Shape of Strained Solid 4He at Low Temperatures

Harry Kojima
Rutgers University

JPL/NASA Workshop on Fundamental Physics in Microgravity
Solvang, CA 2004
1. introduction to stress-driven instability
2. motivation: related phenomena on geologic, kitchen and nano-scales
3. intuitive picture of stress-driven instability
 (without and with gravity, critical stress, why use helium?)
4. apparatus: interferometry set up
5. results
6. summary
1. Introduction to stress-driven instability

Start with a solid in equilibrium with its melt. Apply external stress.

Q: what happens to its shape?

Theoretical study by: Asaro-Tiller-Grinfeld*

(Asaro-Tiller started their theory work on cracks and corrosions induced by stress. Grinfeld independently generalized the theory to apply to other situations.)

A: beyond a threshold stress, the surface is predicted to become unstable and to develop corrugations.

Present research: use solid 4He in contact with superfluid melt to experimentally study the predicted instability.

2. Phenomena related to stress-driven instability

(1) Giant's Causeway Northern Ireland

These are photographs for Giant's Causeway in Northern Ireland. These geologic formations are thought to be formed by the rapid cooling of molten lava. The rapid cooling can produce large stresses within the lava. These stresses are thought to have produced these patterned surface formation. So this is (possibly) an example of stress-driven instability on a grand geologic scale. Of course, the natives have another theory based on a fight between Giants. But, that's another story.
(2) Drying starch

Structures somewhat similar to the Giant’s causeway can be produced in a kitchen. Muller* made the observation by drying a beaker of wet starch. The photos at right show the regular pattern seen after drying. This may be another example of stress-driven instability effect, now on the mm scale rather than meter scale.

*G. Muller, J. Volcanology and Geothermal Research 86, 93(1998)
(3) nano-structures by self-organization

Strain mediated self-organization of \{105\} faceted SiGe crystallites in a SiGe/Si superlattice grown on Si(001). a 1 \(\mu\)m\(\times\)1 \(\mu\)m AFM image of the 20th alloy layer of a 20\(\times\)(2.5 nmSi0.25Ge0.75/10 nm Si) multilayer film, color scale range: 20 nm. (The inset: the 2D power spectrum calculated from a 5 \(\mu\)m\(\times\)5 \(\mu\)m image).

3D AFM image of multiple adlayers of Si-Ge grown on Si substrate.

The lower figure is an AFM image of the multiple layers of Silicon-Germanium grown on top of Silicon substrate. As the number of adlayers is increased, there is an island like pattern that develops on a nanometer scale. The driving mechanism for this is thought to be the shear stress between the substrate and the adlayer. The stress comes from the lattice mismatch. The mass motion is the atomic diffusion on the surface.
The idea of stress-driven instability is illustrated with the help of these cartoons. Start with a piece of solid with no stress. Apply uniaxial stress from the side. The solid accumulates an elastic energy with regular strain. Suppose, by fluctuation, a cell melts and forms on top surface. If all cells retain the regular shape, there is no change in elastic energy. If the cells at the bump and the dip are allowed to relax, the elastic energy will decrease. The process is then unstable and leads to instability. The effect is different from Euler buckling instability which occurs under compression only. And it occurs without mass transfer. I emphasize that the mass transport is important in this rearrangement instability.
quantitative basis

(including gravity and surface tension -- these oppose surface deformation)

Assume: surface height profile: \(h(x) = \eta \cos(kx) \)

net energy cost: \(U = (\text{gravity}) + (\text{surface tension}) + (\text{elastic energy}) \)

\[
U = \frac{\eta^2}{4} \left[\left(\rho_{\text{solid}} - \rho_{\text{liq}} \right) g + \gamma k^2 - 2 \left(\frac{1 - \sigma^2}{E} \right) \sigma_0^2 k \right]
\]

critical or threshold effects:

\[
\sigma_c = \sqrt{\frac{2\pi \gamma E}{\lambda_c (1 - \sigma^2)}}
\]

\[
\lambda_c = \sqrt{\frac{g (\rho_{\text{solid}} - \rho_{\text{liq}})}{\gamma}}
\]

\(\sigma_c = 2.4 \times 10^4 \text{ dyn/cm}^2 \) or \(u_c = 8 \times 10^{-5} \) (critical strain)

The instability on the preceding page due to the decrease in elastic energy is opposed by gravity and surface tension. So at low stress levels, the surface remains flat. Beyond some critical stress, the instability sets. The instability can be made quantitative by considering sinusoidal surface height profile. Analysis shows that when a critical stress is exceeded, corrugation of wavelength of about 6 mm should appear. We wish to study this stress-induced instability on solid He-4. The critical stress or critical strain is easily achievable on solid He-4. Note the importance of gravitational acceleration constant.

