Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

Anthony Piazza, Larry D. Hudson, and W. Lance Richards

NASA Dryden Flight Research Center
Edwards, CA

SensorsGov Expo and Conference
Hampton Roads Convention Center
Hampton, VA
December 6-8, 2005
Outline

- Background
- Research Motivation
- Objectives
- Sensor Overview
 - Fiber Bragg Grating
 - Extrinsic Fabry-Perot Interferometer
- Sensor Attachment Techniques
- Laboratory Validation Testing
- Large-Scale Ground Applications
- Concluding Remarks
Background
Flight Loads Laboratory (FLL)

A unique laboratory for performing large-scale structural and thermal testing of aerospace vehicles and components

- Large 20,000 ft² high-bay test area
- Structural loading equipment including load frames, load cells, and hydraulic actuators
- Thermal structural testing in air and nitrogen purged atmospheres
- Quartz lamp and graphite heating systems
- Large channel capacity data acquisition system
- Strain, temperature, and heat flux measurements on metallics, metal matrix composites, superalloy honeycomb, C/C, C/SiC, etc.
- Sensor attachment techniques include epoxy, ceramic cements and thermal-spraying
- Fiber optic strain and temperature validation testing for ground and flight operations
Background
Hot-Structures Strain Measurement Research

1960-1970
Flame-sprayed Resistive
Weldable Resistive
Weldable Capacitive
Large temperature-related measurement uncertainties

1980-1990
Improved temperature-compensation using flame-sprayed resistive gages

2000-present
Improved measurement accuracy applying Silica and Sapphire EFPI Technology

NASP
X-33
X-37
CEV

Dryden Flight Research Center
Research Motivation
Need for Sensor Development

Lack of Capability
- Hot structures are utilizing advanced materials that operate at temperatures that exceed our ability to measure structural performance
- Robust strain sensors that operate accurately and reliably beyond 1800°F do not exist

Implication
- Hinders ability to validate analysis and modeling techniques
- Hinders ability to optimization structural designs
Objectives

Develop Attachment Techniques

- Develop methods of handling fragile silica sensors during installation and coarse thermal spray processes
- Evaluate organic cement/epoxy attachments to 550°F
- Develop and evaluate thermal spray and cement attachments of EFPI's for controlled laboratory testing

Obtain Optical Strain Measurements on Relevant Substrate Materials and Structures

- Graphite composite coupons for apparent strain (ε_{app}) characterization
- Monolithic Inconel load bars for baseline sensitivity characterization
- C-C and C-SiC substrates for sensitivity and ε_{app} characterization
- Large scale hot-structures for NGLT, OSP, and X-37 Control Surfaces
Fiber Bragg Grating (FBG)
Sensor and Multiplexing

SM Polyimide Coated Fiber
125μm dia, 9μm core, 1550nm

Unstrained

Tensile Load

Reflected λ

Strain (με)
(δλ/λ) x 0.725

Diode Tunable Laser

BBR

2 x 1 Coupler

Unstrained

Reflected λ

E

IFFT

E

FFT

Freq / Dist

Dryden Flight Research Center
Extrinsic Fabry-Perot Interferometer (EFPI)
Sensor Construction

- **Cavity Length** (L_C), distance (microns) separating the two reflecting fiber surfaces
- **Gage Length** (L_G), or sensitivity, distance (millimeters) separating the two points that attach the optical fiber to the substrate

\[
\text{Strain} = \frac{\Delta L_C}{L_G}
\]
where L_G (or GF) = \[
\frac{2(IAP) + OAP}{3}
\]

\[
\varepsilon_{app} = (\alpha_{sub} - \alpha_{fiber}) \Delta T
\]
Extrinsic Fabry Perot Interferometer (EFPI) Sensor Conditioning

EFPI Delta Rosette on C-SiC

Fiber Optic Signal Conditioning

Power Splitter

BB Optical Source

Signal Processor

CCD

Lens

Mini Spectrometer

Diffraction Grating
Installation and Attachment Techniques
Organic Cements (<550°F)

Two applications of MB610 sufficiently coat fiber

Bonded FBG’s
Type-K TC
Refrasil Overbraid

Polyimide coated EFPI bonded with mixture of GA-61 and MB610
Installation and Attachment Techniques
Thermal Spray Process

