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Abstract

Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric
and material nonlinearities are presented. Two of the panels have variable stiffness layups where the
fiber orientation angle varies as a continuous function of location on the panel planform. One variable
stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform
thickness. The third panel has a conventional uniform-thickness [+45]gg layup with straight fibers,

providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite
element analyses including nonlinear material shear are first compared with material characterization test
results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis
models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric
imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their
cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural
analyses are then compared to the measured panel structural response. Good correlation is observed
between the analysis results and displacement test data throughout deep postbuckling up to global
failure, suggesting that nonlinear material behavior is an important component of the actual panel
structural response.

Introduction

The widespread use of polymer composite materials in aerospace vehicle structures has stimulated
concurrent development of sophisticated manufacturing technology for their fabrication. The introduction
of commercial systems for precise, repeatable placement of preimpregnated (prepreg) composite tows
marks a significant advancement in composite fabrication technology. One such advanced tow (or fiber)
placement system is Cincinnati Machine’s Viper FPS-3000 Fiber Placement System11 (Ref. 1). Advanced
tow placement systems like the Viper FPS are enabling technology which permit efficient fabrication of
advanced composite structures, defined here as structures where the fibers within a given ply may be laid
down following complex, curvilinear paths. The fiber orientation angle in advanced composite structures
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varies continuously both within each ply and throughout the structure, and fibers are not required to be
straight and parallel in each ply (as is the case for conventional composites). These advanced
configurations are often referred to as "variable stiffness" structures, since the laminate stiffnesses also
vary continuously across the structure planform.

Analyses performed in Refs. 2 and 3 suggest that variable stiffness panels subjected to in-plane loads
can be tailored to have much higher buckling resistance than equal-weight, conventional angle-ply
laminates made of the same materials. The structural response of variable stiffness panels with a
manufacturing constraint on fiber radius of curvature is evaluated in Ref. 4. The in-plane response of
symmetrically laminated variable stiffness laminates with regions of overlapping tow bands (generated by
placement of adjacent tows during the manufacturing process) is evaluated in Ref. 5. The overlapping
tow bands form local areas of increased thickness on the laminate that resemble discrete stiffeners, and
are more complicated to analyze than the constant-thickness laminates studied previously.

A convention for the definition of tow paths for rectangular variable stiffness panels, introduced in Ref. 2,
is used here. A reference tow path (shown as a bold line in Figure 1) is first defined which passes
through the panel geometric center. The fiber orientation angle of this tow path varies linearly over a
specified distance, measured from the panel center, in both directions along the Y-axis. The fiber
orientation angle ® for the reference tow path varies from 60 degrees along the panel axial centerline to

30 degrees along the panel edges 12 inches away. The additional tow paths shown in the figure are
generated by replicating the reference tow path in uniform increments in both directions along the panel
X-axis (£3.464 inches here), forming the complete variable stiffness ply.
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Figure 1. Variable stiffness ply tow path centerlines

The selection of one variable stiffness panel design for further study is presented in Ref. 6, along with
fabrication details for two first-generation panels made from AS4/977-3 prepreg tows. While both variable
stiffness panels have the same nominal [+45/(x®)4]g layup, one panel has overlapping tow bands of

varying thickness (see Figure 2), and is thus designated as the panel with overlaps. This asymmetric
panel differs from the structures described in Ref. 5 in that it is laid up on a flat tool surface, so all of the
overlaps are located on one side of the panel. The second variable stiffness panel uses the tow drop/add
capability of the tow placement system to generate a theoretically uniform thickness panel, denoted as
the panel without overlaps. A third conventional panel with a uniform thickness, straight fiber [+45]54
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layup is fabricated using the same materials and processes, and serves as the baseline for comparison
with the variable stiffness panel performance.
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Figure 2. Predicted laminate thickness for panel with overlaps

Additional fabrication issues for these variable stiffness panels are presented and discussed in Ref. 7,
along with a comparison of measured and predicted laminate coefficients of thermal expansion. A follow-
on study in Ref. 8 presents selected results from experiments performed to determine the structural
response of the variable stiffness and baseline panels under mechanical end shortening loads. Test
results are also compared therein with results from geometrically nonlinear structural analyses of the
variable stiffness panels with linear material behavior and both mechanical and thermal prestresses.
Excellent correlation is also observed between measured and predicted results for the baseline panel for
applied loads up to 8 kib.

