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ABSTRACT 

This paper proposes the development of intelligent sensors 
as an integrated systems approach, i.e. one treats the sensors as 
a complete system with its own sensing hardware (the 
traditional sensor), A/D converters, processing and storage 
capabilities, software drivers, self-assessment algorithms, 
communication protocols and evolutionary methodologies that 
allow them to get better with time. Under a project being 
undertaken at the Stennis Space Center, an integrated 
framework is being developed for the intelligent monitoring of 
smart elements. These smart elements can be sensors, actuators 
or other devices. The immediate application is the monitoring 
of the rocket test stands, but the technology should be generally 
applicable to the Intelligent Systems Health Monitoring 
(ISHM) vision. This paper outlines progress made in the 
development of intelligent sensors by describing the work done 
till date on Physical Intelligent Sensors (PIS) and Virtual 
Intelligent Sensors (VIS).  

 
 

INTRODUCTION 
The need for intelligent sensors as a critical component for 

Integrated System Health Management (ISHM) is fairly well 
recognized by now. Even the definition of what constitutes an 
intelligent sensor (or smart sensor) is well documented and 
stems from an intuitive desire to get the best quality 
measurement data that forms the basis of any complex health 
monitoring and/or management system. If the sensors, i.e. the 
elements closest to the measurand, are unreliable then the 

whole system works with a tremendous handicap. Hence, there 
has always been a desire to distribute intelligence down to the 
sensor level, and give it the ability to assess its own health 
thereby improving the confidence in the quality of the data at 
all times. 

Sensors are a critical component of complex and 
sophisticated systems of today's technology and their role is 
ever evolving in the smart systems of tomorrow. General 
theories to treat intelligent sensor systems have been reported in 
the literature since the mid 80’s [1-3]. Parallel work was done 
in industry where sensors have been developed with built in 
expert systems and look-up tables [4,5]. These sensors, called 
smart sensors, were described as simple sensing devices with 
built-in intelligence. This intelligence included simple decision-
making capabilities, data processing, conflict resolution, 
communications, or distribution of information. It was 
explained by Figueroa and Mahajan [6] that the autonomous 
sensor was defined as a sensor that had an expert system with 
extensive qualitative tools that allowed it to evolve with time 
into a better and more efficient system. It differed, at least in 
philosophy, from the previous models by having a dynamic 
knowledge base as well as embedded qualitative and analytical 
functions that gave it a higher degree of operational 
independence, self-sufficiency and robustness. The underlying 
philosophy behind the autonomous sensor was probably closest 
to Henderson's [7,8] logical sensor models that also endeavored 
to give more problem-solving capabilities to the sensor, but still 
stayed away from any type of dynamic models. 
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DeCoste [9] described a system, called DATMI that 
dynamically maintained a concise representation of the space of 
local and global interpretations across time that were consistent 
with the observations. Each of the observations was obtained 
from a sensor, and therefore the number of observations was 
equal to the number of sensors in the control system. The truth 
of the observations and the validity of the sensors was obtained 
by cross-referencing with possible and impossible states of the 
system. DATMI was designed for a complete control system 
comprising of multiple sensors and actuators, and was the 
inspiration for the formalized theory called DATA-SIMLAMT 
(Dynamic Across Time Autonomous - Sensing, Interpretation, 
Model Learning and Maintenance Theory) which was designed 
for and is applicable to each sensor in the control system [10].  

 
This paper proposes the development of intelligent sensors 

as an integrated system approach. Over the years some work 
has been done in this area, but most of the work has been for 
customized applications. It is certainly now time to think of 
generic models for such types of sensors that can be quickly 
fitted in to any application. Under a project being undertaken at 
the Stennis Space Center, an integrated framework is being 
developed for the intelligent monitoring of smart elements. 
These smart elements can be sensors, actuators or other 
devices. The immediate application is the monitoring of the 
rocket test stands, but the technology should be generally 
applicable to the ISHM vision. This paper outlines progress 
made in the development of intelligent sensors by describing 
the following: 
• A strategy for using a qualitative approach to process data 

and recognize problems in the data and/or in the health of 
the sensor itself. 

• The introduction of a condition assessment sheet for each 
sensor that functions as a report card, and allows the 
system to make critical decisions during or after a run. 

• The development of an integrated environment to run these 
intelligent sensors monitoring real processes. 

• A Physical Intelligent Sensor (PIS) or a smart sensor that 
connects directly to an Ethernet bus and has processing and 
storage capabilities embedded in it. Its output is data as 
well as an indicator of the quality of the data. 

• A Virtual Intelligent Sensor (VIS) that takes data from a 
traditional sensor and has the same output as that of a PIS. 

