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Impedances educed from a well-tested convected Helmholtz model are compared to that of a recently de-
veloped linearized Euler model using two ceramic test liners under the assumed conditions of uniform flow
and a plane wave source. The convected Helmholtz model is restricted to uniform mean flow whereas the lin-
earized Euler model can account for the effects of the shear layer. Test data to educe the impedance is acquired
from measurements obtained in the NASA Langley Research Center Grazing Incidence Tube for mean flow
Mach numbers ranging from 0.0 to 0.5 and source frequencies ranging from 0.5 kHz to 3.0 kHz. The unknown
impedance of the liner is educed by judiciously choosing the impedance via an optimization method to match
the measured acoustic pressure on the wall opposite the test liner. Results are presented on four spatial grids
using three different optimization methods (contour deformation, Davidon-Fletcher Powell, and the Genetic
Algorithm). All three optimization methods converge to the same impedance when used with the same model
and to nearly identical impedances when used on different models. An anomaly was observed only at 0.5 kHz
for high mean flow speeds. This anomaly is likely due to the use of measured data in a flow regime where
shear layer effects are important but are neglected in the math models. Consistency between the impedances
educed using the two models provides confidence that the linearized Euler model is ready for application to
more realistic flows, such as those containing shear layers.

Nomenclature
[4],{B} = finite element system matrix and vector of source effects, Pa
a,d = diameter and depth of the parallel cylindrical channels composing the test liner, m
c,k = ambient sound speed, m/s, and free space wave number, 1/m
F(Q) = wall error function, Pa?
f.o = source frequency, Hz, and angular frequency, s
H,W.L = height, width, and length of duct, m
I = +/—1, unit imaginary number
Li,1s = location of the leading and trailing edge of wall lining, m
M(x,y,z) = mean flow Mach number
My(x),M, = fully developed mean flow Mach number and centerline Mach number
Mye = average mean flow Mach number over three axial stations
N,nwall = order of [A] and number of lower wall measurement points
P T, p = mean flow pressure, Pa, temperature, K, and density, kg/m?
p = frequency domain acoustic pressure, Pa
0,y = dimensionless acoustic resistance and reactance normalized by pgco
t = tme,
u,v = frequency domain axial and transverse acoustic particle velocity, m/s
X0z = transverse, spanwise, and axial coordinate, m
C = 0+ iy, dimensionless acoustic impedance normalized by poco
{D} = vector of unknown node pressures, Pa
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Subscripts:

0 = mean flow quantity

exit = exit plane quanity

FEM, Meas = finite element computed and measured acoustic pressure
I = index of summation

ref = standard day condition at 295 K

s = source plane

c = centerline

Superscripts:

* = complex conjugate

I. Introduction

FFICIENT duct liners for broadband acoustic noise suppression remain critical to the development of environmen-

tally acceptable commercial aircraft. Previous experiments' have shown that significant changes in duct liner
impedance can occur as a result of grazing flow. Because of the need to better understand this phenomenon, NASA
Langley Research Center (LaRC) has invested a considerable effort into the development of convected Helmholtz
equation (CHE)?>~ and linearized Euler (LEE)® models to educe impedance in grazing flow. Although the CHE model
is restricted to uniform flow, the LEE model can account for the effects of the shear layer. In both models, the test
section in the LaRC 51x51 mm Grazing Incidence Tube (GIT) is used to acquire the acoustic and mean flow data
needed to educe the impedance of the test liner. Impedances educed using the CHE model have been extensively
reported®>™ and compare favorably to normal incidence impedance tube results at Mach zero. Inconsistencies in the
impedance educed from the CHE model have been observed at the lowest frequency (i.e., 0.5 kHz) at high mean flow
speeds. To date, no satisfactory explanation for this anomaly has been given.

In 2002, results from the CHE model were compared to results of methods used in various U.S. aeroacoustics
laboratories.® Impedance data comparisons acquired from this multi-laboratory study suggested the need to incorpo-
rate the shear layer and 3-D aeroacoustic effects into the impedance eduction methodologies. Subsequently in 2003, a
95-microphone window and improved mean flow suction devices were installed in the GIT? to obtain acroacoustic and
improved mean flow measurements for impedance eduction in 3-D sound fields with shear layers. In 2005, a model
was developed? for educing liner impedance using aeroacoustic and mean flow data obtained from the modified GIT.

Although the LEE model® can account for the shear layer, it has yet to be extensively validated even in uniform
mean flow. One would expect that impedances educed using the CHE and LEE models would be identical for the same
frequency, source condition, mean flow field, and liner. In addition, several time domain computational aeroacoustics
(CAA) models that are being developed to model the effects of duct liners have tended to use GIT data for validation
purposes.® ! Although these CAA models assume an anechoic (nonreflecting) termination, the suitability of this
assumption within the context of the GIT has not been determined. For example, if the CAA and GIT results show
significant differences in the frequency range where the GIT termination is not anechoic, it would be difficult to
determine whether such discrepancies were due to termination effects or other reasons. Educing the impedance with
the measured and nonreflecting termination and demonstrating that the educed impedance is minimally affected could
determine the suitability of using an anechoic boundary condition with GIT data.

This paper provides a description of one of the first applications of the LEE model to data acquired in the modified
GIT. GIT measurements obtained for ceramic tubular test liners are used to provide a “sanity check” on the LEE
model by showing that it reproduces the educed impedances of the more extensively tested CHE model in uniform
flow. The current research also provides an opportunity for the authors to showcase some recently developed tools that
significantly enhance the efficiency and accuracy of the impedance eduction methodology. Among these are a parallel,
sparse, equation solver (that significantly reduces the wall clock time and computer memory requirements) and the
Genetic algorithm (that adds increased robustness to the technique and renders it extremely attractive for massively
parallel computing architectures). These new tools are used to extensively probe the acoustic solution in the vicinity
of the duct wall and explain the anomaly in educed impedance at 0.5 kHz for high Mach number flows. To determine
whether an anechoic termination is a suitable assumption for validating CAA codes using GIT data, the impedance
educed using the measured termination is compared to that using an anechoic termination.
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II. Statement of Problem