Measured deflections and strains presented in Ref. 8 for the panel with overlaps agree well in the
prebuckling load range and near buckling with results from an analysis including mechanical prestresses.
These mechanical prestresses are generated by forcing the variable stiffness panels from their anticlastic
cured shape into their flattened test configuration in test fixtures. The poor correlation for the panel
without overlaps with mechanical prestresses in that study is believed to result from an error in the
imperfection model of the fixtured panel. The correlation in the deep postbuckling load regime becomes
worse as the loads and deflections increase, suggesting that the linear material model used in those
analyses may not be fully adequate for predicting the panel structural response.

Compression tests of angle-ply coupons reported in Ref. 9 show that fiber-dominated laminate stress-
strain relationships are typically linear, whereas laminates that carry loads in matrix shear have nonlinear
relationships. Since the variable stiffness and baseline panels in Refs. 7 and 8 have layups with fiber
orientation angles that vary between 30 and 60 degrees, nonlinear matrix shear behavior is thought to
have a significant effect on the panel structural response. Better correlation of analytical and measured
results may be possible if a nonlinear material model is used in conjunction with the geometrically
nonlinear structural analyses. The objectives of the present study are to model the structural response of
material characterization coupons and the variable stiffness and baseline panels including material
nonlinearities. This study is therefore an extension of Ref. 8, where results of structural analyses of the
variable stiffness and baseline panels with only geometric nonlinearities are presented.
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To achieve this goal, a simple material model that includes nonlinear material shear is first introduced.
Parametric structural analyses including this nonlinear shear response are performed and compared with
results of material characterization tests for two orthotropic laminates. This nonlinear material model is
then incorporated into finite element models of the variable stiffness and baseline panels. Measured
geometric imperfections and mechanical prestresses from the panel fixturing process are also modeled.
Results of these structural analyses including both geometric and material nonlinearities are presented
and compared with test data for the variable stiffness panels presented in Ref. 8.

Nonlinear material model and characterization

A nonlinear elastic material model for a composite ply developed by Hahn and Tsai (Ref. 10) is
implemented in the STAGS nonlinear shell analysis code (Ref. 11). The ply longitudinal and transverse
stress-strain responses in this model are both linear-elastic, while the in-plane shear strain is modeled as
a nonlinear-elastic, cubic function of the shear stress,

Y12= G127 1T12 + Sgees T12° (1).

The nonlinear shear coefficient Sgggg has units of (Ib/in2)'3 and is associated with the nonlinear shear
stress term in Equation 1.

Short-block material characterization tests (Ref. 9) are performed on [0/90]5g and [+45]55 coupons.

These test specimens, fabricated from AS4/977-3 graphite/epoxy prepreg, are cut from scrap material
surrounding the baseline panel. Linear material properties for an AS4/977-3 composite ply (Eq = 18.83

MIb/in2, Eo = 1.34 MIb/in2, v45 = 0.36 and Gqp = 0.74 Mib/in?), first reported in Ref. 7, are estimated

from inverse solutions using these orthotropic laminate test data since uniaxial laminates were not
available for testing. Structural analyses of these two cross-ply laminates including geometric and
material nonlinearities are performed and compared with test results. This comparison serves to
determine the validity of these nominal material properties, and also to estimate appropriate values of the
nonlinear shear coefficient Sgggg for use in structural analyses of the variable stiffness and baseline

panels.

Coupons with dimensions of 1.75 x 0.75 inches are instrumented with axial and transverse strain gages
located at the specimen center. Experimentally determined axial stresses for a representative test of a
[+45]55 laminate are plotted against the measured strains in Figure 3. The high degree of material

nonlinearity in this laminate is evident from the experimental results. A STAGS finite element model of

the material characterization test is then developed to predict the laminate response for integer values of
Se666-  The thin solid lines labeled Sgggg = 0 in Figure 3 are the results for a linear material model, and

show good correlation with the measured data up to about 10 klb/in2. Although they are modeled, no
geometric nonlinearities are noted in the responses. Predicted stress-strain curves for several nonzero
values of Sgggg are also shown in the figure as dashed lines, with the test data bounded by values of

See666 Petween 0 and 2 x 1014 (Ib/in2)'3.

