 000.0/(N + 1), respectively. 
The results of the simulations were compared with estimates calculated using the median-value technique for the 
same fracture data. Examination of the 90-percent confidence intervals indicated that the MD procedure yielded 
better results than the median-value technique. Using MLE gave better results than using least-squares estimation 
with the MD procedure. For the crack-growth exponent N, the 90-percent confidence interval from the MD 
procedure (with MLE) was about 70 percent of the range of the median-value 90-percent confidence interval, with 
no bias indicated with either estimator. For the crack-growth constant BU, the 90-percent confidence interval for the 
MD procedure was dramatically smaller than the median-value 90-percent confidence interval—with negligible bias 
indicated with the MD method and significant negative bias indicated with the median-value method. 

The fatigue parameter BwV can be obtained by comparing equations (D192) and (D193) for a 50-percent 
probability of failure 
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Alternatively, BwV can be obtained by equating equations (D144) and (D145): 
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Information on the underlying inert strength distribution also can be obtained from the fatigue data. Using 

equation (D195) to transform all the fatigue data to a single Weibull distribution and performing least-squares or 
maximum-likelihood analysis establishes the parameters Vm~ and tθVT. The fast-fracture Weibull modulus is then 
solved as 
 
 ( )2~ −=′ VVV Nmm  (D201) 
 
where the superscript ′ denotes a fast-fracture parameter estimated from fatigue data. The fast-fracture characteristic 
strength σθV cannot be estimated from the fatigue data. CARES/Life calculates a characteristic strength, σ′θV, on the 
basis of an extrapolation of the fatigue data to a specific failure time. This time is arbitrarily fixed at 1/(N + 1) 
seconds for static loading (equivalent to 1.0 s for dynamic loading). From equation (D195) then, 
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Much more statistical uncertainty is associated with the determination of the Weibull modulus than with the 
characteristic strength for fast-fracture testing. 

With the calculated quantities σ′θV and m′V, the fatigue data can be transformed to an equivalent inert strength 
distribution by equating the risk of rupture of equations (D55) and (D144) for the various transformed fatigue data 
values 
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where σ′ fI,i represents the ith transformed inert fracture strength of the specimen. Plotting the ranked values σ′ fI,i, for 
ln ln (1/1 –PfV) versus ln σ, gives useful visual information for the analyst. With σ′θV, m′V, and the various σ′ fI,i 
values, CARES/Life performs the outlier test and determines the KS and AD goodness-of-fit statistics, as explained 
in section D.2.1.5. The outlier test and goodness-of-fit statistics in this case are also valid for the transformed 
fatigue data (denoted with the subscript T) and the original fatigue data. Hence, the calculated goodness-of-fit 
significance levels measure the hypothesis that fatigue data were generated from the parameters NV, Ac, and m′V.  

D.2.2.5.2 Dynamic fatigue parameter evaluation: The fatigue parameter estimation methodology for dynamic 
fatigue is similar to the power-law formulation for static and cyclic fatigue. When equation (D157) is rearranged for 
a fixed level of reliability, the specimen failure stress σf for volume flaws is expressed as a function of the stress 
rate σ&  at the highest stressed point in the component: 
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The terms between the brackets are simplified by replacing them with a constant, yielding 
 
 ( )11   +σ=σ VNdf A &  (D205) 
 
Equation (D205) is a convenient expression from which to fit experimental data, thus Ad and NV can be considered 
as material-environmental parameters. Taking the logarithm of equation (D205) yields 
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The median-value, least-squares, and MD techniques are used to solve equation (D206) as previously discussed for 
static and cyclic loadings. 

Assuming that experimental data are at a sufficient number of discrete levels of stress rates, CARES/Life 
transforms all the data failure times tf,i to equivalent failure times tT,i at a fixed stress rate Tσ& . Equating the failure 
probabilities calculated from equation (D156) for data number i yields 
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where the subscript T indicates a transformed value and iifift σσ= &,, . In CARES/Life, the value of Tσ& is the 

lowest stress rate in the data set. With all the data transformed to the various values tT,i (and thus, able to be 
characterized by a single Weibull distribution), CARES/Life performs Weibull parameter estimation as described in 
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section D.2.1.5, solving equation (D156) for ( )1~ +VV Nm  and tθVT. Substituting into equation (D205) for a time to 
failure corresponding to a 50-percent probability of failure yields 
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where 
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The MD method for estimating fatigue parameters minimizes the median deviation of the logarithm of the time 

to failure. From equation (D207), the fatigue data are transformed to a single stress rate for an assumed value of NV. 
Equation (D156) and the previously mentioned least-squares or maximum-likelihood estimation methods are used 
to obtain the Weibull parameters ( )1~ +VV Nm  and tθdVT. With these parameters, the median value (tT,0.5) is calcu-
lated (i.e., the value for tT when PfV = 0.50). When the transformed fatigue data are used as discrete variables, MD is 
defined as 
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for the k data points. The MD is a measure of dispersion or scatter about the median. It can also be obtained for the 
continuous variable defined by the Weibull parameters ( )1~ +VV Nm  and tθdVT for ranked probabilities of failure Pf,i. 
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The value of NV for which the MD is a minimum establishes the solution. The scatter of the distribution is measured 
with the Weibull modulus ( )1~ +VV Nm  since for a fixed value of k the expression inside the brackets of equation 
(D210) is a constant. CARES/Life minimizes equation (D210) by maximizing ( )1~ +VV Nm versus NV. This process 
is iterative, covering an appropriate range of values of NV. After a solution for NV is obtained, equation (D208) is 
used to calculate Ad. 

The MD procedure was investigated with Monte-Carlo simulations of dynamic fatigue data. For sample sizes of 
20 and 30 specimens each, 10 000 simulations were run where the fast-fracture Weibull modulus m randomly varied 
between 2.0 and 30.0, N randomly varied between 10.0 and 60.0, and the number of stress rates randomly varied 
between 2 and the sample size. The parameters σoV and B were fixed at 100.0 and 10 000.0/(N + 1), respectively. 
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The results of the simulations were compared with estimates calculated using the median-value technique for the 
same fracture data. The conclusions reached with dynamic fatigue simulations were identical to those obtained with 
the static fatigue simulations. 