IGURE 1 is a schematic of the modified LaRC GIT and Cartesian coordinate system used in this study. The source

and exit planes are located 203 mm upstream and downstream, respectively, of the leading and trailing edges of the
test liner. The 406 mm long test liner (L, — L; = 406 mm) is located on the upper wall of the GIT. The two sidewalls
and bottom wall of the duct are rigid and the test liner is assumed uniform and locally reacting with an unknown
dimensionless liner impedance, T. The cross section of the GIT is 51 mm in width and 51 mm in height. Although
the duct exit plane was designed to be anechoic, measurements show that reflections occur at sufficiently high mean
flow Mach numbers. To account for these reflections, the exit plane impedance is measured and used as input to the
impedance eduction method. It is assumed that the acoustic pressure field along the wall opposite the test liner is
known from the wall mounted microphones (provided, for example, by the 95-microphone window?). Finally there is
a steady, nonuniform, mean flow field that flows subsonically from left to right with mean flow Mach number, M, as
shown in Fig. 1. The problem at hand is to determine the unknown impedance, T, of the test liner in the presence of
the flowing fluid.

III. Duct Propagation Models

N this section a brief summary of two duct propagation models (the linearized FEuler equations and convected

Helmbholtz equation models) that are solved to educe the liner impedance is presented. The physical geometry (uni-
form cross section and test specimen, with rigid sidewalls) and restricted operational frequency range (f = 0.5—3.0
kHz) of the GIT, allow only two-dimensional acoustic disturbances to propagate. This situation is exploited by re-
stricting the analyses to two space dimensions. Only a summary of the relevant differential equations and boundary
conditions are presented. More detailed derivations may be found in any standard aeroacoustics text.

A. Linearized Euler Equations (LEE) Model

The governing differential equations for the 2-D LEE model are described by the 2-D linearized Euler equations
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where the acoustic disturbance is assumed to take place isentropically in an ideal gas and a time dependence of the form
€ has been assumed. Implicit in the above derivation is that the mean flow field is fully developed (i.e., My = Mp(x),
po=constant, Fp=constant, 7p=constant).

The proper forms of the boundary conditions have been well established. The wall impedance boundary condition
for a locally reacting impenetrable surface of arbitrary shape and mean flow has been presented by Myers'?

My d
poCov = (1 - z_ko d%) [g] “

where T = % along the rigid wall part of the GIT, and the unit normal vector to the duct wall is taken as positive when
pointing into the fluid. The original form of the above boundary condition contains wall curvature terms. However,
these curvature terms have been dropped because the walls in the GIT are considered straight. At the source plane, the
acoustic pressure and the transverse component of acoustic particle velocity are assumed known

p=ps(x),  v=vs(x) 5)

In general, when sound propagating through the duct reaches the termination located at z = L, a radiated and a reflected
wave field are produced. This effect is best modeled for an assumed plane wave source by the exit impedance boundary
condition

g = pocoLexit (6)
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Finally, the Myers boundary condition'? assumes the wall impedance is continuous along the liner. This assumption
is violated in the GIT due to the abrupt impedance change at the liner leading and trailing edge (see Fig. 1). The LEE
model therefore imposes continuity of the acoustic pressure and acoustic particle velocities at the leading and trailing
edge of the liner to ensure that the acoustic pressure and velocity field remains a continuum.

B. Convected Helmholtz Equation (CHE) Model

In the CHE model the mean velocity field is taken as constant (Mp(x)=constant) so that the acoustic pressure field in
the GIT is governed by the convected Helmholtz equation
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The sound source boundary condition is
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and the exit impedance boundary condition becomes
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Finally, the continuity of the acoustic pressure and its gradient at the leading and trailing edge of the liner is imposed to

ensure that the acoustic pressure field remains a continuum. Equations (7)-(10) are simply a restatement of Eqs. (3)-(6)
under the condition of uniform mean flow.

IV. Solutions to the LEE and CHE Models

NALYTICAL solutions for the sound field that satisfy the LEE and CHE models can be obtained only for certain
Asimpliﬁcd situations. Thus, one must resort to a numerical method that provides approximate, but acceptable
solutions. The numerical method chosen to obtain the solution to both models is the conventional finite element
method. Both models employ a rectangular element and a uniform mesh. Specific details of the numerical method
used in both models are described elsewhere.33 However, to make this text as self-contained as possible, a brief
summary of the numerical method for each model is presented.

The convected Helmholtz equation model uses cubic Hermite polynomial basis functions and a weak formulation
to satisfy the impedance boundary conditions. The LEE model uses linear polynomials for the basis functions and a
strong formulation is used to satisfy the impedance boundary conditions. The sound source boundary condition for
both models is implemented by constraining the nodal degrees of freedom at the source plane.

The application of the finite element method to both the CHE and LEE model results in a system of simultaneous
linear equations of the form

[Al{®} = {B} (11)

Options were made available to solve equation (11) using a direct sparse solver for the CHE model and the LAPACK
band solver for the LEE model (the sparse solver has not yet been implemented into the LEE model). Both solvers (the
direct sparse and LAPACK band solver) run in parallel. The solution for the vector, {®}, is obtained on the computer
platform Lomax. Lomax is an SGI ORIGIN 3000 computer platform with 250 GB RAM and 512 CPUs. Each CPU
runs at a speed of 600 MHz and uses the R14000 processor chip.

V. Impedance Eduction Technique
THL-: essential feature of the impedance eduction technique employed in this paper is the development of a general

purpose numerical procedure to determine the impedance that reproduces the known acoustic pressure field on the
wall opposite the test liner. If the CHE and LLEE model are indeed well-posed, then constructing a proof to show that
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the wall impedance of the test specimen is indeed an extrema of the wall error pressure function is relatively straight
forward. The procedure used here is to employ the wall error function

nwall

F(g) = IE [P(21,0) |rem —p(21,0) |veas) [P (27,0) [rent P*(27,0) [nveas) (12)
=

as an objective function and determine the unknown impedance such that this objective function is a minimum. The
above objective function may be interpreted as the difference between the measured and finite element computed
wall pressure opposite the test liner. Note that the proposed procedure is perfectly general and requires only that
the CHE and LEE formulation constitute a well-posed boundary value problem. Thus, nonuniform impedance and
flows containing shear layers are possible within the context of the current impedance eduction theory. The reader
is reminded, however, that the increased generality afforded by the current theory is partly mitigated by the need for
a fast and reliable equation solver (equation (11)) and a robust method (i.e., optimizer) for minimizing the objective
function.

