Source of Acquisition
NASA Ames Research Center

A 2 Overview
fies Resareh ety f ‘Emes Besesrch Canter
&
Verifying Aerospace Software « Robust Software Engineering Group’s case
studies in aerospace software analysis
— Remote Agent
g —DEGS
Willerd Visser _ K9 Rover
RIACS/NASA Ames ~ e Lessons learned
Robust Software Engineering Group » Research gaps
» Verifying autonomy software
-1 2
2 A . ;j Case Study:
iﬁ Case Studies
& frtes Besearch Lot

¢

;*}‘ﬁ) DS-1 Remote Agent
j Aimes Reseael Conter

DEOS

Conmymands

Spacecraft -

"~ Change
3 ST Rventi
: - . Properties Monitor. s, e
*+ Several person-months to create verification model.. -
« One person-week to run verification studies.
3 crn S e T i rhe s s £ B S M e 4

f‘ Case Study: f Remote Agent
A DS-1 Remote Agent A Lessons Learned
& Atmgs Besearch benter 2 Armes Resparsh bemer
F ¢
Unexpeci imin,) R & .
vonitor Logie DB Change? e Lt » Model checking is suitable for analysis

= Hand translation of code into notation
suitable for analysis doesn’t scale
— Also error-prone

» Model checker must work on notation the
» Five difficult to find concurrency errors detected .

* “[Model Checking] has had a substantial impact, helping the RA team program 1is writien 1m
improve the quality of the Execntive well beyond what would otherwise :
have been produced.” -RA team ~

» During flight RA deadlocked (in code we didn’t analyze)

— Found this deadlock with JPF

o Honeywell
/s‘ﬁ Next Generation Cockpit
ff Ates Beseatek Ceizr #f’ Jines Besearch Covler

integrated Modular Avionics (IMA)
- DEQS Guarantes Spocecrd Time pcrfmonmg

* FAA Cemﬁocxhon Process ey
- Requ(res ‘Structural Testing Coverags (MC/DC)
-~ Inadéqudte for finding Time Pariffioning Errors
« Timing Error notfound by Testing oocurred

« Behavioral Analysis of Time Parfitioning. -
- NASA Amesc crid Honeywell HTE oo{bbordhbn

f{ Starting DEOS Analysis

#f? /7S Rosearah Ceier.

« One day briefing by HTC at NASA Ames
- Systern Description)
- High-level description of known Error .
+ NASA tecmdid not know what the precise enor was and
how fo make it aopear

HTC defivered £3000 lines of C++ code

Mode! Check Actual Source Code
— ‘Model Exfraction Reauires Expert Users
~ Godlis to improve Certification Process

‘ jf Model Checking DEOS

;f

s Ressaroh Semter

« Use SPIN model checker

» Translate DEOS C++code to PROMELA
~ Systemaiic Translation Process (by hand)
» 14o-1 Mopping: C++ o PROMELA
* Developed Nondeterministic Environrment

- Model! Timer and Systemn Ticks to Remove Real-iime
» Time Modeled by Nondeterministic Choice of Values
- Highly Flexible Model of Threcds

» Thread credtion, deetion and AP calls con oceur dynamically

7
A
7>

& lies Riscarch Center

Analysis Results

= Translation required 3 man-months
~ C++ fransiation was siraighi-forward
- Enviformenfdevebp‘nenﬁook most fime

« Fourd Error by Checking Terrporal Property

- [hsrortPeriod —*(lendiPedod U idloRur)

rciPedod U idleRunj)

+ The “idle” thread runs when nothing else can, hence time paritioning

is viokated if ide doss not run between the start and end of a specific
period

+ DEOS Team Recciion

- Surprised that error was found by directly. checking code
- They expected NASA team to ask for smaller “slice”™

s

a

‘Ames Beseanh Cater

= Model checking at source code level is feasible
« Environment creation is hard -
—To this day it is THE problem in model checking
» Research follow-up study
— Translated C4-+ to Java and used
JavaPathFinder (JPF) model checker directly

— Showed filter-based environment generation has
potential

2

V&V Experiment

ff / ives Researh et
+ Benchmark advanced V&V tools on autonomy software
— Model Checking: Java Pathfinder
— Run Time Analysis: JPaX and Temporal Rover
— Static Analysis: PonSpace‘
« Objectives .
— Assess maturity / usability of each technology
— Compare each technology with traditional testing
- Examine whether data indicate potenti;ﬁ' synergies
— Identify gaps with respect to awiopomy V&V