g = gravitational constant
\(\gamma = \text{surface tension} \sim 0.3 \text{ dyn/cm} \)
\(\sigma = \text{Poisson's ratio} \)
E = Young's modulus
\(\sigma_0 = \text{Applied stress} \)
small stress **below** critical stress

Assume isotropic solid for simplicity

equilibrium is maintained if →

The height of solid decreases under stress.

\[\delta h = -8.2 \times 10^{-11} \, \sigma_0^2 \text{ (cgs)} \]

What happens if the applied stress is less than the critical stress? Under stress, the chemical potential of the solid increases. In equilibrium, the chemical potentials of the two phases remain equal. To maintain equilibrium, the chemical potential of the liquid must then increase. That means, the solid should melt and the liquid depth should increase. We wish to observe this as a check on the applied stress in the linear response regime.
Why use solid He-4?

Advantages:
- high purity
- superfluid "melt"
- rapid heat transfer
- small latent heat
- rapid melting and freezing
- relative ease in growing crystals
- mm scale corrugations
4. Apparatus

interferometer method to detect surface profile

We have constructed an interferometer apparatus to observe the solid height profile. Illumination He-Ne laser beam is fed into vacuum can at low temperature with an optical fiber. The beam goes through an expander and split into a reference beam and a probe beam. The probe beam goes through the chamber containing solid and liquid. The two beams combine to form an interference image. The difference in index of refraction and the spatial dependence of the solid height leads to changes in interference pattern. The interference image is captured with a CCD camera.
5. Results

Process of formation, growth and melting of solid 4He

$T = 1.2$ K $P_{\text{melting}} \approx 25$ bars

A schematic of the chamber is shown. The movie shows the development of interference pattern from liquid. The temperature is near 1.2 K. Initially, the chamber contains all liquid near melting pressure. The pattern is caused by the misalignment of the two mirrors. The pressure is increased by forcing liquid into the chamber. A solid seed can be seen in the second video frame. Solid begins to grow and spread across the chamber bottom as in the third frame. As more helium is introduced, solid spreads all over the bottom surface of the chamber.
applying stress to solid
Piston attached to PZT pushes or pulls on solid.

\[\text{strain} = 5.8 \times 10^{-8} \times \text{(applied voltage)}, \; 0 < \text{strain} < 2 \times 10^{-4} \]

Convert fringe (or phase) shift \(\rightarrow \) height change (1 fringe shift = 93 \(\mu \)m)

Stress is applied from one end of the chamber as shown. We use a tubular PZT to push a piston which in turn pushes or pulls on the edge of solid. We can apply more than 4500 V to PZT. The fringe pattern moves as the stress is applied. The changes of fringe pattern is converted to phase shift and finally to height changes.
apply strain, \(u < u_c \)

Uniform decrease in solid surface height is expected.

\[
u = -5 \times 10^{-5}
\]

\[
|u_c| \sim 8 \times 10^{-5}
\]

A strain smaller than the critical strain is applied at the beginning and is removed a little later. We expect to see a uniform decrease in solid height. We see a linear slope appearing as shown. When the strain is removed, the surface profile returns to the original flat shape. The profile motion is reversible but different from the expected behavior.
Let's see what happens when the applied strain is greater than the expected critical threshold. We expect to see corrugations according to theory. After the strain is applied, the surface profile develops an undulation as shown. When the strain is removed, the surface profile does not return to the original flat profile. The process is irreversible. The wavelength of the undulation is 15 mm, not 6 mm as expected. The onset of the undulation is not sudden as a function of strain. The undulation sets in more or less gradually.
Summary

(1) Interferometer apparatus for measuring surface profile

(2) For small strains, the expected linear decrease in height is not seen.

(3) For large strains, undulation and irreversible deformations begin to set in, but we cannot yet make clear connection with stress-driven instability theory.

- Torii and Balibar have observed appearances of deformations beyond threshold stress on 4He solid surface.
- The difference of our results from theory real? We are not ready to claim in affirmative.
- To be able to answer:
 - improve crystal growth techniques ... orientation, annealing, better pressure control
 - improve homogeneity of stress ... better alignment with vertical, better understanding of interaction between solid He-4 and walls
 - improve optics
acknowledgements

- Tamer Elkohly, Josiah Fay, Yuichiro Wada and Ryuichi Masutomi
- Misha Grinfeld and Pavel Grinfeld
- supported by NASA/ground-based research program