The short-block compression test is also used to evaluate the axial and transverse strain response of a
[0/90]5¢ laminate in which minimal matrix shearing is expected. Measured axial stresses for this laminate
are plotted against the axial and transverse strains in Figure 4, with the transverse strain data multiplied
by a factor of ten for clarity. The strain responses of this laminate to the applied end shortening are mildly
nonlinear over the range of stresses plotted in the figure. The measured nonlinear behavior shown in the
figure is most likely due to the nonlinear transverse stiffness Eo of the composite ply, since the theoretical

shear strains are zero for this laminate.
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Figure 3. Axial stress vs. strain for [+45]54 laminate

The analysis model of the short-block test is then modified to represent the [0/90]5g laminate, and the
linear response for Sgggg = O is plotted against the test results in Figure 4. The predicted axial strain
response from this analysis with linear material properties compares well with the test data at applied

stresses up to 15 klb/in2, while the transverse strains agree well up to 50 klb/in2. Analytical results are
also generated for several nonzero values of Sgggg, but are not shown because they are identical to the

results for Sgggg = 0.
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Figure 4. Axial stress vs. strain for [0/90]5g laminate
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The correlation shown in these figures indicates that the linear ply material properties, computed from
laminate test data using inverse methods, are reasonable for predicting the initial structural response. No
single value of the nonlinear shear coefficient Sgggg provides good correlation across the entire range of

test data for the two laminates studied here. However, the test data are all well bounded by results from
the analyses with Sgggg = 0 and 2 x 1014 (Ib/inz)'3. Therefore, the nonlinear shear coefficient Sgggg
will be treated as a parametric term in the following analyses of the variable stiffness and baseline panels.

Panel with overlaps

Structural models of the variable stiffness panels that include the nonlinear material response are
generated using the STAGS analysis code. The finite element mesh for these 26 x 24.5-inch panels has
1520 elements and 1599 nodes, with additional mesh refinement provided around the strain gage
locations on the panel axial and transverse centerlines. Each finite element in the panel with overlaps
model has a unique layup and thickness. The laminate thicknesses assigned are shown in Figure 5, and
range from 20 to 36 plies (0.153 to 0.275 inches). While the level of refinement in this model is obviously
not as great as that shown in Figure 2, the tow overlaps and variable stiffness tow patterns are still
evident. Fiber orientation angles for the first variable stiffness ply of this model are illustrated in Figure 6,
with the discretization again apparent.

t, in.
0.153
0.161
0.169
0.178
0.186
0.194
0.202
0.210
0.218
0.226
0.235
0.243
0.251 X
0.259
0.267
0.275

Figure 5. Predicted laminate thickness for panel with overlaps analysis model

Measured geometric imperfections for the panel with overlaps without and with test fixtures are presented
in Refs. 7 and 8. Large imperfections in the unfixtured, cured variable stiffness panels required
development of special test fixtures to flatten these panels during test preparation. The resulting
mechanical prestresses are modeled in the finite element analyses by using applied normal
displacements to gradually flatten the variable stiffness panels from their anticlastic cured shapes into
their tested configurations. Boundary conditions representing the restraints of the attached structural test
fixtures are specified on the panel edges, then the applied end shortening is simulated by applying a
uniform axial displacement along the panel’s upper edge.

6
American Institute of Aeronautics and Astronautics



' Angle, deg.

