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Design of Gear Drives With High Gear Ratio 
 

Faydor L. Litvin, Alfonso Fuentes, Daniele Vecchiato, and Ignacio Gonzalez-Perez 
University of Illinois at Chicago 

Chicago, Illinois 60607 

Abstract 
A three part paper to describe the results of several gear drive types with a high gear ratio is 

presented. A single stage planetary gear train with double helical gears is described with methods to 
reduce transmission errors and improve load distribution by regulating backlash during assembly. A new 
arrangement for face gear is also described. This new mechanism can perform rotations between axes that 
are collinear and intersected. Finally the design and simulation of an isostatic planetary gear train is 
presented. Conditions that can lead to noise and vibration of the planetary gear drive are described. 
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Part 1.—One-Stage Planetary Gear Train With Double-Helical Gears: 
Reduction of Transmission Errors and Improved Conditions 

of Load Distribution 

1.1 Introduction 
Planetary gear trains have been the subject of intensive research directed at determination of the 

dynamic response, vibration, load distribution, and other important topics (Refs. 1 to 12). 
The subject of investigation performed in this part of the memorandum is one-stage planetary train 

with double-helical gears (Fig. 1.1). 
The gear train is a multi-body system that is extremely sensitive to errors of alignment that cause 

large transmission errors, the possibility of edge contact, and uneven distribution of load. 
The authors propose the following ideas for lessening the disadvantages mentioned above. 
 
(1) Edge contact is avoided by localization of the bearing contact. 
(2) Influence of misalignment on transmission errors is lessened due to absorption of discontinuous 

almost linear function of errors. 
(3) Improved conditions of load distribution are achieved by a simple method of backlash control 

between the contacting surfaces. Control of backlash is accomplished in the process of assembly and 
becomes possible using modification of the contacting surfaces. 

 
The contents of this part of the paper will describe: (1) preliminary design considerations and basic 

ideas of backlash regulation, (2) application of tooth contact analysis (TCA) for simulation of meshing 
and contact of all subgear drives that form a double-helical planetary gear train, (3) determination of the 
integrated function of transmission errors, and (4) description of an enhanced approach used for stress 
analysis. 

1.2 Preliminary Design Conditions 
The planetary train considered (Fig. 1.1) consists of double-helical sun and ring gears and ten planet 

gears of opposite directions of helices. The driving link is the sun gear, the driven one is the carrier c (not 
shown in the figure) on which are mounted the planet gears, while the ring gear is held at rest. 

The gear ratio in transmission of motion from the sun gear 1 to carrier c is determined by equation 
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Designation m13

(c) indicates the gear ratio of an inverted gear train formed by gears 1, 2, 3 where the 
carrier is held at rest. 

The planetary gear train is designed with the observation of the following relation of tooth numbers 
(Refs. 8, 10, and 13) 
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where a is an integer number, n is the number of planet gears, N1 and N3 are the tooth numbers of 
gears 1 and 3, N2 (tooth numbers of a planet gear) is determined as 
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The investigation has been performed for a gear train with N1=41, N2=34, N3=109. 

1.3 Basic Ideas 
The main defects of a planetary gear train of existing design can be: (1) edge contact, (2) large 

transmission errors, and (3) uneven distribution of load between the gears. 
These defects are caused by errors of manufacture and assembly and because the planetary train 

discussed is a multi-body system, since 2n planet helical gears have to be in simultaneous meshing with 
the double-helical sun and ring gears. Here n is the number of shafts of planet gears, and remembering 
that two planet gears are mounted on the same shaft (Fig. 1.1). 

The defects of meshing and contact mentioned above are substantially reduced by proposed 
modification of gear geometry and application of regulation of installment of the planet gears on the 
carrier of the train (see below). 

Regulation of Backlash. A substantial improvement of conditions of load distribution is achieved by 
slight modification of the sun and internal gears geometry and regulation of installment of planet gears on 
the carrier accomplished in the process of assembly. This is achieved as follows: 

 
(1) The screw parameters of helicoids 1, 2k

(i), and 3 differ slightly each from other as the precondition 
for compensation of the backlash between the gears. We have chosen that β3<β2<β1 where βi (i=1,2,3) is 
the helix angle. 

(2) Each planet gear 2k
(i) of the set of ten (2n=10) has two degrees of freedom for its installment; 

(i=1,..,5; k=a,b). Designation i=1,…,5 indicates that five couple of planet gears are used; designation 
k=a,b indicates that two planet gears a and b are installed on the same shaft. 

(a) One degree-of-freedom of the planet gear is provided in assembly by turning of the planet 
gear about the axis of its shaft. This permits compensation of the backlash between the planet gear and 
ring gear or between planet gear and sun gear. 

(b) The second degree-of-freedom is provided by axial displacement of the planet gear along the 
axis of its shaft. 

 
Schematic illustration of regulation of backlash is represented in Figure 1.2 as follows: 
 
(1) Figure 1.2(a) shows pitch cylinders of gears 1, 2, 3. Pitch cylinder of planet gear 2 (Fig. 1.2(a)), 

say left hand, is developed on plane Π that is coplanar to the axes of the gears. Sections of helical teeth of 
gears 1 and 3 are shown by straight lines (Figs. 1.2(b) and (c)). The shapes of two teeth of planet gear 2 
are shown by curves since the planet gears are double crowned (see below). 

(2) Gears 1 and 3 in the process of regulation are held at rest. 
(3) Assume that contact of a tooth of gear 2 with the respective tooth of gear 3 is obtained by turning 

of planet gear 2 about its axis (Fig. 1.2(b)). However, there is a backlash δx between the respective teeth 
of gears 2 and 1. 
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(4) Backlash δx is eliminated while screw motion of gear 2 about its axis is provided (Fig. 1.2(c)). 
This screw motion is performed with the screw parameter of gear 3 and is equivalent to motion of two 
components: (a) axial displacement of teeth of gear 2, and (b) displacement in transverse direction. 

 
Elimination of backlash δx is possible since the helix angles of gears 1 and 3 are slightly different. 
 
(5) After compensation of backlash δx, the installment of planet gear 2 on the carrier is fixed. 
(6) The regulation of backlash described above has to be performed for all ten planet gears. During 

the process of regulation, the backlash may be tested by application of a thin metal strip of the assigned 
thickness. 

 
The regulation of backlash compensates the errors of angular installment of the planet gear on the 

carrier and the error of shaft angle (see section 1.4). 
An idea of regulation of backlash has been applied previously for a more simple planetary train with 

spur gears (Ref. 13). It is extended in this study for a more complicated planetary gear train with double-
helical gears. 

 
Localization of Bearing Contact and Formation of a Parabolic Shape of Transmission Errors. 

Localization of bearing contact is achieved by substitution of line contact of mating gear tooth surfaces by 
point contact. A predesigned parabolic function of transmission errors is applied for absorption of 
discontinuous almost linear functions of transmission errors caused by misalignment (Ref. 14). 
Application of such a function is the precondition for the reduction of transmission errors and 
improvement of meshing conditions wherein one pair of teeth is changed for another one (Ref. 15). 

Both goals mentioned above are achieved by double-crowning of planet gears (Ref. 16) 
(accomplished as crowning in profile and longitudinal directions), wherein the mating gear tooth surfaces 
of the ring and sun gears are generated as conventional involute screw surfaces. However, the ring gear 
should be provided with profile crowning in order to optimize the bearing contact between the planet and 
ring gears. 

