Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

Gregory N. Morscher
Ohio Aerospace Institute
Cleveland, OH

107th Annual American Ceramic Society Conference
Richard M. Fulrath Symposium
April 11th, 2005
Abstract

Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
SiC/SiC Ceramic Matrix Composite Development at NASA Glenn (Lewis)

- **1990’s = Enabling Propulsion Materials (EPM) Program with GE and P&W:** High Speed Civil Transport Combustor Liner (1200°C, > 10,000 hours)
 - Highest temperature fiber
 - BN interphase
 - Melt (Si) infiltrated SiC matrix
- **2000’s = Ultra Efficient Engine Technology (UEET) Program:** 1315°C application temperature, e.g., turbine vane
 - Further improvements to fiber, interphase, and matrix
- **Future? = Space Propulsion:** 1450°C+ application temperatures, e.g., thin cooled structures, turbine blades…
 - Non-Si containing matrices: CVI SiC, PIP SiC
Objective: Model σ/ε Behavior of CMC’s

- Constituent (fib., mat., int.) composition
- Constituent fractions
- Architecture

- Elastic Properties
- Non-Linear Stress-Strain Response
- Matrix cracking

- Ultimate Properties

Stress, MPa

Strain, %
However, composites will vary throughout a component…

- Constituent contents
- Number of plies
- Local architectures

For example, Sylramic fiber-reinforced melt-infiltrated composites (2D 5 harness satin) that vary in:

- Number of plies by factor of 2
- Thickness by factor of 2
- Tow ends per cm in weave
- Matrix content
- Fiber content
- Size of tow
- Debonding interface
Typical approaches to modeling mechanical properties involve making many panels of the “same thing” in order to get statistical variations.

There is a greater need to model composite behavior as a function of constituent and architecture variation for design of components and predicting use-life.
Outline

Composite processing

Use of Modal Acoustic Emission

3 Examples of Non-linear σ/ε Behavior (orthogonal direction)

- 2D Melt-infiltrated system
- 3D Melt-infiltrated system
- 2D CVI SiC System
Standard Slurry Cast Melt-Infiltrated (MI) 2D & 3D Woven Composites

- Sylramic Fiber
- Weaving
- Fabric
- CVI Si-BN Interphase Infiltration
- Low Temp.
- Reactor
- For Syl-iBN, special treatment prior to CVI Si-BN
- Silicon Melt Infiltration
- Furnace
- MI SiC/SiC
- Slurry Cast SiC Matrix
- CVI Preform
- CVI SiC Matrix Infiltration
- Reactor
- SiC/SiC preform
- Standard Slurry Cast Melt-Infiltrated (MI) 2D & 3D Woven Composites
- Glenn Research Center at Lewis Field
Modal Acoustic Emission of CMCs

- Locate damage events and failure events Δt
- Monitor stress(or time)-dependent matrix cracking \Rightarrow Cumulative AE Energy
- Identify damage sources, e.g. matrix cracks, fiber breaks \Rightarrow Frequency
- Measure stress(or time) dependent Elastic Modulus \Rightarrow Speed of sound

![Diagram of Modal Acoustic Emission of CMCs with tabs, extensometer, and transducer placements.](image)
An Example: Hi-Nicalon/CVI SiC

Normally, using a threshold voltage technique for location gives \(\pm 2 \)mm accuracy. For 3D composites, each event was examined "by hand" to determine 1st peak (\(\pm 0.25 \) mm)!
Relationship Between AE and Matrix Cracking

See Evans et al., Cox and Marshall, Chou et al, Lamon et al., etc...

Glenn Research Center at Lewis Field
Example #1: 2D Woven Melt-Infiltrated Systems When Stressed in Orthogonal Direction

HN and Sylramic (iBN) Fiber-types
Stress-Strain and AE for Different Composite Panels

- Acoustic Emission used to monitor matrix crack density and derive a matrix crack distribution
- Applied to Sylramic-based and Hi-Nicalon-based composite systems that vary by a factor of two in number of plies, thickness, tow ends per cm, and number of fibers per woven tow
For Orthogonal Composites, the 90° Fiber-Tows are the Source for Matrix Crack Formation

• The stress that acts on the 90° fiber-tows is the stress in the composite “outside” of the load-bearing fiber, BN, CVI SiC minicomposite, i.e., the “mini-matrix” stress:

\[
\sigma_{\text{min matrix}} = \left(\frac{\sigma_c + \sigma_{th}}{E_c} \right) \left(\frac{E_c - f_{\text{min i}} E_{\text{min i}}}{1 - f_{\text{min i}}} \right)
\]