The fatigue parameter BwV can be obtained by comparing equations (D204) and (D205) for a 50-percent 
probability of failure 
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Alternatively, BwV can be obtained by equating equations (D156) and (D157): 
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Information on the underlying inert strength distribution can also be obtained from the fatigue data. Using 

equation (D207) to transform all the fatigue data to a single Weibull distribution and performing least-squares or 
maximum-likelihood analysis establishes the parameters ( )1~ +VV Nm  and tθVT. The fast-fracture Weibull modulus 
is then solved as 
 
 ( )2~ −=′ VVV Nmm  (D213) 
 
where the superscript ′ denotes a fast-fracture parameter estimated from fatigue data. The fast-fracture characteristic 
strength σθV cannot be estimated from the fatigue data. CARES/Life calculates a characteristic strength, σ′θV, based 
on extrapolation of the dynamic fatigue data to a specific time. This time is arbitrarily fixed at 1.0 s. From equation 
(D207) 
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Much more statistical uncertainty is associated with the determination of the Weibull modulus than with the 
characteristic strength for fast-fracture testing. 

With the calculated quantities σ′θV and m′V, the fatigue data can be transformed to an equivalent inert strength 
distribution by equating the risk of rupture of equations (D55) and (D156) for the various data values, 
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where σ′ fI,i represents the ith transformed inert fracture strength of the specimen. Plotting the ranked values σ′ fI,i,  
for ln ln(1/1 –PfV) versus ln σ, gives useful visual information for the analyst. With σ′θV, m′V, and the various σ′ fI,i 
values, CARES/Life performs the outlier test and determines the KS and AD goodness-of-fit statistics, as explained 
in section D.2.1.5. The outlier test and goodness-of-fit statistics in this case are also valid for the transformed 
fatigue data (denoted with subscript T) and the original fatigue data. Hence the calculated goodness-of-fit 
significance levels measure the hypothesis that fatigue data were generated from the parameters NV, Ad, and m′V.  
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D.2.2.5.3 Cyclic fatigue parameter evaluation: Fatigue parameter estimation for the Paris law is identical to the 
power-law formulation for cyclic fatigue except that time is replaced with cycles and the g-factor is replaced with 
(1 – R)N. Note that this section does not address Walker-law parameter estimation. For this parameter estimation 
technique, cyclic data are required at two or more applied loading levels and the R ratio must be held constant for  
all the data. Equation (D158) is rearranged for steady-state cyclic loading at a fixed level of reliability, and the 
specimen number of cycles to failure nf for volume flaws is expressed as a function of the maximum static equiv-
alent stress σf in the specimen (σf = σIeq,max) at the highest stressed point in the component. 
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The terms between the brackets are simplified by replacing them with a constant, yielding 
 
 VN

fcf An −σ=     (D217) 

 
Equation (D217) is a convenient expression from which to fit experimental data; thus, Ac and NV can be considered 
as material-environmental parameters. Taking the logarithm of equation (D217) yields 
 
 fVcf NAn σ−= ln    ln   ln  (D218) 
 
The median-value, least-squares, and MD techniques are used to solve equation (D218) as previously discussed for 
the power-law methodology. 

Assuming that the experimental data are at a sufficient number of discrete levels of applied stress, all the  
data cycles to failure nf,i are transformed to an equivalent number of cycles nT,i at an equivalent single level of 
(maximum within the cycle) stress σT. Equating the failure probabilities calculated from equation (D160) for data 
number i yields 
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where the subscript T indicates a transformed value. In CARES/Life, the value of σT is the lowest level of applied 
(maximum within the cycle) stress in the data set. With all the data transformed to the various values nT,i, 
CARES/Life performs Weibull parameter estimation as described in section D.2.1.5, solving equation (D158) for 

Vm~ and nθVT. Substituting into equation (D217) for the number of cycles corresponding to a 50-percent probability 
of failure yields 
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where 
 

 
( ) VVV

V

m
ef

N
T

N

N
oVwV

VT
V

B
n ~1

2

θ
  R  1

 
  

σ−

σ
=

−

 

 
The MD method for estimating fatigue parameters minimizes the MD of the logarithm of the number of cycles. 

From equation (D219), the fatigue data are transformed to a single stress level for an assumed value of NV. Equation 
(D158) and the previously mentioned least-squares or maximum-likelihood estimation methods are used to obtain 
the Weibull parameters Vm~ and nθVT. With these parameters, the median value nT,0.50, is calculated (i.e., the value 
for nT when PfV = 0.50). Using the transformed fatigue data as a discrete variable yields a definition of MD as 
 

 ∑∑
==

θ −=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−=

k

i
TiT

k

i

m

VTiT nn
k

nn
k

MD
V

1
50.0,,

1

~/1

, lnln1
50.01

1lnlnln1   (D221) 

 
for the k data points, where MD is a measure of dispersion, or scatter, about the median. It can also be obtained for 
the continuous variable defined by the Weibull parameters Vm~ and nθVT for ranked probabilities of failure Pf,i. 
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The value of NV for which the MD is a minimum establishes the solution. The scatter of the distribution is measured 
with the Weibull modulus Vm~ since for a fixed value of k the expression inside the brackets of equation (D222) is a 
constant. CARES/Life minimizes equation (D222) by maximizing Vm~ versus NV. This process is iterative, covering 
an appropriate range of values of NV. After a solution for NV is obtained, equation (D220) is used to calculate Ac. 

The fatigue parameter BwV can be obtained by comparing equations (D216) and (D217) for a 50-percent 
probability of failure: 
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Alternatively, BwV can be obtained by equating equations (D158) and (D160): 
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Information on the underlying inert strength distribution can also be obtained from the fatigue data. Using equation 
(D219) to transform all the fatigue data to a single Weibull distribution and performing least-squares or maximum-
likelihood analysis establishes the parameters Vm~ and nθVT. The fast-fracture Weibull modulus is then solved as 
 
 ( )2~ −=′ VVV Nmm  (D225) 
 
where the superscript ′ denotes a fast-fracture parameter estimated from fatigue data. The fast-fracture characteristic 
strength σθV cannot be estimated from the fatigue data. CARES/Life calculates a characteristic strength σ′θV based 
on extrapolation of the fatigue data to a specific number of cycles. This number is arbitrarily fixed at 1/(N + 1) 
cycles. 
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Much more statistical uncertainty is associated with the determination of the Weibull modulus than with the 
characteristic strength for fast-fracture testing. 

With the calculated quantities σ′θV and m′V, the fatigue data can be transformed to an equivalent inert strength 
distribution by equating the risk of rupture of equations (D55) and (D158) for the various data values 
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where σ′ fI,i represents the ith transformed inert fracture strength of the specimen. Plotting the ranked values σ′ fI,i,  
for ln ln(1/1 – PfV) versus ln σ gives useful visual information for the analyst. With σ′θV, m′V, and the various σ′ fI,i 
values, CARES/Life performs the outlier test and determines the KS and AD goodness-of-fit statistics, as explained 
in section D.2.1.5. The outlier test and goodness-of-fit statistics in this case are also valid for the transformed 
fatigue data (denoted with the subscript T) and the original fatigue data. Hence, the calculated goodness-of-fit 
significance levels measure the hypothesis that fatigue data were generated from the parameters NV, Ac, and m′V.  