VI. Optimization Techniques

N this section three numerical strategies are presented for determining the wall impedance that minimizes the ob-
chclivc function. The impedance of the test liner is assumed constant so that it consists of a two-parameter family,
T = 841iy. Thus, two parameters are free to vary in the optimization: the dimensionless acoustic resistance (6) and
dimensionless acoustic reactance ().

A. Contour Deformation Method (CDM)

The most reliable method for determining the minimum in the two-dimensional space defined by the uniform liner
is the contour deformation method. In this method the dimensionless resistance is plotted along the abscissa and the
dimensionless reactance is plotted along the ordinate. Wall pressure error contours then represent the locus of points
in the impedance plane yielding constant values of wall pressure error, /. These contours are then plotted using a
graphing package. The impedance of the test liner is easily shown to be the location of the center of the contour
with the smallest value of wall error. The CDM method is applicable only to a uniform impedance liner. It also has
the disadvantage that it is not only computationally expensive, but also labor intensive because a computer-graphics
program must be used to map the contours for each frequency and mean flow Mach number. Therefore, two alternative
numerical approaches for obtaining the minimum of the wall pressure error function are presented in this paper. These
two alternative approaches are more automated and less labor intensive than the contour deformation method. They
are also applicable to variable impedance liners.

B. Stewart’s Adaptation of Davidon-Fletcher-Powell (SDFP) Method

The first alternative approach to CDM is the Stewart’s adaptation of Davidon-Fletcher-Powell optimization method.®
The SDFP is representative of a general class of numerical algorithms known as descent methods. Its defining feature
is that the impedance at the minimum point is obtained by iteration with the gradient of the objective being computed
numerically by a finite difference approximation. It consists of a process for which the impedance is modified at
each cycle of the iteration so that the objective function decreases in value. The iterative process is repeated until
convergence to the minimum is achieved to within a specified tolerance. The SDFP combines the best features of
steepest decent (good performance if an initial value of the impedance is not close to the minimum point) and Newton’s
method (rapid convergence if the initial value of impedance is close to the minimum point). The SDFP is generally
considered to be a fast, reliable, optimization method and is expected to work well on the objective function used in
this report.

Although the convergence is usually rapid, the SDFP algorithm as applied in this paper has the disadvantages of
requiring both an initial starting location for the impedance and the computation of the gradient of /. In general, the
SDFP will locate only local minima. Thus, if the problem has multiple local minima, different initial values of the
impedance may iteratively converge to different local minima. Also, when the minimum is located on a relatively flat
surface in the function space, the educed impedance may vary because of differences in the convergence tolerance and
the direction from which the minimum is approach. Finally, the SDFP is a sequential algorithm that scales poorly on
massively parallel computer architectures such as Lomax.
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C. Genetic Algorithm (GA)

The second alternative optimization algorithm to the CDM is the Genetic algorithm.'* The GA is inspired by Darwin’s
theory of evolution. Solution for the minimum point using the GA uses an evolutionary process. The algorithm begins
with a randomly chosen set of liners called the initial population. The liners from the initial population are taken and
used to form a new population of liners. Selection of the new population is motivated by the expectation that the new
population will be better (i.e., have a smaller value of wall error) than the old population. Liners that are selected
to form the new population (called the offsprings) are therefore selected according to their fitness (i.e., the value of
F' they produce)- the more suitable they are the more chances they have to reproduce. This reproductive process is
repeated for a number of generations or until the condition, /' is a minimum, is satisfied within some tolerance.

In contrast to the SDFP, the GA does not require calculation of the gradient of the objective function, nor does it
require an initial starting value for the impedance. Furthermore, the GA is a search method that searches the design
space for a global minimal point. Thus, the principal drawback of the GA is that many more function evaluations are
required when compared to that of SDFP. However, this is more than mitigated by the fact that the Genetic algorithm
is highly scalable on massively parallel computing architectures and is normally run in parallel. A more complete
description of both the SDFP and GA is beyond the scope of this paper. For a more comprehensive description of both
automated search algorithms used in this paper, readers may consult Refs. 13 and 14.

VII. Test Liners and Mean Flow Conditions

N this paper impedances are educed for a CT65 and a CT57 ceramic tubular test liner. These two test liners are not
Ilypica] of the cavity-backed, perforated face sheet construction presently used for noise abatement. They are chosen
because their resistance is dominated by internal fluid viscosity and is thus very insensitive to sound pressure level
and mean flow effects, and their impedance spectra vary over a range typical of liners used in aircraft engine nacelles.
Figure 2 is a schematic of the CT65 and CT57 ceramic liners. The CT65 liner consists of “sinusoid-shaped” parallel
channels embedded in a ceramic matrix. These 77.5 mm-deep channels, with equivalent circular diameters of 0.76
mm, run perpendicular to the exposed surface and provide a surface porosity of 65 percent. The CT57 liner consists
of a ceramic structure of parallel, cylindrical channels, embedded in a ceramic matrix. The channels are 85 mm deep
(d = 85.0 mm) and run perpendicular to the exposed surface. The diameter of the cylindrical channels, a, is chosen
to provide a surface porosity of 57 percent. For both liners, each channel is rigidly terminated such that it is isolated
from its neighbor to ensure a locally reacting structure.

