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Hybrid LES/subscale modeling approaches have an important advantage over
the current noise prediction methods in that they only involve modeling of the
relatively universal subscale motion and not the configuration dependent larger
scale turbulence . Previous hybrid approaches use approximate statistical
techniques or extrapolation methods to obtain the requisite information about the
sub-filter scale motion. An alternative approach would be to adopt the modeling
techniques used in the current noise prediction methods and determine the
unknown stresses from experimental data. The present paper derives an
equation for predicting the sub scale sound from information that can be obtained
with currently available experimental procedures. The resulting prediction method
would then be intermediate between the current noise prediction codes and
previously proposed hybrid techniques.

1. Introduction

Crighton (1979), in a now classical paper, makes two major criticisms of the Lilley
(1974) equation approach-- which effectively treats the sound propagation as a
small perturbation of a sheared mean flow. The first of these is that it provides no
rational means of excluding the instability waves that eventually become infinite
in any causal solution to the problem. This issue was eventually resolved by
Goldstein and Leib {2005) and Goldstein and Handler (2003).The other criticism,
which is dealt with in the present paper, is that the evolution time of the turbulent
eddies is much greater than the time it takes a sound wave to traverse them-
implying that the turbulence is effectively frozen during the passage of the sound
and that there is, therefore, no particular mean flow profile that would give a true
representation of the refraction effects that occur in the real flow.

This latter difficulty would not occur if the sound field were determined from a
DNS (Freund, 2001) or LES solution. Unfortunately, the computer resources
needed to resolve all the relevant iength scales are enormous—often well
beyond those available on present day machines. A reasonable compromise
would be to use LES simulations with very broad filter widths. This approach was



adopted by Bastin, Lafon and Candel (1897), Bodony and Lele (2002, 2003, -
2005), and others. They found that simulations of this type are quite accurate at
low frequencies but significantly under predict the high frequency component of
the spectrum—presumably because they do not account for the sound generated
by the sub-filter scale turbulence. Bodony and Lele (2002 }, attempt to resolve
these difficulties by adopting a “hybrid” approach that models the non-iinear
Reynolds stress terms in an appropriate equation for the sub-scale motion and
then uses the result to calculate the missing sub-scale sound—which can be
added to the LES sound field. The great attraction of this approach is that it
directly caiculates the configuration dependent component of the sound while
modeling only the relatively universal small scale motion.

The relevant equations are obtained by dividing each of the flow variables in the
Navier-Stokes equation into a component that is determined from the LES
solution and a residual component that satisfies the Navier-Stokes equations with
the LES equations subtracted out. By introducing new (in general non-linear)
dependent variables (Goldstein, 2002, 2003) the latter equations can be rewritten
in the form of the linearized Euler equations with sources that are the same as
those that would be produced by external stress and heat flux perturbations. The
corresponding source strengths, which depend on the non-linear sub-scale
stresses, can, in principle, be modeled and the resulting linear equations can
then be solved by using a Greens' function approach. The result can then be
used to obtain an expression for the far field pressure autocovariance in terms of
the sub-scale turbulent motion. Unfortunately it is very difficult to model the
instantaneous subscale stresses that appear in this result.

Bodony (2004), in his outstanding Ph.D. thesis, uses an approximate
deconvolution method to kinematically extrapolate information about the filtered
scales to obtain the required information about the sub-filter scale motion. But, as
Bodony (2004) points out, this is still too expensive to be “practical in an
industrial noise prediction setting”. A more practical approach might be to extend
the modeling approach used in current noise prediction methods such as the
MGB (Balsa, Gliebe, Kantola, Mani, Strings and Wong, 1978) and JeNo
(Khavaran, and Bridges, 2004) codes that determine the unknown stresses from
experimental data. The hope is that the sub-filter stresses will be much more
universal than the large scale stresses that have to be modeled with these
current methods and that models developed from any flow will apply to any other.
This approach would be intermediate between the existing hybrid approaches of
Bastin, et al.(1997), Bodony and Lele (2003) and Bodony (2004) and the current
(i.e., MGB and JeNo) noise prediction methods.

