Multi-Target Single Cycle Instrument Placement

Robotic Exploration of Mars
- Sojourner
 - Max distance from Lander: 12 M
 - Total distance traversed: 100 M
 - Time spent waiting: 40-75%
 - 2.4 uplinks per science target
 - Science cut in half during extended mission

- MER
 - 3-4 sols for instrument placement on a science target
 - 10 sols at each interesting rock
 - 24/7 co-located ground support scientist and engineers for 24/7 operations (primary mission)

Robotic Site Survey
- Atacama Desert survey showed 0.03% - 0.1% of rocks contain microbial colonies
- Inspect 1000's rocks
- Many targets per sol
- Rapid preliminary remote and contact survey with follow-up measurements on interesting rocks

Multi-SCIP Research Goals
- Multi-Target Single Cycle Instrument Placement (Multi-SCIP):
 - 10 m approach
 - 1 cm accuracy
 - Multiple targets / command cycle
 - Safe operations
 - Safe instrument placements
 - Respect flight rules (e.g., power and time constraints)
Multi-SCIP

K9 Rover
- 6 wheel steer rocker-bogey chassis (FIDO, MER)
- 70% MER size
- 1.2 GHz Pentium M laptop running Linux OS
- Odometry and compass/inclinometer
- CLARAty architecture
- 5 DOF manipulator w/ CHAMP microscopic camera
- SciCams, NavCams and HazCams

By Sol N:
- Rover at site
- Image Panorama
- Downlink data
- Data products available for review
- Stereo Model of Environment

Observation Requests
- Target point
- Instruments
 - CHAMP microscope
 - Science Cameras
 - [parameters]
- Constraints
 - Time of day
 - Must target be tracked?
- Observation point
 - pose rover must be at to acquire observation (depends on instrument)
- Value of Targets (Utility)
Path Generation

- Straight line paths between all pairs of points
- Users indicate obstacle regions as required
- Consolidation of similar paths
- Prune paths most likely to result in tracking failures

Off-Board Contingency Planning

Uncertainty everywhere!
Multiple Targets:
- Over-subscription problem – more targets than resources
 - Solve “orienteering problem” for goal selection
- Increased chance of losing targets as tracking “constraints” violated.
 - Contingency plans from points where failure is detected.

Contingencies on Resources

- Flight rules impose strict time and energy constraints
- Significant uncertainty in time and energy
- Contingency branches based on resource availability
 - Need to detect impending resource scarcity with sufficient lead time to do something about it

Contingency Planning Approach

1. Main plan
2. Identify best branch point
3. Generate a contingency branch
4. Integrate & evaluate the branch
Plan Review and Sequence Generation

- Generate sequence
 - Concurrent Contingent Rover Language (C-CRL)
- Execute sequence in simulation
- Iterate planning process until satisfied
- Uplink to rover

Sequence Execution

- Track targets and navigate to them
- At each target in sequence do:
 - Safety check
 - Safe placement on target
 - Acquire science data
- Monitor resources (time, energy) and tracking status
 - Do alternate plans if off nominal
- Uplink science data back to Mission Control

Visual Target Tracking

Multiple targets, 10m distant targets, 1cm precision

- Long (> 20m) traverses
 - Large deduced reckoning error (~10% distance traveled)
 - 2-3 hrs tracking duration
- Large target appearance changes

Featureless Targets, Scale Changes & Shadows

- Target point selected by scientists may not correspond to any visually distinctive features
- Note appearance of texture and rover shadow in close up image
- Note: 10m traverse → 10:1 scale change
Lighting Changes

- 10:1 scale change (texture changes)
- Lighting changes
 - Rover shadow
 - Change in position of sun over course of 1-3 hrs sequence execution.

Occlusions & Orientation Changes

- Occlusion by rover structure.
- Rover positioned such that designated target point is almost completely occluded by the rock itself.

