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Abstract 

Future Mars rover missions wili require more advanced onboard autonomy for increased 
scienrif l  prodmtivity-and redxixdx&&r operztions w s t ~  4nesucch-fsrrn~~tmoiny-e-+xe 
be achieved by targeting precise science measurements to be made in a singie command 
uplink cycle. In this paper we present an overview of our soIution to the subproblems of 
navigating a rover into place for microscopic imaging, mapping an instrument target point 
selected by an operator using far away science camera images to close up hazard camera 
inrages, verifying the safety of pIacing a contzct instrament en a sample or finding nearby 
safe points, and anaIyzing the data that comes back from the rover. The system deieloped 
includes portions used in the Multiple Target Single Cycle Instrurnent Placement 
demonstration a t  NASA Ames in October 2004, and portions of the MI Toolkit delivered to 
the Athena Microscopic Imager Instrument Team for the R mission still operating on 
Mars today. Some of the component technologies are also under consideration for MSL 
mission infusion. 

I. ~ ~ ~ ~ Q ~ ~ ~ ~ Q ~  

ICROSCOPIC imagers are valuable tools for rover based science 
and engineering tasks, from studying small scale morphology of 

soifs, rocks, and potential biota to the inspection of equipment. Rover 
operations and data anaIysis with a microscopic imager present unique 
challenges that are not generally addressed in the robotics literature. 
Typically? a microscopic imager must be brought very close to a feature 
of interest in order io get a high iiiagnificaiioa image. Doing so i?om a 
distance requires buIky optics unsuited to a rover payload. Near field 
imaging requires driving a rover up to a target feature while precisely 
keeping track of its position relative to the vehicle. Bringing an arm 
mounted camera lens close to an uneven surface like a rock presents a 

Images 5om a microscope typically have a limited depth of field, so that 
many images at different focal lengths are required in order to get focused 
imagery of the entire field of view. This can require repositioning of the 
camera between images, leading to rotations, translations and scale 
changes. Image processing techniques for creating a focused composite Figure 1: The  rover 
image must account for this. 

We have developed methods for our robotic vehicle, K9, to 
autonomously navigate to multiple rock features scattered within a 10m 
diameter area, and deploy a microscopic imager against them, all in a 
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single command cycle. This represents a tenfold improvement, as 
measured by the number of features that can be investigated close up, 
over MER class vehicles which require 3 command cycles, each 
lasting a single sol, to approach and investigate a single feature. The 
system uses a vision-based target tracker that recovers the 6-DOF 
transformations between the rover and the tracked targets as the rover 
moves. The tracker is comprised of a feature based approach that 
tracks a set of interest points in 3-D using stereo, and a shape based 
approach that registers dense 3-D meshes. Autonomous analysis of 
close up stereo models of rocks enables safe instrument placement on 
the target feature. 

In addition, we developed and delivered the MER M I  Toolkit, to 
support the microscopic imager (MI) instrument on the MER mission. 
The MI Toolkit is a set of‘routines to register MI images to create 
focused composite images,, MI mosaics and 3D models. These tools 
are in use by the MI instrument team in MER science operations and 
have also been ported to the CHAW microscopic imager used on the 
K9 rover at NASA Ames. 

The paper is organized as follows. Section I1 presents some related 
work. Section I11 discusses the onboard vision methods used for 

Figure 2: CHARlp (Camera Hand-lens 
And Microscope Probe) microscopic 
camera, a MIDP developed instrument 
with 6um/pixel resoIution and a 
movable CCD detector array for 
obtaining a “z-stack” of images at 
di€€erent focal lengths. 

-- t r a € k ~ R ~ a r g e t s - d ~ ~ ~ ~ ~ ~ ~ ~ ~ u ~ - - a n ~ ~ ~ p ~ i n g  -th+sde&e&p i& ~ F ~ v ~ r - i m a ~ ~ ~ t ~ ~ - f ~ a ~ ~ ~  pos&bn- 
Section I V  presents a method for analyzing potential placement locations for instriiiiient safeey. Section V describes 
ground based MI and CHAMP data processing tools, and finally Section VI offers some discussion of the work 
presented. 