D.2.2.6 Proof-testing effect on component service probability of failure.—Prior to placing a component in 
service, confidence that it will perform reliably is usually demonstrated through proof testing. Another method, 
nondestructive evaluation (NDE), is used to remove components with discernable but unacceptable flaw sizes 
(Wiederhorn and Fuller, 1985). Ideally, the boundary conditions applied to a component under proof testing 
simulate those conditions the component would be subjected to in service, and the proof-test loads are appropriately 
greater in magnitude over a fixed time interval tp. After proof testing, the survived component is placed in service 
with greater confidence in its integrity and a predictable minimum service life tmin with reliability equal to one. 

The objective of the following analysis is to predict the attenuated probability of failure of a component in 
service after proof testing and the minimum life expectancy of the proof-tested component. This concept will then 
be extended to predict the component reliability for off-axis proof testing (misaligned and dissimilar multiaxial 
loads). All derivations in this section are for static fatigue and volume flaws. If the proof-test and service stress 
distributions are cyclic, the g-factor approach is required to transform the stresses to their equivalent static stresses. 
Analogous relationships may be developed for the surface-flaw solution.  
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The attenuated probability of failure PfaV of a component surviving proof testing for time tp and subjected to an 
in-service equivalent static stress distribution σIeq(Ψ) over a time interval (tq – tp) is (Weibull, 1939b, Evans and 
Wiederhorn, 1974b)  
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The term PfV(tp) is the probability of failure of a survived component subjected to a proof-test static equivalent 
stress distribution, σIeqp(Ψ), over a time interval denoted by tp. The term PfV(tq) is the probability of failure of a 
survived component subjected to a proof-test static equivalent stress distribution σIeqp(Ψ) over time interval tp and 
an in-service static equivalent stress distribution σIeq(Ψ) over time interval tq – tp. The reliability of the survived 
component increases as the ratio of the proof-test stress to the service stress increases. 

For the Batdorf model, the probability of failure of a given component over time interval tp is 
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where, from equation (D97), the transformed proof-test stress distribution over time interval tp is 
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For the PIA model, 
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where 
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for principal stresses i = 1, 2, 3, where σ1p(x, y, z), σ2p(x, y, z), and σ3p(x, y, z) are the proof-test principal tensile 
stress distributions. 

Alternatively, the probability of failure based on the Weibull NSA method is 
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where 
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The term ( )zyxVm

np ,,0,σ  is the proof-test average normal stress from the projection of σnp(Ψ), the normal stress, over 

the surface area of a unit radius sphere (eq. (D11)). 
The probability of failure of a given component over time interval tq is calculated as follows for the Batdorf 

model  
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For the PIA model, 
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for principal stresses i = 1, 2, 3, where σ1(x, y, z), σ2(x, y, z), and σ3(x, y, z) are the principal tensile stress 
distributions. For the Weibull NSA method, 
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where ( )zyxVm

nq ,,0,σ is the average transformed normal stress from the projection of the transformed normal stress 

distribution σnq,0(Ψ) over a unit radius sphere. After determining the values of PfV(tq) and PfV(tp), the service-
component-attenuated probability of failure PfaV(tq) is computed. Depending on the magnitude of the service load 
and time of application, PfV(tq) can be less than PfV(tp). For this case, the attenuated probability of failure PfaV is 0. 

The minimum life expectancy of a survived component for a static equivalent stress distribution is obtained by 
satisfying the condition PfV(tq) = PfV(tp). For the Batdorf model, equating equations (D232) and (D229) results in  
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where the subscript “min” denotes the smallest value of the term in equation (D235) for all Ψ throughout the 
component. If at any location the component proof-test stress level is less than the service stress level, then an 
assured minimum lifetime tmin does not exist and the component cannot be guaranteed to survive for any given time 
during service loading. When the proof-test loading is identical to the service loading, except for the magnitude of 
the loads, then the minimum value for equation (D235) occurs at the maximum stress point in the component. 
Analogous relations for tmin may be obtained for the PIA model and the Weibull NSA method.    

D.2.2.7 Proof testing—off-axis loading.—Often, the proof-test loading does not exactly simulate the service 
loading. In such cases, the component stress distribution during testing differs from that during service, resulting in 
what is known as off-axis loading (misaligned and dissimilar loadings). Equation (D228) must then be applied 
locally at Ψ to calculate the attenuated failure probability, and the Batdorf model or Weibull’s NSA method are 
applied. Regions where the service stress is compressive are assumed not to fail. 

For off-axis loading, the load direction and/or load boundary differ from the service load condition, and 
modeling is now with respect to a global coordinate system (see eqs. (D101), (D102), (D109), and (D110)). For the 
Batdorf model, the probability of failure for a given component over time interval tp is then 
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and the probability of failure over time interval tq is 
 

 ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ βααΨσ

π
−

−= ∫ ∫ ∫
π π

V
m
eqq

BV
qfV VktP V

2

0

2

0 ,0I ddd sin   
2

  exp 1   (D237) 

 



NASA/TP—2005-212505 155

where σIeqp,0(Ψ) and σIeqq,0(Ψ) are the previously defined transformed stress distributions. Substituting equations 
(D236) and (D237) into equation (D228) and simplifying yields the expression for the attenuated failure probability 
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The Heaviside function is introduced to account for tmin, which is now evaluated locally at Ψ. 

 
 

D.2.3 Gaussian Numerical Integration Procedure for the Batdorf Theory 
 
For volume flaws integrating over one-eighth of the unit sphere, 
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Refer to figure D.2 (also fig. D.6) for the definitions of angles α and β. The integration of the unit sphere of 
equation (D239) can be performed using gaussian numerical integration or Legendre-Gauss quadrature. The 
gaussian numerical integration formula is 
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where wj are the gaussian weights and hj are the base points or roots of Legendre polynomials, the values of which 
are obtained from standard mathematical tables for a given ngp number of points. For a constant angle α, 
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where zj is a transformed value for angle β defined as 
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Then,  
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where uk is a transformed value for angle α defined by 
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and again, wk are the gaussian weights and hk are the base points or roots of Legendre polynomials obtained from 
standard mathematical tables. Consequently, combining equation (D239) with equation (D243) results in a 
numerical algorithm for volume-flaw failure probability of 
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Likewise, for surface-distributed flaws for one-fourth of the unit circle (see fig. D.3), 
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where zj is a transformed value for angle α defined by 
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Consequently, combining equation (D246) with equation (D247) results in a numerical algorithm for surface-
flaw failure probability of 
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CARES/Life defaults to ngp = 15, although values for 30 and 50 points are available for increased sampling 
precision. 
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E.1 Summary 
 