K9 Rover

» Executes flexible plans for autonomy
— branching on state / temporal conditions

* Multi-threaded system

— communicatiod through shared variables

— synchronization through mutexes and
condition variables

+ Main functionality: 8KLOC, C++

—

-3

Code preparation

4
b
‘,4" ites Ressanch Center

from developer’'s CVS log

~ Bugs are distributed over three
versions of the software.
— Some bugs appear in muitipie
versions,
= Bug classification

data races (7/12)
— plan bugs: plan semantics
violated (5/12)

¢ Code translation for tool usage
o Seeded with 12 bugs extracted

- concunency bugs: deadlock and

15

Bug-finding Results

Bugs

Seeded Bugs Found

fotal testing MC AT

[S deadiock H data race O pian semantics |

Model Checking
Setup

/ fites Ressares Lentsr
= “Atomic” statements added
- Although JPF support pamal-order reducuon, we don’t have a good static
analysis tool to
— We do now have a version of JPF that groups all transmons between
synchronization statements into an atomic block
* Do automatically what we did manually
+ Scott Stoller

« Implemented a “Factory” based infrastructure for adding abstractions
~ Abstractions play such a key role in mode] checking that-we didn’t want them
to struggle with engineering issues instead of creating new abstractions

+ We gave them the “point” abstraction of time

— All time-based decisions became Jeterministic
~ Itis typical to start with the most over—approxxmated System and use
refinement as necessary

* We gave them the “Universal” planner that can create aif plans up to a
spemﬁc size nondetenmmsucaﬂy

: f Model Checking
& Observations

f imes Aesearch Genter

+ Asked never to “run” the code, only model check it
* Keep the resulis.clean from any testing influence
+ Performed much better than testing, and, as well as runtime-analysis
~ Missed one concurrency error (nobody found this onej and one plan-error
« Interesting observations
— Partially abandoned the time abstraction within the first hour for one that is
closer to real-time, but might miss errors

« Itwas 100 hard for them 10 determine if errors were spurious not knowing the code
well enough
- Didn’t use the Universal planner as much as we anticipated
* Rather change thé training plans we gave thens, probably to be more it conirol
= Lots of time spent with the heuristic aptions
« The state space is very large and heuristics were required to look at different parts
~ Found a number of bugs in the first version, had a slow 2" version, and theti
found all the remaining bugs in the first part-of the 3 version
» Took them some time fo get their framework setup, but ence done, they were flying
- Fo:imd anasty bug in floating-point arithmetic that siowed them down at the
en
* We antici; a 16t more taol exrors than acwatly happened 18

Asl-alimader 5 1 . 17

=—/gaim commoninmode} g-to-usearunrversal-en’

B

5} | Static Analysis Setup

res Resuarch Centzr

= The experimental conditions for static analysis
were different from those for the other toois

= PolySpace Verifier looks for run-time errors, e.g.,
— un-initialized variables/pointers

N

— out-of-bound array accesses

- overflow/underflow

* The original C++ code was translated into C code
instead of Java

o The tool had to be run overnight in a batch mode
because of its slow performances

Asn O b Lo thn andoavon
— & W ¢ BOULS 101 WIS COGL |l

Static Analysis
Observations

&,
Ad
22}
f s Bassanch Gt

« A priori static analysis seems easy to use:
~ You feed fhe program to the analyzer, and out comes a
list of errors and warnings you can easily sort through
¢ Thee annmpnf gh@wc that it ig not that easy:
~ Participants didn’t understand how to deal with
warnings - there are many more warnings than errors

~ Ttis difficult to understand how approximations in the
analysis algorithms impact warnings, unless one has.a
good undesstanding of the algorithms

-]

Static Analysis
Observations cont.

2 A
fémmﬂ Lepter

s The domain of applicability of each operation
flagged as an orange (warning) should be checked
in every possible execution context

— There are too many warnings to do this rigorously
— Participants didn’t under$tand how, and where, to use
assertions and stubs to ¢liminate oranges

+ The participants chose to increase the number of
execution paths that could be analyzed instead of
analyzing the given program

- They tried to make dead code reachable

21

- 2 Runtime Analysis
#’J ' Setup

dimes Besearch Genter

o Java PathExplorer
— Required no setup. Instrumentation is automated. No
specification or program manipulation is required.
» DBRover
- — Rover code was pre-instrumented to emit events of
the form (for actions ‘a’ and time points ‘t’):
« start(a,t), success(a;t) and fail(a,t).
— Users had to write a set of temporal formulae for each
plan. This was time consuming.