But most experimental reports only document the reproducible (i.e., non-
random) characteristics of these sources, such as their lower order statistics. It is
therefore important to derive a formula for the subscale sound field that depends
only on non-random quantities the can be measured with currently available
experimental technigues. Bodony (2004) and Bodony and Lele (2003) obtain



such an equation by dividing the flow into steady and fluctuating components,
deriving an inhomogeneous wave equation for the latter and then further sub-
dividing the unsteady Reynolds stress source terms in that equation into filtered
and subscale components- with the latter part being inputted through an
appropriate model. Unfortunately this approach does not explicitly account for the
scattering of the subscale sound by the filtered scale turbulence and therefore
does not overcome Crighton’s (1979) second criticism of the Lilley equation
approach. This is analogous to the arguments that eventually led to the
replacement of the original Lighthill (1952,1954) approach with the Lilley (1874)
equation formalism. While Lighthill's equation is exact with all real flow effects,
including the mean flow interaction effects, contained in the source term, it tuned
out to be almost impossibie to model these weak but non-local effects from
experimental measurements. This shouid also true for the non-local scattering
effects and the same arguments would dictate that they be included as part of
the propagation effects.

The present paper (which is base on the conceptually simpler double
decomposition formulation) is an attempt to eliminate this problem by exploiting
the statistically independence (i.e., the decoupling) of the filtered motion in an
LES simulation from the detailed sub-scale fluctuations. The only coupling that
can occur in these simulations is through the filtered Reynolds stress—which is
eventually modeled in terms of the filtered variables and their derivatives. The
LES solution is therefore calculated from a closed set of equations that only
involve the filtered variables. In the “hybrid” approach, the deviation of the sub-

scale stresses from the filtered stresses, say o, also has to be modeled. The

present approach assumes that the model will be constructed from spatially
filtered experimental data (which can be obtained from PIV measurements).
Unlike the LES simulation, the instantaneous random subscale fluctuations in the
experiment will eventually produce O(1)changes in the large scale motion (due

to the chaotic nature of the solutions to the N-S equations) and the entire
experimental flow should therefore be uncorrelated (in the statistical sense that
covariances of various quantities will vanish) with the LES simulation where the
randomness comes from the random initial conditions-- which are themselves
uncorrelated with the initial conditions in the experiment (Lesier, 1987, p. 230 and
Pope, 2000, pp.612-613). It therefore seems reasonable to model o, as if it were

statistically independent of the LES solution. Notice that this does not imply that
the expectation or average value of this quantity should be independent of the
LES solution.

The main purpose of this note is to show that this type of modeling leads to an
expression for the far field pressure autocovariance that depends only on the
overall correlation of the subscale stresses, which is a non-random quantity of
the type that is usually reported in the experimental literature and not on their
instantanecus values, which is not. The present approach also provides a
framework for the systematic introduction of additional approximations to further
simplify the results—with the most significant of these arising from the near



isotropy of the subscale turbulence. The most general subscale turbuience
correlation tensor has 45 independent components, but the isotropy assumption
reduces that to 7. And if retarded time variations (i.e., variations of the
propagation factor over the correlation volume of the turbulence) are also
neglected, only two of those actually enter the formula for the far field pressure
autocovariance. It would be very difficult to argue for the neglect of retarded time
effects if the non local effects had to be included as part of the source term.

The relevant sub-filter scale acoustic equations are introduced in section 2 and a
formal Greens’ function solution is obtained in section 3. This solution is then
used (in section 4) to derive a formula for the acoustic pressure autocovariance
and the statistical independence assumption/model is then used to eliminate the
dependence on the instantaneous subscale fluctuations and thereby obtain a
formula that involves only commonly reported statistical quantities. The result is
simplified by neglecting retarded time variations and an isotropic turbulence
model is introduced in section 5 to simplify it even further.