This appendix presents a computational methodology for life prediction and time-dependent reliability analysis 
of ceramic structures under combined effects of static and cyclic fatigue. It involves (1) a crack-growth equation 
representing damage contributions from both static and cyclic fatigue, (2) a multivariate nonlinear regression model 
for performing parameter estimation from fatigue data generated by small specimens, and (3) the Batdorf model for 
structural reliability analysis. A linear superposition of crack-growth rates obtained from the power-law and 
Walker-law equations was used. The model assumes that the time-dependent and cycle-dependent crack-growth 
formulation exponents are identical, and that loading frequency and amplitude do not vary over time. For the 
parameter estimation, the regression was performed using a nonlinear least-squares method and a modified 
Levenberg-Marquardt algorithm. A numerical example is presented to illustrate the parameter estimation 
component of this methodology. The results suggest that the predicted stress-life curves based on the proposed 
model can correlate better with experimental data when compared with either the power-law or the Walker-law 
models individually. 

 
 

E.2 Introduction 
 
The catastrophic failure of ceramic materials can be caused by subcritical crack growth (SCG) of preexisting 

natural flaws. In other words, under the action of a load, a flaw can grow in a stable manner until a critical 
dimension is reached, then uncontrolled and catastrophic crack propagation ensues. Hence, understanding SCG 
behavior under static, dynamic, and cyclic loads is important for the reliable design of ceramic structures. The SCG 
phenomenon may arise from a variety of physical processes. For example, the crack growth may occur because of 
the interaction of the environment with the high stress fields near the crack tip (static fatigue) or because of 
mechanically induced degradation from cyclic fatigue loading (cyclic fatigue). Until about 1990, the general 
perception was that ceramic materials are largely insensitive to mechanical degradation under cyclic loads (Evans, 
1980; Evans and Fuller, 1974; and Evans and Linzer, 1976). Hence, the SCG rate and lifetime for cyclic loading 
were predicted from the results of static fatigue. This was substantiated by cyclic experiments on glass and 
porcelain materials (Evans and Fuller, 1974). However, several studies suggest that polycrystalline ceramics and 
ceramic composites can be susceptible to cyclic fatigue degradation (Ritchie and Dauskardt, 1991; Kishimoto, 
1991; and Suresh, 1990). Such degradation cannot be explained by environmental interaction alone, but rather is 
due to a mechanically induced effect associated with the repeated loading and unloading of the applied forces. 

                                                      
4 3This is a revised version of Rahman et al. (1998). Note that in this appendix some variables were renamed and some text was edited to be more consistent with 

the main text of this report.  
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Under these conditions, the experimentally measured lifetimes, as observed for alumina, are shorter by several 
orders of magnitude than can be predicted from static tests (Chen and Knapp, 1974; Pabst et al., 1980; and Fett et 
al., 1991 and 1993). A dependency of lifetime on cyclic loading frequency was observed that is in contrast to the 
predictions of static tests (Fett et al., 1993; and Krohn and Hasselman, 1972). Test data verifying enhanced crack-
growth rate under cyclic loading compared with static loading now exist for other brittle monolithic ceramics (e.g., 
silicon nitride—Hoshide et al., 1988; Kawakubo and Komeya, 1987; Horibe, 1988; Masuda et al., 1988; Ueno, 
1990; and Mutoh et al., 1991), toughened ceramics (e.g., magnesia-partially-stabilized zirconia—Dauskardt et al., 
1987, 1990a, and 1990b; Swain and Zelizko, 1986; Zelizko et al., 1988; Zelizko and Swain, 1988; Suresh and 
Brockenbrough, 1988; Jensen et al., 1989; Sylva and Suresh, 1989; Steffen et al., 1990; and Bowman et al., 1987), 
sintered zirconia (e.g., yttria-stabilized zirconia—Liu and Chen, 1991a, 1991b, and 1992), and reinforced alumina 
(Dauskardt et al., 1993). 

To predict the susceptibility of a load-bearing ceramic part to catastrophic failure, simple phenomenological 
models are used that are calibrated to experimental results involving many specimens. The variability in strength 
observed from nominally identical parts is described with the Weibull distribution. For static fatigue, a power-law 
relationship (Evans and Wiederhorn, 1974a) is typically employed to characterize the crack-growth rate as a func-
tion of the stress-intensity factor (SIF). For cyclic fatigue, either the Paris law (Paris and Erdogan, 1963) or Walker 
law (Walker, 1970, pp. 1–14) is used to define the kinetics of SCG. Integration of such a relationship (either power 
law, Paris law, or Walker law) with the Weibull distribution is used to calculate the time-dependent reliability of  
a component.  

Although much has been learned about the individual mechanisms of SCG, not enough research has been 
performed on the combined effects of static and cyclic fatigue. For a real component in service, SCG is a complex 
phenomenon that may involve simultaneous and synergistic failure mechanisms. Hence, material strength degrada-
tion due to SCG may be a combination of damage from both time-dependent and cycle-dependent crack growth. 
Currently, methods are available only to characterize static or cyclic fatigue working independently. Under these 
conditions, the inert and fatigue parameters can be easily calculated using the aforementioned laws and standard 
parameter estimation techniques. However, not many models exist to characterize SCG under the combined effects 
of static and cyclic fatigue. Consequently, the reliability of ceramic structures is not well understood when there are 
damage contributions from both types of fatigue.  

This report proposes a computational methodology for time-dependent reliability analysis of ceramic structures 
under the combined effects of static and cyclic fatigue. It is based on (1) a crack-growth equation including damage 
contributions from both static and cyclic fatigue, (2) a multivariate nonlinear regression model for performing 
parameter estimation from fatigue data generated by small simply loaded specimens, and (3) the Batdorf model  
for structural reliability analysis. A linear superposition of crack-growth rates obtained from the power-law and 
Walker-law equations was used to model fatigue effects. For the parameter estimation, the regression was per-
formed using a nonlinear least-squares method and a modified Levenberg-Marquardt algorithm to calculate the 
optimized parameters. The model was tested with experimental data available in the literature. Finally, a closed-
form expression was derived for the transformed inert strength, which can be used for fatigue reliability analysis.  
A numerical example is presented to illustrate the parameter estimation component of this methodology.  

