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I1 CALCULATION OF COUNKCSRBOTATINGPROPELLERS*

u
1( By F. Giczel

:/

~ Abstract: A method for calculation @f a counterrotatingpropeller
which is eimilar to Walchnert.s method for calculation of
the single propeller in the free air stream is developed
and compared with measurements. Several dimen~ions Which
are important for the design are given end simple formulas
for the gain in efficiency derived. Finally a survey of
the behavior of the propeller for varioue operating
conditions is presented.

Outline: I. Symbols

II . Introduction and statement of the yroblem

III . Bases for calculation
1. For the single propeller
2. For the counterrotatingpropeller

IV. Method of verification of the calculation of the
counterrotatingpropeller and comparisonwith
measurernents
(a) Multisection method
(b) Single section methGd

v. Properties of the counierrotcitingpropeller and
design requirements.
1. For the case of maximum compensation for rotation

(a) Proportionate thruet, proportionate power
(b) Gain in efficiency, increase in power
(c) Distribution of the angle of yitch

2. The efficiency for operating conditions which
do not diffe~ from the case of maximum compen-
sation for rotation

“Zur Berechnung von Gegenlaufschrauben.” Zentrale fiirwissen-
schaftlichesBerichtswesen der Luftfahrtforschungdes General-
luftzeugmeisters (ZWB) Berlin-Adlershof,Fcmchungsbericht Nr. 1752,
J=. 25, 194-3.
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VI. Beha’~ior.ofthe counterrotatingpropeller with an
infinite number of bJ.adesfrom the bral.tin~domain
up to heavier loads,
1. Development of the charts
2. Discussion

VII . Summary 1

VIII. IW’eronceo

., I. SYMBOLS

lift

N~
power loading (’s = -—

,1 )e~v3;
Y2P.”

i’ L“”!thrust leading ,CH =

\
~12FV,

.. 2P>

thicknese of the profile

propeller disk area

,.~

(
“s “

thrust coefficient k~ = — )
21~FU ;

‘-% 2P,.

wing chord (width of the blade)
. .

power of rotation

radius of the propeller
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radfus”of’a section> profile .,,.,.r

s

.. . .. u

v

thrust for undisturbed free-stream ccmd.iticms

y~rlphe~el speed of the propeUer U = @j

rate of advance, W top vp+oci%y ‘(,=lm)

(profile velocity w = “,).
jvp+(~)~”

effective profile velocity ‘“ “ ..

w

axial induced velocity

Wn

z-
induced velocity

tangential induced

x radius

nunber of blc.desz

angle of attack, pressu?e side”’ \

induced ai@e
..:.“ .0

. fJ,d

9

blade angle ~

blqde englej p?essure side
,,..

.@

efficiency of the blade element ‘P = tan Y (proflle@flai-lift
‘coefficient) ,:% .., t“.

,\ ;
. !“:,..
,., ..axial efficiency

ideal efficiency ,. ,.
.:.

x ratio of advance

P

Q

density of air

angle of advance
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Tw effective angle of advance

OJ snpylar velocity

Special syinbolsin this treatise:

Index I refers to the front -propeller,index II to the rear propeller

Index g refei-sto the counterrotatingpropeller

Index e refers to ‘he single propeller :“

Dimensions with + contain the influence of the oti~erpartner uyon “
the propeller under consideration (See fi~. 5.)

pro~eller disk,

11. INTRODtiTION

The decrease in efficiency for hi@ fli@t velocities is due
mainl to roti.tionallosses.(6ee fig. l,which corresponds to a ~~g$l~-e

Tfrom 2jl). The countenota’c.inGpr.opeliermakes a ~artial recore:”y
of these losses possible. The eliatnation of tilefree propeller
moment (rolling moment) and the possibility of hi@.er yower absorption
for the same diameter are further adve.nta~es. The arrangement of the
two propellers on one axis offers advantages f’orZli@t behavior
even for extreme oueratin~ condition stance,a propeller act-$ng
a~ a b~ke. Therei’orejbelow an arran.gement-’t%lr”&XH%&3$oi3ig
investigated in which both partners are arranged one closely behind
the other on the same axis and have the same number and shape of blades,
the same diameter and equal and opposite angulaz’syeed-,but a diff,eront
distribution of the llade angle over the radius. ‘fileinvesti~ations
are performed.piaincipallyat the blade cross scclxim so that ilo
presumption is made about the distribution of linecirculation over the ~
radius: Therein lies an advanta~e because the blade for optimum
distribution resulting from aerodynamic considerations cannot he con-
structed; the practice, therefore,must reach a coiipromisewhich cannot
form the basis of an aerodynamic investigaticm.

%he numbers in brackets refer to the refe~+e~ceaat the end

of this report.
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III ● EASES FOR CALCTJIXTION

>.. - 1.. Bases for Calculation of the Single Propeller in the Free
Air Stream

We recapitulate in this section at first the course of a usual
propeller calculation (according to [1~}])in ordei”to see clearly,
in the next section, whether additional ne@ections, and if so, of
what kind, enter into the calculation of the countez’rotatimgpro-
~ell.erand how the fmnnulas of the’single prope;.lermust be extended
to Covei” the mutual influence of’the two partners.

The circulation r around all z blacksal the yropeller at
the section r eqUEilSthe Ihe inte~ral over “bhetiifferencesItt

of the tangential velocities e.headof md behind.the ~~ropeller(see
fig. 3) along the circlo of the radius i- iiiL tliefII.3.lydeveloped
slfpatream (ultimate wake)

f-
~fl

Zr= WtI*ad m.+
If we define the mem value fac’tierK by

I
“-21r

1-— Wt d$ = Hwt
27r‘o

where wt

a propeller
, for (1) t}le

is the maximum ;t which is reached at the location of

vortex in the projection of a 11.ad.e,we can fiu%stiiute
notat,ion

Zr = 2rmm7t (3)

If we call the true free stream velocity at the location of a blade
element and relative to it Wit) the ICut.La-Jo~~l:o~~sl:.ycondttion for

the ‘liftelement dA in fl.’ictionlessflow and-tie defining equation
for the lift coefficient ca sLvppI-ythe followin~ relation between

..,. ,, ,,
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Ca and r or between Ca and wt

ML ~
P’2

Ozrwl,,dr = 132r7mwtw~?dr = @tw Caz 1 ar (4)

with 1 representing the chord.of the profile at the section r.

Figure 2 is the usual diagram of velocities ad forces for the
‘bladeelement. ‘l%efigure, in yarticular)the marked ri@t angie

w.,
between WV and $, is valid for sma%l loads. Jet contraction

and reduced yressure in the
right angle mentioned shove

&Mpst.ream are neglected. Taking the
i~to considerationwe ob-tain

with ~ representinflthe effective angle of ad’varr.ceand w

the indLICedang~e af attack. then “there-followsfor the lift coeffi-
cient from (5)

8X 8X
Ca = ;~K sin % tan ai’;~ sin @d - ~~tan “d - p - @ ‘6)

.L

Y(I?

Only ca and the

yres6tireside are
value factor K))

Q) the propeller

—

;ii

angle of attack

unhnown in this

~ which is referred-to the

equ@ion (exceytinc the meem
for the Made an~ie 13d, tke ‘&@e of advamca

rai’.’iusR and the ratio x = # are Given. As

in the wing theory the relation between Ca tind ad which is knoyn
from the profile measurements or from the plane theory is used for
determining these two quantities.
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For calculation
we now designate the

7

of.,the characterieticvaluos’of the propeller
peripheral speed M as U, the rate of

v
advance - ae k and take from fi@re’2

u

,..
,.

‘r(i) Goa U<i
‘w = — COB a i =ux— =Ucosq

Cos g m
COB ql

‘Iheprgpeller disk area R2nis designated Fp, and there follows
from (4)

w—=:;(X2+X2)C Cos’’%,.dx
~ U2F a 1

2P

(7)

The considerations sc far were valid for flows without losses.
Because of the actually always existing flow losses the air force
changes ly the drag compcnent

dW = dAep

efficiency of tho blade element which is to be
measurements at the respective Reynolds number

so that one cbtains for the thrust force ds end for the tangential
feo?ce dT:

ds=
{

dA Cos ~ + 7)/ COB y

dT = dllsin~~+ Y)/ccw3 ?’=dS tan(~+y)

s
With (6) the result for the thrust coefficient is ke = —

!?F&’
2P

N.
and for the pcwer coefficient kz = — ;%

g ~pu3 ; Fp~3
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akz ak*
—=3yxtazl(Qw +7)
dx ,91

The formulas (3) to (9) are aufficient for calculation of the
single propeller. We 6hal.1indicate several further relations
which will be useful for caiculaticm of’the counterrotatingpro-
poller. The frictionless thrust element can %e inferred from the
circulation (3) by means of th9 l<utta-Joukow~kycondition to be

If we introduce by divistcm of all re.=.ocitleswith the flight
velocity v nondimensional velocities and mark them with bars,
and if we further deeignate the local (referred to the local area

dc
element) coefficients —— atbreviatedly as c’, another notation

U(X2)

()

s ~,,
may be used for the lccal thrust loadinfl C8 = —— .