2. Sub-fiiter scale equations in vector form

The pressure p, density p and velocity v; in any flow can be decomposed into

filtered p, p and Favre (1969) filtered v, = S;,. /p components that satisfy the LES
equations and residual components

p'=p=p, Vi=vi-V;, p'=p-p (1.1)

that satisfy the 5 formally linear equations (Goldstein, 2002, 2003)

Lou,=s, for pv=12345 (1.2)
where
{ }:{ [ ) ’ ! 7 [N [ ('}""1) ’ (13)
u,}={pv o't ={p.pvh. P e} w'= P ~
and the first order linear operator L, is defined by
L, =8,,D,+8,,0,+0, (CZSM 8,5 ) +K,, (1.4)

with
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The source function s, is defined by

= 52/ +5u4(y-—1)eij§v—~;¥
with
e, =0l — (Y;) 8,5
o =—(pvivi+8, ), vi=-(v-1)}
&y =-p(vv,—¥7,), &, z-(y-l)[a(l?(;; hoﬁ])+éf61,ﬁj +6,7,
and

(1.5)

(1.8)

(1.11)

where = yRT is the Favre filtered square sound speed and, as usual, the
viscous terms, which are believed to play an insignificant role in the sound

generation process, have been neglected.

3. Vector Greens’ function solution

These equations can be solved in terms of the vector Greens’ function
8.5 (%.1]y,7) which satisfies the inhomogeneous linear equations

(Lm, )x’z Zuo(X1]3,1)=8,,8(x - y)8(t-1)

(2.1)



with delta-function type source term together with the causality condition

g, (xtlpt)=0  for 1<t (2.2)
to obtain
u, (x,1)= ;?gvu (x,t{y,‘c)su(y,t)dydrz——jjf?w (x.1)3.7) e, {y.7) dvdr (2.3)
where
i (x,tly,t)EW—(V~I)%&4(&4%T) (2.4)

From the acoustics perspective the primary interest is in the 4" (i.e., the
pressure-like) component of (3.3) which only involves the 4" component vector

Greens' functiong (x,t|y,1). The latter quantity can, in principle, be found by
4v

solving be solving the system (3.1). But since this consists of 15 first order
equations, it turns out to be simpler to compute the adjoint Greens’ function

g, ( V.7 x,t) , which was introduced into the Aeroacoustics literature by Tam and
Auriault (1998) to study sound propagation through steady fiows and used
effectively by Bodony (2004) to implement his hybrid approach. Equations (A-1)
to (A-4) show that it is related to g,_(x,|y,7) by the reciprocity refation

g (wr|et) =g, (xt|y.7) (2.5)
and satisfies the system

(z, )w gl (p.r|x,t)=06,0(x—y)5(t-7) (2.6)

of five first order equations which are given in component form by (A-5a,b,c).
These equations suggest that g, , ( y]x:r,z—’C) =gl (y,”clx,t) will be a stationary
random function of its third argument, t, which results from the time dependence
of the coefficients in (L‘;V )y)rthat are determined from the LES solution and are,



therefore, random functions of time. (Notice that this argument would not be
needed if the LES solution were steady.)

It therefore follows from (2.7), (2.8), (3.4) and (3.5) that the 4th component of
(3.3) can be written as

o0

ﬂ;’(x,t)=—£ jym (y]x:t,t-t)cr:y. {(y.7)dydr (2.7)

V -0

where like, g,4(y|x1.1-1)= gl (57|x.1), the propagation factor

(v-1)

T, (ylxn:,t—r) = "A‘ju (y]x:r,t——r)+-———:2————5m},kk (ylx:r,t—r) (2.8)

along with

Kjk(y]x:r,t—-*t) u=k=123

Ay (ylx:r,t—r)z (2.9)

and the six independent components

A (y]x:r,t—-t) =
1[ g (relxr) e (y,rlx,z)} («,.—1)[5\;,{ ‘%'Jg‘f‘* () (2.10)

2|7 &, e 2\, o,

of Ay ( ylx:r,t-—r) should be random functions of their third arguments (which

arise from the third argument of g,,{y|x.t,7—t) as well as the t-dependence of
o,/ 8y,).