 
 
FORMALIZED THEORY FOR INTELLIGENT 
SENSORS 

DATA-SIMLAMT (Dynamic Across Time Autonomous - 
Sensing, Interpretation, Model Learning and Maintenance 
Theory) [10] is a philosophy that has been inspired by the need 
for autonomous sensors, and these in turn were inspired by the 
need for autonomous systems. Some of the terms that will be 
used in this paper are defined as follows: 
Property - is a parameter that has different state values based on 
the sensor performance, e.g. an amplitude check that monitors 
the amplitude of the current data point compared to the past few 
readings. It could have state values of (N)ormal or (H)igh 
signifying normal state of affairs or a potential problem. 
Concept - is a set of properties with same state values, e.g. 
amplitude is high for a certain duration of time. 

Behavior - is a set of concepts, e.g. a normal operation followed 
by a duration of very high amplitude may signify a problem 
such as a spike. 
Envisionment - is a known, hence pre-defined, concept/ 
behavior similar to a known pattern in the pattern recognition 
problem, and is stored in the sensors' knowledge bases. 

 
Eight properties with their state values (at any given time) 

form a pattern which constitute a concept as shown in Table 1.  
 

Table 1: Some Properties and theirs description 
 Properties States Description 
1 Deviation_check High,  

Normal,  
Zero 

Obtained by comparing the 
standard deviation of past 
few readings with a pre-
defined limiting check value. 
This is essentially a noise 
level check. The limiting 
value can also be extracted 
from an FFT analysis or a 
curve fitting routine. 

2 Amplitude_ 
check 

High,  
Normal,  
Low 

Obtained by comparing the 
difference of the present 
value with the moving 
average of the past few 
readings. This gives the 
notion of a sudden increase 
in the amplitude. 

3 Limit_check High,  
Normal,  
Low 

Obtained by comparing the 
current reading to pre-defined 
high and low limits. This is a 
specification limit check. 

4 Estimate_check Good,  
Bad 

Obtained by comparing the 
current value with an 
estimated value obtained 
from an FFT analysis, curve 
fitting, Kalman filter, etc. 
This is essentially a check for 
the validity of the assumed 
model. 

5 Zero_check No,  
Yes 

Obtained by checking for a 
zero reading. This is 
essentially a check for a 
power failure. 

6 Sign_check Plus,  
Minus,  
Same 

Obtained by checking against 
the past few readings. This is 
a check for trends in 
measurand behavior. 

7 STC_check Valid,  
Invalid 

This is obtained by checking 
to see if the sensor could 
possibly have detected a fast 
change. It is useful in 
identifying an impossible 
situation. 

8 MTC_check Valid,  
Invalid 

This is obtained by checking 
to see if the measurand could 
have changed at the given 
rate. It is essentially used to 
identify external 
disturbances to the sensor 
due to influences other than 
the measurand. 

 
A concept is defined as a period in time in which the 

properties have the same state values. A concept, as stated 
earlier, is defined by the eight properties and their unique state 
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values. The states are represented by the first letter of the words 
shown in the third column of the table. It is these first letters, or 
symbols, that make up the patterns. Two or more concepts, in a 
definite order, constitute a behavior.  
 
Example of a behavior comprising of two concepts is: 
Spike(Present) :- Previous_Noise(Low) + Amplitude(High) 
 

Previous_Noise(Low) is defined by the pattern shown on 
the Fig. 1. Each column represents the state values of the 
properties defined above. Consecutive columns of the same 
state values (or symbols) can be bunched 
together. The pattern for this concept 
signifies that the standard deviation was 
normal (low noise level), the amplitude 
was normal, the value was between 
specified limits, the value agreed with an 
estimated value, the trend was positive, 
and the limiting values for the sensor 
and measurand time constants were not 
violated in any way. 

 
A similar pattern can be generated for the 

concept, Amplitude (High) as shown in Fig. 1. 
Hence, the sensor knowledge base consists of 
numerous such patterns. It must be emphasized here 
that this example has been illustrated by using only 8 
generic properties. The proposed work goes much 
further and attempts to identify many more generic 
and sensor specific properties.  
 

Figure 1: Spike behavior and Amplitude behavior 
 
Fig 2 shows a typical example in how a behavior pattern, 

or envisionment, is recognized in real time data. As shown in 
Fig. 3 the numeric sensor data is converted to the symbolic data 
set in real time and a pattern recognition is done. The lightly 
shaded segment has been identified as Previous_Noise (Low) 
concept and the heavily shaded portion has been identified as 
Amplitude (High) concept. Together, in that order, the behavior 
of Spike (Present) has been identified this would cause the 
sensor to take appropriate action, which in this case could be to 
send a predicted value to the main controller rather than the 
actual data which is probably faulty.  