All the information required is obtained from RT stress-strain test (or sound techniques) and processing data sheet.
A very simple relationship for matrix cracking in 2D MI SiC/SiC Composites

\[\rho_c (\sigma_{\text{min matrix}}) = \rho_c \left[1 - \exp \left(-\left(\frac{\sigma_{\text{min matrix}}}{\sigma_o} \right)^m \right) \right] \]

\[\rho_c \approx 2.5/\text{mm for Hi-Nicalon} \]
\[\rho_c \approx 10/\text{mm for Sylramic} \]

\[\sigma_o = 150 \text{ MPa}; \ m = 5 \]
Can Then Use to Model σ/ε

Determine $\rho_c(\sigma_c)$ from $\rho_c(\sigma_{\text{minimatrix}})$ relationship:

$$\varepsilon = \frac{\sigma}{E_c} + \alpha \delta(\sigma) \frac{\rho_c}{E_f} (\sigma + \sigma_{\text{th}})$$

Where

$$\delta = \alpha \tau (\sigma + \sigma_{\text{th}}) / 2 \tau$$

$$\alpha = (1-f) E_m / f E_c$$

* After Curtin and Pryce and Smith

Starting point for life-degradation models
Example #2: 3D-Orthogonal Composites With Different Z-Fiber Types

X- and Y-direction Fibers = Sylramic or Syl-iBN
MI Composites
Woven 3D-Orthogonal Composites with Different Z-Fiber Types

X-Direction:
Two Sylramic Tows (1600 fibers)
10 epi
7 plies

Y-Direction:
One Sylramic Tow (800 fibers)
18 or 20 epi
8 plies

Z-Direction:
ZMI (800 fiber/tow)
T300 (1000 fiber/tow)
Rayon (400 fiber/tow)
3D Orthogonal σ/ε Behavior

- Y-direction
 - Rayon
 - T300
 - ZMI

- ZMI (X-direction)
Loading in the Y-Direction

cross-sectional views

~1.5mm
(1) Matrix micro-cracks originate in the UNI sections (low energy AE)

(2) Large matrix cracks form in the UNI sections (High energy AE)

(3) Matrix cracks form in XPLY regions
Stress Distributions For Three Y-Direction Oriented 3D Composites and Standard 2D Composite

- Wide range of matrix cracking stress-distributions
- XPLY cracking stresses always higher than UNI cracking stresses
- Rayon > T300 > ZMI
Minimatrix Stress Dependence for Matrix Cracking in 3D Composites

Convert to $\sigma_{\text{minimatrix}}$

- Good correlation for XPLY regions
- UNI regions unaffected
UNI Regions Dependent on Height of Z-Tow: Griffith-type Relationship

Onset Composite Stress
Slope = 2.17 MPa m\(^{1/2}\)

Onset Minimatrix Stress
Slope = 1.07 MPa m\(^{1/2}\)

Estimated Crack Density, mm\(^{-1}\)

* Tow height measured 0.5 mm from surface
Example #3: 2D CVI SiC Composites

Variation in orthogonal fiber-loading in order to raise matrix cracking stresses.
Syl-iBN, BN interphase, CVI SiC Matrix Composites

- Balanced weave = 7.9 tow ends per cm
- Unbalanced weave = 9.4 x 5.5 tow ends per cm
Matrix Cracking Dependent on Stress in CVI SiC and “Bridging Condition”

Stress in load-bearing CVI SiC: $\sigma_{\text{SiC}} = \frac{\sigma}{E_c}E_{\text{SiC}}$

Low fiber volume fraction

High fiber volume fraction

Convert to $\sigma_{\text{CVI SiC}}$
Good Prediction of σ/ε Behavior

- CVI; 7.9 epcm
- 8 ply (002)
- $f=0.21$
- $E=293$ GPa

- CVI; 9.4 epcm
- 8 ply (002)
- $f=0.21$
- $E=293$ GPa

- C-interphase
- $f=0.17$
- $E=230$ GPa

- CVI
- 5.5 epcm
- $f=0.12$ (002)
- $E=261$ GPa

Circles correspond to model.
Conclusions

• Robust relationships have been determined to describe matrix cracking in a wide range of “dense-matrix” SiC/SiC composites when stressed in orthogonal directions

• These can be implemented in design of components with variation in constituent content, architecture, and shape (for orthogonal directions)

• The matrix cracking behavior serves as the “starting point” for life-modeling at stresses above matrix cracking limits
Acknowledgments

• Many thanks to co-contributors and co-authors including, James A. DiCarlo, Hee-Man Yun, Ram Bhatt, Doug Kiser, M. Singh, Marc Freedman, and others…

• All of this work was supported by NASA programs over the past 10 years including EPM, UEET, NGLT, and IR&D
Effect of Tow Size and Shape: Single-Tow vs. Double-Tow Woven Composites

- Identical fiber volume fraction; Both five-harness satin

![Graph showing the effect of tow size and shape on composite stress and strain. The graph compares single-tow and double-tow woven composites, with different fiber volume fractions and estimated crack densities.](image-url)