11. Related work 

There is strong interest in science autonomy and instrument placement capabilities for planetary rover 
applications. Recently, Wettergreen et al. have focused on autonomy for kilometer long traverses and investigation 
scenarios where search is less structured[33J. Alternatively, robotics groups at both JPL and NASA Ames have 
been focusing on shorter range and higher precision science activity, developing autonomy for machine vision, 
navigation, positioning, and instrument placement for precisely defined targets meters away from a rover. Tools 
such as Viz[34] provide interfaces for designating science targets, and tools exist for determining rover navigation 
goal positions in order to visit those science targets[l]. Ground based planning and onboard execution generate and 
carry out the operations plans that best satisfy a rich set of prioritized goals and resource constraints[26]. JTL’s 
visual odometry[24] is designed to sigqificantly increase navigation precision. The technique has been validated in 
terrestrial analog field tests and demonstrated in night on MER. Ames has developed a similar method to precisely 
track the location of science targets while navigatingE61 focusiiig instead on the precise location of multiple science 
targets relative to the rover. Several other visual tracking techniques have been developed or evaluated specificaIIy 
for precision navigation to science targets with surface rovers[2][ 17][2 1][7]. Precision manipulation for planetary 
rover arms has a!so been addressedE221, including the current state-of-the-art instrument arm positioning for the 
MER rovers[3]. Much of this development is done within, or using, the CLARAty software f?amework[32]. The 
image analysis tools described in Section V were developed for the MER Microscopic Imager (MI) instrument, 
whose development was led by USGS[12][13], and later ported to the CHAM? instrument, developed by the LASP 
laboratory at the University of Colorado in Boulder[l9]. 

ased Trackiiing and ApproacS 

Localization errors from rover odometry and deduced reckoning are too large to guide a rover to a small scale 
.ions as txget over !age distances with the required accuracy. Therefore, the rover must explicitly track target Ic?ca+’ 

it navigates about the worksite and avoids obstacles. Because features are selected for scientific relevance, they are 
not necessarily those features which best facilitate visual tracking. Tne rover might move complerely around 
targets, causing self occlusion of features of interest. Lighting may change due to shadows cast by the rover or 
changing sun angles over the course of a Sol. 
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Many visual feature based trackers operate by matching a chosen template to an area of interest in successive 
images. The search is often done using an exhaustive correlation or convolution, which can be expensive when 
precise predictions are not available or large camera motions must be accommodated. In addition, some trackers 
offer the user the flexibility to specify a template, but the specified template may not be amenable to tracking due to 
low visual texture or changing appearance during motion. In addition, if the tracker only keeps track of one nominal 
target point, it is brittle in the event of a mismatch, and vulnerable to occlusions, changing viewpoints or other real 
world effects. 

The appearance based tracking algorithm used in our system uses large numbers of image features matched 
across stereo pairs. Feature detection and matching is done automatically using the SIFT algorithm[20], which 
consists of an interest point detector to find salient points in images, a descriptor to summarizes the appearance of 
detected points, and a matching algorithm to find similar descriptors. SIFT typically finds hundreds to thousands of 
points in each of the rover cameras, and matches around 25% to 50% of the features with only a small number of 
outliers, typically about 1% to 3%. Our 3D SIFT based tracker uses these matched features to recover the motion of 
the tracked target. SIFT provides matched pairs of image points z,lr) = (l,@, Y P ~  and z y ' )  = ($@'), ~,('-'9 from left 
and right images at two discrete time steps. Caiibirated stereo is used to recover the 3D locations x!) and xrL1) of the 
points. We then estimate the 6-DOF transformation Tthat aligns one view to the next by minimizing 

using Horn's rotation fitting algorithm[l4] and RANSAC[8]. Horn's method finds the optimal transformation in 
--ctosed - f o & M e  seeond - o r d e r c o s t - f u ? K t i o n u ~ l ~ ~ ~ ~ a ~ ~ i ~ ~ ~ ~ e - ~ r ~ ~ ~ ~ r ~ ~ l ~ ~ ~ ~ ~ ~ ~ -  

recovered transformation. To identify and eliminate outliers we use RANSAC to find the transformation that is 
consistent with the largest number of inliers. hliers are defined as those matches ($I, x,""!, such that 

where -c is a threshold. Currently we use z= 3 ern and repeat-the RANSAC loop 100 times using 3 putative matches 
in each trial, which takes negligible computation time. FL4NSAC returns the transformation with the largest 
consensus, and the list of matches in the consensus set. To further improve the estimate we use the consensus set to 
re-estimate the transform with all of the inliers. Once the rigid transformation is computed, the tracked feature 
location is simply updated by applying the transformation to the target location. 