4, Pressure autocovariance



Since n'(x,¢)—> p'(x,t) asx— o, the far field pressure autocovariance

T
I(x,7)= lim Zim-z—lf p'(x.0)p'(x.0+7)dt (3.1)
-T

x-sw| T—w

T
ﬁ_:_l... j‘ H‘,(riwu( ,;;[xt,t”,1:+t ) Hwtol, v +n,1" ) dy dydt' dt”

-T —oV

T o
.f _f fl",w VA l x:it, "+t ,'t+t") o (».1) %(y +a,t" +1' Yy dydt' dt”
~T —oV

where

Tt | x:t 0" ce 0 =1) = [y (lettt o= )y, (y+ulxd =1 at
- (3.3)

= j;yjc(y]x:t',t+'c+t"-—t')y,u(yM;Ix:t",t)dt

—0

is a stationary random function of its fourth and fifth arguments.
r.. (y,?i [ x:t "+ ,1:+t”) and

iajp
Ry s 10) = (3.0) o) (v +a.6'+" ) (3.4)

are, therefore, both stationary random functions of 7. They should be considered
to be uncorrelated in the present approach because, as note in the Introduction,

_ the filtered motion, which is determined from an LES solution to a closed set of
equations that only involve the filtered variables, should be statistically
independent of (i.e., decoupled from) the detailed sub-scale motion determined
from actual expenmental data because, unlike the LES simulation, the
experimental subscale fluctuations eventually produce O(1)changes in the large

scale motion (due to the chaoctic nature of the solutions to the N-S equations).
This causes the entire experimental flow to be uncorrelated with the LES
simulation where the randomness comes from the random initial conditions--
which are themselves uncorrelated with the initial conditions in the experiment
(Lesier, 1987, p. 230 and Pope, 2000, pp.612-613). The only coupling that can



occur is through the filtered Reynolds stress—which is eventually modeled in the
LES simulation. it is therefore reasonable to require that any model used to

represent the deviation o), = (pv v, +6 )of the sub-filter Reynolds stresses
from the filtered stresses G, be statistically independent of the filtered motion
(and consequently with the coefficients of L}, ). This means that the covariance

lim — ﬁ'lw yap | x:, "1 Tt ) R .00 )t

T—>® 2T
where
Ty (v | xt '+t o+t") = 3.5)
| g, (y,r; x:t "+t ,r+t") -—fm (y,:; l x:t",r+t") '
Ry, ") =R, (v 0.1t V=R v iu 1" (3.6)
fiw (y,r; x:it", 1+t ) _527307 JI‘W yp | xit T+t )dt (3.7)
and
R, m.t)= lim — j'RW oy, 0,0t (3.8)

should equal zero. it therefore, follows that H(x, 'c) can be written as an integral

II(x,t)= .gﬂfiw(y,r] | x:z‘",r+i”) Ri; (yin,t") dydydt” (3.9)

ooV

over the product of two non-random functions.

The first of these, which can be expressed as the integral



riqf;.x (y:??

x:t","c+t”) = ?7iqu(yﬁ [ x:t”,t+r+z”,r) dt (3.10)

over time of the correlation

(y,n}xt t+t+t" t) —lzm fym ylxt t+T+t )y,u(y-wylx:t'-w”,t)dl' (3.11)

Yicw

of the two random propagation factors v, (y|x:f'.t ++2"—1')and v, ( y+u|xt' ),

can be thought of as an expected or mean propagation factor. It can be
determined as part of the LES computation. The second factor, which, can be
thought of as a source function, describes the low order statistics of the unknown
component of the sub-scale fluctuations. It has to be modeled, but it should be
much easier to do this than to model the instantaneous values of the sub-scale
fluctuations (which would have to be done if the source and propagation
fluctuations were not de-correlated).Notice that this de-correlation only implies

that the fluctuation, T, , (and notT_ itself) be independent of the resolved

scales. It may, therefore, be appropriate to paramatize the model for this quantity
and determine the parameters from the LES calculation.

igju

it is useful to introduce the pressure autocovariance

[y T)= J;?f y,ri | x.'t",13+z‘”) R (ysu,t")dgdt"  asx—ow  (3.12)
V -0

igfu

at the observation point x due to a unit volume of subscale turbulence at the
source point y- which only involves the statistical correlation R, (y;#,:") of the

subscale velocities and not their instantaneous values.