The impedance of each ceramic liner is educed at frequencies for which only the plane wave mode is cut on in the
hard wall sections of the GIT. Results are computed for source frequencies ranging from 0.5 to 3.0 kHz in increments
of 0.5 kHz and centerline Mach numbers, M., of 0.000, 0.100, 0.200, 0.300, 0.475. A major complication in using
GIT data is that in reality the flow contains a shear layer. Therefore, detailed mean flow profiles were acquired at three
axial locations (z=203 mm, z=356 mm, and z=559 mm) and numerical integration was used to compute an average
Mach number at each of the three selected axial planes. Finally, the average Mach number for each of the three axial
planes were averaged together to obtained a “smeared” average Mach number, M., that is used as the uniform flow
Mach number for CHE and LEE model. The average Mach number, dimensionless mean pressure, dimensionless
mean temperature, and dimensionless mean density measured in the GIT are given in table 1 for each centerline Mach
number, M,.. The mean condition given in table 1 have been nondimensionalized with the constant mean conditions
used in Ref. 15. Note that the measured values of mean pressure, mean temperature, and mean density varies somewhat
with the centerline Mach number. This contrasts with the assumption used in Ref. 15 for which it was assumed that
To = Trey = 295.0 K, Py = Prey = 101325.0 Pa, and po = prer = 1.2 kg/n.fB, In the result section, a comparison is
given of the impedance educed using both the variable mean conditions (table 1) and the constant mean conditions of

Ref. 15.

VIII. Optimization Parameters

OR each set of mean flow conditions the impedance is educed using both models (i.e., CHE and LEE model) and

all three optimization techniques (contour deformation (CDM), Stewart’s adaptation of Davidon-Fletcher-Powell
(SDFP), and the Genetic algorithm (GA)). Although a full description of all parameters used in each optimization
method is beyond the scope of this paper a summary of salient features used in each method are summarized below:
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CDM Method

1. A 201x101 evenly spaced impedance grid with an increment spacing of 0.05 (A8 = 0.05) on the dimensionless
resistance axis and 0.1 (Ay, = 0.1) on the dimensionless reactance axis

2. Application of Tecplot (version 10) as the graphing package to determine the center of the contour containing
the smallest value of

SDFP Method
1. No constraints on the dimensionless resistance and reactance
2. A central difference approximation to the gradient of I
3. Aninitial impedance of T =2.0—1.0i
4. A tolerance of 1078 as the stopping criteria
GA Method
1. Parallel function evaluations

A population density of 100 liners for each generation

woon

An evolutionary process using tournament style selection and uniform crossover

=

Creep and jump mutations

W

An elitist strategy
6. Constraints on the dimensionless resistance and reactance (0.0 < 6 < 10.0,—10.0 <y < 10.0)

7. Termination of the evolutionary process after 100 generations

IX. Results and Discussion

N this section solutions obtained for the unknown impedance from the LEE model are compared to those of the

more extensively tested CHE model for the range of frequencies and centerline flow Mach numbers for which
measurements in the GIT could be obtained. Impedances are educed using each of the three optimization methods
for an assumed plane wave source using the measured termination impedance. One issue which one must come to
grips with in this section is how to present the large number of results (two liners, three optimization techniques, four
meshes, six frequencies, and six mean flow Mach numbers). Thus, 864 optimization runs were acquired and only a
selected number of these results can be presented. To better accommodate the massive number of optimization runs,
results are presented in tabular instead of graphical formats. Graphical formats are presented only in a few selected
cases for which a graph is appropriate.

A. Parallel Solver Statistics

Impedances educed for both the CHE and LLEE models are obtained on a 65 x 11 baseline finite element mesh
(Az= 13 mm, and Ax = 5mm). A mesh refinement study is also conducted on three additional meshes to ensure
that the educed impedance has converged. The second mesh was obtained by doubling the density of the baseline
mesh, the third by doubling the density of the second mesh, and fourth by doubling the density of the third mesh.
Thus, the finest mesh has a density eight times finer than the baseline mesh. This subsection presents results from the
part of the study concerning solver wall clock time (because Lomax contains 250 GB of RAM, memory requirements
was not an issue).

Table 2 shows the wall clock time in seconds, parallel speedup, and efficiency required to solve the finite element
matrix equation (see Eq. (12)) for the sparse and LAPACK band solvers on the smallest mesh. Recall that the CHE
model employs the parallel sparse solver, whereas, the LEE model employs the parallel LAPACK band solver. Al-
though the matrix for the sparse solveris 25 percent larger (N = 166,212) than that of the LAPACK solver (N = 124,659),
the sparse solver obtains the solution using considerably less wall clock time. Note also that the parallel LAPACK
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solver uses almost fifty percent more wall clock time on 64 CPUs than on 4. Similar statistics for the parallel speedup
and parallel efficiency are also given in the table. The reference timing for computing the parallel speedup is that
required to solve the matrix equation on 4 CPUs (CPUs on Lomax are only allocated in multiples of 4). Note that
parallel speedup is obtained for the LAPACK band solver on up to 16 CPUs, whereas, for the sparse solver the parallel
speedup is obtained on at least 64 CPUs. Generally speaking, a parallel code is said to be efficient if it runs at 60
percent efficiency or more. Applying this rule of thumb to statistics given in table 2, the parallel solvers run efficiently
on up to 8 CPUs. However, since both solvers show parallel speedup (i.e., reduction in wall clock) on as many as
16 CPUs, it is reasonable to run both solvers on as many as 16 CPUs to obtain speedup although they would not be
running most efficiently. This strategy (running each solver on 16 CPUS) was employed in results obtained in this
paper.

In the foregoing paragraph, the statistics related to the parallel equation solvers were discussed. However, for a
chosen mesh, the efficiency of the impedance eduction technique depends not only on the choice of solver but also
upon the choice of a model. Results in this work show that the CHE model is considerably more efficient in educing
the impedance on all four meshes than LEE. This result may reflect the fact that the CHE model has a higher order
element (cubic basis functions) than the LEE model (linear basis functions). For example, on the smallest mesh, the
average wall clock time to educe the impedance (for each frequency and Mach number) using SDFP and the CHE
model was 10.4 5. On the other hand, the average wall clock time required by SDFP using the LEE model was 17.4 s.
Reduction in wall clock time on the smallest mesh was much more dramatic for the CHE when compared to that of
the LEE model. The average wall clock time to educe the impedance (for a single frequency and Mach number) on the
smallest mesh using SDFP with the CHE model was only 1,004 s, whereas, the LEE model required 10,228 s of wall
clock time on this mesh. It was also observed that on the smallest mesh the CHE model consumed 1.17 GB of RAM
compared to 1.73 GB for the LEE model. Such large reduction in wall clock time of the CHE model when compared
to that of the LEE model cannot be explained by the differences in the efficiency of solvers alone, because each solver
was run on 16 CPUs.