! 31.1
32.9
34.8
36.6
38.4
40.3
42.1
44.0
45.8
47.6
49.5
51.3
531 X
55.0
! 56.8
\ 58.7

Figure 6. Fiber orientation angles for panel with overlaps analysis model
Axial and normal deflections

The predicted compressive load for the panel with overlaps subjected to applied end shortenings of up to
0.130 inches (the maximum measured value) is presented in Figure 7. The results of these geometrically
nonlinear analyses include the effects of the mechanical prestresses as well as the nonlinear material
model described above. Of the five curves in the figure, the curve labeled Sgggg = O is identical to the

results with the linear material model presented in Ref. 8. The predicted axial load is plotted against the
end shortening for three integer values of Sgggg to demonstrate the sensitivity of the predicted response

to increasing degrees of material nonlinearity. The measured panel response is also shown on the plot
as a thick solid line. The initial nonlinearity in the test set-up all occurs below 1500 Ib load. Between the
end shortenings corresponding to that load and panel failure, predicted axial loads from an analysis with

Se666 = 4 X 10714 (1b/in)-3 compare very well with the test data, with a root-mean-square (RMS)
difference of 2.2 percent.

The prebuckling axial stiffness K, and the transition load Py, (defined in Ref. 8 as the load when the linear
prebuckling load-end shortening curve first becomes nonlinear) are computed from the load-end
shortening curve with Sgggg = 4 X 10714 (Ib/in2)'3 and reported in Table 1. The predicted prebuckling

stiffness of 664.30 kib/in. is within 2.2 percent of the measured panel stiffness, and the transition load
from this analysis is 12.39 kIb, a 9.6 percent difference from the test result. The predicted axial load on
the panel is 42.89 klb at the 0.130-inch maximum applied end shortening, or a 4.3 percent difference from
the measured panel failure load of 41.07 kib.

Measured and predicted panel center normal deflections for the panel with overlaps are plotted against
the axial load in Figure 8. Only analysis results for Sgggg = 0 and 4 x 10714 (Ib/in2)'3 are presented here
for clarity. These normal deflections are defined as positive along the —Z-axis, since the panel center
moves in that direction with increasing load. The two predicted load-displacement curves diverge slowly
before panel buckling, then more rapidly as the load increases, demonstrating the increasing effect of
material nonlinearity on the panel response. Good correlation is observed in the figure between the
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measured and predicted deflections for Sgggg = 4 X 10-14 (Ib/in2)'3, with a difference between measured

and predicted normal deflections of 13 percent RMS. Panel normal deflection contours predicted using
that same value of Sgggg are shown in Figure 9 at an end shortening of 0.130 inches. These contours

appear more circular near the panel center, and as square contours with rounded corners towards the
edges of the panel.

60 —

o P
9 .
5 | -14
§ 86666’ x 10
(Ib/in?)°
0
20 - Ly
------- 2
ffffff 4
* Test
0 \ \ |
0 0.05 0.1 0.15
End shortening, in.
Figure 7. Load vs. end shortening for panel with overlaps
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Figure 8. Load vs. panel center normal deflection for panel with overlaps
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Figure 9. Predicted normal deflection contours for panel with overlaps

Axial and transverse strains

Predicted axial and transverse surface strains from a nonlinear analysis that includes mechanical
prestresses and Sgggg = 4 X 10714 (1b/in2)™3 are plotted with axial load in Figure 10 at the panel with

overlaps center. Also shown in the figure are the measured strain data from the panel test in Ref. 8.
Note that compressive strains are negative here. Very good correlation is observed between the
measured and predicted strains up to panel buckling, matching the agreement in prebuckling stiffnesses.
Although qualitatively similar, the quantitative differences increase in postbuckling, and range from 15 to
42 percent RMS overall. The qualitative correlation between measured and predicted strain data at the
other eleven gage locations on the panel with overlaps is assessed as good to excellent.

Predicted axial membrane strains (defined as the average of the front and back surface strains) along the
panel transverse centerline are plotted in Figure 11 at applied strains (defined as the average end
shortening divided by the nominal 26-inch panel length) of 0.059, 0.132, 0.257 and 0.461 percent. These
applied strains correspond to measured axial loads of 10, 20, 30 and 40 klb, respectively. Axial
membrane strains measured at those load levels are also plotted for comparison. Good agreement
between analysis and experiment is observed across the panel width at both 0.059 and 0.132 percent
applied strain, with differences of 13 and 16 percent RMS. Good qualitative correlation is also noted at
the higher applied strain levels, but a quantitative comparison shows differences of 28 and 46 percent
RMS. The best overall agreement between measured and predicted strains is achieved at gage location
11 near the right-hand simply supported panel edge, with a difference of 8 percent RMS over the plotted
load range.