Updates occur after each meter of rover motion. The tracking algcrithm typically tracks targets with an accuracy 
of 1 mm per meter of motion, or around 0.1 % distance traveled. 

(4 (b) (4 (4 
Figure 3: Registration result. (a) Hazcam view of rock with rover in place. (b) Depth map from hazcam 
stereo. (e) Depth errors for initial guess at alignment. (d) Final depth errors after alignment. 

Even with this precision, visual tracking alone is insufficient for placing the instrument at the specified target 
with high precision. Our method corrects for errors in tracking by registering the initial view, in which the rover 
operator selected the target point, to the final view, available to the rover at its terminal position once the target has 
been approached. 

The initial and final stereo image pairs are used to construct 3D models of the target. The rigid transformation 
that z!igns the two rr,cde!s can be wed tc determine the coordinate transformztltion between views. This 
transformation can be used to map the initial designated point to the fmal view for precise placement. 
Our mesh registration approach projects these two models into a virtual range sensor view and minimizes the 
difference between the rendered depths at each point.The 3D models 17 and v' are represented by triangulated 
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meshes. For each triangle on the mesh, the vertices v,, 3 ,  and vkare projected onto the image plane to find the 
bounding region. Then for every pixel in the bounding triangle, the location of the intersection of the camera ray c 
and the facet of the mesh is a point s,, given by 

s, = a,v,+ a,v,+ akvk 

with a,+ a,+ ak = I .  The depth to the intersection point is the z coordinate in the camera frame, 

which is the projection of the point s, onto the normalized camera ray n,. The vector of all depths z, is denoted z, and 
the range image under transformation parameterized by p is denoted z@). The cost function to be minimized is a 
function of the difference in range images 

Jb? = 2; f(z&?? -4 7 

The surface model v ’ does not move during registration, so z ’ is a constant. The depth to the point v, changes with 
transformation, so the rendering operation is done for each trial solution during optimization. The rendering takes 
O(n) operations, where n is the number of pixels in the virtual range sensor. In order to accommodate outliers in 
stereo model building, we use a robust norm[27] for fo. 

To improve the optmization o€J@) under local minima, we first perform a coarse correlation search in order to 
-initidfzcthes-eaxch-&se twthe@dx&optimum. €ei&atien-over6-dimewims 4s+whibitiw+bytxvernakca fe4v- 

approximations to iimir <ne search to 2 dimensions. The transformation is estiinated as part of the featllre’based 
tracker above, and rover orientation is measured directly to within a few degrees by onboard orientation sensors. 
Using the observed orientation reduces the search space to 3 dimensions. Since we are minimizing a difference in 
depth images, we perform a correlation in the 2 dimensions parallel to the image plane. If there is an average 
difference in depth, it can be computed directly and subtracted out. 

Once the correlation search finds an approximate solution, we optimize over all 6 rigid transformation 
parameters using Nelder-Mead[27], which is a general local nonlinear optimization method. Nelder-Mead only 
requires a cost function, not any derivative information, so the cost function is used direcrly. In order to avoid 
problems with early termination, we restart the Nelder-Mead,optimization twice after it converges. Figure 5 shows 
an example result of the depth error after convergence. 

The transformation estimated by the 3D registration step describes how the original view and f i a l  view align. 
The same transformation is applied to the selected target point to find the same point in the final view for instrument 
placement. 

IV. ~ ~ s ~ r ~ ~ e ~ ~  Safety Check 
Robotic manipu!ation of a contact sensor such as the CHAMP in unstructured environments requires 

conservative checks for instrument safety prior to actual placement against the target. At peak magnification the 
C W  imager has a working distance of only a few millimeters, which is near the limit of positioning information 
available via propriocepnon. CHAMP has three contact switches, and for peak magnification the instnunent arm 
positions the czmera ma the surface and then drives the camera along its normai untii the contact switches ciose. 
Rough surfaces, large protrusions or holes, or edges of objects can damage the instrument. 