B. Performance of Automated Optimizers

Two different automated optimization algorithms (i.e., GA and SDFP) are used to educe the impedance of the test liner.
The performance of the GA and SDFP on the baseline grid for the CHE model is now presented. Although results
presented here are for the CT57 liner at Mach 0.255, they are representative of results obtained over the full range of
Mach numbers and liners. Figure 3 shows the performance of SDFP for each frequency. Note that SDFP converges in
seven to nine iterations with better performance at the higher frequencies. The wall error function at the anti-resonant
frequency (2.0 kHz) is extremely flat and SDFP is known to be deficient on flat surfaces.'® Because SDFP use central
differences to approximate the gradient of the objective function, approximately nine wall error function evaluations
are required per iterations. Thus, the time equivalent of 56 to 81 equation solves are required before SDFP converges.

The Genetic algorithm performance study is presented in Fig. 4. Recall that each population in the GA consists of
100 oftsprings. Therefore, the y axis value in Fig. 4 is the wall error corresponding to the offspring with the smallest
wall error in the population. Note that the GA converges in ten generations or less and that progress in the minimization
of the objective is extremely rapid over the first few generations. Further, the wall clock time required to compute a
GA generation is approximately equal to that required to perform an equation solve. It should be also be noted that
just as with SDFP, the performance of the GA is better at the higher frequencies (for example, the GA has converged
in two generations at 3.0 kHz).

Generally speaking, in optimum design studies on parallel computing architectures, the most important metric is
the wall clock time required to obtain the optimum point. Thus, optimization algorithms that minimize the wall clock
time are normally preferred. Figures 3 and 4 provide insights as to which of the automated optimization algorithms
returns the educed impedance within the smallest wall clock time on Lomax. Note that the GA returns the optimum
point in a wall clock time that is nearly an order of magnitude less than SDFP. On the other hand, the GA could not
be run in parallel on a sequential computing platform and would require 20% more wall clock time than the GA on a
sequential computer platform.

C. Infinitely Long CT6S Liner Results

In the first example, the LEE model is validated in a 51-mmx51-mm duct for an infinitely long CT635 liner, for which
the exact zero flow impedance was known from normal incidence impedance tube measurements. For simplicity,
attention is focused only on downstream propagation of the lowest order mode in the infinite duct. Source plane data,
exit impedance, and lower wall acoustic pressure data required to educe the impedance is synthesized from the exact
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mode solutionin an infinitely long duct. Figure 5 compares the dimensionless impedance educed using the CHE model
with the exact values using SDFP. Results are plotted on a dual axis system with resistance plotted along the y1 axis
and reactance along the y2 axis. Because the CHE model educed the same impedance for each Mach number on each
of the four meshes, only a single curve is shown. The numerically educed impedance from SDFP is in full agreement
with the exact value. SDFP results using the LEE model were also computed on each mesh, and results are given in
table 3. Good agreement between the exact and educed impedances for each mesh is observed, with one exception.
The baseline mesh (i.e., the coarsest mesh) has not converged to the correct impedance. This simply reflects the fact
that the baseline mesh is too coarse for the impedance eduction process to be accurate.

Before proceeding to the next example, it is worth noting that the Genetic algorithm and the contour deformation
method were applied to the infinitely long CT65 data. The educed impedances are not presented for the sake of
brevity. However, the educed resistance and reactance from these two optimization algorithms were in agreement with
that obtained by SDFP to within £0.05.

D. Finite Length CT57 Liner

In this second example the impedance of the CT57 liner is educed using test data acquired at 140 dB reference sound
pressure level in the GIT with the test liner installed. This example allows one to evaluate the models in the presence
of real test data, with abrupt transitions at the leading and trailing edge of the liner. Educed resistances for the CT57
liner on the second mesh are given in table 4, and the corresponding reactances are given in table 5. The coarsest
mesh results did not converge for the LEE model, but the second, third, and fourth mesh converged to nearly identical
impedances. Therefore, only second mesh results are presented in the table (the CHE model converged for all meshes).
Educed impedances are given for both the convected Helmholtz and the linearized Euler models and for each of the
three optimization techniques. Results computed in Ref. 15 are also presented in the table. Recall that the Ref. 15
results assumed the same set of mean conditions (7o = e, Fo = Fref, and po = prey) for each mean flow Mach number.
However, table 1 shows that these mean conditions change with the centerline Mach number.

Several observations are noted from the CT57 educed impedances tabulated in tables 4 and 5. Note that for each
optimization method, the convected Helmholtz and Linearized Euler model educe essentially the same resistance and
reactance at each frequency and flow Mach number with one exception. The two models educed different impedances
at 0.5 kHz for high Mach numbers. This anomaly has been reported in previous papers and for different liners. It shows
up here for the CT57 liner in the frequency and Mach number range (i.e., low frequency and high Mach number) for
which shear layer effects are generally thought to be most important. Note also that the 0.5 kHz anomaly is not
present at low Mach number and becomes more and more dominant as the flow speed increases. Another important
observation is that the results of Ref. 15 agree with results in this paper except where the anomaly occurs (i.e., 0.5
kHz and high Mach number) and the anti-resonant peak (i.e., 2.0 kHz).

Figures 6,7, 8, and 9 show contour maps of the reciprocal of the wall error function (1/F) at 0.5 kHz for increasing
flow speeds. The contour maps were produced from the convected Helmholtz model. Note that at zero Mach number
(Fig. 6) the contour map has a unique, clearly defined eye that contains the maximum of 1/F (i.e., the minimum of F’).
As Mach number increases (Fig. 7, 8, and 9) the eye becomes more and more diffused and the surface in the vicinity
of the minimum is extremely flat with a diameter of approximately 1.2 pgcg at the highest Mach number. Thus, errors
in educed dimensionless resistance and reactance of 1.2 would not be unusual at this frequency. In all likelihood, the
0.5 kHz contours at the high Mach numbers are non-physical and probably generated by the absence of the shear layer
that should be included in future computations.