~Fv2
2 P,.,~

Likewise there follows from the pcwer element

/ ‘a
rm dT

()
=YUlpv+ ———‘A?mwt dr

,2

( )N
for the local power loading c1 = —————

‘Fv3
‘2P

(10)

(u)
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The equations (3) to (11) supply’all charactari@ic,@ues &
tie propeller if ‘themean’vaiue factor K of the induced Iml#ential

m velocities is known. Only moderate,=curacy 1s rquired. for determi-I, natim of this “factor,”since the induced velocities were aesumed,
to be mall. Ordina~ propellers ‘innot extraordinary 0’pOratingC@n-1
ditions differ se,little from the .pr~pellerwith the minimum induced
loss of energy IIJ,‘.latone can use the numertcal values fur the
mean value factor E cIfthe optimum propeller~ hxmn frwl Gold.f3telnts
exact calculation of this prop~ller [~],a

III. 2. Bases for Calculaticm of the Countenx’hatfngIV’opeller

‘l%efollowing assumptions are added to the ones valtd for tiho

single propeller. The induced vlocitles fwr the propeller with a
finite number ofbides are distribu+kl in the sl.i~treamporiodl-
Cally over the circumference of the circle with mazilmn Vahes in
the projection of’the blade. (See fig. ~.) If two propellers of
finite blade num~er work one closely behtid the other, each of ttqm
works because of tineadditional velocity of the other propel.lor
which is periodically var:able over tliecircunu%rence in an oncoming
fl@w variable with time; hence)it is subJect to ~riodically changing
airwes ~dproduces therefore additional velocities changing perio-
dically with time. The course sham in f’i~l~~e3 will-tlmn it~elf bo
a mean value of the tine over whick moreover the variatic~ caused
by its partner would have to be superimposed. We cti.culatowith them
mean values of the ‘timeand thus neglect tke unstmuly effect due to

r]

e fluctuations with tine of the induced oncoming flow. S&?hngen
13} estimated these forces and found them not to be dangerous as

Was to be hoped since the induced velocitie~ are small cempared with
the main vel.ccitief3.

Here and later on index I will’always refer to-the frnnt pro-
peller, index II to the rear propeller. % and wtl iil particular

are the induced velocities left in the ,~~ ly the first

propeller, ~uaI1 ~d 6tII the contributions produced by the eecond
propeller.

‘I%emean values (see equation 2) (which are ccmstamt ovor the
circumference) of the quantities tit and fia, which are variable

over tie propeller “circumferenceaccording “ca’figure3~ are named
Wt and R$wa. We introduce the simplification K .=1: which iS

also usual in the @eory of the single opthmun propeller. ~e$e man
values take the course indicated in figure 4 in the direction of tie
slipstream● Since w? assume that the two propeU.er parAmerf3are,..

,.J.

I
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arranged one closely behind the other and have ~qu~l snd opposite
angular velocity ~ = -~, tie vali..le+ + K.~ & replaces

v fer the first propeller (if the unstee.cQ”effect~ntioned above
is neglected) whereas no additional term from the second proyeller
is added to T = m. For thedecond propeller v is replaced

Thedefore the effective velocity companmts

v+

are acti@ relative to
the effective velocity

the blade element
components

wax WaII
Vi-h~ —+~,

2 ~

.,
relative to the blade element of

of the first propeller,

the second propeller. Hence the
mean axial velocity far leilindthe propeller

V + ~IWal + ~IwaIT

is

t@ mean axial velocity at the propeller disk in the pi”opellorylane

v

the man rotation in the

If the direction of rotation of the two propellers is opposite
the induced tangential velocities have opposi;e Si!_s (fig..~]. If
we consider a circle around the propeller axis far behind tinepro-
peller, we find the extreme values of the twc curves in Seneral not

Ettthe S“@IIe10Cati~ i?othat the rWUl&iiit W-t-+ ~~-I dces llOt
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disappear everywhere even if
it disappears on the average

the curves have the
‘Iwtl + ‘I1wtIT “

11

same shape, thou~
3hergy 10ss06 due

.> to rotation can, therefore,“notbe co@leteti avoided even for Gounter-
rotating @repel.lersbecause of the finite number of win@ (see also
[7]).

Her the assumptions d.iscusseiihere tie formulas for the counter-
rotating propller read as fulluwsc .!I%&
to (3) are

mliroulaticmscorresponding

q = 2rm1wtx

(12)

‘Ihe formulas

1 (13)

correspcmd to tie fomulas (10) for the connection Between thrust

(14)

to the relation? (11) for the pawer laading. We add another rdatim

for the total ~S’ of the counterrotitingpropeller. {symbols“:
vitlmut index I or 11 will refer to the total arrangement.) From
tie mcmentum theory for the -propellerwith an infinite number of
blades

..

.,

()
—.
‘acBf=2+J7-l+T

..



(15)

~
1+~ is the axial velocity act?ng at tie location of the pro-

peller.

For the (Xxmterratating propeller witi an infini’w number of
blades (15) with me aaal velocity at the propelled,’disk acting at
the location of tie proyeller

-. -..
Wq ‘a~_f

N-p-p’

is valid. The maan axial velocity at the p~o~ellel disk for the
countmrrotating propeller with a finile number of klades is

We shall,neglect the square of the varia[;im~”ve~.mtties Wa - ICWa
64

and shall use the approximation

(17)

as relation for checking purpo~ee.

Xn erder to %e able to proceed to the fermi’=.sfor the blade
element we have to consider first the analo~cm to fi+-g.we2, namely
the figure.~. The correspmding fignre in Kr.amez’‘S ‘Greatise(7”) is

..
w&M for tie sFeciaJ.irroktional. condition; the same representation
was selected for the rest. One can see the si~ificance of the single
lines from the figure title. Since we interprete&tlle‘influence●f
the other propelley,upon the one under con~ideratian as variation of’
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the oncoming flow tmkrd the first proWller, it is clear after what
has been said in section III 1. that the%elocity induced by the..,. ,.,,, ,—

propeller itself ‘+ is perpendicular to the actual oncoming flow

which contains simultaneously the influence of the.other propeller.
These are the right angles specially marked in figure 5 by meaxls
of which one derives from figure 5 ~~

%11 ~ I
Wtx 1 + KII~-+ —

L 2
tan ~1 = — = -—-———

‘aI W;I
rfi.—

2

(1.8)

‘an’%x~ ‘-w& = ‘—————

H
~
H

‘i+KI%+~

(on the second propdler all anglee in the
designated as poS~JJ;L’,O)o(he can see that
of the an~le of advance two angles

opposite sense are
one now must define instead

(19)

“* represent~ the change of direction produced by the second%1
propellcm on the first one, %* the change of direction produced

by ths first on the second onO.(aI* is ne”gative in fiG. ~s) we

designate the pertaining ratios of advance as

,.’



war
1 + lcly

?bll* = x tan cpll* = x_

m + ‘IWZ

(20)

Then the equations (6) assume the shape

caI = %1 sin (~Id - %d)
[ )- ~I& - @ + ~I*j - ~Id

;ii 1
‘ (21)

8X
caII =~”

( [% - %Id) ‘an ~lld - @ + a~”xj- kid]z 2 II ‘In
;F (

These equations must be equated to the relations known frcm the
measurements of the polars

caI(%d) and caII(CIId). Far the
thrust coefficients with friction loss one oktains, c.9rresponding
to (8),

‘ksl=<~ 2
( (
x -4 ?#>caz COS”2ai1 COS ~1 + @ /cGE YI

x fiR

I

(22)
dk~II=zlf2
dx ( )

--x +X1l**C
YTR aII cos%ill Cos

(‘W1l
+ Y1l)/c?.s7~

and for the power coefficients, correspmding to (9),
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;. . .,.’,,’.’”:. dkzr .:dk& .“- ‘ ““”
... , .,.: “~.=”gta” ,:+... ..,. ,.. .. (%.. .. .....:..,.,!........, ...,“. ,...,,. .

