
Enhancing International Space Station (ISS) Mission Control 
Center (MCC) Operations Using Tcl/Tk

Brian O’Hagan
NASA/Johnson Space Center

brian.ohagan-1@nasa.gov

Stephen K. Long, Sr.
United Space Alliance

stephen.k.long1@jsc.nasa.gov

Abstract

This paper will discuss the use of Tcl/Tk to enhance the abilities of flight controllers to control the 
International Space Station (ISS) from the Mission Control Center (MCC) at the Johnson Space 
Center. We will discuss why existing tools where not able to meet these needs as easily as 
Tcl/Tk. In addition, we will also discuss how we interfaced with the existing MCC infrastructure to 
receive ISS telemetry, find servers, register services, and send commands to ISS.

Extended Abstract

Existing MCC applications where developed for use on the X11 platform. These applications 
where typically coded in either C or C++. This resulted in the typical development limitations 
were changes where costly, time consuming, and difficult to implement. Several of these 
applications make use of Meta data files to allow easy definition of telemetry, commands, and 
computations though most only support one of these types. The application that came closest to 
supporting all of these functions was part of the Common Display Development Team (CDDT). 
This application is used by both the crew on ISS and flight controllers in the MCC. This 
application is coded in C++ and combines the use of telemetry, computations, and commands on 
the same displays using XML data files. The main limitation of this application is its dependency 
on the ISS software configuration, which limits the delivery of updated data files to once or twice 
a year. Additionally, the application has limited graphical capabilities and a large backlog of 
deficiency. We will discuss how we addressed these limitations using Tcl/Tk.

The Information Sharing Protocol (ISP) is the protocol used to pass telemetry, computations, and 
status data between workstations in the MCC. ISP uses the standard client server architecture 
and allows data to be multicast on a change-only basis unlike telemetry that downlinks all data all 
the time. ISP is coded in C and uses a library of APIs for accessing its functionality. We will 
discuss how we where able to interface Tcl/Tk applications with the ISP APIs to access telemetry 
data, register callbacks, commands for telemetry events, and provide for multiple server 
connectivity. We will also discuss telemetry data management, callback management, 
performance tuning, and publishing of data to other ISP clients.

Using the ISP interface, Tcl/Tk applications were developed for Caution and Warning 
management, external camera control, automated procedure management on ISS, and for 
displaying telemetry. These applications were developed in a shorter period of time, with fewer 
defects, and with easier to use graphical user interfaces while maintaining the existing rigorous 
Configuration Management and certification standards prior to their use during ISS operations.



The MCC is a distributed architecture that allows for user access throughout the MCC. Since 
users can log into any workstation to support a particular activity and ISP Servers run on each 
users workstation, the typical approach of finding a server by connecting to an IP address cannot 
be used. Instead, the MCC uses Network Registration Services (NRS) which defines a list of 
service IDs with the associated  workstation and port. Applications then use NRS to lookup a 
service ID to determine the workstation and port to connect to. We will discuss how Tcl was 
interfaced to NRS to allow for registering service IDs and for finding services. This allowed the 
Tcl/Tk application Caution and Warning Status Tracker and Analyzer (C&W STAN), to provide 
server functionality using HTTP in a manner like web services for ISS Caution and Warning 
event management.

We will also discuss how we were able to interface Tcl with the ISS Command Server for 
sending commands to ISS and for receiving command related event updates. Like ISP, the 
Command System is coded in C and C++,  and uses a library of APIs for accessing its 
functionality. Existing MCC applications were limited to only sending commands and receiving a 
command accepted or rejected response. They did not have the capability to verify a command 
executed properly with end item telemetry. This required operator intervention for all command 
verification steps. We plan to discuss how the commanding interface allowed us to automate 
routine operations, provide an easier interface for camera control, and an enhanced scripting 
capability. We will also discuss command data management, callback management, and 
performance tuning. 