 
 
 
 
 
 
 
 

 

     Figure 2:  Real time data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 3: Pattern Recognition in real time data 
 

                                                         
CURRENT IHMS NETWORK MODEL 

Fig. 4 shows the layout of the sensors and the governing 
Intelligent Systems Health Monitoring (ISHM) vision.  

Figure 4: ISHM Layout 
 
The whole system of intelligent and traditional sensors is 

tied together in the governing system designed in the G2 
software environment. The overall system is being designed by 
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Stennis Space Center, but the scope of this work resides solely 
on the single sensor level.  In this layout the brown is the 
software control of the IHMS system. The grey is external 
systems including from left to right 

• an external Matlab program to do computation that G2 
cannot e.g. FFT’s, etc. 

• hardware smart sensors from 1…..n 
• virtual sensors from 1…..m 

 
All of these external systems connect to G2 through a 

bridging program written in C\C++.  The central system 
collects the data from the sensors and external programs and 
then applies it to the model of the system contained in its 
knowledgebase, as shown in Fig. 5. The model that this work is 
currently being applied to is that of a liquid oxygen tank at 
Stennis Space Center.  Since this paper deals primarily in the 
single sensor realm a detailed discussion of the overall system 
will not be given. 

Figure 5: Central IHMS system with its knowledge base 
 

Different types of sensors comprising a dynamic system 
will be instantiated as smart sensors that will fit within an 
object oriented integrated framework that uses embedded 
knowledge to monitor all the elements within the system. The 
concept of smart sensors may be extended to other types of 
elements as well as processes. Each element will have a 
specification sheet (SS) that will be fitted in to TEDS, and a 
new entity called the condition assessment sheet (CAS) that 
will be fitted into HEDS (see Fig. 2 for an example 
implementation). The CAS shows the condition (or the health) 
of the element and its confidence in its own working for the 
duration of the operation. This “health” information is provided 
over and beyond the numeric output of the sensor. These smart 
elements will have decision making capability derived from 
embedded knowledge bases and their own intrinsic 
specification sheets.  

 
Networks of elements with autonomous character will 

cooperate to perform as a system composed of a collection of 
processes, each managing a collection of sensors, actuators, and 
other components. The emphasis is on knowledge bases that 
support each element of the hierarchy and the relationships 
between them. A key feature of the proposed framework is the 
evaluation of condition for all elements performed both 
autonomously and using feedback from other higher-order 
elements. The proposed effort will develop and validate a 
hierarchical intelligent architecture composed of a system, 
processes, and sensors. Each element, as mentioned before, will 

be a smart or intelligent entity, where they possess the capacity 
to perform actions, assess those actions, and modify actions 
based on self assessment and external assessment of results by 
others. Implementing this level of intelligence involves 
embedding agents within each element that communicate, 
integrate, and adapt based on access to knowledge bases and 
autonomous learning algorithms. 

 
The smart elements will be developed in the MATLAB 

environment which is very conducive for research purposes, 
while the system integration will be done using the G2 
software, which is designed to handle complex intelligent 
systems. G2 software has been chosen since it offers the 
opportunity to develop layered behaviors analogous to the 
hierarchical autonomous architecture we seek to develop. SSC 
provides an ideal test bed for this development effort due to 
ready access to a broad range of rocket engine test stands, 
associated data acquisition systems, and archival data. In 
addition, there is a large experienced user base, which can be 
drawn from to develop, refine, and validate the architecture 
elements. 

 
 
PHYSICAL INTELLIGENT SENSOR (PIS) 

The PIS or smart sensor is a combination of a sensing 
element, a data acquisition chip, a microprocessor and an 
Ethernet connection that allows one to directly connect the 
sensor to an Ethernet Bus. A PC is connected to the 
microprocessor to down load the software to the RAM and also 
debug the program. Once the software is running, this PC is 
removed and all the data is collected by a remote PC thru the 
Ethernet Bus. Several such smart sensors can be connected to 
the same Ethernet Bus and controlled by the single remote PC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Block diagram of the PIS system 
 
Fig. 6 is the block diagram of the PIS system. As shown in the 
block diagram the first block is the sensor connected to the 
Analog to Digital Converter (ADC), where the analog data 
from the sensor is converted into digital data. The ADC is then 
connected to the microprocessor) which is then connected to a 
computer with a programming cable (RS-232). The program is 
downloaded onto the microprocessor. In this current work ADC 

 
 

A 
D 
C 

 
S 
E 
N 
S 
O 
R 

 
 

PC1 

 
R 
E 
M 
O 
T 
E 

PC2 

 
M 
I 
C 
R 
O 

PROCESSOR 

 

 

RELEASED - Printed documents may be obsolete; validate prior to use.