 
 

E.3 Combined Static and Cyclic Fatigue 
 

E.3.1 Crack-Growth Equation 
 
Traditionally, the power law (Evans and Wiederhorn, 1974a) has been used to characterize crack growth under 

static and cyclic loading, and more recently, the Walker law (Walker, 1970, pp. 1–14) has been used to characterize 
crack growth under cyclic (fatigue) loading. For combined static and cyclic fatigue, assume that the crack-growth 
rates by each of these two growth mechanisms can be superposed linearly to yield 
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where t is time; Ψ is a vector representing the location and/or orientation of the crack in the body; a is the 
appropriate crack length at time t and Ψ; fc is constant-amplitude frequency; A1, A2, N1, N2, and Q are material 
parameters that depend on temperature and environment; KIeq(Ψ, t) is the mode-I equivalent SIF at time t and Ψ; 
KIeq,max is the maximum mode-I equivalent SIF (i.e., when the stress reaches maximum over the cycle); and 
ΔKIeq(Ψ, t) is the range of the mode-I equivalent SIF over the cycle. From linear-elastic fracture mechanics, these 
SIFs can be expressed as 
 
 ( ) ( ) ( )taYtK eqgeqg ,, II ΨΨσ=Ψ  (E2) 
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 ( ) ( ) ( )[ ] ( )taYtK eqeqeq ,, min,Imax,II ΨΨσ−Ψσ=ΨΔ  (E4) 
 
where σIeq,max (Ψ) is the far-field equivalent maximum normal stress, σIeq,min (Ψ) is the far-field equivalent 
minimum normal stress, Y is a geometric factor, and σIeqg(Ψ) is the far-field equivalent static stress given by 
 
 ( ) ( ) ( )ΨσΨ=Ψσ max,I1I 1 eqNeqg g  (E5) 
 
with the g-factor defined as 
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where σIeq (Ψ, t) is the time-dependent cyclic load. In equation (E5), it is assumed that the equivalent static stress 
distribution σIeqg (Ψ) produces the same amount of crack growth as the periodic cyclic stress distribution over the 
time interval (period) tper (Mencik, 1984). See table D.1 from Nemeth et al. (2003), Mencik (1984), and Gross et al. 
(1996) for a list of g-factors for various types of loading conditions. Equations (E2) to (E4) are used to express the 
crack-growth rate in equation (E1) as 
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where 
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is known as the stress ratio.  
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E.3.2 Inert Strength 
 
To predict the time-dependent failure probability under fatigue loading, one must calculate the inert strength 

σIeq,0(Ψ): that is, the effective (equivalent applied) stress at time t = 0. Given a crack-growth equation (such as  
eq. (E7)), the critical equivalent stress σIeqc(Ψ, tf) at time to failure tf can be transformed to its equivalent effective 
stress σIeq,0(Ψ) for t = 0. Let σIeqc(Ψ, t) denote the critical stress (or strength) at time t when the SIF reaches the 
equivalent mode-I plane strain fracture toughness of the material at crack initiation KIeqc. Using equation (E2) gives 
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On inversion, 
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and subsequent differentiation with time gives 
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Comparing equations (E7) and (E11) and noting that 
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we can show that 
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If one follows the separation of variables (σIeqc(Ψ, t) and t) in equation (E13), it is theoretically possible to 
calculate the inert strength σIeqc,0 (Ψ), but no closed-form explicit solution exists using equation (E13) directly. A 
closed-form solution is desired in order to minimize the amount of computation involved with reliability analysis—
especially with large finite element models. However, if it is assumed that the fatigue exponents for static and cyclic 
fatigue are identical, a relatively simple closed-form expression can be obtained. For example, if N1 = N2 = N, 
equation (E13) becomes 
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which can be solved for the inert strength as 
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where σIeq,0(Ψ) = σIeqc(Ψ, t = 0) and 
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It must be emphasized that equations (E15) and (E16) impose a single value of fatigue exponent over all 

conditions of static and cyclic fatigue. Although this is a significant limitation imposed on the proposed 
methodology, it can be argued that it, nonetheless, represents an improvement over the previous practice of using 
either a pure power-law or Walker-law formulation. Also, the convenient form of equation (E15) considerably 
simplifies the task of estimating the model parameters from cyclic fatigue specimen rupture data. 

For 
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Equation (E15) can be further approximated by 
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Equation (E18) neglects the strength of the material (at t = tf), but the simplified equation is very useful for 
parameter estimation as described later.  

By setting either A2 = 0 or A1 = 0 in equation (E1), one can easily check that equation (E18) reduces to 
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for crack growth under pure static fatigue and pure cyclic fatigue, respectively. Equations (E19) to (E22) match the 
existing solutions (see app. D, reproduced from Nemeth et al., 2003) for the power-law and Walker-law models for 
static and cyclic fatigue, respectively. 

 
E.4 Time-Dependent Reliability Analysis 

 
Time-dependent reliability is based on the mode-I equivalent stress distribution transformed to its equivalent 

stress distribution at time t = 0. In this study, a closed-form expression for the transformed stress (inert stress) under 
the combined effects of static and cyclic fatigue crack growth was developed (see eq. (E18)). It involves various 
fatigue parameters, such as A1, A2, B, N, and Q, that must be estimated from the fatigue data generated by small, 
simply loaded specimens. Details of parameter estimation are given later. In this section, the reliability model is 
briefly described with the assumption of first volume flaws and then surface flaws in ceramic structures. 

 
E.4.1 Volume-Flaw Analysis 

 
The probability of failure for a ceramic component using the Batdorf model for volume flaws is (Batdorf and 

Crose, 1974; Batdorf and Heinisch, 1978a; and Batdorf, 1977b) 
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where V is the volume, η is the crack-density function, σΙeq,0,max is the maximum value of σIeq,0 (Ψ) for all values 
of Ψ, and Ω is the area of a solid angle projected onto a unit radius sphere in principal stress space containing all 
crack orientations for which the effective stress is greater than or equal to the critical equivalent mode-I strength 
σIeqc. The crack-density distribution is a function of the critical effective stress distribution. For volume-flaw 
analysis, the crack-density function is expressed as 
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where kB and m are material constants. The solid angle Ω is expressed as 
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and α and β are the radial and azimuthal angles, respectively, on the unit radius sphere. The transformed equivalent 
stress σIeq,0 (Ψ) is dependent on the appropriate fracture criterion, crack shape, and time to failure tf. Equation (E23) 
can be simplified by integrating σIeqc, yielding the time-dependent probability of failure for volume-flaw analysis, 
and is given by Batdorf (1977b): 
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E.4.2 Surface-Flaw Analysis 
 
The probability of failure for a ceramic component using the Batdorf model for surface flaws is (Batdorf and 

Crose, 1974; Batdorf and Heinisch, 1978a; and Batdorf, 1977b) 
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where A is the surface area and ω is the arc length of an angle α projected onto a unit radius semicircle in principal 
stress space containing all of the crack orientations for which the effective stress is greater than or equal to the 
critical stress. Analogous to the argument for volume flaws, equation (E28) can be reformulated, yielding (Batdorf, 
1978) 
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For both volume and surface-flaw analyses, the fracture criteria and crack shapes available for time-dependent 

analysis are identical to those used for fast-fracture analysis in CARES/Life (Ceramics Analysis and Reliability 
Evaluation of Structures/Life; see app. D, reproduced from Nemeth et al., 2003). These fracture criteria include 
Weibull normal stress averaging (Weibull, 1939a; a shear-insensitive case of the Batdorf theory), the total coplanar 
strain-energy release rate (Batdorf and Heinisch, 1978a), and the noncoplanar crack-extension (Shetty) criterion 
(Shetty, 1987). 