These instrument safety checks need to be done when the robot is close up to the target feature. Besides the fact 
that operators may not be able to determine if a target point is safe from 10m distance, there is no certainty that the 
rover will have tracked the target point with sufficient precision to avoid placing the instrument on an adjacent 
unsafe zone. Without automated safety check and arm motion planning, an additional command cycIe is required 
foi each target. 

Our instrument safety check uses several heuristics to verify that the selected imaging target is safe, or find a 
safe alternative nearby. The method consists of thresholding several statistics computed from a 3D model of the 
target in which a11 points are given priority levels. The highest priority is the chosen target point, and the priority of 
alternate points decreases with distance fiom the target. Points are then checked in priority order. The heuristics use 
2 set of pzzmeters to rsflect different constrzints for different instruments. 

The fxst check is for surface roughness. A plane is fit to the points within some radius of the point being 
evaluated, where the radius corresponds to the circle circumscribing the tool interface. The plane fit yields three 
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(4 (b) 
Figure 4: This 3D model is .the basis fo; 3D shape registration 
well as analysis for instrument safety. (a) Hazcam view of a rock. (b) 3D model from hazcam stereo. (c) some 
points which have passed the instrument safety check, with the tool normal shown. 

statistics. The first is the surface normal. Lf the angle between the viewing direction and surface normal is too large, 
the point is rejected as too oblique. The second is the residual to the fit, or surface roughness. If the average 
deviation from a plane is too large, the region is rejected as too rough. The third statistic is the maximum deviation 

from the planar fit. If the maximum d e v i a t i o C i T T o ~ e X ~ g i o n  is rejeXeFTEtoo1bounding radiiis; 
maximum obliquity, maximum roughness, and maximum deviation are parameters which can be set for each tool. 

The a!gorit!m also looks at the percentage of valid stereo correspondences near the point of interest. If the tool 
bounding radius contains an occlusion boundary or a textureless region, then stereo may fail often and the point is 
rejected because not enough is known about the shape. The minimum percentage of valid stereo correspondence is 
also a parameter that can be set by the designer. These heuristics are shown in Figure 5. 

- ~ _ _ _ _ _ _  _______..- 

_ -  Near fieid imagers with reduced depth of fieid and arm mounred monocuiar imagers require data analysis tools 
that differ from those used for other rover imagers such as mast mounted navigation camera pairs. The MI Toolkit 
was developed to automatically perform image registration and focal section merging, the combining several images 
of a surface into a single maximally in-focus image, for the Athena Microscopic Imager instrument team. 

A. Image Registration 
Focal section merging requires that we first find corresponding pixels in a stack of MI images. For the best focal 
section merging, we want a dense, subpixel estimate for correspondences, which can be expensive io compute when 
image motion is large and there are no a priori epipolar constraints. In order to faciIitate the search for these 
correspondences, we fust register the images up to a homography. If the scene is relatively planu, this homography 
accounts for most of the image plane motion of scene points, and the job of the pixel by pixei correspondence search 
is made much simpler. 

5 
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(9) (h) 
Figure 6: Image registration example. Top row shows source images from a microscopic imager moving away 
from a target surface and rotating. Bottom row (e-h) shows images aligned to the re€erenee view. 

37%- i m ~ r s r r ~ e ~ ~ o ~ l i n e a T - q p -  metbud - t ~ t e e o v e t t f K % - a ~ e ~ ~ ~ ~ ~ ~ e -  
homography. The homography H describes the reiationship between pixei coordinates in images iI and fz as 

I, (X) = I2 (X') = I2 (Hx) 

where x and X' are projective coordinates in 2D, and the equality is up to a scale factor. The matrix fl describing the 
homography has the form 

We choose the lower right entry to be unity because the homography is only defined up to a scale factor. We then 
search for the other 8 parame$ers. Iil addition, the two iaages may have sligM!y diEereDt exposures, which we 
account for using a linear function of the pixel values, and each pixei will contain some random noise, SO that 
equation (I becomes 

For convenience, the 8 parameters of the homography and the linear coefficients a and /3 can be collected into the 
parameter vector 6=(u,b,c,d,e,Ja,/3). We now define a least squares cost function over 6, 

[I&) - a12(Hx) + PI' 
X 

(4) 

and minimize J(6) using Levenberg-Marquardt. 

