Multi-Target Single Cycle Instrument Placement

Maria Bualat (presenter), Liam Pedersen, David E. Smith, Matthew Deans, Randy Sargent, Clay Kunz, David Lees, Srikanth Rajagopalan

July 17, 2005
International Conference on Advanced Robotics (ICAR)

Robotic Exploration of Mars

Sojourner
- Max distance from Lander: 12 M
- Total distance traversed 100 M
- Time spent waiting: 40-75%
- 2.4 uplinks per science target
- Science cut in half during extended mission

M.E.R
- 3-4 sols for instrument placement on a science target
- 10 sols at each interesting rock
- 240 co-located ground support scientists and engineers for 24/7 operations (primary mission)

July 17, 2005
International Conference on Advanced Robotics (ICAR)

Robotic Site Survey

Atacama Desert survey showed 0.08% - 0.1% of rocks contain microbial colonies
- Inspect 1000’s rocks
- Many targets per sol
- Rapid preliminary remote and contact survey
- Follow-up measurements on interesting rocks

July 17, 2005
International Conference on Advanced Robotics (ICAR)

Multi-SCIP Research Goals

Multi-Target Single Cycle Instrument Placement (Multi-SCIP):
- 10m approach
- 1 cm accuracy
- Multiple targets / command cycle
- Safe operations
 - Safe instrument placements
 - Respect flight rules (e.g., power and time constraints)

July 17, 2005
International Conference on Advanced Robotics (ICAR)
Multi-SCIP

K9 Rover
- 6 wheel steer rocker-bogey chassis (FIDO, MER)
- 70% MER size
- 1.2 GHz Pentium M laptop running Linux OS
- Odometry and compass/inclinometer
- CLARAty architecture
- 5 DOF manipulator w/ CHAMP microscopic camera
- SciCams, NavCams and HazCams

By Sol N:
- Rover at site
- Image Panorama
- Downlink data
- Data products available for review
- Stereo Model of Environment

Observation Requests
- Target point
- Instruments
 - CHAMP microscope
 - Science Cameras
 - [parameters]
- Constraints
 - Time of day
 - Must target be tracked?
- Observation point
 - pose rover must be at to acquire observation (depends on instrument)
- Value of Targets (Utility)
Path Generation

- Straight line paths between all pairs of points
- Users indicate obstacle regions as required
- Consolidation of similar paths
- Prune paths most likely to result in tracking failures

Off-Board Contingency Planning

Uncertainty everywhere!
Multiple Targets:
- Over-subscription problem – more targets than resources
 - Solve "orienteering problem" for goal selection
- Increased chance of losing targets as tracking "constraints" violated.
 - Contingency plans from points where failure is detected

Contingencies on Resources

- Flight rules impose strict time and energy constraints
- Significant uncertainty in time and energy
- Contingency branches based on resource availability
 - Need to detect impending resource scarcity with sufficient lead time to do something about it

Contingency Planning Approach

1. Main plan
2. Identify best branch point
3. Generate a contingency branch
4. Integrate & evaluate the branch
Plan Review and Sequence Generation

- Generate sequence
 - Concurrent Contingent Rover Language (C-CRL)
- Execute sequence in simulation
- Iterate planning process until satisfied
- Uplink to rover

sequence Execution

- Track targets and navigate to them
- At each target in sequence do:
 - Safety check
 - Safe placement on target
 - Acquire science data
- Monitor resources (time, energy) and tracking status
 - Do alternate plans if off nominal
- Uplink science data back to Mission Control

Visual Target Tracking

Multiple targets, 10m distant targets, 1cm precision
- Long (> 20m) traverses
 - Large deduced reckoning error (~10% distance traveled)
 - 2-3 hrs tracking duration
- Large target appearance changes

Featureless Targets, Scale Changes & Shadows

- Target point selected by scientists may not correspond to any visually distinctive features
- Note appearance of texture and rover shadow in close up image
- Note: 10m traverse → 10:1 scale change
Lighting Changes

- 10:1 scale change (texture changes)
- Lighting changes
 - Rover shadow
 - Change in position of sun over course of 1-3 hrs sequence execution.

Occlusions & Orientation Changes

- Occlusion by rover structure.
- Rover positioned such that designated target point is almost completely occluded by the rock itself.

Approach: 2D Interest Points

SIFT interest operator(descriptor)
Fast global matching, no "search"

3D SIFT Target Tracker

- Integrate motion estimates for each target throughout traverse
- Small increasing tracking error during traverse
Camera Hand-off

- Hazcams best calibrated with respect to rover arm
- Correct for accumulated tracking errors

Mesh Registration for Scicam to Hazcam Hand-Off
- Match originally acquired 3D model of target with Hazcam 3D model

July 17, 2005
International Conference on Advanced Robotics (ICAR)

Safe Placement

- Cannot guarantee target point chosen from 10m won't damage instrument.
- Potentially large tracking/hand-off error
- Close evaluation of target to confirm presumed target point is safe, and find close alternate if not.

July 17, 2005
International Conference on Advanced Robotics (ICAR)

Instrument Placement Safety Evaluation

- Tool radius
- Max deviation
- % Coverage
- Max hole area
- Deviation angle

Safety Check
- Confirm target area will not damage instrument
- Find nearest safe locations
Motion Planning
- Confirm reachable and collision free path
Placement
- Confirm with contact sensors
- Take measurement

July 17, 2005
International Conference on Advanced Robotics (ICAR)

Arm motion planning

- Check waypoint for collision
- Shoulder at max?
- Adjust shoulder angles
- Adjust twist and elbow angles
- Move to next waypoint
- Waypoints too far?
- Interpolate waypoints

July 17, 2005
International Conference on Advanced Robotics (ICAR)
Acknowledgements

- Intelligent Systems Project
- Astrobiology Science and Technology for Exploring Planets (ASTEP) Program
- Mars Technology Program
 - CLARAby
- NASA ARC Code T/TI
- Research Groups
 - Intelligent Robotics
 - Planning and Scheduling
 - Collaborative Assistant Systems
 - Manipulation Task (JPL)
- Project Management
 - Liam Pedersen, PI
 - Srikanth Rajagopalan, PM
- Nav, IP, & K9 Rover
 - Randy Sargent
 - Matthew Deans
 - Clay Kunz
 - Anne Wright
 - Eric Park
 - Susan Lee
 - Linda Kobayashi
 - Hoang Vu
 - Alan Chen (Stanford)
 - Matt McLeinan
 - Ted Morse
- Mars Science
 - Nathalie Cabrol
 - Gloria Hovde
- Mission Simulation Facility
 - Greg Pisani
 - Lorenzo Flueckiger
 - Laura Plica
 - Michael Wagner
 - Chris Neukom
 - Eric Buchanan
- Contingent Planning
 - David E. Smith
 - Nicolas Meauleau
 - David Roland
 - Saisesh Ramakrishnan
 - Matthew Boyce
 - Betty Lu
- CRL Executive
 - Richard Washington
 - Howard Cannon
- CRL Executive (cont.)
 - Ray Garcia
 - Emmanuel Benazera
- Ground Data Systems
 - David Lees
 - Larry Edwards
 - Judd Bowman
 - Leslie Keely
 - Ted Shab
 - Kim Hubbard
 - Dennis Heher
 - Tom Dayton
 - Marleigh Norton
 - Beau Crawford
 - Jay Trimble
 - Paul Backes (JPL)
 - Antonio Diaz-Calderon (JPL)