For a stressed component, the probability of failure can be calculated by equation (E27) or (E29), depending on 
the type of flaws. The finite element method enables discretization of the component into incremental volume 
elements (volume flaws) and area elements (surface flaws). CARES/Life evaluates the reliability at the gaussian 
integration points of the element. The subelement volume is defined as the contribution of the numerical integration 
procedure. The volume or area of each subelement (corresponding to a gaussian integration point) is calculated 
using shape functions inherent to the element type (Powers et al., 1992). If it is assumed that the probability of 
survival for each element is a mutually exclusive event, the overall component reliability is then the product of all 
the calculated element (or subelement) survival probabilities. 

 
E.5 Estimation of Fatigue Parameters 

 
Lifetime reliability of structural ceramic components depends on the loading history, the component geometry, 

the distribution of preexisting flaws, and the parameters that characterize SCG. These crack-growth parameters 
must be measured under conditions representative of the service environment. When fatigue parameters are being 
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determined from the rupture data of naturally flawed small specimens, the statistical effects of flaw distribution 
must be considered along with the strength degradation effects of SCG. In this study, a multivariate nonlinear least-
squares method was developed to estimate the fatigue parameters. This method is described in terms of volume-
flaw analysis. An analogous formulation can easily be developed for surface flaws by replacing the effective 
volume with the effective area.  

For combined static and cyclic fatigue, using the uniaxial time-dependent Weibull distribution for volume 
flaws, the failure probability Pf is (see app. D, reproduced from Nemeth et al., 2003) 
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where σ1,0 is the transformed principal stress back to time t = 0, V is the volume, and m and σ0 are the shape and 
scale parameters of the Weibull distribution. For the case when the g-factor is constant throughout the specimen, 
henceforth denoted by g, equation (E30) can be expressed in terms of the maximum failure stress σf in the specimen 
by multiplying the numerator and denominator by .2−σ NmN

f  Thus, 
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is the modified effective volume when the applied stress distribution is normalized with respect to σf, and where 
σ1,max(Ψ) is the maximum principal stress within the cycle located at Ψ. (Note that g, fc, and R are assumed to be 
constant throughout the specimen. Rearranging equation (E31) yields 
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which represents an equation for specimen time to failure as a function of failure stress for a fixed value of failure 
probability. On simplifying this expression, 
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Equation (E35) is a convenient stress-life equation that can be used to fit experimental data from specimens 

under combined static and cyclic fatigue. For pure time-dependent crack growth and pure cycle-dependent crack 
growth, respectively, the corresponding equations become 
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which correspond to power-law and Walker-law equations for crack-growth rate, respectively. Regardless of what 
equation is used, a multiple regression analysis is needed to estimate the model parameters. Table E.I summarizes 
the independent and dependent variables for various fatigue mechanisms and corresponding parameters that can be 
estimated from equations (E35), (E37), and (E38). The term mean

~C  in table E.I indicates a parameter for a best-fit 
regression line through the data for the mean probability of failure Pf,mean in equation (E36). In this study, both a 
linear least-squares method (for the first iteration) and a nonlinear least-squares method (for subsequent iterations) 
were used to estimate these fatigue parameters. For the nonlinear problem, a modified Levenberg-Marquardt 
algorithm (Levenberg, 1944; Marquardt, 1963; and Dennis and Schnabel, 1983) was used to calculate the 
parameters. An IMSL software version of this algorithm (Visual Numerics, 2004) was subsequently used with the 
CARES/Life program to perform the parameter estimation.  

 
TABLE E.I.—REGRESSION VARIABLES AND PARAMETERS FOR VARIOUS DAMAGE MECHANISMS 

Damage mechanism Crack-growth model Independent 
variables 

Dependent 
variable 

Model   
parameters 

Time-dependent Power law σf, R tf NC ,
~

mean  
Cycle-dependent Walker law σf, R, fc tf QNC ,,

~
mean  

Combined methodology Proposed law (eq. (E1)) a σf, R, fc tf AQNC
~

,,,
~

mean  
aProposed methodology is limited to the case where N1 and N2 are identical in value. 

 
The methodology developed for the parameter estimation is based on using the natural log expression of 

equation (E35). This was done to decrease the sensitivity of the model to certain numerical conditions. Additional 
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relations were added to estimate the inert-strength Weibull modulus as well as to consider the effect of runout data 
(unfailed specimens) on the parameter estimates. The inert-strength Weibull modulus can be estimated from the 
fatigue data by transforming all the data to a single R-ratio and applied stress. Equating the probabilities of failure in 
equation (E34) for a transformed data point at the lowest applied peak cyclic stress and R = 1.0 (static fatigue), with 
the untransformed point, gives 
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where T is used to denote the transformed data for the ith specimen number. The transformed data are (in theory) 
Weibull distributed as shown by equation (E31). A least-squares or maximum-likelihood Weibull parameter 
estimation (as employed in the CARES/Life code) can then be performed to obtain an estimate of the Weibull 
exponent m/(N – 2). The inert-strength Weibull modulus m can be calculated since the estimates of N and m/(N – 2) 
are determined from the solution algorithm. 

Runout (i.e., censored or suspended) data can be accounted for by using the method of Johnson (Johnson, 1964; 
and Abernethy, 1993). This method requires ranking the data from lowest to highest probability of failure. Equation 
(E39) can be used to rank data from lowest to highest transformed time to failure, which is analogous to ranking by 
probability. The median rank formula is  
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which is used in conjunction with Johnson’s adjusted rank increment formula, 
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to adjust the ranked probability of failure of the ith lowest transformed failure time for the n total number of 
specimens. Equations (E39), (E40), and (E41) enable a failure probability to be assigned to each ruptured specimen. 
On this basis, equation (E36) can be used to calculate iC~  for each data point relative to the mean (average) line 
parameter estimate mean

~C  obtained from the Levenberg-Marquardt algorithm. This is necessary in order to 
determine the residual of each data point, as explained in section E.8. The following summarizes the steps taken to 
obtain a convergent solution. This process is iterative. 