Profile crowning of planet gears is provided by application of a skew rack-cutter of a parabolic profile 
in normal section (Fig. 1.3(a)). The deviation of the parabolic profile from the straight line profile is 
determined in the normal section as (Fig. 1.2(a)) 

 
 2

cca uax =∆  (1.5) 
 

where ac is the parabola coefficient and uc the parameter of the profile. 
The geometry of the sun gear is determined considering the generation by a skew rack-cutter of a 

straight profile in normal section (Ref. 14). 
Longitudinal crowning of a planet gear is achieved by plunging of the generating tool that might be a 

disk (Fig. 1.3(b)), or a grinding worm (Fig. 1.3(c)). Tool plunging is achieved by variation of shortest 
center distance accomplished by a parabolic function (Ref. 17). The plunge equation is represented as 

 
 2)0( laEE pl−=  (1.6) 
 

Here, apl is the parabola coefficient, l is the parameter of motion of the tool, E(0) is the initial center 
distance between the pinion and the tool, and E is the current center distance. 
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1.4 Application of TCA for determination of Transmission Errors and 
Bearing Contact 

Tooth Contact Analysis (TCA) is designated for simulation of meshing and contact of gear tooth 
surfaces of a misaligned gear drive. TCA in this paper is applied for the following purposes: (1) as proof 
of the effectiveness of regulation of backlash, (2) for determination of the path of contact and 
transmission errors of misaligned gear drives. The contents of this section cover algorithms of TCA: (1) 
for a conventional gear drive with two gears, and (2) for a double helical subtrain gear drive, wherein the 
carrier is held at rest and the rotation is performed from the sun gear to the ring gear. 

 
Conventional Gear Drive. The gear drive consists of two gears 1 and 2. The tangency of surfaces is 

considered in a fixed coordinate system fS . The TCA algorithm represents the conditions of continuous 
tangency of contacting surfaces Σ1 and Σ2 by the following vector equations 

 
 ),,(),,( 222

)2(
111

)1( φθφθ uu ff rr =  (1.7) 
 
 ),,(),,( 222

)2(
111

)1( φθφθ uu ff nn =  (1.8) 
 

Here: (ui , θi) are the surface parameters; φi is the angle of rotation of gear i (I = 1,2); rf(i)(ui,θi,φi) is 
the position vector of surface Σi in fixed coordinate system fS ; nf

(i)(ui,θi,φi) is the unit normal to surface 

Σi in fixed coordinate system fS  . 
Vector Equations (1.7) and (1.8) yield five independent scalar equations represented as 
 

 )5,...,1(     0),,,,,( 222111 == iuufi φθφθ  (1.9) 
 
Note that vector Equation (1.8) provides only two independent scalar equations since |nf

(1)|=|nf
(2)|=1. 

The application of equation system (1.9) for TCA is an iterative process (Ref. 14) that is performed as 
follows: 

 
(1) It is assumed that there is a set of parameters 
 

 ),,,,,( )0()0()0()0()0()0()0(
222111

φθφθ uuP  (1.10) 
 
that satisfies equation system (1.9). 
 
(2) One of the unknowns, say φ1, is chosen as an input parameter and the following inequality at P(0) 

is observed 
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(3) Then, in accordance to the Theorem of Implicit Function System Existence (Ref. 18), equation 
system (1.9) can be solved in the neighborhood of P(0) by functions 

 
 )(   ),(   ),(   ),(   ),( 1212111112 φθφφθφφφ uu  (1.12) 
 

(4) Applying the iterative process mentioned above it becomes possible to determine functions (1.12) 
for different values of φ1 and complete the whole cycle of meshing. 

(5) Using transmission function φ2(φ1), it becomes possible to determine the function of transmission 
errors as 

 

 1
2

1
11 )()( 22 φφφφφ

N
N

−=∆  (1.13) 

 
(6) Path of contact of surface Σi (i=1,2) is determined as 
 

 ))(),(( 11 φθφ iiuir  (1.14) 
 
where ri(ui(φ1),θi(φ1)) is the vector function that represents Σi in coordinate system Si. 
 
Application of TCA to a Subgear Drive. Subgear drives are formed by a certain number of the 

gears that are applied in the double-helical planetary gear train. 
We differentiate a single subgear drive and a twin subgear drive as follows. The single subgear drive 

is formed by a helical ring gear 3a, helical planet gear 2a, and helical sun gear 1a. The twin subgear drive 
is formed by a double-helical internal ring gear 3 (3a and 3b), two helical planet gears 2a and 2b with 
opposite directions of helices, and a double-helical external sun gear 1 (1a and 1b). Once the assembly of 
the two helical planet gears is accomplished, the pair of planet gears constitute a rigid body. The rotations 
performed for a single and twin subgear drives, respectively, are considered as provided from the sun gear 
via planet gear (gears) to the ring gear while the carrier is held at rest. 

The concepts of single and twin subgear drives are applied wherein TCA and stress analysis are 
considered. 

The TCA of a twin subgear drive requires the following steps: 
 
Step 1. Tooth surfaces of gears 1k, 2k

(i) and 3k, (i=1, k=a,b) are represented in fixed coordinate system 
Sf. The single subgear drive formed by gears 1k, 2k

(1) and 3k (k=a) is considered. Rotation of gears are 
represented by three parameters φ1, φ2a

(1), φ3a
(1). 

Step 2. Conditions of tangency of gears 1a and 2a
(1), and gears 2a

(1) and 3a provide ten independent 
equations that are similar to Equation (9). These equations contain eight surface parameters and three 
motion parameters φ1, φ2a

(1), φ3a
(1). Considering φ1 as the input parameter, we may obtain from the TCA 

computer program the transmission function φ3a
(1)(φ1) in case of aligned and misaligned single subgear 

drive. 
The solution of ten non-linear equations can be simplified by representing them as two sub-systems of 

five equations each, in which the solution as function φ2a
(1)(φ1) obtained by the first sub-system will be the 

input parameter for the second sub-system. 
Step 3. The approach discussed in Steps 1 and 2 has to be applied for the single subgear drive with 

planet gear k=b. At the performed simulation, functions of transmission errors ∆φ3a
(1)(φ1) and ∆φ3b

(1)(φ1) 
of both single subgear drives are obtained independently based on the assumption that meshing exist at 
four points simultaneously. 

Step 4. The transmission function of the twin subgear drive is determined as 
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The procedure discussed above may be applied for determination of transmission errors for all twin 

subgear drives of the planetary gear drive. Figure 1.4(a) shows functions of transmission errors ∆φ3(φ1) 
obtained for five twin subgear drives. It is obvious that due to the existence of transmission errors, only 
one planet gear may be in meshing with gears 3 and 1 (if elastic deformations are not taken into account). 
The transmission errors are caused by double-crowning and angular errors of installment of planet gears 
on the carrier (see numerical example 1 below). 

Points Mi (i = 1,5) in Figure 1.4(a) correspond to the transmission errors ∆φ3
(i)(φ1

*) where φ1
* is the 

instantaneous angle of rotation of the sun gear 1. It is easy to be verified from the graph that only planet 
gear 2(2) is in mesh. The magnitude |M2Mi| (i =1,3,4,5) indicate the backlash between the teeth of gears 2(2) 
and 2(i). 

The paths of contact in a twin subgear drive are shown in Figure 1.4(c). 

1.5 Integrated Function of Transmission Errors 
The integrated function of transmission errors is obtained with the assumption that the backlash 

between the planet gears and the mating gears 1 and 3 is minimized by regulation of the axial position of 
the planet gears. However, since the backlash is not constant even after regulation, only one of the planet 
gear may be still in mesh. Small elastic deformation enables all planet gears will be in mesh. 

Figure 1.4(b) shows that after regulation the maximal magnitude of transmission errors is 
substantially reduced. This statement is based on comparison of Figures 1.4(a) and (b). 

 
Numerical Example 1.1. The design parameters of the planetary gear drive are given in Table 1.1. 

Errors of installment of planet gears on the carrier are designated in Table 1.2 as ∆Ex, where ∆Ex is the 
error of position of the planet gear on the carrier measured in the direction that is perpendicular to the 
shortest center distance. Designation ∆Z(i) (i=1,2) indicate the axial displacement of the planet gear that is 
applied for elimination of the backlash. Designations ∆Z(1) and ∆Z(2) indicate the approximate and precise 
displacements. Here ∆Z(1) is obtained from the equation 

 

 
31

31
)1(

coscos2
)sin(

ββ
ββ −∆

=∆
ZEx  (1.16) 

 
while ∆Z(2) is obtained from the results of TCA in order to balance function of transmission errors 

∆φ3
(i)(φ1) (i = 1,5). 
The helix angles have been chosen as 
 

 β1=10.25°, β2=10.00°, β3=9.75° 
 
Figure 1.4(a) shows that only planet gear 2(2) can be in mesh in the misaligned planetary gear train. 