The panel with overlaps analysis with nonlinear material response also gives highly accurate predictions
of the resulting axial load at a given applied strain. The analysis predicts a load of 10.23 klb at 0.059
percent applied strain, which is within 2.3 percent of the actual 10 kib load. The difference between the
predicted load of 41.10 klb and the measured 40 kib load at 0.461 percent applied strain is 2.7 percent.
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Figure 10. Load vs. strain at gage location 7 for panel with overlaps
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Figure 11. Transverse centerline axial membrane strains for panel with overlaps
Panel without overlaps

The structural response of the panel without overlaps with a nonlinear material model under uniform end
shortening is predicted and compared to test results from Ref. 8. The 20-ply laminate thickness of this
model is set equal to the average measured panel thickness of 0.149 inches from Ref. 7. While the
laminate thicknesses are all assumed to be uniform here, each element still has a unique layup. The fiber
orientation angles for the first variable stiffness ply of this model are shown in Figure 12, and provide a
good discretization of the continuous fiber orientation angles. However, tow drops (resin-rich pockets
located within the variable stiffness ply between successive passes of the tow placement system)
resulting from the panel manufacturing process are not modeled here.
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Figure 12. Fiber orientation angles for panel without overlaps analysis model

Axial and normal deflections

The response of the panel without overlaps finite element model including both mechanical prestresses
and a nonlinear material model is evaluated for applied end shortenings up to 0.163 inches, the maximum
value measured at global failure. The predicted axial load is plotted against the end shortening in Figure
13 for several integer values of the nonlinear parameter Sgggg, along with the test data (shown as a thick
solid line) from Ref. 8. At each end shortening increment with an axial load in excess of 1500 Ib, the
measured and predicted axial loads are compared. Predicted forces from a nonlinear analysis with

Se666 = 5 X 1014 (/b/in2)'3 show very good correlation with the measured results. A significant local

failure occurred at an end shortening of 0.143 inches, as indicated by the discontinuity in the measured
load-end shortening curve. Even including this discontinuity, the difference between the experimental
and predicted loads is only 1.9 percent RMS.

The predicted prebuckling axial stiffness K, and the transition load Py, for the panel without overlaps are

computed from the load-end shortening curve with Sgggg = 5 X 10714 (Ib/in2)'3 and shown in Table 1.

The analytical prebuckling stiffness of 540.82 klb/in. is within 1.1 percent of the measured stiffness
reported in Ref. 8. The predicted transition load is 8.39 klb, or a 9.1 percent difference from the
measured transition load. The predicted axial load at the maximum applied displacement is 29.95 klb for
this panel, which is a 6.3 percent difference when compared with the measured failure load of 28.13 kib.

Measured and predicted panel center normal deflections are plotted in Figure 14 for the panel without
overlaps with Sgggg = 0 and 5 x 10°14 (Ib/in2)-3. The two predicted displacement curves compare well
up through panel buckling, and then diverge as the load increases. Very good qualitative correlation is
observed between the test data and the predicted response for Sgggg = 5 X 1014 (Ib/in2)'3 up until the

discontinuity in the measured results just before global failure. The difference between measured and
predicted normal deflections is 25 percent RMS for end shortenings beyond the initial nonlinearity.
Predicted normal deflection contours from the analysis with material nonlinearity, shown in Figure 15 at
0.163 inches end shortening, appear more rectangular near the panel center than the contours predicted
for the panel with overlaps.
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Figure 13. Load vs. end shortening for panel without overlaps
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Figure 14. Load vs. panel center normal deflection for panel without overlaps
Axial and transverse strains

Measured and predicted surface strains at the center of the panel without overlaps are plotted against the
corresponding axial load in Figure 16. The analysis results include effects of the mechanical prestresses

and the nonlinear material response for Sgggg = 5 X 10-14 (Ib/in2)'3. As for the panel with overlaps, the

quantitative correlation of strains is excellent up through panel buckling, and then degrades with
increasing load. The differences between the measured and predicted strains range from 10 to 37
percent RMS. Evidence of the local panel failure near the maximum applied end shortening is also
reflected in discontinuities in the plotted strains. Qualitative comparisons of the test and analysis results
range from fair to excellent at the other nine gage locations on this panel.
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Figure 15. Predicted normal deflection contours for panel without overlaps
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Figure 16. Load vs. strain at gage location 7 for panel without overlaps