Step 1.—Use a multiple linear regression routine with the Walker law (eq. (E38)) to obtain a set of initial 
parameter estimates. 

Step 2.—Use the results from step 1 as seed values for the Levenberg-Marquardt algorithm for the combined 
fatigue model (eqs. (E35) and (E36)). Table E.I shows the parameters obtained for the combined model from the 
Levenberg-Marquardt algorithm. The residual term for this step is the difference between the natural log of the time 
to failure of the discrete data point and the natural log of the predicted value for the mean line ( ,~

meanC  Pf,mean) time 
to failure tmean. 

Step 3.—Obtain the inert-strength Weibull modulus m using equation (E39) in conjunction with either the least-
squares method or maximum-likelihood regression for the following Weibull form: 
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This step also uses equation (E40) to establish the order of the transformed data (from lowest to highest). 
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Step 4.—Determine the value of Pf,mean using the transformed data from equation (E39) and the Weibull mean 
value formula: 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

+Γ= θ m
Ntt TT

21,mean,   (E43) 

 

where Γ is the gamma function. Substitute tT,mean for tT,f in equation (E42) and calculate Pf,mean. 
Step 5.—Associate a probability of failure Pf,i for each data point i using the median and/or adjusted rank 

formulas outlined in equations (E40) and (E41). Note that runout data do not have a probability of failure associated 
with them (the residuals for runouts are not calculated); however, the runout data do affect the rank increment 
adjustment (eq. (E41)) for failed specimens.  

Step 6.—Determine iC~  for each data point i using Pf,i, ,~
meanC  Pf,mean, and equation (E36):  
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Step 7.—Employ the Levenberg-Marquardt algorithm to obtain a new set of parameter estimates. The residual 

term (see section E.8) for this step is the difference between the natural log of the time to failure of the discrete data 
point i versus the natural log of the predicted value of the time to failure using iC~  with equation (E35). 

Step 8.—Repeat steps 3 to 7 until parameter estimates converge (the difference between the previous estimates 
and the new estimates reaches a sufficiently small tolerance). 

The parameter estimation methodology and the theoretical formulation of the reliability model presented in this 
report has been implemented into CARES/Life. Commercial finite element programs, such as ANSYS, can be used 
with CARES/Life. Using these new capabilities, one can perform durability and reliability analyses of ceramic 
structures under the combined effects of static and fatigue damage. All of the results presented in this report were 
obtained by using CARES/Life. 

 
E.6 Numerical Example  

 
This example demonstrates the estimation of fatigue parameters from rupture data generated by cyclically 

loaded specimens. The experimental data were originally produced and analyzed by Liu and Chen (1991a and 
1991b) and later used as an example problem with CARES/Life (Nemeth et al., 1993 and 2003). These data are 
reexamined herein using the proposed fatigue model and parameter estimation capability. Furthermore, this 
reexamination demonstrates parameter estimation capability for the Walker law and power law for multiple levels 
of R-ratio. 

The material used in the experiments was 3-mol%-yttria-stabilized tetragonal zirconia (3Y–TZP) with a grain 
size of about 0.38 μm. Cyclic fatigue experiments for various levels of R-ratio were performed on smooth-surfaced 
uniaxial tensile specimens. Five specimens each were tested at R-ratios of 0.8, 0.5, and 0.0; and six specimens were 
tested at an R-ratio of –1.0. A triangular cyclic stress wave form was used at a frequency of 1 Hz for 105 cycles or 
until failure occurred. The tensile specimens had a 16-mm-gauge length and 6-mm-gauge diameter. Fractographic 
examination showed that failure most frequently occurred at or near the surface and that the failure origins were 
pore-type flaws.  

Table E.II shows 21 test data sets of time to failure for various combinations of failure stress and R-ratio. There 
were three specimens that did not fail in 105 s or cycles (runout data). These runout data were included in the 
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parameter estimation analysis. Further details on these experimental data can be obtained from Liu and Chen (1991a 
and 1991b). 

Table E.III shows the fatigue parameters estimated with CARES/Life assuming three stress-life relations 
represented by equations (E35), (E37), and (E38). These equations are based on the crack-growth rate modeled by 
the combined law, the power law, and the Walker law, respectively. The g-factor used for the power law and the 
combined law formulations with the triangular waveform is (see table D.1) 
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TABLE E.II.—EXPERIMENTAL FATIGUE 
DATA FOR YTTRIA-STABILIZED ZIRCONIA 

[Liu and Chen, 1991a. Frequency, 1 Hz.] 
R-ratio Time to failure, 

s 
Maximum 

failure stress, 
MPa 

87 500 
 79 500 
 1 391 450 

1 026 450 
5 447 400 

 –1 

29 658 400 
2 954 500 
2 713 500 

73 500 
11 690 400 

 0 

a100 000  400 
250 600 

1 665 600 
19 945 500 
54 824 500 

 0.5 

a100 000  400 
15 600 

284 600 
3 206 500 

10 523 500 

 0.8 

a100 000 400 
aRunout data were used in the analysis. 
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TABLE E.III.—ESTIMATED MULTIVARIATE REGRESSION PARAMETERS FOR YTTRIA-STABILIZED ZIRCONIA 

Regression parameter Crack-growth model 
Parameter estimation 

constant, 

mean
~
C  

(see eq. (E36)) 

Material or 
environmental 

fatigue 
exponent, 

N 

R-ratio 
sensitivity 
exponent, 

Q 

A2/A1 ratio, 
A
~

 

Weibull 
modulus, 

m 

Power law  64.2  9.3 (a) (a)  3.2 
Power lawb  147.1  22.4 (a) (a)  22.8 
Walker law  80.7  11.8  1.2 (a)  6.3 
Walker lawc  130.8  20.0  2.5 (a)  18.6 
Proposed law (eq. (E1))  111.9  16.8  3.2 0.65  13.6 
Fast fractured (a) (a) (a) (a)  14.0 
aNot applicable. 
bFor R = 0.8 and 0.5 data only.  
cFor R = 0.0 and –1.0 data only. 
dFour-point bending bar inert strength results from Nemeth et al. (1993). 

 
Table E.III also shows the estimated Weibull modulus m obtained from the fatigue data. These values can be 

compared with the inert-strength Weibull modulus obtained from four-point bending bar experiments (Liu and 
Chen, 1991a and 1991b; and Nemeth et al., 1993). 