Working with 611 resolution images presents two problems. First, &e cost function in (4) may have lois of local 
minima which can trap the minimization. Second, the derivatives and cost function can take a long time to compute. 
For both of these reasons, we use a coarse-to-fine approach based on image pyramids. 
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(a) (b) ( 4  
Figure 7: Disparity optimiakr result. (a-b) two views of a surface before registration up to a homography. 
magnitude of disparity corn-ections at  each pixei, showed as greyscaie. slack corresponds to 0 pixels, whfe 
approximately 23 pixels in this example. 

The image pyramid is constructed for both I; and I2 up to level 3, or subsampling to 25 the original image 
dimensions. These subsampled images are aligned only up to rotation and scale, i.e 

0 

The level 3 registration starts with H3 initialized to the identity matrix. Once the !eve1 3 registration converges, 
the level 2 images are registered, again up to rotation and scale. In order to initialize the search at level 2, we start 
with the rotation angle recovered at level 3 and multiply the translation parameters by 2 to account for the difference 
in scale at the next pyramid level. The same procedure followed at level 1, and the final registration is a search for 
the fill homography at level 0 ( h l l  resolution), initialized by H;. 

Figure 7 shows an example image sequence using an engineering model of the MER MI taken at Cornell 
University, as well as the result of the registration. 

B, Dense Correspondence 

A stack of images registered using Imrnegaphy is z use%! product. Phong other things it aIiows scientists to 
browse a registered stack, scrolling from near to far focus, without the distraction of lzrge image motions. However, 
homography does not correct for parallax due to camera motion relative to a non-planar surface. 

Although parallax is typically associated with lateral camera motion, it is also present for motion along the 
caznera pointing direction, increasing toyaids the edges of the image. Pzrzlkx motions of several pixe!~ are 
commonly observed between successive MI images, while even a fractional pixel is enough to cause artifacts when 
performing the focal section merge. 

We initially used a simple window correlation search to find correspondences between images. For a given pixel 
in the first image, a pixel is chosen in the second image minimizing the sum square of differences of corresponding 

Correcting each image in a stack in this way, we created a set of images we hoped would exhibit no relative 
motion when viewed sequentially, onIy changes in focus. Disappointinglyy, this wasn't the case. Small motions (less 
than a pixel) were apparent when animating between images, and this miscorrelation caused features to grow or 
shrink in the resulting focal section merge. 

We first modified the window correlation search to calculate a subpixel match location by modeling the 
neighborhood of the optimal match as a quadratic basin and ifinding its minimum. This irriproved the results, btt 
unfortunately small motions persisted in areas of the image around large depth relief. 

niuelo in a xxiindnxw arnnnrl PZ& niupl r--- y"'.," -. .. . l . & & l " . .  -v...--.. * 
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The continued problem turned out to be the parallax itself; different portions of the support window around a 
pixel were moving by different amounts. Depending on the texture of the scene, the area very close to the pixel 
might dominate the match solution, or an area towards the edge of the window, which moved differently. 
Minimizing the support window size reduced this effect at the cost of spurious incorrect solutions and noise in the 
quadratic subpixel solution. 

To solve our problem, we developed a new technique for maintaining support window size while removing the 
problem of parallax. We used an iterative approach to solving the correspondences. For the first iteration, a 
complete correlation search is performed between the two images, which will be called A and B. This correlation 
provides our initial estimate for parallax motion. For each successive iteration, we use the parallax estimation from 
the previous iteration to warp image A into image A ’, and then perform a correlation between A ’  and B. This 
correlation provides a correction to our current estimate of parallax motion. 

As the iterations continue, A ’ approaches B in appearance, and as it does, the error in correlation minimum due 
to parallax reduces. The resulting solution produces images without perceptible subpixel motion, allowing us to 
generate focal section merges without perceptible feature size changes. Figure 7 shows the magnitude of the 
parallax correction at each pixel after homography. 