Predicted axial membrane strains along the panel transverse centerline are plotted in Figure 17 at 0.036,
0.074, 0.148, 0.261 and 0.425 percent applied strains. These applied strains correspond to measured
axial loads of 5, 10, 15, 20 and 25 klb. Axial membrane strains measured at these loads are also shown
for comparison. Correlation between the analysis and test results ranges from very good to excellent at
the two lowest applied strain levels, with differences of about 9 percent RMS. A qualitative comparison of
the membrane strains at the three higher applied strain levels ranges from very good to good along the
axial centerline and near the simply supported panel edges to fair at the two gage locations on either side
of the axial centerline, with computed differences between 14 and 34 percent RMS.
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Figure 17. Transverse centerline axial membrane strains for panel without overlaps

The analysis of the panel without overlaps with nonlinear material response again yields accurate
predictions of the axial load at any given applied strain. The analysis predicts a load of 5.12 klb at 0.036
percent applied strain, which is 2.4 percent lower than the measured 5 kib load. Near panel failure, the
predicted load of 24.96 kib at 0.425 percent applied strain is within 0.2 percent of the actual 25 klb load.

Baseline panel

A finite element model of the baseline panel with a [+45]gg layup is generated in STAGS. A 0.153-inch

laminate thickness (equal to the average measured thickness of the baseline panel reported in Ref. 7) is
assigned to each element in this analysis model. A mechanical prestress analysis is not performed for
this panel because the cured geometric imperfections are very small when compared to the variable
stiffness panels. However, measured geometric imperfections for the baseline panel in its structural test
fixtures are used for these analyses.

Results from structural analyses of the baseline panel including geometric and material nonlinearities are
compared with measurements taken during a baseline panel test to 0.252 inches applied end shortening,
at which point the axial displacement transducers reached their limits and the test was terminated. This
experiment is designated as the high-load test of the baseline panel to distinguish it from the test results
presented in Ref. 8.

Axial and normal deflections

Results from the baseline panel analyses with nonlinear material behavior are presented here. Figure 18
shows a comparison of the axial load-end shortening response of the baseline panel model for several
integer values of Sgggg. The measured response from a high-load test of the baseline panel is also

plotted as a thick solid line. For axial loads in excess of the initial test nonlinearity, measured and
predicted values are compared at each corresponding value of the end shortening. While the measured

responses differ at low loads, the predicted response for Sgggg = 2 X 10714 (1b/in?)"8 shows good

correlation with the test data for this panel, with a difference between measured and predicted loads of 10
percent RMS.

14
American Institute of Aeronautics and Astronautics



The predicted load-end shortening curve with Sgggg = 2 X 10°14 (Ib/in2)'3 is then evaluated to determine
the prebuckling axial stiffness K, and transition load Py, These values are compared in Table 1 with

corresponding results from the high-load test in Figure 18. The difference between the predicted
prebuckling stiffness of 502.57 kIb/in. and the measured panel axial stiffness is 25 percent, with a 26
percent difference between the predicted transition load of 3.69 klb and the measured value. Differences
between the high-load test results presented here and the test data in Ref. 8 are likely due to changes in
the material and boundary conditions from additional tests performed on the baseline panel. The
predicted axial load of 25.66 klb at the maximum applied displacement of 0.252 inches is within 0.8
percent of the 25.46 klb maximum load recorded during the high-load test.
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Figure 18. Load vs. end shortening for baseline panel

Baseline panel center normal deflections predicted from analyses with Sgggg = 0 and 2 x 10714 (Ib/in2)'3

are plotted against the corresponding axial load in Figure 19. The analytical load-displacement curves
match well up to about 10 kib, but then diverge as the load increases. Measured data from the high-load
test are also included for comparison. Good agreement is observed between the analysis results with

Se666 = 2 X 10714 (Ib/in2)'3 and the test data above 10 klb in the postbuckling load region, up to when

the panel center displacement transducer exceeds its linear operating range at approximately 23 kib. The
difference in normal deflections over the full range of end shortenings is 14 percent RMS. Predicted
normal deflection contours from this analysis, shown in Figure 20, are more elongated in the transverse
direction than the variable stiffness panel contours.