Figure E.1 compares the life (at a failure probability of Pf,mean) predicted using the power-law model (eq. 
(E37)) with the experimental data for various stresses and R-ratios. A visual inspection reveals that the quality of fit 
to the data does not appear to be very good. The slope (which represents the fatigue exponent) appears to be too 
steep, yielding a low value for the fatigue exponent N. Also, as the R-ratio becomes smaller, the deviation from the 
data tends to increase. This trend is not apparent for R = 0.5, but it is apparent when R = 0 and –1. In this case, the 
deviation from the data progresses in a nonconservative manner (life is overpredicted for a given stress level). These 
experimental results for R = 0 and –1 seem to indicate that some cyclic degradation is present. 

Figure E.2 compares the life predicted using the Walker-law model (eq. (E38)) with the same experimental data 
as in figure E.1. The visual fit to the data is somewhat improved relative to figure E.1, although the slope still 
appears too steep. As the R-ratio becomes smaller, the Walker law predicts that the damage increases. This 
prediction is consistent with the trends of this particular set of data, except for the R = 0.5 data. 
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Contrasting figures E.1 and E.2 shows the difference between the power and Walker models. As the R-ratio 

becomes smaller, the amount of cumulative damage for the power law is less than that for the Walker law. In other 
words, the two laws have opposite trends in predicting the effect of R-ratio on the strength of the material. It is 
interesting to note that the fatigue data oscillated some on this shift pattern when the R-ratio increased from –1 to 
0.8. Hence, both models failed to capture this experimental behavior completely. 

Figure E.3 compares the life predicted using the proposed combined model (eq. (E35)) with the fatigue data. 
The predicted stress-life curves are in better agreement with the experimental data regardless of the R-ratio; also, the 
slope of the lines appears to be significantly improved. Although the predictions are similar to those for the Walker-
law model for R-ratios of –1 and 0 (as expected), they are in better agreement with the data for R-ratios of 0.5 and 
0.8 when compared with the previous models. This is obviously due to the inclusion of crack-growth rates 
contributed by both static and cyclic fatigue mechanisms in equation (E1). In addition, the predicted stress-life 
curves were able to show the oscillatory trend with respect to the R-ratio exhibited by the experimental data. This is 
an encouraging result, but more fatigue data involving various frequencies and R-ratios need to be analyzed in order 
to make a substantial claim on the accuracy of the proposed model.  

Figure E.4 shows the mean regression lines for both the power and Walker models when they are used 
separately. In this case, the Levenberg-Marquardt algorithm was used twice to estimate parameters (see table E.III). 
The power-law model was used for data with R-ratios of 0.8 and 0.5, whereas the Walker-law model was used for 
data with R-ratios of 0.0 and –1.0. This was done to test the ability of either model to fit to better-behaved data 
(better behaved in terms of the ability of the model to account for the R-ratio effect). In other words, the lack of fit 
to data shown in figures E.1 and E.2 was more likely due to the limitations of the models than to shortcomings or 
errors in implementing the Levenberg-Marquardt algorithm. 

Regarding the data itself, figure E.4 indicates that the fatigue exponents are approximately equivalent for the 
power-law- and Walker-law-analyzed data, although the data are too few to draw any firm conclusions regarding 
this observation. Also, from table E.III, the Weibull modulus obtained from the fatigue data varied widely from 
model to model. It is interesting to note that the cases of poor fit to the fatigue data (figs. E.1 and E.2) gave the 
lowest estimated Weibull modulus. The Weibull modulus estimated from the combined model correlated well with 
that of the four-point bending bar inert strength data in Nemeth et al. (1993). Finally, figure E.4 may lend some 
credence to the assertion in Nemeth et al. (2003) that taking the product of a power-law reliability model and a 
Walker-law reliability model could yield acceptable results in combined cyclic and static fatigue loading situations.  

 
 



NASA/TP—2005-212505 173

E.7 Summary and Conclusions  
 
A computational methodology was developed for the life prediction and time-dependent reliability analysis of 

ceramic structures under the combined effects of static and cyclic fatigue. It is based on (1) a crack-growth equation 
involving damage contributions from both static and cyclic fatigue, (2) a multivariate nonlinear regression analysis 
of fatigue data for parameter estimation, and (3) the Batdorf model for predicting structural reliability. For the 
parameter estimation, the regression was performed using the nonlinear least-squares method and a modified 
Levenberg-Marquardt algorithm to calculate the optimized model parameters. A numerical example was presented 
to illustrate the parameter estimation component of this methodology. The results show that the predicted stress-life 
curves based on the proposed model agree better with the experimental data than the predictions of existing models 
do. However, the proposed model assumes that the fatigue exponents due to static and cyclic fatigue are the same. 
Hence, a potential enhancement to this methodology may include further generalization to account for dissimilar 
fatigue exponents. 
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E.8 Appendix—Nonlinear Least-Squares Method by  
Levenberg-Marquardt Algorithm  

 
 
Consider a nonlinear regression model given by 

 
 y = f(x; θ) + e  (E46) 
 
where f is a nonlinear function, x ∈ ℜk is a k-dimensional vector of independent variables, y ∈ ℜ is a scalar 
response or dependent variable, θ ∈ ℜp is a p-dimensional vector of regression parameters, and e ∈ ℜ is a scalar 
variable representing a random residual. Let yi and xi denote the ith values of y and x for i = 1, 2, …, n, where n is 
the total number of independent observations (data). Given a parameter vector θ, let e(θ) = [e1(θ), e2 θ), …, en(θ)] 
denote an n-dimensional vector of residuals in which the ith residual is 
  
 ei = yi – f(xi; θ)  (E47) 
 

Define a norm of the vector e(θ) given by 
 

 ( ) ( )∑
=

=
n

i
ie

1

2θθe   (E48) 

 
which represents a sum of the square of all residuals. A value of θ that minimizes ( )θe  is known as the least-
squares estimate of θ. This can be mathematically stated as 
 

  ( ) ( )∑
=

n

i
ie

1

2 min or  min θθe
θθ

  (E49) 

 
The minimization problem defined by equation (E49) can be solved by a modified Levenberg-Marquardt 

algorithm. In this algorithm, given a current estimate θc, a new estimate θn is given by 
 
 θn = θc + sc (E50) 
 
where sc ∈ ℜp satisfies the following equation 
 

 ( ) ( )[ ] ( ) ( )c
T

cccc
T

c θθθθ eJsIJJ =μ+   (E51) 
 

In equation (E51), J(θc) is an n × p Jacobian matrix evaluated at θc, I is a p × p identity matrix, μc is a scalar 
control variable, and T is the matrix transpose operation. The algorithm uses a “trust region” approach with a step 
bound of δc. A solution of the equations is first obtained for μc = 0. If cc δ<s , this update is accepted. Otherwise, 

μc is set to a positive value and another solution is obtained. Further details of this algorithm are given by 
Levenberg (1944), Marquardt (1963), and Dennis and Schnabel (1983). 
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