. . . . :”.;:..,.,,.:,.,:... .,.,. .-. . .
....,..:’;. ,.-,.,,.,, ,,,
,.. , ...-

‘1<111 %1*
(— =~-x -@ ~11

dx
.,:. . . . .,- :. ,,

... ,,,
{,.... .’.

$
. ..!... .;,... ,, .... . ..,.., ,.-,...,,,!.,, ,., ... .,.

,,. ..” ....’
.. “’(23):

,,, ,.,.,.,.

+ 719 .,. . . ,’., ”..‘.1.$.-’,

One derives frqm (22) i’g$,the.local ,+hru’st“loading~without losses

. . .., ,’.,.“,’”
dc~ ldc~=ll’dlrs, ,-q.

c~’.= —= —_.
‘2X d~ ()”;:-%”-—

dxp) h ~+fh <.9=2, .“,. ,.. . .
,. ., .,.

..:. .’......, ,, ,,,
. .

. . .

“c3~’‘=
2.11 1

(

“~:

>@’ “ ~ ““” “’ ““- - ,.,= —. % + ?q ) cal COD
KRXC2X

‘%,i;C00 ~1
,,, ,.,,,

.. .... ..’
,., , ,:.,. ...! ... ‘(24)”

213. .1.:+2( “J””.:
,..

z. —.~sll* = “ + ‘j1@)c311~@b2:%j.yI,Coo,TW1l. .. :....; ,~ )# ‘2x .,, . .. .,.
.. .... ,,:, ,.... .. ,’, .,,‘.,, ,,. ... f’..,. , .. . . .. ..‘, ...: :’.,..‘!.;

The formulas correspond to those for the sinGle propeller
with tie exception of’ti10o..mknowzd,SMZL1ladd-ition?,langles UI3(”

and all~{-;their determinatioll‘bya method of iteration (single

itiration) shall be treated be]..ow’.The equations (13) will be
used for determination of jthei“ndu.ced.velocities; i.herefore,we
write them in the shape

(25a)

,, ...:,-—- ,,.,.,.

- wql = ‘ -’c=” ‘(~5~)- ~1 -j(fi +qi7i7J~Hi5-tICJW.L
‘II
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Theme@od was tested mapropeller measured by Lesley [g].
Lesley made two “ordinarytwo-blade,p~opd-lers w&k as counter-
rotating propeller. Henc’ethe’~iade”oontour was not changed in
eny way for the couqterrotatingpropeller and we could hope that
the mean value factors ~ indicated by Goldstein and Lock (see $@r
instance in [l~)would suffice.

,. ,.

IV. METEODFOR VERIFICATIONOF TEE CALCULATION OF’TEE COIJIJTER-

ROTATING PROPELLER AND COMPARISON WI’J31MEASUREMENTS

(a) Multisecticn }tethcd

The calculation is made exactly as in lf~lchner’smethcd ~~~ .
The initial values are ~* = ccll*= O (no mutual influ6nce)0‘On

the sheet Ib and IIb, reepectiwly, tho value ad is detemined
by trialj Cal or call for thin valuo agrocs according to (27)

with the value from the profile polars caI(%d) ‘r ,caITlaIId)”

The equat$cns (24) give, with cal and caI1, as a result csl’

and. C611’. (See sheet Ia and II% Stop 1,) Cn the right part

of sheet Ia, at the top, (Step 1) w~,I and wt.~ aro determined

from c*Zi &d c~xlt according to (25a) and (25b). Below

(Step,1) a first approximation for ~1 and ~~1 is calculated
froxnthe first relatim (18]

Then the second relation (18)
.,

(lea)
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,.

,..

“2
~r —

‘aII
%1 . li-K1~+~

.—
511

WI
s+lcw~+~

.“1 .“..
II .:;,., .,

(Mb)

i8 interpretedas equaticm f& wa
..-.... —-..-

i
‘d ‘aII : the first appkoxi- “

nmtlon is inserted on the right an thus a sectindapprox~tiozi”
obtained. The procedure is repeated for control;”llallallyno m@re
che.i&eoccurs if one ltits oneself to 3 iiiits (kth digit esti~ted).

?(18b) gives more satisfacto~y results than 18a) for the reason that
one mist calculate with thevalue cp~ from the first”stop“(without,.
mutual ikfluence) in (l&), whereas (18b) contains already a
better ValliefOr ~ (With mutual”jnfluence). kl* and k’1~*“are
detexmi.nedwith wa~ and ,iia~~,accord.ingto (20) and therewith the

initial values for ~he second.A~teratian

Whereas one has to take K (which
a.value nnlmown at first) forthe first
value x tan qw for the second step is
accuracy.

step obtained.

is a function of x tan ~
Btep from h = x tan q, the
given by (16%) with sufficient

One selects for the calculation f-orthe further sections
x= const. the value at x ten ~ of,~:,first section (see also [14])

.,. . .. ,,.., .,-. :
as initial values for K..,because x tan ,&: is:constant over the
radius for the optimum propeller. Thegocd agreem~t of this value
with .thevalues x &n’tpw obl%ined by”fti””ther:””tialcuiation&hewed

that the use of the K“valtieS@f the opti~ ~r&peiler fa~ t&e ‘prbsent
case was Jus”ti’fie’d.I ~ “’

,.., ,., .,
. . . ...,,. ,, ... ,.

& secc.idstep (sheet “Is, IIa, Ste~~ is per~~r~led ““
exactly like the first; the necessity mip~t arise to calculate a

,third approxi~tion ’forc~l’.:~d Cslll: It Pr~vedalWays,,to be,,

tiecessary’”to do the auxil~iiry:ctiicula”tionfor a“’”ttiirdtime
since .X1* “an~:X1l-X”‘didnbt chah~e-”~~y”moreafter,the’‘Ste@2. “:
....... ... ,. ‘“d ... . ..... ‘,’.

‘ + csIX’Ca” = c&I WAS always substituted into the e“quationfor checking
.. ,,. ,.

,..

—
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purposes (17). (See sheet la~ lefty below”) Once tie ‘p-values

for the respective Reynolds numbers are obtained one cen calculate
dke dkz
— and ‘&-D
ax

The method for counterrotiting propellers takes

somewhat more than four times the time spent on calculations for the
method for single propellers..

The calculation of the propeller measured by Lesley was verified

for several ratios of advance. .The data
la

‘, ~d ~d of the
E’ 1

propeller maybe taken from [1~ . There was no purpose in loo~~%3
for statements about the profile or for profile polars as one can
hardly ’assumethat these yoltie would be found ju~t at the Reynolds
number of the test. It was therefore assfied that the profiles as
propeller blade elements are not very different frcm the Gtittingen
series 622-27 and that one WY coordinate to each profile tie G5ttingen
profile correspotiing to its thic;me”ss. The,curves Ca(ad) of the,.
Gdttingen seri@ were linearized and,pitch and zero lift were plotted

over the thickness parameter

Ca =

COIM be coordinated to each

d’”
-. From these curves,’a
~ ,

-.

profile measured according to its

7/2 ““
thickness. The resultant velocity w =’Jv + (m)2 could be ,
‘calculatedfor each section from the statements in (9~; with w

~Lz; :
‘the ?e~olds m.unber Pe.=,u: ...could.th,enbe,$ormed. From the
,’
.Gottingenprofiles, measured for..varioussmll Reynolds numbers
(see ~153) one could then coordinate by interpolation according to

.: the t.hickn6sspar&neter to each’profile measured its drag~li$t
coefficient,

Table I shows the zesults of the verification cf the calculation
of the counterrotatingpropeller measared By Lcsloy which was thus
performed. First, one must admit that measurement and calculation
dc not apyoe too well; cne ~y give various explanations for this
fact. The coordination of the unknGwn profiles to the Gbttingen
series certainly constitutes a crude procedure,, The determination



very uncertain●

propeller, al.~o

The calail.aticmof the pertaining dngle .

measured’by Lesley, wsa vehified for the’
eanm raticm of advenoe by mans of the Walchner method [1$] for the
6ingle propeller in order to decide cm thpreasoii for the deviation;
the mme systematic difference b@wf3en calculation a.ndmeasurement
was found as in the case of tie m.nuaterrmtaii~ propeller (We i@le X.)
Therefore, the deviations are not caused hy the metiod for the counter-
rotating propeller but by the coordination of the profilee to the
G&t$~ series whereby the profile properties a,re,after all, not
correc-tlycovered. ‘I’hedifferences in tln9characteristic numbers
between single and crmatermtating propellers ~how ailapproximate
agreement with the “iaeasureuent.

