Impact of Scaled Technology on Radiation Testing and Hardening

Kenneth A. LaBel
ken.label@nasa.gov
Co-Manager, NASA Electronic Parts and Packaging (NEPP) Program
Lewis M. Cohn
Lewis.Cohn@dtra.mil
Defense Threat Reduction Agency (DTRA)

Outline

- Emerging Electronics Technologies
 - What has changed and is changing in the commercial semiconductor world
- Effects of Concern
 - Single Event Effects –SEEs
 - Total Ionizing Dose – TID
- Challenges to Radiation Testing and Modeling
 - TID Trends
 - Fault isolation
 - Scaled Geometry
 - Speed
- Summary/Comments

Note: the emphasis of this presentation is digital technologies and SEE. Some discussion of mitigation implications is included.
Changes in the Electronics World

- Over the past decade plus, much has changed in the semiconductor world. Among the rapid changes are:
 - Scaling of technology
 - Increased gate/cell density per unit area (as well as power and thermal densities)
 - Changes in power supply and logic voltages (<1V)
 - Reduced electrical margins within a single IC
 - Increased device complexity
 - More functions per chip: >1 billion gates in a single device
 - Speeds to >> GHz (CMOS, SiGe, InP...)
 - Changes in materials
 - Use of antifuse structures, phase-change materials, alternative K dielectrics, Cu interconnects (previous – Al), insulating substrates, ultra-thin oxides, etc...
 - Increased input/output (I/O) in packaging
 - Use of flip-chip, area array packages, etc
 - Increased importance of application specific usage to reliability/radiation performance

Mainstream digital – CMOS scaling

"Moore's Law" continues to drive semiconductor roadmap
- ~30% reduction in transistor size with each new technology

From <10k in 1975 to >1B in 2010
Radiation Effects and Spacecraft

- Critical areas for design in the natural space radiation environment
 - Long-term effects
 - Total ionizing dose (TID)
 - Displacement damage
 - Transient or single particle effects
 (Single event effects or SEE)
 - Soft or hard errors
- Mission requirements and philosophies vary to ensure mission performance
- What works for a shuttle mission may not apply to a deep-space mission

Total Ionizing Dose (TID)

- Cumulative long term ionizing damage due to protons & electrons
- Effects
 - Threshold Shifts
 - Leakage Current
 - Timing Changes
 - Functional Failures
- Unit of interest is krad (material)
- Can partially mitigate with shielding
 - Low energy protons
 - Electrons
Displacement Damage (DD)

- Cumulative long term non-ionizing damage due to protons, electrons, and neutrons

 - Effects
 - Production of defects which results in device degradation
 - May be similar to TID effects
 - Optocouplers, solar cells, CCDs, linear bipolar devices
 - Unit of interest: particle fluence for each energy-mapped to test energy
 - Non-ionizing energy loss (NIEL) is one means of discussing
 - Shielding has some effect - depends on location of device
 - Reduce significant electron and some proton damage

Single Event Effects (SEE)

- An SEE is caused by a single charged particle as it passes through a semiconductor material
 - Heavy ions
 - Direct ionization
 - Protons for sensitive devices
 - Nuclear reactions for standard devices
 - Optical systems, etc. are sensitive to direct ionization

 - Effects on electronics
 - If the LET of the particle (or reaction) is greater than the amount of energy or critical charge required, an effect may be seen
 - Soft errors such as upsets (SEUs) or transients (SETs), or
 - Hard (destructive) errors such as latchup (SEL), burnout (SEB), or gate rupture (SEGR)

 - Severity of effect is dependent on
 - type of effect
 - system criticality
Typical Ground Sources for Space Radiation Effects Testing

- **Issue: TID**
 - Co-60 (gamma), X-rays, Proton
- **Issue: Displacement Damage**
 - Proton, neutron, electron (solar cells)
- **SEE (GCR)**
 - Heavy ions, Cf
- **SEE (Protons)**
 - Protons (E>10 MeV)
- **SEE (atmospheric)**
 - Neutrons, protons

(Images of equipment and text)

Total Ionizing Dose (TID) – Technology Trends (1)

- **CMOS Digital Volatile Memory & Logic Technology**
 - Present trend to smaller feature size and lower operating voltages indicates a reduced sensitivity to TID effects; e.g. > 100 krads intrinsic capability for 0.25-micron technology and increasing

(Graph showing DRAM Cell Area History and TIDS Model)
Total Ionizing Dose (TID) – Technology Trends (2)

- CMOS Programmable and Non-Volatile Memory Technologies
 - Both technologies show sensitivity to TID, < 100 krads in some cases, due to need for higher control voltages

Submicron FPGA TID Tolerance

- 0.35 µm to 0.6 µm

FPGA TID Response showing TID Sensitivity

Total Ionizing Dose (TID) – Technology Trends (3)