The effects of the duct termination on the educed resistance and reactance of the CT57 liner are given in table 6a
and 6b, respectively. Here the CHE model was used to evaluate the effects of the measured termination and for an
assumed anechoic termination using SDFP. Results in the table were computed on the second mesh. It is clear from
these computations that both terminations give nearly identical educed impedances except at high Mach number near
the sharp anti-resonant peak. Results similar to those of table 6 were found for the LEE model.

Concluding Remarks

This paper has presented a comparison of the impedances educed from a linearized Fuler model to that of a well-
tested convected Helmholtz model, under the assumption of a uniform mean flow field and a plane wave source.
Test data was acquired from ceramic tubular test samples installed in the NASA Langley Grazing Incidence Tube.
Impedances were educed using three search techniques (the contour deformation method, Stewart’s adaptation of the
Davidon-Fletcher-Powell method, and the Genetic Algorithm) for the range of frequencies and centerline Mean flow
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Mach numbers for which data consistent with the plane wave assumption could be acquired. The principal findings of
this paper are

1. All three optimization techniques consistently converged to the same impedance for all frequencies and average
flow Mach numbers when used with the same model.

2. Nearly identical impedances are obtained from the two models, with the exception that different impedances
were educed at 0.5 kHz at high mean flow speeds.

98]

. The use of an anechoic termination with measured data in the NASA Langley Grazing Incidence Tube is valid
except near a sharp anti-resonant peak.

Consistency between the impedances educed using the two models also provides confidence that the linearized Euler
model is ready for application to more realistic flows, such as those containing shear layers. Finally, because the 0.5
kHz anomaly occurs at low frequency where the shear layers is known to be important, it is likely due to absence of
the shear layer.
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Tables and Figures

Table 1. Measured Mean Flow Condition in the GIT
(Tref = 295.0 K, Prey = 101325.0 Pa, and p.p = 1.2 kg/m?)
M, Maye PO/Pref Tﬂ/ﬂef pﬂ/pref
0.000 | 0.000 | 1.003 1.002 1.001
0.100 | 0.079 | 0.982 1.006 0.976
0.200 | 0.172 | 1.021 1.004 1.017
030 | 0.255 | 1.061 1.005 1.056
0.400 | 0335 | 1.130 1.001 1.129
0475 | 0400 | 1.129 1.004 1.125

Table 2. Sparse and LAPACK Solver Statistics for the Solution of [A]{®} = {B} on the Finest Mesh

Number Sparse LAPACK Sparse LAPACK Sparse LAPACK
of CPUs | Wall Clock Wall Clock Speedup Speedup Efficiency Efficiency
N=166,212 | N=124,659 | N =166,212 | N = 124,659 | N =166,212 | N = 124,659
4 36s T4s 1.00 1.00 100% 100%
8 28 s 60 s 1.29 1.23 65% 62%
16 26s 65s 1.35 1.14 34% 29%
32 27s T7s 1.33 0.96 17% 12%
64 32s 108 s 1.13 0.68 7% 4%
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Figure 1. Schematic of LaRC’s Grazing Incidence Tube.
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Ceramic tubular core
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Figure 2. Schematic of ceramic tubular test liners.
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Table 3. SDFP educed impedance from LEE Model for CT65 liner

Mge | f,kHz Exact Mesh 1 Mesh 2 Mesh 3 Mesh 4

0 % 0 % 0 % 0 % 0 %
0.000 05044 | -066 | 045 ] -065 | 044 | -0.66 | 0.44 | -0.66 | 0.44 | -0.66
0.079 05| 044 | -066 | 047 | -065 | 045 | -0.66 | 045 | -0.66 | 0.44 | -0.66
0.172 05| 044 | -066 | 049 | -065 | 046 | -0.66 | 045 | -0.66 | 045 | -0.66
0.255 05| 044 | -0.66 | 060 | -0.71 | 048 | -0.69 | 044 | -0.62 | 045 | -0.65
0.335 05| 044 | -0.66 | 030 | -090 | 0.56 | -0.72 | 047 | -0.67 | 045 | -0.66
0.400 05| 044 | -066 | 052 ] -051 | 048 | -0.63 | 046 | -0.65 | 045 | -0.65
0.000 1.0 | 040 | -0.61 | 042 | -0.57 | 040 | -0.60 | 040 | -0.61 | 040 | -0.61
0.079 1.0 | 040 | -0.61 | 045 | -0.59 | 043 | -0.61 | 041 | -0.61 | 040 | -0.61
0.172 1.0 | 040 | -0.61 | 048 | -0.59 | 043 | -0.61 | 042 | -0.61 | 041 | -0.61
0.255 1.0 | 040 | -0.61 | 0.52 | -0.60 | 045 | -0.59 | 042 | -0.60 | 041 | -0.61
0.335 1.0 | 040 | -0.61 | 063 | -0.52 | 045 | -0.57 | 043 | -0.59 | 040 | -0.61
0.400 1.0 | 040 | -0.61 | 047 | -047 | 049 | -0.60 | 043 | -0.59 | 041 | -0.60
0.000 151063 | 248|067 | 245|064 | 248 | 063 | 248 | 0.63 | 248
0.079 1.5/063 | 248|064 | 246 | 062 | 248 | 063 | 248 | 0.63 | 248
0.172 151063 ] 2481059 | 249|059 | 249|061 | 249 | 0.62 | 248
0.255 151063 | 248061 | 249|059 | 250 | 060 | 249 | 0.61 | 249
0.335 151063 | 248|057 | 251|057 ] 250|060 | 249 | 0.61 | 249
0.400 1.5/063 | 248053 | 253|055 251|058 | 249 0.60 | 248
0.000 201073 | -147 | 080 | -139 | 074 | -146 | 073 | -147 | 073 | -147
0.079 201073 | -147 |1 089 | -139 | 077 | -145 | 075 | -146 | 074 | -147
0.172 201073 | -147 | 097 | -136 | 080 | -145 | 077 | -146 | 075 | -1.46
0.255 201073 | -147 | 105 ] -134 | 083 | -144 | 078 | -1.45 | 076 | -1.46
0.335 201073 | -147 | 1.17 | -1.26 | 086 | -143 | 0.79 | -1.45 | 0.76 | -1.47
0.400 201073 | -147 | 1.18 | -130 | 1.04 | -1.539 | 0.72 | -1.47 | 075 | -148
0.000 251045 ] 017047 | 013 | 045 ] 0.17 | 045 | 0.17 | 045 | 0.17
0.079 251045 ] 017|047 | 015|046 | 0.18 | 045 | 0.17 | 045 | 0.17
0.172 251045 ] 017047 | 017 | 046 | 0.18 | 045 | 0.18 | 045 | 0.17
0.255 251045 ] 017|047 | 018 | 045 | 0.18 | 045 | 0.18 | 045 | 0.17
0.335 251045 ] 017047 | 019 | 080 | -1.60 | 045 | 0.18 | 045 | 0.17
0.400 251045 ] 017049 | 020|045 | 0.19 | 045 | 0.18 | 045 | 0.18
0.000 30049 ] 130|045 083 | 054 | 122050 | 129|049 | 130
0.079 30049 ] 130052 095|053 | 127049 | 131|049 | 130
0.172 30049 ] 130|067 | 102|035 122|048 | 131|048 | 131
0.255 30049 ] 130|056 | 109 | 045 | 132|046 | 131 | 048 | 131
0.335 30049 ] 130050 | 103 | 046 | 132|046 | 132|047 | 131
0.400 301049 130|047 | 104 | 046 | 133 | 040 | 132 | 047 | 131
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Table 4. Educed Resistance for the CT57 Liner on the Second Mesh