Approach: 2D Interest Points

SIFT interest operator(descriptor)
Fast global matching, no "search"

3D SIFT Target Tracker

- Integrate motion estimates for each target throughout traverse
- Small increasing tracking error during traverse
Camera Hand-off

- Hazcams best calibrated with respect to rover arm
- Correct for accumulated tracking errors

Mesh Registration for Scicam to Hazcam Hand-Off
- Match originally acquired 3D model of target with Hazcam 3D model

Safe Placement

- Cannot guarantee target point chosen from 10m won't damage instrument.
- Potentially large tracking/hand-off error
- Close evaluation of target to confirm presumed target point is safe, and find close alternate if not.

Instrument Placement Safety Evaluation

- Tool radius
- Max deviation
- % Coverage
- Max hole area
- Deviation angle

Safety Check
- Confirm target area will not damage instrument
- Find nearest safe locations
Motion Planning
- Confirm reachable and collision free path
Placement
- Confirm with contact sensors
 - Take measurement

Arm motion planning

- Calculate waypoints
- Check waypoint for collision
- Move to next waypoint
- Adjust shoulder, elbow
- Adjust twist angles
- Interpolate waypoints
- Waypoint too far?
- Shoulder at max?

July 17, 2005
International Conference on Advanced Robotics (ICAR)
Arm motion planning

Original waypoints

Safe arm motion

Data Products & Execution Review

Round Trip Data Tracking

GDR PlanView

July 17, 2005
International Conference on Advanced Robotics (ICAR)

2004 Multi-SCIP Demonstration

Accomplishments

- 2004: Multi-Target Single Cycle Instrument Placement
 - 4 targets (1.23 hrs execution)
 - Targets ~10m distant
 - Traverse >10m
 - Up to 1cm accuracy
 - Anticipated fault recovery and resource monitoring
 - Round trip data tracking
- 2003: Single Cycle Instrument Placement
 - Target ~3m distant
 - ~5cm precision
 - Automatic hand-off
 - Opportunistic science
 - ground based contingency planning.
 - Satellite uplink/downlink to rover in quarry
- 2002: Automated instrument placement on rock

July 17, 2005
International Conference on Advanced Robotics (ICAR)
Acknowledgements

- Intelligent Systems Project
- Astrobiology Science and Technology for Exploring Planets (ASTEP) Program
- Mars Technology Program
 - CLARAty
- NASA ARC Code T/TI
- Research Groups
 - Intelligent Robotics
 - Planning and Scheduling
 - Collaborative Assistant Systems
 - Manipulation Task (JPL)
- Project Management
 - Liam Pedersen, PI
 - Srikanth Rajagopalan, PM
- Nav, IP, & K9 Rover
 - Randy Sargent
 - Matthew Deans
 - Clay Kunz
 - Anne Wright
 - Eric Park
 - Susan Lee
 - Linda Kobayashi
 - Hoang Vu
 - Alan Chen (Stanford)
 - Matt McLellan
 - Ted Morse
- Mars Science
 - Nathalie Cabrol
 - Gloria Hovde

Acknowledgements (cont.)
- Mission Simulation Facility
 - Greg Pisani
 - Lorenzo Flueckiger
 - Laura Plica
 - Michael Wagner
 - Chris Neukom
 - Eric Buchanan
- Contingent Planning
 - David E. Smith
 - Nicolas Meauleau
 - David Rolland
 - Sailesh Ramakrishnan
 - Matthew Boyce
 - Betty Lu
- CRL Executive
 - Richard Washington
 - Howard Cannon

- CRL Executive (cont.)
 - Ray Garcia
 - Emmanuel Benazera
- Ground Data Systems
 - David Lees
 - Larry Edwards
 - Judd Bowman
 - Leslie Keely
 - Ted Shab
 - Kim Hubbard
 - Dennis Heher
 - Tom Dayton
 - Marleigh Norton
 - Beau Crawford
 - Jay Trimble
 - Paul Backes (JPL)
 - Antonio Diaz-Calderon (JPL)