C. Focal Section Merging 
The motivation for the development of the MI toolkit is the problem of focal section merging, which is necessary 
because of the limited depth-of-field of the MI’S optics. While focus is a good cue for relative depth for humans as 
they flip back and forth between images in a vertical sequence, it is also useful to be abIe to examine a single, 

--~lobally-iniiocus imagtrsEarron=planaranarscene; 

After a stack is captured by the MI and a dense correspondence is found, images are transfonned using the dense 
correspondence to create a new stack of images, where each pixel x,y on one image corresponds direcrly TO ?ne same 
pixel x,y on all other images. Next, these transformed images are combined into a single, in-focus image, called the 
focal section merge. 

A simple approach to combining the images would be to compute each pixel in the focal section merge by selecting 
the pixel with sharpest focus from that location in the stack of images transformed to remove motion. 
Unfortunately, the transformed images have undergone interpolation from the original images, destroying some of 
the focus information. Our approach is, for each pixel in the transformed image, to use the inverse of the dense 
correspondence map, and use the corresponding location in the original image to compute sharpness.. 

Sharpness of focus s(x,y), is calculated from local variation in image intensity ix,y: 

After these sharpness values are computed, the focal section merge is constructed using the pixel from each 
location with the highest sharpness value. Figure 8 shows two images, followed by the focal section merge. 
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VI. Conclusion 
The overarching goal of NASA’s Mars Exploration Program is to answer the question “Did life ever exist on Mars?” 
If it did, or if it still does, expectations are that it would likely be microscopic. Microscopy is therefore an essential 
tool for detecting and characterizing extinct or extant life or viable habitats in any detail. It is also fundamental to 
geology. The Microscopic Imager (MI) on the Mars Exploration Rovers (MER) has provided dramatic illustration of 
the critical importance of microscopy in the exploration of Mars’s surface, particularly when mobility is available, 
so that a variety of geologic sites may be explored. For example, the MER MI played an instrumental role in the 
discovery and analysis of finely layered rippled bedforms and blueberry shaped concretions that helped confirm the 
existence of shallow acqueous and salt rich environments in the Martian past. 

Because Iife in extreme environments is both rare and heterogeneously distributed, finding it requires investigating 
many locations, diversely distributed at both macroscopic and microscopic scales. Thorough analysis of candidate 
feahires is necessary to unambiguously detect life and draw meaningful conclusions. In regions where small 
fractions (Le. 0.1%) of potentia! microhabitats ackz!!y hzi-bor Me, the motmt of activity rqcirec! to carry out a 
meaningful tele-robotic search goes beyond the current demonstrated state-of-the-art even for terrestrial analog 
robotic capabilities. When the risks, latencies, and data bandwidth constraints of planetary surface operations are 
added, the productivity of robotic science is minimized. 

The 2009 Mars Science Laboratory (MSL) offers the next opportunity to conduct extensive close up analyses of 
Martian rocks from a mobile platform after the MER missions. The MSL mission scenario assumes MER level 
instrument placement capabilities and calls for intensive, long duration (5 sols or more) analyses of Martian rocks to 
search for potentia1 microhabitats. 

We have successfully demonstrated a complete integrated rover system capable of safely acquiring contact 
measurements from at least 4 distinct rocks, scattered over a 10m diameter area, in a single command cycle lasting 
less than a day. Whilst work remains to validate the system and port to flight relevant computational hardware, this 
represents a tenfold increase in MER ciass rover capability, as measured by number of featlxes investigated, and 
would increase MSL science productivity by at least 30%. 

More importantly, the capability to rapidly get close up microscopic image mosaics at various resolutions of features 
scattered over an area, using a microscopic imager and other short duration measurements, enables a more 
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aggressive strategy of sample triage to identify promising targets much more effectively than can be done with 
remotely acquired measurements alone, and greatly improving the odds that the necessary, exhaustive and time 
consuming analysis of select samples will yield results. The Ames Single Cycle Instrument Placement (SCP) 
system and MI Toolkit are essential components towards realizing this capability to effectively explore extreme 
planetary environments with robotic vehicles. 
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