Deadiock and Data race Detection

_g’* Java PathExplorer
V.

fo Aesearch Lanist.
« Students quickly learned to use tool. Interpretation
of results required some training.
= Users found it very easy to apply tool. They
applied it instantly when they got a new version of
the code, and then with regular intervals.
= Tool found all seeded resource deadlocks and the
" seeded data race, and quickly. Tool is not designed
to find communication deadlocks. Did therefore
not find any:
« No false positives or false negatives.
« Extension of too] to handle some communication
deadlocks is under way.

F —
4 DBRover

& gver
jémkm'remgoral Logic Monitoring

« Students quickly learned to use DBRover. Perhaps
because temporal properties followed templates.

* Users found-it slightly inconvenient 1o write specs
for new plans. DBRover was thereforé only uséd
sporadically. .

* Most plan errors (excluding deadlocks and data
races) were found by examining printed .
information. Some were found due to violated
ternporal properties.

* Automatic generation of specs from plans would
have made DBRover a clear success (in the users

own words). Inn particular combined with a
universal plnnnt—\r _This wark is.now bej_ng done.

24

: Testing
723 Observations

f"” 7 s Ressarch Canter

 Black box approach. Test cases constructed from
the plan specification.

= Maintained a test suite and performed regression
testing on each version.

« Looked for concurrency ‘errors and the results of
jitter by setting task durations and deadlines to’
nearly equal values ”

= Ran software on multiple platforms and modifie

Successes

' j Static Analysis
f"', més fessarch Gonter
* Successfully applied Polyspace and CGS to MER
rover code
— Expert users in both cases
« JPL study found Coverity to be very good
~ Untike Polyspace and CGS, Coverity is unsound {can
miss errors) -
— Very good at ranking errors and report few false
positives/warnings
« Path sensitive and unsound seem to be better than

the task priorities. abstract interpretation based path insensitive
sound analyses
25
ﬁ* Model Checkin] § Stafic Analysis
Z, ¥ qt ’ ““', »A’Ar- ol 1o
R /e Research Gap i Research Gaps
j Amazs fesearch Cenisr = .ff Ames Besearch Senfer
¢ Good at control analysis, but doesn’t scale « Suffers from too many false positives
to data « Path sensitivity is good, but these analyses
+ Need to keep control concrete and reason are often unsound (due to scaling issues)
symbolically about data « Even the path sensitive analyses don’t

= Our attempt at addressing this issue:

— JPF now supports symbolic execution of
structures, integers and strings

produce concrete paths to the errors
— We hope to address thissoonina &=
specialization of the JPF model checker to do
path sensitive analysis for finding runtime
errors in Java ' T

<t
%i General Problem

f Ammes Rastarch Denter

« Model checking and static analysis do best with
mechanical (non-functional) properties
* — Model checking: concurrency errors, such as deadlock
and data races .
- Static analysis: runtime errors, such as, null pointer
dereferences, array out of bounds, etc.
« These are the “simple” bugs, but the real problems
will come from the functional defects
* Suggestion
— Jse model checking and static analysis to derive
“good” test inputs and then use advance runtime
monitoring during testing 20

s
#f% N Autonomy V&Y

¢ On-board autonomy
— Remote Agent experiment a success
- Mission managers are still skeptical
Planning & Scheduling on Earth used to schedule
Mars Exploration Rovers daily activities
» New projects
~ “A Model of Cost and Risk for Autonomy”
~ “Verifying Autonomy Software”

Autonomy Risk Model

f Amas. Lantar.

* V&V risks and mitigations
» Project Plan
— V&YV survey to find what the autonomy experts think
are the risks and current mitigations
* Model ver.iﬁcaﬁon; large environments, etc.
- Case studies on autonomy software
+ Real autonomy code seeded with typical bugs
* State of the art V&V tools
~ Use results to populate risk models .
+ AUTONOMO (based on COCOMO & COQUALMO)

31