The backlash |M2Mi| (i = 1,3,4,5) is of a large magnitude and therefore planet gears that differ from 2(2) 
may be in mesh after substantial elastic deformations. 

Figure 1.4(b) shows that the difference of functions ∆φ3
(i)(φ1) is reduced after axial placement 

regulation (application of ∆Z(2), see Table 1.2). Therefore, lessened elastic deformations are required for 
more uniform distribution of load between the planet gears. 

 
Numerical Example 1.2. The proposed approach may be applied as well for elimination of the 

backlash caused by misalignment ∆γ, as the change of the shaft angle. 
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Figure 1.5(a) shows functions of transmission errors ∆φ3a
(1)(φ1) and ∆φ3b

(1)(φ1) obtained for ∆γ=3 
arcmin. Designations ∆φ3a

(1)(φ1) and ∆φ3b
(1)(φ1) indicate transmission errors of gear 3 when 3 will be in 

mesh with planet gears 2a
(1) and 2b

(1). Since functions ∆φ3a
(1)(φ1) and ∆φ3b

(1)(φ1) differ each from other, 
simultaneous contact of gears 2a and 2b cannot be achieved. However, we may compensate this defect 
substantially, by regulation of installment of planet gears 2a

(1) and 2b
(1). 

Figure 1.5(b) shows functions ∆φ3a
(1)(φ1) and ∆φ3b

(1)(φ1) after regulations of installment of gears 2a
(1) 

and 2b
(1) on the carrier. The reduction of difference |∆φ3a

(1)(φ1)-∆φ3b
(1)(φ1)| is in favor of more uniform 

distribution of load in the planetary train. The regulation of axial installment of planet gears 2a
(1) and 2b

(1) 
has to be performed for all ten planet gears. 

1.6 Stress Analysis 
Stress analysis has been performed for twin subgear drives of the new and previous designs by 

considering the following conditions: 
 
(1) The twin subgear drive is formed by: (a) a double-helical ring gear and sun gear, and (b) a couple 

of helical planet gears are mounted on the same shaft. 
(2) The carrier is held at rest, the sun gear is the driving one, and the resisting torque is applied to the 

ring gear. 
(3) Conventional involute helical gear tooth surfaces are applied in the existing design. Such surfaces 

are in line contact, but point contact occurs since a misaligned subgear drive with the error of the shaft 
angle ∆γ = 3 arcmin has been considered. 

(4) Gear tooth surfaces of the new design are already in point contact due to the localization of 
bearing contact. 

The stress analysis performed is based on finite element method (Ref. 19) and application of a general 
computer program (Ref. 20). 

 
Development of Finite Element Models. The approach developed for automatic generation of finite 

element models and application of stress analysis by a general purpose computer program (Ref. 20) is 
accomplished as follows (Ref. 17): 

 
Step 1. Tooth surface equations of sun, planet and ring gears and portions of corresponding rim are 

considered for determination of the volumes of the designed bodies. Figure 1.6(a) shows the designed 
body of one-tooth model. 

Step 2. The designed volume of each tooth of the model is divided into six subvolumes using 
auxiliary intermediate surfaces 1 to 6 as shown in Fig. 1.6(b). 

Step 3. Node coordinates are determined analytically considering the number of desired elements in 
longitudinal and profile directions (Fig. 1.6(c)). 

Step 4. Generation of the model by finite elements (using the nodes determined in previous step) is 
accomplished as shown in Fig. 1.6(d). 

Step 5. Setting of boundary conditions is accomplished automatically and is shown in Fig. 1.7 for the 
case of a three-tooth model. 

 
The following ideas are applied: 
 
(1) Nodes on the two sides and the bottom part of the portion of the rim for each member of the sun-

gear are considered as fixed. Two members are considered since we have double-helical gears. 
(2) Nodes on the two sides and the bottom part of the portion of the rim for each member of the 

planet gear form the rigid surface 2. Considering that the planet gear is in mesh with the sun and ring 
gears, four members are taken into account for determination of rigid surface 2. 
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(3) A reference node N2 located on the axis of the planet gear is used as the reference point of the 
previously defined rigid surface 2. Reference point N2 and the rigid surface 2 constitute the rigid body 2. 

(4) Only one degree-of-freedom is defined as free at the reference point N2 (it is rotation about the 
planet gear axis), while all other degrees of freedom are fixed. This will allow free rotation of the planet 
gear. 

(5) Nodes on the two sides and the bottom part of the portion of the rim for each member of the ring 
gear form the rigid surface 3. 

(6) A reference node N3 located on the axis of the ring gear is used as the reference point of the rigid 
surface 3. Reference point N3 and the rigid surface 3 constitute the rigid body 3. 

(7) Only one degree of freedom is defined as free at the reference point N3 (rotation about the ring 
gear axis) while all other degrees of freedom are fixed. Application of a torque T in rotational motion at 
the reference point N3 allows to apply such torque to the ring gear model. The planet gear will transmit 
such torque to the sun gear model that is held at rest. 

Step 6. The contact algorithm of the finite element analysis computer program (Ref. 20) requires 
definition of contacting surfaces. This approach makes it possible to identify automatically all the 
elements of the model required for the formation of such surfaces. 

The principal characteristics of the described approach are as follows: 
(1) Finite element models of the gear drive can be automatically obtained for any position of pinion 

and gear obtained from TCA. Stress convergence is assured because there is at least one point of contact 
between the contacting surfaces. 

(2) Assumption of load distribution in the contact area is not required since the algorithm of contact 
from the general computer program (Ref. 20) is used to obtain the contact area and stresses. 

(3) Finite element models of any number of teeth can be obtained. Figure 1.8 shows the finite 
element model of three pairs of contacting teeth. 

 
Considering that the models are constituted by several teeth, the following advantages are obtained: 
 
(1) Boundary conditions are far enough from the loaded areas of the teeth. 
(2) Simultaneous meshing of two pairs of teeth can occur due to the elasticity of surfaces. Therefore, 

the load transition at the beginning and at the end of the path of contact can be studied. 
 
Numerical Example 1.3. The finite element analysis has been performed for the following cases 

mentioned above: 
 
(1) Planetary gear trains with modified double-helical gears are applied. 
(2) Conventional involute double-helical gears are applied in the planetary gear train. 
 
In case (1), planet gears are double-crowned (in longitudinal and profile directions), the ring gear is 

profile crowned, and the sun gear is a conventional one. Helix angles of sun and ring gears slightly differ 
each from other for the purpose of regulation (see Example 1). 

The finite element analysis has been performed by using the design parameters shown in Table 1 and 
the following conditions: 

 
(1) The error of misalignment has been considered as the change of the shaft angle ∆γ=3 arcmin. 
(2) The contact stresses have been determined in both cases at one angular position of gears 1, 2,  

and 3. 
(3) In the case of a new design, regulation of backlash has been performed as described in Numerical 

Example 2: independent axial displacements of planet gears 2a and 2b have allowed to obtain distribution 
of load between the two gears, even in case of error ∆γ. 
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Four contacting models, similar to those shown in Figure 1.7, based on application of a three teeth 
finite element model, have been designed (Fig. 1.8). Two of these models correspond to the contact of 
two planet gears and the sun gear and the other two models correspond to the contact of the two planet 
gears and the ring gear. The maximum of the function of transmission errors ∆φ3(φ1) is obtained at the 
chosen point of contact. 8 node brick elements (Ref. 20) of first order (enhanced by incompatible modes 
to improve their bending behavior) have been used to form the finite element mesh. The total number of 
elements is 147,632 with 175,563 nodes. The material is steel with the properties of Young's Modulus 
E=2.068⋅105 MPa and Poisson's ratio 0.29. A torque of 500 Nm has been applied to the ring gear. 