Mae | f,kHz Convected Helmholtz Linearized Euler

GA | SDFP | CDM | Ref. 15| GA | SDFP | CDM
0.000 0.5 ] 0.55 0.53 0.53 0.58 | 0.55 0.53 0.53
0.000 1.0 | 0.47 0.49 0.48 049 | 047 0.49 0.49
0.000 1.5 ] 1.18 1.16 1.15 1.12 | 1.18 1.16 1.15
0.000 201 512 5.12 5.10 475 | 5.04 5.08 5.09
0.000 2.5 1.50 1.47 1.48 1.49 | 1.50 1.47 1.45
0.000 3.0 071 0.75 0.74 0.74 | 0.71 0.75 0.75
0.079 0.5 ] 071 0.71 0.71 0.77 | 0.63 0.63 0.66
0.079 1.0 | 0.39 0.40 0.41 0.39 | 0.47 0.44 042
0.079 1.5 | 1.10 1.08 1.09 1.00 | 1.10 1.09 1.07
0.079 2.0 | 4.09 4.10 4.08 3.69 | 4.09 4.12 4.11
0.079 25| 142 1.38 1.37 145 | 142 1.38 1.39
0.079 3.0 071 0.70 0.71 0.68 | 0.71 0.72 0.71
0.172 0.5 | 0.63 0.79 0.80 0.85 | 0.63 0.63 0.62
0.172 1.0 | 032 0.33 0.34 033 | 0.39 0.41 043
0.172 1.5 | 1.26 1.26 1.26 1.22 | 1.26 1.27 1.25
0.172 2.0 | 496 494 | 496 475 | 496 4.95 4.94
0.172 25| 1.10 1.11 1.10 1.15 | 1.10 1.12 1.11
0.172 3.0 079 0.81 0.80 0.79 | 0.87 0.83 0.85
0.255 0.5 | 0.63 0.62 0.63 0.64 | 0.47 045 0.47
0.255 1.0 | 0.24 0.27 0.26 0.27 | 0.39 0.39 0.40
0.255 1.5 | 1.26 1.24 1.24 1.18 | 1.26 1.23 1.22
0.255 2.0 | 535 533 5.32 531 | 535 535 533
0.255 2.5 094 0.97 0.99 1.02 | 0.94 0.98 1.00
0.255 3.0 0.79 0.76 0.75 0.67 | 0.79 0.78 0.80
0.335 0.5 | 0.71 0.69 0.70 0.70 | 0.32 0.03 0.31
0.335 1.0 | 0.24 0.20 0.20 0.20 | 0.39 0.36 0.38
0.335 1.5 ] 1.18 1.19 1.20 1.19 | 1.18 1.17 1.18
0.335 2.0 | 457 4.60 4.59 481 | 4.17 4.20 4.19
0.335 2.5 094 0.91 0.90 092 | 0.87 0.90 0.93
0.335 3.0 | 071 0.73 0.72 0.72 | 0.79 0.77 0.78
0.400 0.5 0.87 0.86 0.88 0.88 | 0.47 0.01 0.47
0.400 1.0 | 0.08 0.07 0.05 0.07 | 0.32 0.30 0.29
0.400 1.5 ] 1.26 1.26 1.27 1.23 | 1.34 1.32 1.30
0.400 20| 244 2.47 2.45 277 | 244 241 2.40
0.400 251 079 0.80 0.79 0.84 | 0.79 0.78 0.79
0.400 3.0 0.79 0.75 0.76 0.66 | 0.79 0.78 0.79
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Table 5. Educed Reactance for the CT57 Liner on the Second Mesh