The i+&ratiOn method described abova which takes the mutuel,.
Influence of th~ two propellers into consideration can be m~plied as
well to a single section method (method of’polms according to vcn Doepp
in the shape amende b’ Krsuner

if(Wa.lchner’smethod 14 ).
[81) .aGto a multi.-section?n.th.d

If tke’polar of the Dln+jlepartner for
the respective blade an@e is known, one can calculate ‘&e counter-
rotating propeller by application of the methd of iterntion to the
section u = 0.7. If one wants to use the mm polar for both partners
the blade angles must not deviate too much from the blade angle on
which the polar is based; this condition is certainly met for the
optimum case. Moreover, Kramer’s method.is based on the ci.rculaticm
of Betz’ optimum propel.i.er.For other contours the constants of tha
methcd would have to be changed. The example d.emmstrates test Khe
method of calculation for the s.auntemotatlkg propeller (see cou-
putatzl.cmsheets IIIa...to IV) ● Since Lesley meas”w~edthe parts of
the cou.ntarrotatlngpropeller also as sin~le propeller ene was in
a position to procure at first accordi.n~to l’~ramnrtsmethod the
pelar of the single partner (eee ccmputati.cmsheet IIIb} and by
means of it to calculate the counterre~ti.ng propeller. The advantage
as compared with the exmn--lecalculated by m~ans of the multlseckion
method was that now the profile propertle,sof the measured propeller
actually enter into the calculation? The calculation for boti.yartners
is made as in X&.amer’smethod for the f~rst step. me calculatlom
~ hUiiW3ted th93M [8] iS wed @ SVP@eHte& Ey the Vtill.10E4

roll,,,,,,,,, ,,, ,,,, l,,,,....1,, ,.11--1- .,- .-m .. ”-, !,,,.,,., -,,,-.,.-.,..,,.,,,, -,.,.., -., ,. ,,,.

-., , ---- ..!!,,,..,, .,. .=- _
-———-- ,..... _.
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The ar.filiarycalculation (computation sheet
~erfol~ed with the vah~e~ c~I’ and c~ll’

multisection method,(computation sheet I a).

. . .

.:

“. NACATM tiC.’%?ti ,. ‘“““

HIe, right) ‘is ,’
exactly as in the

The values

-1

are obtained and &erewi th C&u* and, qllo’-

....,.
,.. “,.,....,

as initiel vaides

beeimin nind forfor the second iteration step. One “mustonly
the second stepthat in the columns-l to 27 CPa iS :OW”:replackd

‘Iherefore,in these f’ormulmi’’’thevalues W:th:an e:s-teriskare used’;
for the fii”Ststep (without nmtual influence) tinevtiimmiwith
asterisk ~oual the ones without asterisk.
28 and 31 {he originai v%il.ue”s’tan (pa and

for ‘~e’iteratioll,.~so), for they belong .to
;.-!“,

Ihweyer, iiltinecolumns
,x m~St”be inserted
the fo:jxilk

.“

One caa,notice on the COI?Ii?Ut~tiOIli?ll@titRjbelOi?at tineright,”that
it.was preferred to use ti;]e~-cv.rveG instead of working with”
the c~urves

needed f&
values for
calculated

fu indicated by KHmerj pazztlybecause the R is

the auxiliary calculation,”tmt .mainly;~ecausemore accurate
f. Cotlld~e obtained in this way. The agreement of ~te

wfl.th the measlmed values is satisfacto33y.(See tdle X.!..
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V. PROPERTIES OF TEE COUNYERR~ATING

REQUIREMENTS

PROPELLER AND DESIGN

21

1. For the Case of Maximum Compensation for Rotation

(a) proportional thrust and pcwer.

The measurements and verifications of calculations will be dealt
with again later on after several properties of the counterrotating
propeller have keen clarlfied. As mentioned In the introduction tho
two partners are supposed to agree in all properties excepting the
variation of the blade angle. The value of this parameter is left
undecided and with it the slipstre~ for the advance ratio of the
design is obtained. The simple equations (13) and (14) are used for
the basic Investigations, only the relations at the section r are con-
sidered and the question of thrust distribution over the radius Is left
open which does not solely depend upon aerodynamic view points.

The optimum condition is characterized by the fact that the
rotation in the slipstream disappears on the average

‘Iwtl + ‘IIwtll =0 (26)

The induced angle of advance of the two propellers then shows so little
difference that the difference can be hardly determined for the ~–values.
Therefore one may presume

‘I=KII=K (27)

for the irrotational condition; (26) can then be given also In the
shape of

Wt + %11 =0 (26a)
I

(See also [7”.) Under these assumptions the equations (13) are written

., ,,,. . . .. . ,.,,,,..,, . ,. .,,.. -.,—..—.—————
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—

CSII‘ = aw;l(2G + 2fcwt1 - Ftl
)

There follows for the total c~’

(13a~

(2t3)

,,.

The first equation (13a) represents the local thrust loading of a
single propeller which corresponds in all data to a partner of the
counterrotatingpropeller. One can see from the equation (28) that
the counterrotatlng propeller not only produces twice the thrust
but that the second propeller recovers additionally the contribution

2K*W:12 from the slipstream. One can further see that the reccvery

of rbtation Increases with increasing number of blades (increasingK )
and that It is better In the proximity of the hub (larger ~-values and
larger Ft-values) than outside.

in
be

Taking the fact

(28) is small the
written

into consideration that the term (1 - K )Kw~l~

distribution of thrust on the two partmers can

(29)

or
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!,

For the condition of the sllpetreem whj.ch
the average ic~wtl+ wtil) = O (see equations

follows from (14) for the local power loedi~s

!
,.

(30)

is irrotationalon
(26) and (20 there

(3Q

J

Since the thrusts accord-in~to (29) do not differ widely for the
irrotational condition, the first order expxmsiou of the axial
velocities w~ and w~I also do not differ (ace equation (18b);

moreover they were presupposed (small lGad) to be small compared
with 1 so that the tcmn3 in parenthesis in (31~ are practically
identical. The irrotzbl’~nalcondition therefore e;.v?.lsthe condition
of equal power absorpi~on of the two partners. Therewith the moment
equilibrium for the same number of revolutions also is given; ~’ro~
the sum of the equations (31) follows that the power a’bsor:ptionis

by the smkl.1amount 2imk%<w;

single pertner.

(b)

It was
(31) can be

Gain in efficiency

superior to the double power of a

and increased power absorption
\

mpntioned already that the,terms in parentheses in
equated; for abbreviation, the velocity V1 is introdticed
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.— — —

izl = l+ Kw*+w*:l+kw*L ‘+,.“2 ,,
:

Then

%3
‘igz = ~ =

2Ki7iw; - K(l - K)wtz 1
==

[
1

:1

- Z(1 - K) (33)— —...2www-~vl V1 2ZYJ.)
L-

is valid for the irrotat:onal condition. ‘~igz stands for the ideal

efficiency of a counterr~tating propeller each partner of which has
the number of blades z so that the cotinterrotatingpropeller has
the blade number 2z. The formula shows w“lhatcan be gained hy an
increase of the number of blades: fcr z =
the maximum theoretical efficiency

co(K = 1) there resalts

- 1
(34)

“l+W;

The local efficiency of”th6 counterrotht~rgpropeller of the
blade number 22 is now compared with the local eificieney of a
single propeller of the blade number z, The two propellers shall

agree in the local ratio of advance
v The sir@e Tropell.er
z“

Wt
which produces tlm same TT~ and, because of ~ z ~vz (see fig. 2 or ~)

a
also the scme w= as a partner of the coun:berl”otatin~propeller is

first considered for comparison; then the counterrotating propeller
is compared with the single propeller which produces twice the

WT

and therefore also.twice the w; as.a pzmtner of the counterrotating

propeller. Considering the connection (10) or”(n) oi’the induced
velocities with the thrust loading end the power l.aad~.n~the firut of
the compared propellers is to a first order approximation the one with
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half the mower of ----
one Wi’& the sage,pmer af3 tihe counterrotathg yopdl-er. TIMLee
second case is treated.first %ecauae i.tis more wtlezmsing i.npractice;
therefcn’ethe efficiency of equaticn (33) is ccar~ared.with the _

I effj.ciency of the sin,~lepropeller of the induced veJ.ocities 2 wt and

2 w: according to equations (10)and (11)

qiezkz =

Then there results with (33”)

Wa

The last term is in eny case < ~. For larGo values of

(3%)

h, for

which the counterrotatiln~

Wa<< vi. The difference

becomes at least

proyeller W

in efficiency w!~ichF-asto be determined.

>l+”K.
( 355)

$ The axial efficiency .iskncwn if one knows ratio of advance and
power coeffic3,ent,for fp.u the momentum theory (1>) there follows
immediately (see also [4J, p. 182)

1

4—..-—....—-....-.—
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,

1 -I-K
‘Theformulas (~~) fndtcate that a% least the fracti.an -—

2
or the

Their ideal local eWiciency theQ is

/

If one ccmrparesit with ‘&heefficiency & tilecounter-ro’atinsproyeller

(33) ? one ~btaills

(37)

It has been seen shove tk.t the c,ounterru~,ti,ng:.?~cpolloris slightly
superior to both the separately mo-rln~propcll.ezmwith resp,ectto %oth



I
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.,.

thrust and power. It “i#.htn’eford.~uestfgnablewhether”cad.under
what cotidition8it is superior td tia”witin respect to efficiency,

e- when therefore -the differenceindicated in’equation (37) is positive.
The efficiency of the counterrotald.ngpro~ller and the maximm
theoretical efficiency a-ppeaiihgon the ri.~t.si?e of (37’)refer to
a propeller which absorbs twice tke powr of the sin@e propeller
considered forccmparison. Therefore It would havd to be Lfife&ior
in efficiency to the propeller used for com~arimn, if the rotational
losses of the compared propeller are not so larde E@ to neu-tralize
the deterioration of efficiency due to the double pcwer required
Just by avoiding these losses (qa d.cesnot contain losses in rotation,
Ti ~
8

only residual losses due t~ rotation). Therefore one will ask
on self for what oper~ting conditions the axial effic~ency qa of

the propeller of double power will be highe~ than the ideal efficiency
of the sin@e propelled-, when therefore

is valid. If one sets aSain

Wt al v—---
Wa p~

&o &8ult of t%e calculationwill be

v—= k>l
Tu.).“x

(38)

This relation is supported by measureznents[9~ and can also %e found
in Plstolesi {lg. The formulas (3~) and (37) show satisfactory
agreement with fiw.mor~sstatements &7 .

1
To evaluate them one takes

tie aXi&l Efficiency from (36) the i eal efi?ici~l~c~?of the Single
propeller for instance from [d.

.. _-..— —— _.—
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,, ..,.

In,”F diate conjunctioiithere @ises ~he qks-~ dfi.tj ,what
amount e -powerabsotiptiohof a ceunter’ro~tingpropeller (uumb&
of blades 2z) can he increased ~q.ccmpared to a sir@e propeller
(number of blades z) for,l.argerat~os.of advance, Wthoutm aking the
efficiency drop below ,tieefficiency of this single propeller.
The first order expressions of absorbed powers are, accordj.ngto
(11) or (31) proportional to the induced velocities. If one designates
for the following calculation the induced velocities of the counter-
rotating proyeller by the index 1, the induced.velooitie~ al the
single propeller by the index 2,

will be valid, or, taking the equation (32) into considerationwhich
can also be written Wal = Wall = wa a~cordhg to (33)
and page 26

r
1 - ‘1

1

(
1+.K

.;31 - K;= -+%> -;%)
1+ —’.. ,

1+ ~’-’ wa.l- 2“

If this expression is inserted, the last eq~Lationl~ll read

m+ 1

w-u z—= .—

jyJ
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or...

l!he
irlg

proportdonaltty
mentioned .5J3o+re

Cle =

wt2

.

,,,

of the induced ‘veloci-hj.esan~.ti?epower
retie, accordi~; to (31) ant!(21),

,.

29

load-

FiencefoUow9

L’
For the local ratio of advence ~ = 1 one ottalns the result that

for the swne ideal efficiency the power ahsomij!zlocof tli~3countor-
rotatinG propeller with tho nwiber of Wad-es 22 c[:uz,lsexwtl.y
double the pcwer absorption of the sin@.e isr~pell~rwi’dlthe blade
num..er z as one knew al~eady from equation (3d). The superiority
of the cj~unterrotitin~~ropeller o-wr the Sjmgl.e’yyuyller fo~ kcr~e
z%itiosof advance i~ aluo shown in equation (39) S5.UCOti~,~eproportional
power absorption for the Bsme id,ealeffictericyin.czeafleswi-bl!the
raticJof advsnceO For conqpleterecovery d ro~”.ticm [h = 1) ‘thOi~e
:even result~ an increase with the second powor of’ h of this propol”ti.nal
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Yropeller of finite
number of blades leaves behind residues of Z’ota-klonin the sl.ipstreatn
whlcilincrease with the ratio of advance because of th~eQecrease of
K with k (see for instance [14]). The equaticm (3.9)yields
for each number of blades 22 & the ccunterrotating propeller
en dptimnm k for which the inc~ease ih power reaches a ne.xinum
as compared with the sin@e propelle~ of’the numbe~”M blades ~.

cLg
The li-mitingvalue for —

h
for an inffinitei-atiOof advan.cc -

Cle x

has according to (39) a value of 2.

The limiting value qinz of the ccwnterlotatin.gyropeller
u

with a finite nuder of blades tends hecaszseof tke unavoidable
residual losses due to rotation f3X’CLCtlj7like the %inl~tilngvalue ~ye~

v. 1. (c)Variation of the blade anSLe

The desirable irrotatioiialcondition can he oltained lx a
suitable difference of the hla?.ean#e which is dependent cm I’.
Irrotationality ~wt- + ~1~’tI1 = G mezzxlequality of ciucvlation.

If one assumes the blade angle referred t.athe direction of ‘&&ezeru
lift of the profile, one canwi-ite, acco?dhg to (4)

Since the differe-nceof the two blade ansles pl -

calculated, the term of tilerefercmco direction is

!311 will be

again elinrbmted
for the se&e profiles in tileseinesection so ‘~hatmie
again by D the blade angle referred to ‘tihe~~l”essnz’e

is valid. If
velocities of

%rI(PI - %1} ‘wwI1(fiII ‘%11)

one substitutes at fii”~tthe velues for

(40)

the effective
oncomin~ flow”for the irro’bat~a..alco~dition, one ohtai?m



. .... . . . ...,,.-.,,. - --—-——..,, ---------- .-,........ ..-__——.—.

!{f

I?ACATM Nd. 12@ 31

.. ’.,

or neglecting hi@er order terms, ,,.

[

mltw~
ly-vvl=l+ 1‘- (%I - %11)

‘1.
E + (l.(u)”_

For

can

v- -!

term on the right is mall ccmparcd with
of importance only for very small rati0s
conditions, howevor,”there is certainly

‘%11 are small.,tho secofid
..

the fir~t Qne. “it could.be
of ad.vaiic~.. For high speed

.—
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% - fbI = %1 - ‘%11

validwith sufficient accuracy or, according to (42),

.

In addition, the appearing velocities w’illbe expressed
teristic values of the propelier. From (28) fo130ws

therefore

end therewith

by charac-

Since the axial efficiency ~a is connected with.We ycwer

coefficient kZ through (36) one ~refers to ictrod-uce klt instead

of Cat) thq,tix: on% expra”sses c~; by lCZ’ ~& “:~lg
.“

: ‘,
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. .,
C5N

... . .,.... .—~ .%&
,’.

,., ..

,.

,.. ,

and,obtains

me ideal efficiency qig Of the CC?Untei~tit~& prope~er COKld

W procured according to (35) or (37) from the ideal efficiency of
the correspondin~ single propeller (with the whoj.eor half the yower),
However, from (35) and (3’()f’ollcwsthat Vi& does not mt;.chdiffer

from 71a for the irrotational ccndition. Certainly the dependency

~ the load .(k~)~ on the ratio of advance k and-on the radius x

is more important for the &ifferenee in”t.hepitching angles then the
slight difference tetween ~ig ond r]a;one may therefore use

(44k)

as serviceable approximation: all the valuee,are now lumwn directly
since ~a is known immediately through (36) from lCZ’ and A-

The blade-angle difference inc~eases with increasing and.wfth
decreasing x. The dependence on the ratio of advance Is rather
complicated. The formula (h4) is not admissible foi~very &mall
?UVB. For medium kts the dependence of the formulas (44) ~’”h
is not very extensive %ecauee ,ofthe increasin~ of qa with ~ for

a fixed k~ (variable pitch proyeller) as well as for a kZ decreas-

fn~ %dfi h. mi.s fact was demonstrated ~s~ in ve~~i-fyinecaputation.
The,tiree operating conditions A = 0.3, 0.9/?,and’.O.2 are calculated
~th the ~~e PI - ~11 and are aPprO~~fely, QCJV.il’alentwi&l“es~ect

to proportionate p&ek and res$dual rotation. For larger htS (fOr

. ... .. ,—-.. . . , , , .,..,.-,, ,-,. -.., .-, .—... ! l.. , .-,,! . . -I. 1. . I ..!! . . . . . . ..! . . .-.. .——
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men the d.epeniienceot’

dces not change

the blade angle

NACA TM No. 12@.

much more”(~ equation 36?)

difference on k is well
noticeable until fdtilarge k*s tie dependence beccmes unimportant
and the blade angle difference ~tself very smal10 The number of
blades enters into (44) only throtighthe power coefficient.