- Bipolar Linear Technologies
 - Demonstrate extreme sensitivity to TID, parametric & functional fails < < 100 krads
 - Many modern devices subject to Enhanced Low Dose-Rate Sensitivity (ELDRS) Effects
 - It has been predicted that this effect may be seen in scaled CMOS as the scaling approaches a bipolar-like structure (Fleetwood, et al.)
Radiation Test Challenge – Fault Isolation

- Issue: understanding what within the device is causing fault or failure. Identification of a sensitive node.
- Technology complications
 - "Unknown" and increased control circuitry (hidden registers, state machines, etc.)
 - Monitoring of external events such as an interrupt to a processor limits understanding of what may have caused the interrupt
 - Example: DRAM
 - Hits in control areas can cause changes to mode of operation, blocks of errors, changes to refresh, etc...
 - Not all areas in a device are testable

Fault Isolation –(2)

- Example: SRAM-based reprogrammable FPGA - measuring sensitivity of user-defined circuit
 - SEE in configuration area corrupts user circuitry function
 - Can cause halt, continuous misoperation, increased power consumption (bus conflicts), etc.
 - Often the sensitivity of the configuration latches overwhelm user circuitry sensitivity
 - Must have correct configuration to measure user circuit performance
- Increased number of control structures in a device drives an increasing rate of single event functional interrupts (SEFIs)
Fault Isolation-(3)

- **Macrobeam structure:** implies probabilistic chance of hitting a single node that may be sensitive
 - If test is run for SEE, typical heavy ion test run is to 1×10^7 particles/cm2.
 - Ex: SDRAM - 512 Mb (5x10^9 bits plus control areas)
 - If all memory cells are the same, no issue. BUT if there are weak cells how do you ensure identifying them?
 - Control logic may be a very small area of the chip. If you fly 1000 devices, area is no longer "small."
 - Difficult to evaluate clock edge sensitivity of a node
- **Die access (required for most single event testing)**
 - Typical heavy ion single event macrobeam simulators have limited energy range
 - Implies limited penetration through packaged device
 - Access to die typically required
 - Overlays, metalization, etc. must be taken into account

Low Energy Ion

High Energy Ion

Device Under Test (DUT)

Package Material

<table>
<thead>
<tr>
<th>Facility</th>
<th>Ion (Energy)</th>
<th>LET (Si)</th>
<th>Range in Si (μm)</th>
<th>Peak LET</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCL</td>
<td>Xe (3.2 GeV)</td>
<td>40</td>
<td>272</td>
<td>69</td>
</tr>
<tr>
<td>TAMU</td>
<td>Ar (2 GeV)</td>
<td>5.9</td>
<td>390</td>
<td>18</td>
</tr>
</tbody>
</table>

Table assumes ion traverses 1.5 mm plastic LET given in MeV·cm2/mg

Fault Isolation-(4)

- **Standard microbeam and laser test facilities have similar limitations for range of particle**
 - On older technologies, these facilities are used to determine what structure within a device is causing fault/failure
 - New technique (two-photon absorption - TPA) with the laser is being developed, but is still in research phase
 - New test structures built specifically for test may be required
 - Reduced metalization, special packaging, etc.

TPA is a new technique to overcome some of the test limitations from packaged device and metalization issues.

Courtesy Dale McCormack, NRL

Radiation Test Challenge – Geometry

- **Issue:** the scaling of feature size and closeness of cells
- **Technology complications**
 - Multiple node hits with a single heavy ion track
 - Because of the closeness of transistors and thinness of the substrate material, a single particle strike can effect multiple nodes potentially defeating hardening schemes.

Litho International Tech Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Logic Half Pitch (nm)</th>
<th>Logic Gate in Resist (nm)</th>
<th>DRAM Half Pitch (nm)</th>
<th>Contact In Resist (nm)</th>
<th>Overlay (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>45</td>
</tr>
<tr>
<td>2002</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>40</td>
</tr>
<tr>
<td>2003</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2004</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2005</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2006</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2007</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2008</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2009</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2010</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2011</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2012</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2013</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2014</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2015</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2016</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2017</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
<tr>
<td>2018</td>
<td>130</td>
<td>90</td>
<td>130</td>
<td>165</td>
<td>35</td>
</tr>
</tbody>
</table>

Source: ITRS

Geometry Implications (2)

- **Multiple node hits (cont'd)**
 - Ex. memory array
 - A single particle strike can spread charge to multiple cells. If the cells are logically as well as physically located
 - Standard memory ECC techniques such as Hamming Code can be utilized
 - This is not new, simply exacerbated by scaling.
 - Traditional SRU modeling considers particle strikes directly on a transistor
 - Charge spreading for strikes near but not on the transistor can generate errors
 - Measured error cross-sections may exceed physical cross-sections
 - Albeit actual individual targets are smaller for a single particle
 - More targets and the spread of non-target hits implied potentially increased error rates per device
 - The role of particle directionality and of secondaries requires future use of physics-based particle interaction codes coupled with circuit tools.
 - GEANT4, MCNPX, etc are the type of codes required.
 - Efforts begun to turn these into tools and not just science codes