The highest contact stresses are obtained on tooth surfaces of the planet gear being in mesh with the 
sun gear. Figures I.9(a) and I.9(b) illustrate the teeth of two planet gears in meshing with a double-helical 
sun gear for cases (1) and (2), respectively. An error of 3 arcmin of the shaft angle is considered in both 
cases. Figure 1.9(a) shows that the load is shared by the two planet gears after regulation is applied. 
Figure 1.9(b) shows that only one planet gear is under the load and edge contact occurs. 

The performed stress analyses for the cases mentioned above and the results of TCA (see section 1.4) 
confirm the advantages of the proposed modification of geometry. 

1.7 Conclusions 
Based on the performed research, the following conclusions may be drawn: 
 
(1) The bearing contact is localized due to the mismatch of generating tools applied for generation of 

planet gears and ring and sun gears. 
(2) Double-crowning of planet gears is provided by the mismatch of generating tools and tool 

plunging accomplished by variation of shortest center distance between the tool and the generated planet 
gear. The variation of shortest center distance is controlled by a parabolic function. 

(3) Manufacture of planet gears of modified geometry may be accomplished by application of a 
grinding disk or a grinding worm. 

(4) Almost uniform distribution of load between the planet gears is achieved by regulation of 
backlash in the process of assembly accomplished as follows: 

(a) Two degree-of-freedom are foreseen for the installment of each planet gear on the carrier 
accomplished by: (1) turning about its axis, and (2) screw motion about the axis of planet gear with the 
screw parameter of the mating gear. 

(b) Two slightly different screw parameters are provided for the helicoids that represent the tooth 
surfaces of the ring gear and the sun gear. 

(5) Simulation of meshing and contact of a misaligned planetary gear train is performed by 
application of the developed computer program. The results of simulation have confirmed substantial 
reduction of transmission errors as the result of proposed regulation of installment of planet gears on the 
carrier. 

(6) Stress analysis has been performed for the new and existing designs. The advantage of the new 
design is the result of a more uniform load distribution. 
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TABLE 1.1.—DESIGN PARAMETERS 
Number of teeth of the sun gear, N1 41 
Number of teeth of the planet gear, N2 34 
Number of teeth of the ring gear, N3 109 
Module, m 2.0 mm 
Normal pressure angle, αn 20° 

Helix angle, β 10° 
Face width of each member, B 30 mm 
Distance between the members, F 10 mm 
Primitive radius of grinding disk, rD 100 mm 
Parabolic coefficient on driving profile of planet gear rack cutter,a acd 0.008 mm–1 

Parabolic coefficient on coast profile of planet gear rack cutter,a acc 0.005 mm–1 

Parabolic coefficient of plunging for planet gears,a apl 0.002 mm–1 

Parabolic coefficient of ring gear rack cutter,a acr 0.002 mm–1 

Helix angle of sun gear,a β1 10.25° 
Helix angle of ring gear,a β3 9.75° 
aData applied to a planetary gear train with double crowned involute gears. 

 
 
 
 
 
 
 

TABLE 1.2.—AXIAL DISPLACEMENTS ∆Z 
Planetary gear ∆Ex, 

µm 
∆Z(1), 
mm 

(from Eq. (16)) 

∆Z(2), 
mm 

(from TCA) 
2(1) 0 0 0 
2(2) 20 –4.44 –4.6 
2(3) –20 4.44 4.6 
2(4) 5 –1.11 –1.15 
2(5) –5 1.11 1.15 
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Part 2.—Design of Planetary Gear Drives With Face Gears 

2.1 Introduction 
The planetary gear train proposed (Fig. 2.1) is a new development that may be applied as a reducer, a 

multiplier, or a differential. The train is formed by: (1) co-axial face-gears 1 and 4, and (2) carrier c at 
which are mounted helical pinions 2 and 3. Pinions 2 and 3 are rigidly connected and perform: (a) transfer 
motion with carrier c, and (b) relative motion about carrier. The helix angles of pinions 2 and 3 are of the 
same directions (or hand) in order to reduce the axial load on carrier c transformed from the pinions. 

Assume that face-gear 4 is fixed and the train is used as a planetary one. It follows from the 
kinematics of the train that 
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Here: ωc and ω1 are the angular velocities of rotation of carrier c and face-gear 1; mc1

(4) is the gear 
ratio of the train where carrier c and face-gear 1 are the driving and the driven members of the gear train 
and gear 4 is held at rest; Ni (i=1,2,3,4) is the number of teeth. 

In the case where N2 = N3, we obtain that 
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A substantial reduction of angular velocity ωc may be obtained. However, the efficiency of the train 

depends substantially on the applied gear ratio mc1
(4). 

The gear train may be applied as well as a differential considering that the driving link is the carrier 
and the two driven members are 1 and 4. The advantage of such a differential is that zones of meshing 
(between 2 and 1, between 3 and 4) are separated and this permits increasing the precision and conditions 
of contact. The disadvantage (in comparison with a differential formed by bevel gears) is that only two 
planet gears may be applied and therefore it will limit the applied load. The advantage is the more simple 
technology of the train, and a higher precision obtained by grinding of gears and reduction of 
transmission errors (see section 2.2). 

 
Numerical Example 2.1. The gear train of Figure 2.1 is formed as follows: output gear N1 = 100, 

planet gears N2 = N3 = 7, fixed gear N4 = 88, crossing angle γ = 75°, helix angle β = 10°. From equation 
(2.3) it follows that 
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For such a gear drive, we may expect an efficiency of about 77.5 percent, computed considering a 
power loss of 2 percent at each gear mesh. 

2.2 Tooth Contact Analysis (TCA) 
The purpose of TCA is investigation of influence of errors of alignment on the transmission errors 

and what possibility exist for reduction of transmission errors. 
TCA has been applied for a gear drive with parameters represented in Table 2.1. However, the 

approach applied is a general one and may be applied for the developed gear train with other input 
parameters. 

The input member in the planetary gear drive is carrier c and the output gear is the face gear 1. The 
face gear 4 is considered as fixed. The respective inverted train is considered wherein the input gear is 
face gear 4, the output gear is face gear 1, and the carrier is fixed. The to-be-obtained function of 
transmission errors ∆φ14 will be the same as the function of transmission errors ∆φ1c in the planetary gear 
drive. 

The inverted gear train is a two-stage gear drive. Two gear mesh areas have to be considered: (1) one 
between face gear 4 and planet gear 3, and (2) another one between planet gear 2 and face gear 1. There 
are two sub-gear drives corresponding to those two areas of meshing, respectively, sub-gear drives (1) 
and (2). 

An important parameter of design in a two-stage gear drive is the relative angle δ of installation of the 
two gears that belong to the intermediate axis and that is used for reduction of the integrated function of 
transmission errors (see below). Figure 2.2 shows the relative angle δ between planet gears 2 and 3 that is 
chosen initially as δ = π/17 rad. Since planet gears 2 and 3 are rigidly connected after installation of angle 
δ, angles of rotation φ3 and φ2 are equal to each other. For the purpose of simplification, it is noted that 
φ3 = φ2 = φP, wherein φP is the angle of rotation of the axis that holds the planet gears. 

Both sub-gear drives that constitute the two-stage gear drive are provided with a parabolic function of 
transmission errors. The theoretical gear ratio in each sub-gear drive is one. It is very important to 
determine the exact values of angles of rotation corresponding to the transition of one cycle of meshing to 
another in each sub-gear drive. 