But computation of the far field pressure still requires a great deal of information
about these quantities (which cannot be obtained from the LES solution). This
requirement would certainly be reduced if the correlation volume of the subscale
turbulence were small compared to the characteristic length scale over which the
filtered scale turbulence, and therefore the propagation factor

L,.(»a | x:#"t+1"), varied. The latter could then be treated as a constant
relative to the n-integration causing the result to depend only on the integral of
R, (y;u,1") over the separation variable n, which, in turn, depends only on the

decay time " at any given source point y . Since most of the non-local

scattering effects are already accounted for by the propagation factor, this is
likely to be the case for variations perpendicular to the mean flow direction, but
not necessarily in the in the mean flow direction itself. However, as Lighthill

10



(1952, 1954) pointed out in a slightly different context, the sireamwise decay rate
should be much more rapid in a reference frame moving with the subscale
convection velocity, U (y), of the turbulence. Ffowcs Williams (1963) showed

that this idea can best be implemented by infroducing a moving frame
correlation, say

Ri(93&1") =Ryy(yint") (3.13)

where
E=n-U.(yn (3.14)

before integrating the turbulence correlation over the separation vector.
Introducing this into (4.12) and changing the integration variable to ¢ and

neglecting variation of ij over the correlation volume yields

"

H(JCI}’,T)E f;cj;,l(y’ “ ol y ét jldt” (315)

asx —» 0

ée.__....S

Enthalpy fluctuations are thought to be negligible in cold air-jets (Lilley,1996). We
therefore neglect these quantities, for simplicity. In which case (3.15) becomes

”) [;—R_jfﬁlk(y;é:’t”)cf}dt” (316)

as X —» ©

(x|y.r) Ec}f

Bodony’s (2004) LES computations imply that the convection velocity can be
expected to vary with the source location y and to be scale dependent for the

larger turbulent scales, but should become much more constant and scale
independent for the smaller scales. We therefore expect the subscale convectio
velocity U (y) to exhibit similar behavior.

Obviously

11



I (x,7)= {T1{x|y.)dy (3.17)

4

5. Isotropic subscale turbulence

The 81 component tensor Efﬂk( v;¢ ,z”)has 45 independent components.

Fortunately, the small scale turbulence should be quite isotropic in the moving
frame (but, unlike the medium scales, not even approximately quasi-normal).
Batchelor (1953) points out that the most general 4" order isotropic tensor is of

the form
Ry = ALE E.8 +BEE S, +CEES, + DEES , + EE £,5, + FE LS, +GEL3,
+H3.8,, +18,8,+J8,0, (4.1)

L

, t. But it follows from (4.4) and (2.9) and

¢

where 4,B,...J are functions of y,
(2.10) that

Eﬂz = E;‘?kl = Enltk (4.2)
and, therefore, that

Ro, = AEE 6,8, + BEE D, ++GEED, +CE,(£,8,+88, )+ EBE (£:5, +£,8,) “
+HS, 8, +1(8,8,+8,5,)

which can be integrated over the unit sphere to show that

IE;’?”‘ (y:¢,1") d& =185, +1, (Sik5ﬂ + 5i151k) (4.4)

14
where

L SURTR.
o N 3 _ (4.5)
= [Rnu(yse0r) de =2 [Raa(v5¢ ) &
v 14

and

I(y:t")=4n I[%Ai“ +§(C+E)§2 +I}§2d§ = jz’e}'gn (p;&,1") dé (4.6)

0
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Substituting this into (4.16) and using (3.6)-(3.8), (4.10) and (4.11) shows that

=%

H(x!y,r)z I{G | x:t" r+t" f o yi& L") dé

h 4.7)
+Gfy| x:t" v +t") (R (p3¢ 1") & |d
14
where
(y]xt"t+t") Efﬁ.,(y,U ]xt 1:+t)
o (4.8)
( ———-——-1) j? - y! x:t",t+r+t",t)dt
éz(y‘ x:t",’c-l»t") EZ[I:]U (y’ " ") _Eijj (y:Uc f"] x.'f",’t**'l‘”):]
=2{?ng(yl xo'teT+e) di— “9)

—o0

2 w©
{6(%1) - z%'iﬂ} _{X,w(yl x:"1+1 +r”,t) dt}

and

A (y} x:l",t+’c+t”,t) -lzm—— fk ylxt t+¢+t”}7xk,(y+lf z‘”[x '+t t)dt (4.10)

jH T-)oo

The latter quantity and, therefore, the G,, k=12, can be computed from the six
independent components of A ;, (y|xt,z—t) which are given in terms of the 4"

component adjoint vector Greens’ function g, (v,7]x.7) by (3.10).