Geometry Implications (3)

- High-aspect ratio electronics
 - For "standard" devices, the direction of the secondary particles produced from a proton (or neutron) are considered omnidirectional
 - However, for electronics where there is a high-aspect ratio (very thin with long structure), this is not the case
 - The forward spallation of particles when the proton enters the device along the long structure increases the potential error measurement cross-section
 - Test methods and error rate predictions need to consider this

Geometry Implications (4)

- Ultra-thin oxides provide two concerns
 - Single particles rupturing the gate
 - This is a function of the thinness and the current across a gate oxide
 - The impact of oxide defects
 - Role for TID

- Secondaries from packaging material
 - Even on the ground, particle interaction with packaging materials can cause upsets to a sensitive device
 - Ex. Recent FPGA warning of expectation of up to 1 upset/spontaneous reconfiguration a day!

- Small probability events have increased likelihood of occurring
 - If 1 in a 10^4 particles causes a "larger" LET event or 1 in 10^5 transistors can cause a more complex error
 - With billion plus transistor devices and potential use of >1000 of the same device (re: solid state recorders), small probabilities become finite

Sample 100 MeV proton reaction in a 5 um Si block. Reactions have a range of types of secondaries and LETs (after Wolter, 2004)
Radiation Test Challenge – Speed Implications

- Issue: the increasing device speeds (>GHz) impact testing, test capability requirements, and complicate effects modeling.

![MPU Clock Frequency Actual vs ITRS](image)

Speed (2)

- Technology Complications
 - Propagation of single event transients (SETs)
 - As opposed to a direct upset by a particle strike on a latch-structure, the particle hit causes a transient (think hit on a combinatorial logic or such) that can propagate to change the state of a memory structure down the chain:
 - The transient pulse width can be on the order of picoseconds to nanoseconds (or longer depending on circuit response)
 - Older, slower devices didn’t recognize the transient (i.e., minimum pulse width required for circuit response was greater than that generated by a single particle)
 - Newer devices can now respond to these hits increasing circuit error rates
 - Transient size in analog devices has been seen to be a partial function of the range of the particle entering the device
 - Impacts facility usage choices
Speed (3)

- Propagation of SETs (cont'd)
 - Crossover appears in the ~400-500 MHz regime
 - Charge generation can now last for multiple clock cycles
 - Impact is to defeat hardening schemes that assume only a single clock cycle is affected

![Graphs showing speed results](image)

Speed (4)

Effects of heavy ions on SiGe devices at 12 GHz speeds notes anomalous charge collection of this high-speed technology. Drawn line represents expected response with "standard" models.
Speed (5)

Testing at a remote facility requires highly portable test equipment capable of high-speed measurements:

- Tester needs to be near the device or utilize high-speed drivers
- Cable runs between the device under test (DUT) and the tester can be up to 75 feet
- Simple devices like a shift register chain can be tested using bit error rate testers (BERTs)
 - BERTs can run to ~$1M and tend to be very sensitive to problems from shipping.
 - At proton test facilities, secondaries are generated (neutrons) that can cause failures in the expensive test equipment if they are located near the DUT.
- Self-test techniques for testing devices being developed for shift-registers
 - Modern reconfigurable FPGAs based test boards being developed to test more generic devices.

Beware of stray neutrons impinging on your test equipment. Here, Boron is shown on top of a power supply to absorb neutrons.

Speed (6)

- Testing in a vacuum chamber implies mechanical, power/thermal, and hardware mounting constraints
 - High-speed devices often mean high power consumption
 - Issue is mounting of DUT in vacuum chamber and removal of thermal heat
 - Can also be a challenge NOT in a vacuum
 - DUT may need to be custom packaged to allow for thermal issues
 - Active system required for removal of heat

Brookhaven National Laboratories' Single Event Upset Test Facility (SEUTF)
Specialty Packaging for Radiation Test

Summary and Comments

- We have presented a brief overview of SOME of the radiation challenges facing emerging scaled digital technologies.
 - Implications of using consumer grade electronics
 - Implications for next generation hardening schemes
- Comments
 - Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance
 - Looking at means of dealing with soft errors
 - The thinned oxide has indicated improved TID tolerance of commercial products
 - Hardened by "serendipity"
 - Does not guarantee hardness or say if the trend will continue
 - Reliability implications of thinned oxides
The Top Five Research/Development Areas Required for Radiation Test and Modeling – Author’s Opinions

- 5 Understanding extreme value statistics as it applies to radiation particle impacts
- 4 High-Energy SEU Microbeam and TPA Laser
- 3 System Risk Tools
- 2 Portable High-Speed Device Testers
- 1 Physics Based Modeling Tool