Determination of angles of transition of one cycle of meshing to another one in sub-gear drive 1 
requires application of the following system of equations 
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Here, the plus sign is applied when the simultaneous contact of the current contacting pair and the 

forward contacting pair is considered, wherein the minus sign is applied when simultaneous contact of the 
current contacting pair and the backward contacting pair is considered. There are 10 unknowns and 10 
equations that allow to determine φ4min and φPmin when the plus sign is applied and φ4max and φPmax when 
the minus sign is applied. 
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In the same way, angles of transition of one cycle of meshing to another in sub-gear drive 2 requires 
application of the following system of equations 
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that allows φPmin

* to be determined when simultaneous contact of the current and the forward pairs of teeth 
is considered and φPmax

* when the current and the backward pairs of contacting teeth are simultaneously in 
contact. 

The procedure to determine angles φ4, φP, and φ1, is as follows: 
 
Step 1. Angle φ4 is considered as an input value and is chosen inside the interval [φ4min,φ4max]. 
Step 2. Point of contact between gear tooth surfaces 4 and 3 and angle φP are obtained from the 

solution of system equations (2.5) to (2.6) 
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The value of φP will be inside the interval [φPmin, φPmax] since the value of φ4 is inside the interval 

[φ4min, φ4max]. 
Step 3. The following action depends on the value of angle φP: 
 

 (1) φP < φPmin
*. In this case the forward pair of teeth of gears 2 and 1 is in contact and the 

system of equations is given by 
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(2) φPmin* < φP < φPmax*. In this case the middle pair of teeth of gears 2 and 1 is in contact 

and the system of equations is given by 
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 (3) φP > φPmax*. In this case the backward pair of teeth of gears 2 and 1 is in contact and the 

system of equations is given by 
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 Solution of the corresponding system of equations allows angle φ1 to be determined. 
Step 4. Another value of φ4 inside the interval [φ4min, φ4max] is considered and steps from 1 to 3 

are repeated. 
 
Figure 2.3 shows the functions of transmission errors that correspond to sub-gear drives 1 and 2. 

Figure 2.4 shows the resulting function of transmission errors ∆φ14 when three cycles of meshing are 
considered. The drawings show that two parabolic branches exist in each cycle of meshing. One of the 
branches corresponds to the contact of the middle pair of teeth (relation φPmin

* < φP < φPmax
* is satisfied) 

and the other branch corresponds to the contact of the backward pair of teeth (relation φP > φPmax
* is 

satisfied). These results have been obtained considering an installation angle δ = π/17 rad. 
Figure 2.5 shows the paths of contact on each tooth surface. 
Figure 2.6 shows the resulting function of transmission errors ∆φ14 for different values of installation 

angle δ. These results confirm the following: the relative size of the parabolic branches and the maximum 
value of transmission error changes with δ, although the functions of transmission errors between gears 4 
and 3, and between gears 2 and 1 (Fig. 2.3) have not been changed. 

Figure 2.7 shows two cases of interest. Figure 2.7(a) shows the case wherein just one parabolic 
branch is obtained. In this case the installation angle was 

 

 rad  134658.0
1717

*
maxmax −=−+=

πφφπδ PP   

 
Figure 2.7(b) shows the case wherein the two parabolic branches are of the same size. In this case the 

installation angle was δ = π/17+0.0518 rad. The maximum value of transmission errors that it could be 
obtained for all cases of δ was the one obtained in Fig. 2.7(a) (22 arcsec) while the minimum value for all 
cases of δ was the obtained in Fig. 2.7(b) (6 arcsec). 

Similar results are obtained when the planetary gear drive works as a multiplier with face gear 4 as 
the output member and carrier c as the input member. The integrated function of transmission errors ∆φ4c 
wherein face gear 1 is fixed is the same as the function ∆φ41 of the respective inverted gear train. 
Figure 2.8 shows the integrated function of transmission errors for an installation angle δ = π/17 rad. 
Figures 2.9(a) and (b) show two particular cases that correspond to installation angles δ = π/17–0.134658 
rad and δ = π/17+0.0518 rad. 
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2.3 Conclusions 
The obtained results allow the following conclusions to be drawn: 
 
(1) Profile crowning of face and planet gears that form the planetary gear drive can obtain a 

longitudinal path of contact and a pre-design and parabolic function of transmission errors at each gear 
mesh. Edge contact has been avoided. 

(2) The integrated function of transmission errors has been obtained considering at each instant the 
pair of teeth that is meshing. A function based on two branches of parabolic type has been obtained. 

(3) The level of transmission errors and the size of parabolic branches of the integrated function of 
transmission errors may be modified through installation angle δ between planet gears. An optimized 
value of δ may be obtained for reducing the level of transmission errors of the integrated function of 
transmission errors. 
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TABLE 2.1.—PLANETARY GEAR TRAIN DATA 
Design parameters  
Number of teeth of face gear 1, N1 100 
Number of teeth of planet gear 2, N2 17 
Number of teeth of planet gear 3, N3 17 
Number of teeth of face gear 4, N4 88 
Number of teeth of the shaper, Ns 20 
Module, m 5.0 mm 
Pressure angle, α 20° 
Helix angle, β 10° 
Shaft angle, γ 75° 
Profile crowning coefficients for planet gears 0.001 mm–1 

Profile crowning coefficients for face gears 0.002 mm–1 
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Part 3.—Design and Simulation of an Isostatic Planetary Gear Train 

3.1 Introduction 
A planetary gear train formed by a sun gear (1), several planets (2) all mounted on carrier c, and an 

internal ring gear (3) is considered. Such a multi-body mechanism may cause uneven load distribution 
between the planets (Ref. 1). The approach of regulation has been proposed in order to improve load 
distribution (see Part 1). 

An alternative approach, although less general, is now represented. The approach is based on the 
concept of an isostatic gear train. By definition, in an isostatic mechanism the number of constrains equals 
the number of degrees of freedom. It follows that the configuration (the status) of the mechanism may be 
determined univocally. 

 
The contents of this part of the report cover: 
 
Determination of the conditions of design for obtaining an isostatic planetary gear. 
Formulation of algorithms for simulation of conditions of meshing of such mechanism. 
Development of a computer program based on algorithms described later. Development of a 

numerical example confirms: (a) validation of proposed approach, and (b) investigation of effect of 
possible errors of manufacturing and assembly. 

2.2 Static Analysis 
Degrees of Freedom. The mechanism is considered as a planar one with 3 degrees of freedom (DOF) 

for each rigid body: two and one, for translational and rotational motions, respectively. The total number 
of DOF is computed as follows 

 
Member DOF 

Sun 3 
Planets 3Np 
Carrier 3 
Ring 3 
Total Nf  9+3Np 

 
where Np  is the number of planet gears. 
 
Case 1 constraints. In case 1 we consider the following: 
 
 (i) Axis of rotation of the sun is fixed. Considered as given. 
 (ii) Angular position 1φ  of the sun gear is considered as given. 
 (iii) Axis of rotation of the carrier is fixed. Considered as given. 
 (iv) Axis and angular position of the ring gear are considered as given. 
 (v) Each planet gear is pinned rigidly connected to the carrier. 
 (vi) Each planet gear is in tangency (contact) with the sun and ring gears, respectively. 
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Based on the above requirements, the total number of constrains Nc  is determined as follows 
 

Condition Constrains 
(i) 2 
(ii) 1 
(iii) 2 
(iv) 3 
(v) 2Np 
(vi) 2Np  

Total Nc  9+3Np 
 
Equalling the available degrees of freedom with the imposed constrains, we obtain the following 

equation 
 

 9 + 3Np = 8 + 4Np (3.1) 
  
It follows that this mechanism is isostatic for Np = 1. 

 
Case 2 constraints. Our goal is to reduce the number of constrains in order to obtain an isostatic gear 

train with Np > 1 planet gears. In case 2 we consider: 
 
 (i) axis of rotation of the sun is free, not constrained 
 (ii) angular position of the sun φ1 is given 
 (iii) axis of rotation of the carrier is fixed, given 
 (iv) axis and angular position of the ring gear are given 
 (v) each planet gear is pinned to the carrier 
 (vi) each planet gear is in tangency (contact) with the sun and ring gears 
 
Based on the above requirements, the total number of constrains Nc  is determined as follows 
 

Condition Constrains 
(i) 0 
(ii) 1 
(iii) 2 
(iv) 3 
(v) 2Np 
(vi) 2Np 

Total Nc 6+4Np 
 

 Equalling the available degrees of freedom with the imposed constrains, we obtain the following equation 
 
 9 + 3Np = 6 + 4Np (3.2) 

 
It follows that this mechanism is isostatic for Np = 3 planet gears. 