The last term in (43) must not be negl.ecteafor fl~l~ k’s;
one uses

and obtains

‘Ihereforea larger blade angle difference has to he solectod than
resulted according to (44).

The blade-angle differences measured ly Lesley [9] decrease
with decreasing A, lecauqe” El decreases rapidlywith decreasing
k. However, one can ccntrol the relation (44) on hand of his
measurements. Lesley aspi??edto having his counteurotati% prc~
yeller run for the ratio of.ad.vanceof the highest.effj.cienc~wtth
equal power absorption of the ho partners. Of course he,did not
change any~ing in the variaticn of the blade an~le; on the contrary,
he altered the total pitch of the second as ccmpared with the fii-st
propeller until he could experimentallydetetine eg,ualpower absorption
for both partners. In the actual test cn the counterrotating arrange-
ment he specifies only the total ‘valuesover both pro~ollcrs, The
verification of the calculaticnwith the PI ‘-P1l given by him

shQw9d that the power absorption of ~he “secondpartner is BicQller
than the one of the first paytner, particularly so for the l%rger x’s= ~
(See table IL) Even the @rust coefficient of the.secondpcwtner,is
smaller than,the thmst coefficient-”oftne first partner for some.
cases although the efficiency of the second,pai%ner is superior; If
one tiserts the PI - ~11 of [9] ,into(~) one-,hasto go to X = 0:45
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+ ‘ta,qatisfy.the formula, and
had shaied”also equality in
x = 0.7 into (44) a smaller$

there Mb verificatl.oncf the calculation
gower. (See table II.) If one suhstltutes
PI - ~11 18 Oh~lnedti-If OXI~checks

the calculation of Me propeller using this value the condition of
power equality an~ absence of ‘rotationis acmally much better satis-
fied, particularly for the x>”O.6. (See.tab,le,II.) ..

Since in each propeller the outer blade sections are es~ecially .
heavily loaded,an the other hand the recovery of rotation is’particu-
larly effective in the inner-blade &ections one will come to the
conclusion tlnata total ad$mtmenb of the second with respect to “the
first propeller is not satisfactory fbr the design; one will therefore
make the blade-angle difference dependent upon tho radius according
to (44) (dependence on x and on kz’ (x)). A variable pitch

propeller then ccntrols the change to another total pitch distribution
exactly as In the cese of the single propeller. T% ought to le
considered whether one could take the dependence of the blade angle
difference on the rstio of advance into account. The verificaticm of
the calculation of the propeller measured by Lesley proves how
unfavorable the ble.d.e-an~ledifference is which is constant over the
radiua. Although thei-eis equality of power for x = 0.45, the
contribution of power k iG no longer more than a third of kZ1

111
already for x = O.:. Thie circumstance is not essential for the
propeller which was measured, with its rapid decrease in thrust
towards the hut; b~~tit wculd immediately become im~ortant if one
would load the hub re~ion according to the optimum more heavily than was
done BO far.

Summarizing, one”csm therefore me..kethe following statements
concern::hi~.tkodesig:l: ‘Theoptimum d:.strib~ticnia K,hedistribution
“of Circljatilcmcorm’:antovm the radius Whj.ch:however, can not be
realized.. It ~U.stbO left to the ~onst~li~tovt~ fir.d.a,compromise,
The re~overy of rotation iQ larger in the innes-blade.regions than in
the outer ones. For a selected ccntour the variation of tke bla~e
angle was so far often (see [~ )dete@ne~ friinthe stipnl.atlcmthat
the th-mmt should diuappear simultaneously ovor the”whole blade
(s~::o$..;ne;~lcal:.ynot%~i6t3d propeller), One will forego the exact””
fulii?..l:,~:~”~LI this c.c@I”’t!.cu~~i-%oth ~.i-opllerisa~.dwil.id~terml.ne
~(~e~~.~,~a?~.:.:nof th3 klad3 c:&,,eriiffexace accordir.gto i.h~i. Since
% .,- B~l is a mall value (ahub radins is cut Gut) the afirod.ynamic

.,
twist is still small, The total pitch is then determined from the
power to ho absorbed. ,,

Finally it should be mentioned that estimates concerning section
V, 1 may be found in the hitherto exfsting literature,([lU and [161).

. . ,,

,,
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However, the mutual influence of the two yartners is neglected to such
an extent that the difference in thrust e~ressed by (30) and the
blade angle difference (44) as being toc small arc;not evident.

V. 2. The Eff.icigncyfor Operating,Conditions ‘WhichDo Not Deviate..
,,

Much from ,jiheO@timum Ccriliticm

It shall now be considered how the efficiency is influenced if
the cowaterrotatingpropeller works ~n an oper?thg condition which
is still so near th-ecor~ditionof.equ.alpr~portioning of power tt!at
(32) can be applied.. Then there res’~l”csfrom (13) and (14)

c

[

‘2(1 - ‘“”- —‘) w@tII ( “2
1 iiil+ i7~11)

,7ig= $= ~- 1 + ‘-””” .- ...-.-

1“

.—— -..-&——

1 2rtilw—. ?m wt~ - w~:~:tI ‘-%-J “-”(--”” )

(45)

.,,

A comparison of this expressicfnwiti,tlieefficiency f’.>rthe irrotational
condition (33) shows that the two fir~t terms cor’ref3pcidexactly to
the terms appearing there si~]cethe seccn?.term (45) turns ;.ntothe
second term (33) for wtI = -wtT1. If tine wt-values are suali aa...., ..-
presupposed.there will be hardly any difference between them. The
third term of (45) constitutes the real difference in relation to
(33); it centain~ in tilen~~erator the sql~:~l”eof the residual rotation

‘tI
: wtlii ‘1’hereforethe detaricraticn in effi~ienc,yfor an operating

condition”deviatingfrom the conditicrl.dfmaximum compensation of
rctatim depefidsupon-.”theresidual rotation as was ttibe expected.,,

.“

VI. TEE BEFQVIOR OF 1. PROI’ELUR OF AlllNFINI’IEillJl~2EF?OF BLAIUS

FROM TEE BRA,KtlJGDONWIN UP TO HEAVIER IDAZE
,-

1. Development of the Charts

Many prcblems corice~mingthe operat~.ngconditiccs c.fthe c&:~ter-
rotating propeller for operating conditionswhich de?~iatefrcm the
condition for the design (condition of minimm loss cf rctat:iori)
retiain:still unsolved. In order to obtain a preliminary clue tc the
behavior of the cou.nterrotat,ingpropeller even for ~xti-em~cases
(if for instance the roar partri~rworks as ‘awindmill) cne calculated
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and plotted the local tirust loa&ngs of tb single propellers for the
pzwpeller of an infinite n~ber. of:blades over a whole region of
ratios of advance, form yarametars aid blade angles; then one arranged
the material of curves thus formed in such a manner that one can
interpolate. ,.