Thermal Spray Equipment Room
- 80KW Plasma System
- Rokide Flame-Spray System
- Powder Spray System
- Sand-Blast Cabinet
- Micro-Blast System
- Water Curtain Spray Booth
Installation and Attachment Techniques
Thermal Spray Process (>600°F)

- Nextel Overbraid
- Ceramic Cement
- Plasma/Rokide Basecoat
- Gold Coated
- Quartz Tube
- Rokide Flame Spray
- Plasma Spray (4 mils)
- Sensor-head fabrication under microscope
Laboratory Coupon Test Results
Fiber Bragg Gratings

FBG on Graphite/Epoxy Composite

Thermal Out (unbonded) = (\(\alpha_{\text{fiber}} + \frac{\xi}{P\varepsilon} \)) * \(\Delta T \)

where:

Thermal Optic Effect (\(\xi \)) = 3.78 \(\mu \varepsilon / F \)
Strain Optic Constant (\(P\varepsilon \)) = 0.725

\[y = 0.0044x^2 + 3.6664x - 302.93 \]
Laboratory Coupon Test Results
Thermal / Mechanical Test Fixture

Constant Strain Load Bar

Strain Gage Evaluation System

Dryden Flight Research Center
Laboratory Coupon Test Results
Gold-Coated EFPI Thermal Mechanical Test Results

EFPI Cantilever Beam Data at Room-Temp

\[\pm 1000\mu\varepsilon \text{ Mechanical Load} \]

Standoff Correction Factor

\[K_0 = \frac{c}{(c+S_o)} = 0.189 / 0.189 + 0.0055 = 0.972 \]

where:
- \(c \) = Distance from Neutral axis
- \(S_o \) = Distance from centerline of fiber (in tube) to substrate

Observations
- EFPI within 3% of SG’s at RT
- After standoff correction sensors within 1%
- Subsequent testing at 500, 800, & 1200°F within 3% of RT slope
- Little hysteresis
Observations

- In tension, output was noisy, sensor gap out of range (gap ≈ 203µm @ 14,450µε)
- Overall slope down 5% from RT slope @ 1600°F
- Repeat RT tests showed good correlation with prior data
- Subsequent sensors and tests indicate an inconsistency of maximum gap readability
Laboratory Coupon Test Results
Metallic Dilatometer Results

EFPI on Inconel to 1650 °F

Heating rate: 7.2 °F/min
Coupon Substrate: IN601
File: LC2a900C1

Coupons:
- EFPI 3: Dev EFPI 3 = 2.1%
- EFPI 4: Dev EFPI 4 = 1.2%

Strain vs. Temp

Dryden Flight Research Center
Laboratory Coupon Test Results

Dilatometer Results

EFPI Thermal Sprayed to C-C and C-SiC

Dilatometer Evaluation System

Sensor Characterization
- Evaluate bond integrity
- Evaluate sensitivity and accuracy
- Evaluate sensor-to-sensor scatter and repeatability
- Generate ε_{app} correction curves

4 Hi-Temp EFPI’s in Sampleholder

Dryden Flight Research Center
Large Scale Ground Test Structures
C-SiC Flaperon

Dryden Flight Research Center
Large Scale Ground Test Structures
Ceramic Composite Control Surfaces

2000°F
C/C Control Surface
March, 2003

2100°F
C/SiC Bodyflap
Nov, 2003

2500°F
X-37 C/C Flaperon Qual Unit
August, 2005

2300°F
X-37 C/C Flaperon Subcomponent
August, 2004

2400°F
X-37 C/SiC Flaperon Subcomponent
May, 2004

Dryden Flight Research Center
Concluding Remarks

Fiber Optic Strain Measurements

- Successfully attached silica fiber optic sensors to both metallics and composites
- Accomplished valid EFPI strain measurements to 1850°F
- Successfully attached EFPI sensors to large scale hot-structures
- Attached and thermally validated FBG bond and ε_{app}

Future Development

- Improve characterization of sensors on C-C and C-SiC substrates
- Apply application to other composites such as SiC-SiC
- Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR
- Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment