EXERCISE WITHIN LOWER BODY NEGATIVE PRESSURE AS AN ARTIFICIAL GRAVITY COUNTERMEASURE

ALAN R. HARGENS1, STUART M.C. LEE2, SUZANNE M. SCHNEIDER3, WANDA L. BODA4, SCOTT M. SMITH5, BRANDON R. MACIAS1, DEBORAH D. O'LEARY6, R. SCOTT MEYER1, ELI R. GROPPO1, PEIHONG CAO1 and DONALD E. WATENPAUGH8

1Dept of Orthopaedic Surgery, University of California, San Diego, CA 92103-8894, 2Wyle Laboratories, Houston, TX 77058, 3University of New Mexico, Albuquerque, NM 87131, 4Dept of Kinesiology Sonoma State University, Rohnert Park, CA 94928, 5Human Adaptation and Countermeasures Office, NASA Johnson Space Center, Houston, TX 77058, 6Department of Community Health Sciences, Brock University, St. Catharines, Ontario, 7Sleep Consultants, Inc., Fort Worth, Texas 76104

INTRODUCTION
Current exercise systems for space, which attempt to maintain performance, are unable to generate cardiovascular and musculoskeletal loads similar to those on Earth [1, 2]. The purpose of our research is to evaluate the use of lower body negative pressure (LBNP) treadmill exercise to prevent deconditioning during simulated microgravity.

METHODS
Fifteen sets of identical twins (16 males and 14 females, 21-36 years) remained in 6º head-down tilt (HDT) bed rest for 30 days to simulate microgravity. One twin from each pair (EX) was randomly assigned to perform 40 min of supine treadmill exercise in an LBNP chamber at 1.0-1.2 body weight, followed by 5 min 50 mmHg static LBNP for six days per week. Their siblings served as non-exercise controls (CON).

RESULTS
Orthostatic tolerance (time to pre-syncope), plasma volume, and sprint speed decreased significantly (p< 0.05) after 30 days bed rest in the CON group, but was relatively maintained in the EX group. Upright VO₂pk, muscle strength, and endurance decreased significantly in CON group, but were preserved in the EX group. Also, the EX group had normal spinal compressibility to axial load and significantly higher back muscle strength after bed rest than the CON group. Urinary n-telopeptide excretion, an index of bone resorption, was increased during bed rest in CON, but not in EX subjects [3]. However, osteoblast activity was not improved in the EX group.

DISCUSSION
Our treadmill exercise protocol within LBNP maintains plasma volume, orthostatic responses, upright exercise capacity, muscle strength and endurance during bed rest. LBNP exercise counteracts the elevation of osteoclast activity associated with bed rest, but resistive exercise may be needed to increase bone formation. These results document the efficacy of our exercise countermeasure in both males and females during 30 days of HDT bed rest. Treadmill exercise in LBNP may be an early, low mass, low power and efficacious form of artificial gravity for exploration missions [4]. However, our current LBNP exercise hardware must be redesigned for space flight and crew habitability. Future studies will include a combination of supine treadmill exercise in LBNP and flywheel resistive exercise as a part of the International Long-Term Bed Rest Project.

EARTH BENEFITS
This research is also applied to improve rehabilitation of orthopaedic patients and performance of athletes.

REFERENCES

ACKNOWLEDGEMENTS
Supported by grants from NASA (NAG9-1425, NNJ04HF71G, NCC 2-1133) and from NIH (M01 RR00827 to the UCSD GCRC).