Mae | f,kHz Convected Helmholtz Linearized Euler

GA | SDFP | CDM | Ref. 15 GA | SDFP | CDM
0.000 05| -174 | -1.70 | -1.70 -1.74 | -1.69 | -1.70 | -1.69
0.000 1.0 | 0.12 0.13 0.13 0.13 | 0.12 0.13 0.13
0.000 1.5 ] 1.29 1.28 1.27 1.29 1.27 1.28 1.27
0.000 20| 0.90 0.88 0.88 0.81 | 096 0.85 0.84
0.000 25| -161 | -1.59 | -1.58 -1.59 | -1.61 | -1.58 | -1.59
0.000 30| -020| -0.18 | -0.19 -0.19 | -020 | -0.19 | -0.18
0.079 05| -158 | -1.55| -1.55 -1.58 | -1.61 | -1.59 | -1.58
0.079 1.0 | 0.04 0.08 0.09 0.08 | 0.04 0.07 0.08
0.079 1.5] 1.29 1.27 1.28 126 | 1.22 1.24 1.22
0.079 20| 0.98 1.00 0.98 1.17 | 0.90 0.92 0.91
0.079 25| -145 | -148 | -1.47 -145 | -145 | -147 | -146
0.079 3.0 -027 | -026 | -0.26 -0.28 | -027 | -026 | -0.27
0.172 05| -1.50 | -149 | -1.49 -1.50 | -1.61 | -1.63 | -1.62
0.172 1.0 | 0.20 0.17 0.16 0.17 | 0.12 0.15 0.15
0.172 1.5] 1.29 1.31 1.30 1.31 1.22 1.25 1.24
0.172 20| -0.51 | -054 | -0.55 -0.21 | -0.67 | -0.67 | -0.68
0.172 25| -145| -148 | -1.49 -147 | -145 | -149 | -148
0.172 3.0 | -0.12 | -0.14 | -0.15 -0.15 | -0.20 | -0.16 | -0.17
0.255 05| -1.06 | -1.07 | -1.05 -1.09 | -1.37 | -135| -133
0.255 1.0 | 0.12 0.11 0.10 0.12 | 0.04 0.07 0.08
0.255 1.5 ] 137 1.38 1.39 137 | 1.29 1.32 1.30
0.255 20| -137 | -134 | -1.34 -1.05 | -145 | -145 | -147
0.255 25| -145] -1.44 | -145 144 | -145 | -148 | -1.50
0.255 3.0 -020 | -0.20 | -0.20 -0.12 | -0.20 | -0.21 | -0.20
0.335 05| -059 | -056 | -0.55 -0.57 | -098 | -131 | -1.30
0.335 1.0 | 0.12 0.15 0.15 0.15 | 0.04 0.07 0.08
0.335 1.5 ] 1.29 1.32 1.32 1.31 1.29 1.30 1.29
0.335 20| -1.69 | -1.67 | -1.67 -1.62 | -1.69 | -1.70 | -1.69
0.335 25| -137 | -139 | -140 -139 | -145 | -146 | -146
0.335 3.0 -020 ] -023 | -0.24 -023 | -0.27 | -0.24 0.24
0.400 05| -035| -034 | -035 035 | -075 | -1.01 | -1.00
0.400 1.0 | 0.12 0.14 0.12 0.14 | 0.04 0.05 0.07
0.400 1.5 ] 1.14 1.16 1.13 1.19 1.22 1.19 1.20
0.400 20| 263 | -2.63 | -2.65 263 | 247 | 243 | 240
0.400 25| -129| -125| -1.23 -1.25 | -1.29 | -127 | -1.26
0.400 3.0 -027 | -024 | -0.23 -023 | -027 | -028 | -0.27
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Table 6a. Educed Resistance for the CT57 liner using the Measured and Anechoic Termination

f,kHz | My=0.000 | My=0.079 | My=0.172 | Mpy=0.255 Mo =0355 | My= 0400
Meas | poco | Meas | poco | Meas | poco | Meas | poco | Meas | poco | Meas | poco

05| 053] 051 063062 | 063 ] 065 045|043 | 035 036 | 043 | 043
1.0 049 049 | 044 | 044 | 041 | 041 039 ] 039 | 036 | 036 | 030 | 030
1.5 1.16 | 1.15 1.09 | 1.08 1.27 | 1.27 1.23 | 1.23 1.17 | 1.22 1.32 | 1.35
20 508|497 | 412 | 408 | 495 | 498 | 535 | 530 | 420 | 451 240 | 245
2.5 1.47 | 146 1.38 | 1.38 1.12 | 1.12 | 098 | 098 | 090 | 090 [ 0.78 | 0.78
30 0751075 072|072 | 0.83 | 0.83 078 1 078 | 077 ] 077 | 078 | 0.78

Table 6b. Educed Reactance for the CT57 Liner using the Measured and Anechoic Termination

fkHz

My = 0.000 My =0.079 Mo=0.172 My =0.255 My =0.355 My = 0.400

Meas | poco | Meas | poco | Meas | poco | Meas | poco | Meas | poco | Meas | poco

05 -1.70 | -1.69 | -1.59 | -1.59 | -1.63 | -1.63 | -1.35 | -145 | -096 | -095 | -0.76 | -0.79
1.0 | 013 | 0.13 007 | 007 015]| 0.15| 0.07 | 007 | 007 | 007 | 0.05| 0.05
1.5 1.28 1.29 1.24 | 1.26 125 | 1.25 1.32 1.32 1.30 1.29 1.19 | 1.22
20| 085 086 | 092 | 097 | 067 | 075 | -145| -1.79 | -1.70 | -1.90 | 243 | -2.49
25| -1.58 | -1.58 | -147 | -147 | -149 | -149 | -148 | -148 | -146 | -146 | -1.27 | -1.27
3.0 -0.19 | -0.19 | -0.26 | -0.26 | -0.16 | -0.16 | -0.21 | -0.21 | -0.24 | -0.24 | -0.28 | -0.28
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Figure 3. Performance of SDFP algorithm for CT57 test liner on baseline grid (Mg = 0.255).
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Figure 4. Performance of GA algorithm for CT57 test liner on baseline grid (M = 0.255).
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Figure 5. SDFP educed impedance from the Convected Helmholtz model for the CT6S liner.
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Figure 6. Contour Map of the wall error function at 0.5 kHz for the CTS57 liner (Mg = 0.0).
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Figure 7. Contour Map of the wall error function at 0.5 kHz for the CT57 liner (My = 0.079).

220f 24

—“PNW RO~



Dimensionless reactance

-0.5

0.6

e
=y

&
®

&
©

1
-

01 02 03 04 05 06 07 08 09 1
Dimensionless resistance

Figure 8. Contour Map of the wall error function at 0.5 kHz for the CT57 liner (M = 0.255).
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Figure 9. Contour Map of the wall error function at 0.5 kHz for the CT57 liner (M = 0.400).
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