,.
The equations &or the ‘propeller’ofazqi~inite nvnber of’%ledes

can be written in such a &nner that one can solve for a few paramotars.
The equations (13) with K = 1 fomn the basis of ‘We calculation

Since the induced velocities for the propeller of em infj.nitenumber
of blades are ccnstant over the circumference of the propeller there
remains only the one axial velocity

,- ‘aI ‘~1
VI =l.t- ~+----

its partial contributions do not a.pyearany more, and.the total C5’
iS co~ected with ~1 ~T~u@ (1’7)6 we selects ~W ~;qi-e~sion

slightlydeviating from (24) for the formulas at the ‘blade.
the relation according to definition of ca (?ee equation 4)T%Y
basis, one obtains
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c~lI”~ (“= Rib+ w;;+
i.

one

One

One

N.ACATM Nb. i208

(4611J

\

angles here are referred to the direction of zero lift so t?at
can substitute for ca

unites shape and number of the blades into the form parameter

aca ~
A=--—z

dn Z’YTr
(47)

nuw assumes A and tim as ftxe? and lnvesticates the influence
of the blade angles PI and P1l upon the tvo tkrust elements. To

this end a total c~’ is assumed as given and 71 i~ calculated from
(17) ● l?or’an additionally given PI, th9 eg.1.ations(131) and (461),

when eqUated, till COn.tainOnly one l~nh~~ ~~.~LIOYlielielyW~l) and

can be solved very quickly for w~l by iteratirmo Simultaneously

CSI’ and, since
CG‘

is known, alBo (131~)Osllt are obtained.

can then he solved for fitlI and (4611) for 611 since all other

values are lamwn and the un.kncmnnaypears the first time in the secoiid
pcwer, the second tine in tie first ,powerin the resyctive equation.
Thus one obtains for ~ixed i?o and “A ,’bych~ing ;$’ and 131

grou~$ of cu~~es> for inst~ce c~I1 and c$ll”rover ~11 ~~ith ~1

as parameter. By changing fi and A me obtntns serieu cf such
grouys of curves.



.,
NJICATM ‘NW 12C8

..:,
.,,. ,

. ,.,..... :.:

39

... VI. 2? Discussion of’the Charta ‘#. .
,,. .—

me figures 6 to 8 chow.,sevcm,l exampkm’.:’The cur%m lie
‘approximately lin~arily between .-l~cst~ I.c The vaiues CSI’

ae parameter are parallel for small valu9s ofover Prl with PI .,

A and fi, that is, ‘‘ ~for small values of A and = does
CSI

not.,dependon 1311. This”phenomenon has been irnownfcr a longtime

from ”tosts(~ee [M’] ). For larger values of ~ the valuee of C~l’

dhinish with increasing @ll, that is,,wibh increasing C~lltlthat is,

the :increasingload of the second.propell,wtakea effect as reduction
of the angle of attach of the first propeller by increase of the angle
of advance W* (6quation (20 ) or fig. 5). EOwever, equatioh (20)

for 911* and the ff~res ~ to 8 also demonstrate that the 3.nf~uenCe

of the first prcpeller does not always affect tho second.propeller in
same sense. The inf.1.uenceof the first propeller may reduce the angle
of attaclcby infireaseof ~1* (~H~~‘ diminishes with increasing

131’.aswell as increase it (c~l~l iucree.seswitn increasing 13~) by
reduction of VII* (this case iEIrepresented.in fig. 5) according to

whether the influence of wtl or wal predominates. Wtr prevails

for large values of A and causes the incraase of the angle of ettack
of the second propeller. The superiority of the counterrotating,pro-
peller as compar~d with the s~.ng~epropeller for higjhvalues cf k
was

the

stressed more than cnce. (See equ=.tier.s(39),and (39.).)

The mutual influence of the.two propellers does not depend on,
angle of attack cnly but because of

,,,,

.;.
also on the effect of the then uther partner upon the effqctive,cn-
ooming flow; The equations for cs Look aouswkat mo@comfi2&~ated.

th~ the relation for r , they contain vl’ti ‘and ~he i,ndti’ced,..,
velocit~e~ wa17 wtIJ ~?aII> ‘tII “ If one”assimes the relatton for .

CSII‘ once written with a pair of values
‘aI’~ %’ ‘ another time

I



with another pair of values Wallf~, ‘KC ?!~ one can equate these

two relations for c~IIt tid solve for waII} ~~tII””One cm

coordinate a blade angle.to each pair of induced velocities wkiich
means that there is a ~11 to each pair of values i31’ and ,P1l*

thus, Mat the same C~ll* ‘results for the two vaiues cf B1for

this 1311,. In other words, every two curves C~llr intersect over

~11 with pl as parameter as shown in fi&ures 6 to 8. The points

of intersection of the curves lte closa”to each other because the
influence of the first upon the second prcpel.1.er,is shown mahly in
the variation of the angle of advance. The chan~ing of the angle of
advance g into the angle TII* is still mu-e decisive ‘thanthe

influencing”oftie real angle of advance CPw. If there were ofly

this main influence effective the same point of intersectionwould
be obtained for all curves, for frcm

v= %1*

follcws, as can %e easily derived frmn eq,uation(20) or figure 5,

The region of intersection for mnall ~alues of Ri is sc loca-ted
that most of the”curvc+sare in the dornainwhere an inWeaS8’”Of “~1

(that isj ~f CS1)for constant S1- means an increase of csllt. Ju~t

the opposite is true for the large values of =, Of course, the
relaticns depend also cn the fozm parameters

If one examines the verification cf the measurement (cLmputatim
sheet IIa) from this point of va.ew,one will see that the anggles ~T7*
are largertism p throughout.;the first propelle~”affects the’se~&d
by redtlcingits angle of attack; the appropriate values can M found
on the charts CSII‘ over P~1 to the lett of the regi’cnof inter-

*&
secti.cr.of”the c“urves, Ancng the measurements {9 Jthere is czilyone
example ( h = 0.573), ““wherethe verification cf the calculation
resulted in ~11*< (p(,Feecomputation sheet IV .)
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O tO 1. Cs~t and CS1l’ depend in these re@cms scxnewhat

lineari~y ~q pr as well as on PT~o They can therefore be repre-
sented as

The coefficients are plotted over

(pquation(lt7’))intwo charts (figs.
calculated values not exactly; the
mount to about 5$, for very mall

more. However, they will certainly be smaller than the negled&3d.
effects of the finite number of blades and the friction. The charts
are supposed to give only a eurvey over the mutual tifluence of the
two propellers to be expected for various opej?atingconditions.
For the rest, the inaccuracy is mainly due to.the c“bnstants dl and

rm
with the parameter A

9vand 10). They represent the
deviations for medium cet~alu.~

Cst-values s&eti~~ to even

%2.
However, the ccnstant is unessential si’nceoti will mostly want to
take from the charts only the change of the valueS cS1t and csI1l

which occurs when the operating condition Is changed.

The coefficients al are smaller than the coefficients %,

whereas bl, cl, and dl have the same order of mgnitude as the

values b2, C2J and ~, as shmn by the often stressed fact that

the mutual influence is expressed particularly in &e effect of the
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first

(main
value

propeller up&’ the ang~e of attack of the second propeller

carrier coefficient ~)Q The mutual influence divided by the
of the free-stream velocity (mainly expressed’irithe coefficicmts

c1 ~d C2) is smaller and about eWiva@Qt~ Actually the connection

Is very complicated as the curves de~nstrate.

VII. SUMMRY

An arrangement for counterrotatfon is examined; the two partners
are arrangsd close behind one mother, have the same diameter, the
same shape of blades) equal and oppo~j.te~~1~.r velocity but d~~iating
course of the blade angles over the radius. For verification of the
calculation of the arrangement, the mutue.1influence of the two
propellers can be used inllalchner’sme+hod for calculation of the
characteristicvalues of the propeller at the secticn or into Kramer’s
single-sectionmetkti by an iteration mcthcd.. The difference of the
blade-angle course over both partners which is necessa”’yfor e.noptimum
utilization of’rotaticn is stated for the desiga in an easily manageable
formm.1.aof approximating. Simple form.d.aaare givm also for the
gain in ideal efficiency to be reaciledby counterrotation, The
investigation shows clearly the operating conditions for which the
countsrrotationis particularly effective. By efficiency one always
understands the iocal efficiency. The inte@ation over the radius
is not carried out because the dtstribntion of circulation over the

radius is not sole’1~determined by aerodynamic,poii~tsof view. The
behavior of the co~terrotating propeller for various operating
conditions from the braking domain up to heavier loads is studied on
the propeller with an infinite number of blades. The discussion of
‘thepropeller measured by Lesley tho calculation of which wa”sverified
on a few examples presents an opportunity to examine the results of
the treatise.

Translated by Mary L. Mahler
National Advisory Comnittee
for AerOIX3UtiCS
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step 1 step 2 stop 3 %1
X1 -0.622 K~.0.605

‘I%

~d 0.4361
P

68Q$’ 2.& .(

p+qf .3649 0.3783 O.yfls step1 2.561 0.0>9
.036

B,-(q+%$ J3712 .0577 stop 2 2.%6 .054
.032

I I 1

t caI .56s5 .516

Istop4 .IMq.227512.59;X0.O
1.m27

2!!.0.1270

T

,

-.I070 6.757

=--l--=

2.6%xO.o%l.0.13391.UD1

P.653X 0.05
1.ID31

= . 0.1293

.