 
Case 3 constraints. The number of constraints may be further reduced making free the location of the 

center position of the carrier. In case 3 we consider the following: 
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 (i) axis of rotation of the sun gear is free, not constrained 
 (ii) angular position φ1 of sun gear is given 
 (iii) axis of rotation of the carrier is free, not constrained 
 (iv) axis and angular position of the ring gear are given. 
 (v) each planet gear is pinned to the carrier 
 (vi) each planet gear is in tangency (contact) with sun and ring gears 

 
Based on the above requirements, the total number of constrains Nc  is determined as follows 
 

Condition Constrains 
(i) 0 
(ii) 1 
(iii) 0 
(iv) 3 
(v) 2Np 
(vi) 2Np 

Total Nc 4+4Np 
 

 
Equalling the available degrees of freedom with the imposed constrains, we obtain the following 

equation 
 

 9 + 3Np = 4 + 4Np (3.3) 
 
It follows that this mechanism is isostatic for Np = 5 planet gears. 
 
Note 1. At least one member of the gear drive (sun/ring/carrier) has to be fully constrained (to be 

grounded), since the position of the mechanism has to be defined with respect to a fixed reference system. 
Note 2. One may chose to free the location of the center of the ring instead of the center of the sun, 

etc. 
Note 3. It follows that it is not possible to define an isostatic planetary gear train with more than five 

planets, unless the condition of pinning of planets on the carrier is removed. However, this case is not 
considered in this report. 

3.3 Simulation of Contact 
Introduction. Simulation of contact of such a mechanism is based on the well known procedure of 

tooth contact analysis (TCA) (Ref. 2). The main differences are as follows: 
 
(i) Unlike to a conventional procedure of TCA, the simulation of meshing should not be limited only 

to a pair of contacting teeth. The angle of the driving link may perform much more than a single cycle of 
meshing, therefore the algorithm of simulation has to provide automatically which of the contact pairs is 
actually in mesh.  

(ii) The mechanism may include several pairs of gears. Therefore, tangency of several couples of 
surfaces has to be considered at each step. 

(iii) The axes of the gears may be fixed or be free, as in the case of planetary trains. In this case, 
unknowns of the system of equations will include the coordinates identifying positions of the axes. 
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To comply with the requirement (i), the following steps have to be considered: 
 
(1) Starting from a reference tooth, all teeth of each gear have to be numbered, see Figure 3.2. The 

direction of indexes has to be related with the direction of rotation of the gear: for instance, the tooth that 
will be in meshing after tooth index 0 will be –1 or 1, depending on the direction of rotation.  

(2) An initial configuration of the mechanism is considered. For each pair of contacting teeth, 
respective pair of contacting indexes have to be provided. This can be done either manually or 
automatically, by a subroutine.  

(3) A new angular position of the driving link (slightly changed from the one used in the previous 
step) is provided. TCA is performed to the same pair of teeth that was in mesh at the step before. In 
addition, the next pair of teeth is verified for determination of backlash (see below). If the backlash is 
negative, this means that interference is occurring, therefore this pair of teeth is actually meshing. At this 
point, the indexes of contacting pair of teeth have to be updated, and TCA repeated for the new contacting 
pair. 

 
The objective of this research is simulation of meshing of the isostatic planetary gear train, and an 

investigation of the effects of various errors that may affect such a mechanism. 
In the following paragraphs, explanations of all the steps necessary for performing such a simulation 

are provided. The steps are: 
 
(a) Determination of equations of gear tooth surfaces represented in the fixed reference system.  
(b) Formulation of algorithms for tangency of surfaces and determination of backlash. 
(c) Application of above algorithms for analysis of the whole gear train. A large set of non-linear 

equations is obtained. Numerical solution of such a system of equations has proven to be very 
complicated and requires almost-exact guess values. A method that allows substantial 
simplification of the problem to be solved is proposed. The method is based on application of 
additional (fictitious) unknowns permitting it break down of the full set of equations in several 
simpler sets, that are easier to solve. 

 
A computer program based on the ideas described above has been developed. The computer program 

has been applied for simulation of various errors of manufacturing and installment of the gear drive with 
three planets, case 2. Results are represented and commented in the contents of the numerical example. 

3.3.1 Equations of Gear Tooth Surfaces 

Equations of gear tooth surfaces are derived in accordance to the methods described in Reference 2. 
Geometry of spur and helical gears are described as well in Reference 4. 

 
Sun Gear Tooth Surface. The surface of the sun gear is a regular involute helical surface, 

represented in 1S  in two parameter form as 
 

 ),( )1()1()1(
1 θur  (3.4) 

 
We assume that (3.4) represents the surface of the reference tooth, with index 0=i

si . Here, si  
designates an index of the sun gear, and superscript 5,,1=i  designates the tooth that is in mesh with the 

thi  planet. Equations of other teeth are represented in 1S  as 
 

 ),(  )(),,( )1()1()1(
11

)1()1()1(
1 θθ uiiu i

s
i
s rMr =  (3.5) 
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where 
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and i

siNq )/2( )1(π= . Here, )1(ε  represents the runout error of the gear and the bearings, in other words 
the error of eccentricity of rotation of the gear teeth. 

The surface is represented in the fixed reference system fS  by the following matrix of transformation 
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Here, )1(

xE∆  and )1(
yE∆  may play two different roles: in the case wherein the position of the sun gear 

is given, they represent the predetermined errors of installment. Else, in the case where the axis of the sun 
gear is free, they represent as well the unknowns of the problem. Parameter 1φ  represents the input of the 
linkage, and is given in any case. 

 
Planet Gear Tooth Surface. The surface of the planetary gear is a modified double-crowned surface 

(Ref. 3), represented in 2S  in four parametric form as 
 

 ),,,( ),2(),2(),2(),2(),2(
2

iiiii u λψθr  (3.9) 
 
 0),,,( ),2(),2(),2(),2(

1 =iiiiuf λψθ  (3.10) 
 
 0),,,( ),2(),2(),2(),2(

2 =iiiiuf λψθ  (3.11) 
 
Here, 1f  and 2f  are the equations of meshing. 
Teeth numbering and gear run-out errors are modelled similarly as in Equations (3.5) and (3.6). Tooth 

indexes i
psi  and i

pri , respectively, designate the tooth of the thi  planet, being in meshing with the sun and 

the ring gears. 
The motion of the planetary gear with respect to the fixed reference system is described by the 

following two matrices of transformation 
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where )1)(/2()( −+= iNq p

c
c πφ , pN is the number of planet gears, 5,,1=i  is the index of the 

considered planet gear. Here, cr∆  represents the error of installment of the planet gear measured in radial 
direction, and cr  is the radius of the carrier. Value tE∆  represents the error of indexing of the carrier in 
tangential direction. Parameter ),2( iφ  represents the angle of rotation of the thi  planet with respect to the 
carrier, and is an unknown. 

Similarly as in the case of the sun gear, parameters )(c
xE∆  and )(c

yE∆ , may be considered as given data 
or as unknowns that represent the errors of installment of the carrier on the fixed reference system. 

 The surface is represented in the fixed reference system by the following matrix of transformation 
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Parameters )(cφ  and ),2( iφ  are unknowns. 
 
Ring Gear Tooth Surface. The surface of the ring gear is a regular involute-helical surface, 

represented in 3S  in two parameter form as 
 

 ),( )3()3()3(
3 θur  (3.15) 

 
 Teeth numbering and gear run-out error are introduced similarly as in Equations (3.5) and (3.6). The 
index of the contacting teeth is designated by i

ri , where superscript 5,,1=i  identifies the considered 
planet gear. 