 5 Copyright © #### by ASME 

0801 and ADC7794 are being used for Analog to Digital 
conversion. In these former one is parallel out converter and the 
later one is serial out converter. The microprocessor being used 
is the RCM3300. This microprocessor is compatible with 
Dynamic ‘C’ (9.01) software along with assembly language. 
Hence, one can do the software coding directly in Dynamic ‘C’ 
(9.01), thus reducing the complexity of the problem, and can 
see the results on the computer (stdout window). One can also 
send the programmed data from the microprocessor to a remote 
system using TCP\IP Protocols thru an Ethernet bus. The 
analog data from the sensor is given to the ADC. According to 
the specifications of the ADC, if the analog data from the 
sensor exceeds 5V then the analog voltage is scaled as 5V and 
is sent to the ADC. The same case is applied when the actual 
voltage is dropped below 0v i.e. dropped to negative voltage, 
then the voltage is scaled to 0V and is sent to the ADC. The 
analog data is converted into digital data and is supplied to the 
microprocessor (RCM3300), where this data is controlled by 
the software program installed on the microprocessor. 
 

Fig. 7 shows the functional block diagram of the AD7794. 
The analog output from the sensor is given to the multiplexer 
and then the multiplexer output is given to the buffer. Then in 
order to amplify the signal from the sensor we have to give this 
signal to an operational amplifier due to the possibility of small 
strength signals. These signals are sent to the ADC where these 
analog signals are sampled and are converted into digital 
signals which are then fed to the microprocessor. This data is 
processed using the smart software program. The digital data 
can be available at the (digital out) DOUT pin of the AD7794 
Evaluation board. When the data is ready at the DOUT pin then 
the SCLK pin goes high indicating to the microprocessor that 
the data is ready. The microprocessor then accepts the data and 
makes the (digital in) DIN pin high indicating the data transfer 
is complete. This process continues until there is data available 
at the DOUT pin.  

 
Figure 7: Functional Block diagram of the AD7794 

 
The SCLK has a Schmitt-triggered input, making the 

interface suitable for opto-isolated applications. The serial 
clock can be continuous with all data transmitted in a 
continuous train of pulses. Alternatively, it can be a non 
continuous clock with the information being transmitted to or 
from the ADC in smaller batches of data. Clock In/Clock Out. 

The internal clock can be made available at this pin. 
Alternatively, the internal clock can be disabled and the ADC 
can be driven by an external clock. This allows several ADCs 
to be driven from a common clock, allowing simultaneous 
conversions to be performed. Chip Select Input. This is an 
active low logic input used to select the ADC. CS can be used 
to select the ADC in systems with more than one device on the 
serial bus or as a frame synchronization signal in 
communicating with the device. CS can be hardwired low, 
allowing the ADC to operate in a 3-wire mode with SCLK, 
DIN, and DOUT used to interface with the device. 

 
The main interface part in the smart sensor is the 

interfacing between the ADC and Microprocessor. The output 
data from the ADC is a 24bit serial data or 8 bit parallel data, so 
there are three pin connections between the ADC and the 
microprocessor. The following are descriptions of the pins:  

 
1. Interrupt pin from the ADC indicating that the data is 

ready at the ADC for transfer (SCLK pin from the 
ADC). 

2. Data transfer pin (DOUT/READY pin from ADC). 
3. Data acknowledgement pin from the microprocessor 

(DIN to the ADC).    
 
When there is data ready at the ADC then the interrupt pin 

is high indicating that the data is ready for the microprocessor. 
When the microprocessor receives the interrupt signal from the 
ADC then the serial/parallel data is transferred to the 
microprocessor through the data transfer pin of ADC. When the 
data is transferred then the microprocessor sends a data 
acknowledgement signal to the ADC indicating the completion 
of the data transfer. As the data transfer includes serial/parallel 
data transfer, the clock of the microprocessor and ADC are 
made the same, so that there is a minimal probability of data 
loss. The clock adjustment and the port pins (I/O) of 
microprocessor are controlled by the software (Dynamic ‘C’) in 
the microprocessor. The actual physical set-up of this interface 
connections is shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Interface between ADC and the Microprocessor 
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The microprocessor and the PC1 are connected by an RS32 
programming cable. The code that has to be stored on the 
microprocessor has to be first written on PC1 and is then 
downloaded to the microprocessor. It is compiled and run by 
using the SRAM (or) FLASH (each of 512KB) of the 
microprocessor. There is a memory back up of 8MB in the 
form of serial flash on the RCM3300 core module to create 
files and to store data. This then has to be transferred to the 
remote PC2 for further analysis using TCP\IP protocols and 
Ethernet cable connected to the microprocessor and the remote 
PC2. The physical set-up is shown in Fig. 9. 