Xp.xtm(.?+’qfj

k
c) vii

e . o.3y75
M

. 0.3925

~
2.62

0 0.3965
s

.0.394
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X= 0.2865

+

c1 = 88.8 CL*

qcl = 54035 0.03

, .05
Step1

.0438

mWI= 53”75 .033

Step2 .0332

COMMUTATIONSKEETIb

0.4061 0.0412

.3861 .0212

●3*3 .0274

.4031 .021+7

.4029 .0245

0.3950

.3766

.3823

3.0412 0.884

.021.2 .434

.027h .5695

+

.0247 .520

T

F
I 0.499

I

.632

●573

i
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Step 1

47

Step 2 Step 3

kll = O .6I.2 kll = o.&35

P~ 0.4311

cp+q* .3649 0.3740 0.3732

~d - (ql+ q*) .0662 .0571

caII .5495 .5150

COB2~11 ●999 ●999

Cos %1
.9244 .9215

co” (’m + I/cos ‘
.9094

( )
‘tan q)ml+ 7 .4574

CSII‘ .1796 .1690

CSII‘/%1 .2935 .2794

%11
dx

.oeo48

%11 .00702
&c



COMPWZA!MON SEEEJ! III)

Step1

Step2

q = 88.8 ad .
~dy ~ = ~d - (;+ ~’) - ad ‘h ‘“ ‘m y ‘a

5.3~d ● o.337

0.04 0.391.1 0.0262 0 .38I2 0.0262 0.543 0.552

~IIcl = % .35
.0398 .3913 .0265 .3814 .0265 .5495 .551

.033 .3981 .0241 .3877 .02kl .502 .515

‘@l= 53.75
.0326 .3995 .0243 .3W0 .0245 .51.1 .518

.0322 .3989 .0249 .3884 .0249 .5’XI .510

.0324 .3987 .0247 .3882 .0247 .515 .511

L
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To . Zflp.0.0%6 RI!-1.222

80 . ~flu - 0.0s29

1 step 1
AI*

step 2 ~1
@ @ @ G0.573 0 .5@ %%

2 ~ M’ = L*IQ.7 .819 .832

F
1.4s2 -~ 1.’222- Q ‘q;,;=~rd ,.!+p + @

%1+ - UC t= @
m3 .6% .6s4 ? @-%wL-l.m .l:= + ~

B

4 02 + AI*2 - 0.49+ ~2 .818 .&28
step 1 1.152

0.070

9 ‘M .&35 .635
-0.0618 1.b30 1.196 -0.058 0.0)3

.0322

10 au . Zjn?u .0363 .0320 .067
step 2 1.155

Ll au+ail=Bu -~*.@-@
-.0710

.119
1.421

.ml .0306
1.193 -.060 .031

lz %11 .036 .036

13 fCII vith ~vI = @ + @ .8y .859

v

13 tan 12
lb cdl . .@ .859

10

15 %Z .03

16 %2 .846
ZUI

v

w %Z
Zun

Vd . %m
tam 15 tan 6. + %j

17 )cti2 . tan (90 + q*.705
10

(’= - 9= -6= +: +~%i ‘ +;:=?

r

z ~ l+K1+
18 % .036 .033

~%
tan qm 1.22.2+ ~

19 % .0S$ .on5
~+%~+~

l+.l+++

20 %1 .%2 .-
Step 1 C .07S5 o .06Pu 1.187 X 0.070. 0.0787

21
1.22;,:;.058. 0.0G5

CUI ~th %1OJ @ .oEn .059 1.056
0.832 0.812

2-2 61. @/@ .071 .074
step 2 .0758 .0695 1.1@ x 0.06z . 0.0756

@

l.e;.:~ .oa . 0.0699 .832 .ml

23 71. arc tan .071 .074 1.0%

24 cO&ql con 71

‘5 ~*+%+ 71=@+@+@ ‘“- ‘:~l

26 tm(~*+q+7J. tan@ 1.09

27 s1n(?f+~+7J.mill@ .718

28 m=w=~ .791 .794 ‘%1 0.722 0.730
0.7-24

,,, @@@@@29 .0146.013L8 ~ . 0 .02&J7 hI .616 .626
1.273 .619

30 %1- @@/@ ‘v .01% .01e65 ~ . 0 .036Jt7 K .46 .46 .456

31 c,, - @/as .05S4 .O* f. . 2.8. eh~ .52 .69 .&

% Q.,1’ . 1.273 3 .0761 .op&

% ‘f‘1 .1655 .1534
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CzWU72A!lTONSEEIZ IV

A = 0.573 == 1.22-2
.

step 1
1

step2
L=*

0.573 0 .5b9

2 tm q?o=+ . L++/o.-l .819 .812

3 qfl=+ . arc ten @ .#36 .6%?

.
4 # +k=% . ~.1$ + @~ .818 .812

9 B~= .786 .786,

10 >0 = Zln=o .03&l .0360

11 %n+%=h=-$e=e l-o .m .3!34

u? %111 .036 .036

IT14
.852 .852

.aII, . @ ‘m@

@

.552 .852

.03015 %112 .020

16 %D2
.863 .858

.a=2=@ ~@
17

@

.479 .715

18 am
.032 .032

19 %u .068 .0715

20 cm .752 .770

21 ~ ~th %,ml .0615 .0633

22 Gn =@/@ .0818 .078L

23 0,==arctan22 .0816 .0782

24 I.o,=’~= coo 7= 1.0 1.0

25 %I*+%Z +7==@+@+@ .&o .792

26 -(w” +q=+7=)=tm@ 1.030 1.013
%

0.722 0.706 0.718 0.71.2

27 ( )0
.1. ~+ + q= + 711 = nin 2 .717 .732 111 .616 .597

1281 qll . @/@ . ~ .795 .839 F. .46 .475 .462 .470

w

29
,,= .@@@@@ .0L2k5 .03259 Pn . 2.8C m PM .e52 .8s3 .852 .538

1.273

30 kB1l = @ @ /Q= ‘>@ .0173 .01777

31 ac~* . 0 /k2 .0528 .0542

32 c,=’ . 1.273@ .06i”2 .069I

%1 ‘fm .1415 .1467
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TABLE l.- COltPARISONOF TOTAL VALUES BETWEEN C~ION ~ ~

Calculation Measurement

‘2).

0.2

“3

.573

.2

●3

% 7

) .73

.86

.80

25°

25°

45°

25°

25°

0.036

.017

0.039

.020

9.0109

.0075

0.73

.8!2

.81

.72

3.0097
Multisection

method
Counterrotatingpropeller

with 2 x 2 blades

.0058 I

Single section
method

.038.036

.035

.017

.026 .027

.0104.0096

.0060

.037.72
Multisection

h-blade propeller method
.&l.85 .019 .0073

I
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TABIE2.-

A = 0.2

with 131-

VERIFICATION OFTEECMLX!LATIOIT

flII-accordingtoeqoation(44)

‘%1
x 0.0063

.0066

.00156

.00159

.0163

.0173

0.00025

.00008

.Oooob

.000025

:0062

.0065

x = 0.30

x= 0.45

1.0.63

0.0077 0.0077

.0082.0080

!E&L .00261

.00270

.0044

.0044

.02’73

.0278

.0022

.0023

.0134

.0138

.00261

.00265

.0076

.0075 ‘

.ook70

.0048

.0183

.0180

.0204

.0206

.0707

.00706

.0343

.0343

.0206

.02Q5
X= O.75

.oog7

.0093

.0326

.0320

.00659

.00639

.0183

.0181

.00714

.00702

.0203

.Olg

.0068

.0066

.0093

.0091

.0072

.0069
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Figure 1.- Efficienciesas functions of the relation flight
velocity/tip veloctiy.

Figure 2.- Veloci& plan and force plan for the element of the
singlepropeller in undisturbed flow.
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Figure 3.- Variation of tie induced tangentialvelocitiesfar behind
the single”and the counter-rotating pro eller along a circle around
the slipstream axis for z f= 3 (from [7 ).

aJ

L%

~ Direction of the slipstream

Figure 4.- Variation of the induced mean velocities in the direction
of the slipstream.
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Figure 5.- Velocityplan for the counter-rotating
(accordingto[71).
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Figures 6 to 8.- Examples for the dependence of the local thrust

loadings of the counter-rotating propeller with an infinite number
of blades on the blade angles of the two partners, on the form

dca
parameter A = ~ —

2mr da z andon ~.
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Figure 9.
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Figures 9 and 10.- “Coefficientsof the interpolationformulas for

the local thrust loading as a functionof ~ and of the form
A,-1
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2

parameter A = & ~ z.
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