The surface is represented in the fixed reference system by the following matrix of transformation 
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We remind that the gear is fixed in fS . 
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3.3.2 Algorithms for Determination of Tangency and Backlash of Surfaces 

For the analysis to be performed, it will be more convenient to consider the mechanism as a set of 
subtrains. A subtrain is constituted by: (1) the sun gear, (2) only one planetary gear, and (3) the ring gear. 
 

Equations of Tangency for a Subtrain. The following represent the equations of tooth surfaces of 
tangency of the thi  subtrain. 
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Here, angle ),( icφ  represents the angle of rotation of carrier of the thi  subtrain. 

For formulation of Equation (3.18), it has been assumed that the centers of rotation of the sun gear 
and the carrier are given (parameters E∆  do not appear here in the list of unknowns). The obtained set of 
non-linear Equation (3.18) includes 14 equations in 14 unknowns. Numerical solution of such a system 
may be performed with the Newton-Raphson method (Ref. 5). Determination of suitable guess values for 
solution is a complex problem, but it has been proven that system (3.18) is sufficiently stable. 

 
Determination of Backlash of Neighboring Tooth Surfaces. As it has been previously explained, 

the determination of backlash of tooth surfaces neighboring to the contacting ones is the key for the 
detection of the change of meshing from one pair of teeth to the next one. 

Analysis of backlash is performed after solution of system (3.18). Angular positions ),( icφ  and ),2( iφ  
are adopted from solution of Equations (3.18). 

Two values of backlash have to be determined: i
pss  between the tooth flanks of the planet and the sun 

gears, and i
prs  between the tooth flanks of planet and ring gears. 

Determination of i
pss  is performed by the solution of the following systems of seven equations in 

seven unknowns 
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is the outward unit normal to the sun tooth flank surface of the thi

si )1( +  tooth.  
Determination of i

prs . may be performed similarly. 
If one of the two values will be negative, the corresponding tooth surfaces are candidates for the 

contacting ones. Then, respective teeth indexes are incremented, and Equation (3.18) is to be solved 
again. 

3.3.3 Procedure for Solution 

Case 1: Planetary Gear Train with One Subtrain. The algorithm that is represented by system of 
Equation (3.18) is  applicable for solution of case I directly. Value of ),( icφ , 1=i , represents directly the 
angular position of the carrier )(cφ . The system of 14 equations in 14 unknowns may be solved by 
application of Newton-Raphson method. The result will include the position of the carrier ( ))1()( φφ c . 
 

Cases 2 and 3: Planetary Gear Trains With Multiple Subtrains. Gear trains with three and five 
planet gears are considered, respectively. Comparing the number of equations and the unknowns, it is 
obtained that case 2 includes 42 unknowns, while case 3 includes 70 unknowns, to be solved 
simultaneously. 

Attempts of direct solution of such systems did not lead to success; complexity of the transcendental 
equations and large number of unknowns lead to intrinsic instability of the Newton-Raphson method. 

 
Simplification of the Problem. A method directed for simplification the solution of this particular 

system of equations is proposed. The method is based on consideration of a small number of additional 
fictitious unknowns that allow to break down the full system of equations in several systems of smaller 
dimension, easier to solve. Solution of the smaller systems is repeated iteratively until certain 
requirements on the values of the fictitious unknowns are met. 
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For explanation of the proposed method, we will refer to the Case 2, Figure 3.3. The carrier includes 
three planet gears, and angular position of the carrier is described by a unique value )(cφ . 

 
(1) We temporarily assume that, instead of a unique monolithic carrier, there are three carriers, one 

for every subtrain. The angular positions of the carriers are identified by ),( icφ , 3,,1=i .  
(2) The initial (guess) values of xE1∆  and yE1∆  (representing position of the axis of the sun) are 

considered as given.  
(3) Equation (3.18) is applied to each subtrain. Method of Newton-Raphson is applied for solution. 

Angles ),( icφ , 3,,1=i , that are obtained by the proposed approach, may differ one from each 
other. Note that value of ),( icφ  depends on the chosen location of the center of the sun gear 

 
 ),( 11

),(),(
yx

icic EE ∆∆=φφ  (3.21) 
 

(4) The conditions of rigid, unique carrier are now applied. These conditions state that the angular 
position of the carrier of each subtrain has to be the same. The conditions may be represented as 
follows: 

 
 0)2,()1,( =− cc φφ   
 0)3,()2,( =− cc φφ  (3.22) 
 

Notice that the remaining condition, 0)1,()3,( =− cc φφ  is automatically satisfied by 
Equation (3.22). 
 
Considering that Equations (3.22) are based on unknowns ∆E1x and ∆E1y, system (3.22) may be 
solved for determination of the center position of the sun. 
 
From the numerical point of view, this procedure requires application of Newton-Raphson (NR) 
method twice. In the first case, NR method is used to solve system (3.22). Solution of (3.22) is 
performed iteratively, by changing the values of ∆E1x  and ∆E1y  for convergence of 
Equation (3.22). Each time ∆E1x and ∆E1y  are changed by the first case of application of NR, 
functions (3.21) have to be recomputed again by application of NR method for the solution of 
(3.18), (second case). 

 
After the solution of Equations (3.22) is obtained, the position of the carrier is determined as 

)3,()2,()1,()( cccc φφφφ === . 
 
This method has proven to be very reliable for the case of three planet gears. 
 
Solution of (3.22) permits the position of the center of the sun gear to be determined, as well as the 

errors of transmission of the carrier, defined as 
 

 0)( 111
)( =−=∆ φφφφ cc

c m  (3.23) 
 

where 1cm  is the transmission ratio of the planetary gear. 
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3.4 Numerical Example 
A planetary gear train corresponding to Case 2 of design is considered, see Figure 3.3. The gear data 

that defines the train is represented in Table 3.1. 
A special computer program has been developed for the simulation of the conditions of meshing of 

such planetary trains. The program is based on the ideas presented above. Although only spur gears are 
applied in this example, the program is capable of analysis of gear drives formed by helical gears as well. 
The computer program has been developed for application in Windows operative system, and graphic 
user interface is provided for simplified input of the relevant gear data, see Figure 3.4. 

Five cases are considered in the performed analysis: 
 
(1) Ideal gear train, without error of manufacturing and assembly 
(2) Error of indexing of the carrier ∆Et  
(3) Error of center position of the carrier 
(4) Error of run-out (eccentricity) of the sun gear 
(5) Error of run-out of a planetary gear 
 
For each case, two results of simulation are provided: (1) wherein the planet gears are involute gears, 

and (1) double crowned gears. 

3.4.1 Case 1: Ideal Gear Train 

Considerations of this simple case are directed to test the correctness of the computer program 
developed. 

 
Involute gears. Results of analysis for involute gears are represented in Figure 3.5(a) and (b). Results 

are commented as follows: 
 
(1) Figure 3.5(a) shows the displacement of the center position of the sun gear for a revolution of the 

carrier. The center of the sun gears, even if it is not constrained, maintains a fixed position coinciding 
with the center of the mechanism.  

(2) Figure 3.5(b) shows the transmission errors of the carrier, defined by application of (3.23). The 
abscissa represents a full revolution of the carrier. The actual position of the carrier coincides at every 
instant with the theoretical position, therefore there are no transmission errors. 

 
The obtained results confirm the validity of the computer program. 
 
Double Crowned Gears. If double crowning of the planet gears is applied, the situation is slightly 

modified as follows (Fig. 3.6(a) and (b)): 
The center of the sun gear is not fixed, but performs a complicated planetary motion of very small 

amplitude (about 1 µm) (Fig. 3.6(a)). 
The carrier lags with respect to its theoretical position of about 2 arcsec. Since this value is practically 

constant, it does not cause the fluctuation of velocity of driven shafts, and is not the source of torsional 
vibrations and noise. 