6 Concluding remarks
A previously derived equation for the sound generation by the sub-filter

turbulence scales in a large eddy simulation (Goldstein, 2002, 2003) is used to
obtain a formula for the acoustic pressure autocovariance in terms of the sub-

13



scale turbulence correlation tensor by exploiting the statistical independence of
the filtered and sub-filter scale motion. The sub-scale acoustic radiation can
therefore be calculated by introducing appropriate models for this relatively
universal correlation while determining the configuration dependent large scale
sound directly from the LES solution. This approach is in accord with recent
speculation that there are two distinct sources of jet noise—one of which is
associated with the large scale motion and the other with the smali scale motion
(Tam, 1998). The approach also accounts for the scattering of the sub-scale
sound by the large scale motion-an effect that was emphasized by Crighton
(1979).

Finally, | would like to thank Dr. Daniel Bodony for commenting on the
manuscript and Dr. Jayanta Panda for showing how the subfiiter correlations can
be determined from PIV measurements.

Appendix A Adjoint equations

The adjoint Greens’ function g ( y,r[x,z)satisﬁes the adjoint equation {Morse
and Feshbach, 1953, Tam and Auriault, 1998, Bodony and Lele, 2002 )

(L‘:w)w gfa(y,f x,t)=5w5(x——y)5(t—r) (A-1)

where
;o= D C~2 1) A-2
Lyv:-é‘v,ub_’;—(}/-l)é;u4av+ ‘}:_:E v4+5v5 a,u+Kv,u ( » )

and

D 8 9

=7, () — A-3
Dr érﬂ)'(yr)ayi (A-3)

and is related to the direct Greens’ function g, (x,|y,7) by the reciprocity

relation
&1 1xt) = g (x:1]37) (A-4)

When written out in full the system (3.6) becomes (Bodony and Lele, 2003 )

14



~ "7’

Deli o Oy, & Ogh 7=199y . %

+gi "+
Dr ayi }’—'1 ayi

_Dei_,_p| %
Dr (7 )(5)/,+

Pt o

g %J:5(x——y)5(t—-r)

44
;

Then when x,y — o, ¢’ — ¢, =constant and

_5g5¢+ ¢ 0gi

or 7/"1 ayi

=0

i ()= 5(x-2)5(1-7)

ag;’t - 0
or

which shows that g, satisfies the inhomogeneous wave equation

aZ a 62 a
_ g§4+c§ Eu

ot %,

5(x—y)-¥a—5(t~—z')

or

The relevant solution which satisfies the causality condition

g (p7

x,t)z()for i<t
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(A-5a)

(A-5b)

(A-5¢)

(A-6a)

(A-6b)

(A-6¢)

(A7)

(A-8)



1 8 |~ ]
“Ayrlx,t) =5 Tt + A-9
g44(yrx ) 4r|x - yle; o7 (T c, } (A-9)
So that when x =|x| — o
gZ4~>——-1———2-~—Q—5(1'-—ﬂ—t+3£—) (A-10)
drxc, Ot xc, IoN

Notice that the far field adjoint Greens’ function can be calculated directly by
allowing x= ]x} — o0 in {A-7). . Smoother boundary conditions can be obtained by

putting

a "
g44(y’flx’t)gmé“;(;4 (y,r x,t) (A-11)
which satisfies
62
(L. )y,, PR (y.7]x.2) =0 (A-12)
together with the smoother boundary condition
G:(yaT}X,t)*—)H(T—x'y~t+i} asxs]x]-—}oo (A-13)
xc, C,

where H denotes the Heaviside unit function. It may also be convenient to divide
the solution into incident and scattered components.
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