Axial and transverse strains

Predicted strains at the panel center from an analysis with Sgggg = 2 X 10714 (Ib/in2)'3 are plotted in

Figure 21 with measured strains from the high-load test. These results compare reasonably well on a
qualitative basis, but quantitative correlation ranges from fair to poor because of the highly nonlinear initial
strains measured in the high-load test. Differences between the measured and predicted strains range
from 24 percent RMS for the front axial gage to 1715 percent RMS for the back axial gage, while
correlation for the transverse gages ranges from 36 to 109 percent RMS. Qualitative comparisons of the
measured and predicted strains range from fair to very good at the other nine gage locations.
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Figure 19. Load vs. panel center normal deflection for baseline panel
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Figure 20. Predicted normal deflection contours for baseline panel

Predicted axial membrane strains along the panel transverse centerline at 0.054, 0.152, 0.270, 0.481 and
0.901 percent applied strains (corresponding to measured axial loads of 5, 10, 15, 20 and 25 klb) are
plotted in Figure 22. Measured axial membrane strains at those load levels are also plotted for
comparison with the analysis results. Correlation of analysis and test results in the figure ranges from 21
to 35 percent RMS across the range of applied strains. The results shown are qualitatively similar to the
corresponding plot for the panel without overlaps, but the peak strain amplitude is approximately two
times higher here.
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Figure 21. Load vs. strain at gage location 7 for baseline panel
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Figure 22. Transverse centerline axial membrane strains for baseline panel

The geometrically nonlinear analysis with nonlinear material response provides accurate predictions of
the axial load at higher applied strain levels. The present analysis predicts a load of 5.90 klb at 0.054
percent applied strain, a 17 percent difference from the measured 5 klb load. Near the end of the high-
load test, the predicted axial load of 25.04 klb at 0.901 percent applied strain is within 0.2 percent of the
measured load of 25 kib.

Concluding remarks

The STAGS analysis code is used to evaluate the structural performance of variable stiffness and
baseline panels including both geometric and material nonlinearities. Good correlation between
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experiments and analyses is demonstrated for the variable stiffness and baseline panels. The results
presented here and in Ref. 8 indicate that an assumption of linear material response is sufficient for
prebuckling and near-postbuckling analyses. However, nonlinear material behavior is an increasingly
critical part of the structural response for these panels during deep postbuckling and up to global failure.

It is difficult (if not impossible) to select an a priori value of the nonlinear shear parameter Sgggg for
design purposes. However, reasonable values of Sgggg may be estimated from analyses of material

characterization tests. Analytical studies that include the nonlinear material behavior can then be
performed to predict the structural response trends parametrically, and later matched to experimental
data from material characterization and structural tests. The analyses performed here show that values

of Sgeee between 0 and 2 x 10-14 (Ib/in2)'3 show good correlation with the material characterization

tests performed on two orthotropic laminates, and values between 2 and 5 x 10714 (Ib/in2)'3 result in
good correlation for the variable stiffness and baseline panels under end compression loads.

Further correlation of analytical and experimental results would require through characterization of the
AS4/977-3 material system in all directions, including determination of failure stresses and strains in
tension, compression and shear. This would also allow failure predictions to be made using the
progressive failure analysis capability in STAGS. A material model that includes the nonlinear transverse
response of a composite ply would also be desirable, although that effect will most likely be small
compared to that of the nonlinear shear behavior demonstrated here for these composite panels.
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Tables

Table 1: Predicted performance for variable stiffness and baseline panels.
Analyses with measured imperfections and geometric and material nonlinearity.

Prestress Panel with Panel without Baseline
case overlaps overlaps panel
Ko, klb/in Py, kib Ko, klb/in Py, kib Ko, klb/in Py, kib
None — — — — 502.57 3.69
Mechanical 664.30 12.39 540.82 8.39 - -
Test 649.86 13.64 534.76 9.19 392.39 2.83
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