 
Comments. It has to be noticed that the ability of the sun gear with free motion compensates for the 

existence of fluctuating transmission errors of low-amplitude. Such errors are caused by the modification 
of tooth geometry (of double crowning). An ordinary gear drive formed by the sun and the planet gears as 
designed in this example would have a parabolic function of transmission errors of 8 arcsec of amplitude. 
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3.4.2 Case 2: Error of Indexing of the Carrier 

Error of indexing of the carrier is of main concern of investigation while considering the load 
distribution. 

 
Involute Gears. Results of performed investigation are represented in Fig. 3.7(a) and (b) for the case 

of involute gears. 
 
Results are interpreted as follows: 
 
(1) Figure 3.7(a) shows the trajectory of the sun for a full revolution of the carrier. The trajectory is 

an exact circle. The sun gear performs therefore a planetary motion formed by: (a) rotation about its axis 
with angular velocity of the sun gears, and (b) rotation about the mechanism axis with the carrier angular 
velocity. The position of the sun gear appear fixed if it is considered in the carrier reference system. 

(2) The carrier lags with respect to its theoretical position of about 6.4 arcsec, constant. As explained 
before, this errors of transmission are not the source of noise and torsional vibrations. 

 
Double Crowned Gears. For the case wherein double crowning is applied, the motion of the center 

of the sun gear is a superimposition of results obtained in cases (1) and (2) (see Fig. 3.8): 
  
(1) The trajectory of the sun is in an “averaged” circle, but with some superimposed small vibrations 

of triangular shape (see Fig. 3.8(a)). 
(2) The carrier lags with respect to its theoretical position of about 8.2 arcsec, almost constant. These 

errors of transmission are not the source of noise and torsional vibrations. 
 
Comment 1. Simultaneously tangency of three subtrains has been achieved for all angular positions. 

This is the precondition for uniform load distribution. 
 
Comment 2. Notice that also in this case the errors of transmissions due to modification of gear 

surfaces are absorbed automatically by proper displacements of the sun gear. 
 
Geometrical Interpretation. The geometrical interpretation of the effect of an error of indexing of 

the carrier represents a good illustration for understanding of kinematics of an isostatic planetary gear 
train (see Fig. 3.9). 

 
(1) Initially, it is considered that the center of the sun gear coincides with the axis of the mechanism. 

Axes ii pp − , 3,2,1=i  represent the lines of action of the contacts between the sun and planet gears. The 
triangle that is formed by these lines is circumscribed by the base circle of the sun gear. Assuming that 
error tE∆  is small, we may consider the triangle as equilateral. Error )1(

tE∆  causes a small backlash 
between sun gear 1 and planet 12 . The amount of backlash, measured across line ii pp − , is 
approximately αcos2 tEs ∆= , where º20=α  is the pressure angle of the gears. Assuming 20=∆ tE µm, 
we obtain 6.37=s  µm. 

(2) This backlash has to be compensated by relative motion of the sun gear and the mechanism. Since 
the sun is in tangency with planet gears 22  and 32 , the motion allowed will be a small rotation centered 
at point 23O , defined by intersection of pressure lines 22 pp −  and 33 pp − . 

The angle of rotation of the sun gear is HOs 231 /=∆φ , or )3/( 11 brs=∆φ , where 1br  is the base circle 
of the sun gear, and 123 3 brHO = . Substituting the numbers, we obtain 103.01 =∆φ  µrad 2.21= arcsec. 
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The resulting angular error, measured on the carrier, will be 38.6301.02.2111 =⋅=∆=∆ cc mφφ arcsec. 
This value corresponds to the increase of lag of the carrier from the condition of an ideal train 

(case 1), to the condition wherein error of indexing is applied. This values perfectly agrees with the 
results obtained from the numerical simulation, for both cases of involute and double crowned gears. 

(3) The magnitude of displacement of the center of the sun gear will be 12311 OOE ⋅∆=∆ φ . Since 

1123 2 brOO = , after substitution we obtain 3/21 sE =∆ .  
Substituting the numbers, we obtain 251 =∆E  µm, that corresponds to the radius of circle of 

Figure 3.7, thereby confirming the results. 

3.4.3 Case 3: Error of Center Position of the Carrier 

This example shows that errors of center position of the carrier are of no concern for this planetary 
gear drive. The error is absorbed by automatic relocation of the center of the sun gear. 

In the case wherein involute gears are applied (Fig. 3.10(a)), the center of the sun gear is fixed in a 
position near the center of mechanism. 

In the case of double-crowned gears (Fig. 3.11(a)), the sun gear has a vibration motion (of very small 
amplitude) about the position assumed by involute gears. As in previous cases, this motion allows to 
absorb the fluctuations of transmission errors, as shown in Figure 3.11(b). 

Therefore, in both cases mentioned above the error of center position of the carrier does not cause to 
transmission errors that are source of torsional vibrations of the driven shaft. 

3.4.4 Case 4: Run-Out Error of the Sun Gear 

Performed analysis shows that a run-out error of the sun gear is compensated by the gear drive. 
For the case of involute gears, the center of the sun will follow a circular trajectory (Fig. 3.12(a)). 

This circle is repeated for each revolution of the sun gear, and the circle radius corresponds to the 
eccentricity error. Therefore, the self-performed regulation is able to cancel the effect of the eccentricity, 
providing an “error” which is equal and opposite. 

Also in this case, there are no errors of transmission (Fig. 3.12(b)). 
A similar picture is obtained for the case of double-crowned gears, wherein additional vibration of the 

sun gear compensates for the effect of crowning of gear profile, similarly to Figure 3.6. 

3.4.5 Case 5: Run-Out Error of a Planet Gear 

The run-out error of the planet gear )(2 i , 1=i , represents an interesting case. 
The motion of the planet gear relative to the carrier is considered. This motion is a rotation, and the 

angular velocity is 1211 057.1/)()( ωωωω =−= NNcrelp . This means that the effect of this error will have 
a period of 9463.0057.1/1 =  revolutions of the sun gear. 

Figure 3.13(a) shows the center position of the sun gear for rotation of the sun gear of 9463.0  of a 
revolution. The picture resemble to two petals of a trefoil. Transmission errors are not constant 
(Fig. 3.13(b)), but are a periodic (harmonic) shape. The period is one revolution of the planet, with respect 
to the carrier, that is equivalent to the 9463.0  of revolutions of the sun gear. 

Figure 3.14(a) and (b) show the center position of the sun gear and transmission errors for three full 
revolutions of the planet, and Fig. 3.15 represents the results of 30  revolutions of the planet. 

Results obtained for the double-crowned gears are similar. 
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3.5 Conclusions 
In this report, conditions for design of one-stage isostatic planetary gear trains have been determined. 
One of the proposed designs, with three planet gears, has been the subject of numerical simulation of 

meshing. The simulation was directed to: 
 
(1) Validate the idea that such a mechanism can have simultaneous meshing even in presence of 

errors of alignment.  
(2) Investigate the effect of some errors of manufacturing and assembly. 
 
An example simulation of a 3 planet system has confirmed that only the errors of run-out of the 

planets are the actually source of transmission errors. 
It was also found that small radial vibrations of the sun gear, in the plane of the mechanism, may 

compensate for the transmission errors that are produced by application of mismatched tooth-profiles, as 
in the case of double-crowned planet gears. 

In order to perform this complex numerical simulation, an original method of solution by TCA has 
been proposed. Algorithms for the simulation have been presented and developed. Geometrical 
interpretation of relevant behavior of the mechanism has been provided. 
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TABLE 3.1.—GEAR DATA FOR THE NUMERICAL EXAMPLE 

Design parameter Sun Planet Ring 

Number of teeth, z  65 43 151 

Module, m (mm)  4  

Pressure angle, α (deg)  20°  
Face width, b (mm)  40  
Addendum of the tool, ha0 (mm)  1.25 m   
Addendum of the gear, ha (mm)  m   
Profile shift coefficient, x  0  

Tool parabola coefficient, ap (mm–1) 0 1.25·10–3 0 

Longitudinal parabola coeff., al (mm–1) 0 62.5·10–3 0 
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