 

Figure 9: Sending Results to Remote computer 

 
 
VIRTUAL INTELLIGENT SENSOR (VIS) 

The realization of IHMS Intelligent sensors brings with it 
the need for virtual implementations of these sensors.  The 
applications for intelligent sensors create a need for a way to 
test whether or not these sensors are applicable to various 
systems.  The sensors themselves are somewhat limited in the 
amount of data storage available to archive and store programs, 
so a method for more powerful versions of these sensors is also 
useful.  Having a software implementation of these sensors also 
lends itself to being an ideal test bed for future sensor 
development. 
 

Fig. 10 shows an early realization of the governing system.  
The following objects in this G2 KB are the result of an earlier 
attempt to encapsulate the behavior of a Virtual Intelligent 
Sensor in G2.   

� SMALL-SENSOR-SYSTEM window contains an instance 
of our sensor  

• TEMP-SENSOR-READOUT window contains the GUI to 
monitor the values of the sensor. 
� the first graph is the actual reading and the average 
� the second graph (disabled in this image) is standard 

deviation over 5 seconds and 5 minutes 
� the table contains the values of the 20 most recent 

history properties for zero, limit and   deviation check 
• RULES-OP window contains the rules that are inferred 

upon every time the sensor receives a reading and then 
inserts appropriate values into the history lists.  This 
populated history is then used to realize the DATA-
SIMLAMT philosophy. 
 

 
 
Figure 10: Early realization of Governing system 

 
It was later decided that the VIS should consist of the 

actual code going into the sensor and not G2 rules.  These rules 
were created as a proof of concept, as the history lists will later 
be populated with data from a Virtual Intelligent Sensor using 
the C\C++ routines actually used on the sensor as well. Since 
the governing system is created in G2 it grants a very powerful 
palette of tools that suit themselves very well to some of the 
ideas stated DATA-SIMLAMT.  The G2 environment will later 
be used to do further processing of the data, including data 
fusion, where we can infer even more about the sensors 
reliability by cross checking it values with those of other 
sensors. 

Another Advantage to the integrating system being 
developed in G2 is that it grants a common ground for the 
development of the virtual sensor.  The development of the 
Virtual Intelligent Sensors is best started in c\c++.  As 
mentioned earlier, in order for G2 to interface with external 
systems or programs, a “bridge” must be erected.  This 
“gateway bridge”, as Gensym has coined it, is an external c\c++ 
program written using GSI API functions to allow for G2 to 
connect to it through TCP.  Now the task is to take this bridge 
and embed a software version of the sensor into it.  Since the 
sensor itself uses routines to process the data, the routines 
themselves are being coded into a separate program and then 
this program is run by our bridge to simulate the sensor.  The 
common ground between the PIS and the G2 KB is that many 
of the routines used for event detection have already been 
developed in C\C++.   

 
MICROPROC

ESSOR 
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REMOTE 
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Most of the routines needed for the sensors have already 
been written by NASA’s Glen Research Center, including noise 
detection, spike detection, drift detection, etc.  These routines 
as well as others developed for the PIS are taken and 
modularized.  Each routine being a separate program, they are 
then compiled.  The bridge, being the connection between G2 
and the external systems, facilitates all of the information 
transfer as well as external processing.  The goal is to run the 
various routines as an intelligent sensor and feed that 
information to the G2 system as if it were an actual sensor.  

 
Upon execution, the bridge waits for a G2 knowledgebase 

to connect to it.  Upon receiving a connection the bridge simply 
loops its polling function after initializing the needed variables.  
The following image shows one of the G2 modules being used 
for testing the routines, in this case the Noise Detection 
routines.  Upon pressing the button “Start VIS, Noise” button, 
G2 calls a function remotely in the bridge, this function then 
proceeds to fork off a process and run the routine on our input 
data then subsequently pipe the data back into the bridge.  That 
data is fed as raw data back into G2 into the VIS-READING 
variable and the processed noise data is fed back into the VIS-
NOISE-READING variable in G2.    

 
Fig. 11 shows the values of these variables in one second 

intervals, the top being a pressure reading and the bottom being 
the noise reading, 1 for Excessive noise and 0 for Acceptable 
noise. The variable VSS-BRIDGE is the G2 side of the 
interface. With the modular fashion of the VIS additional 
algorithms are simple to test allowing for a useful framework 
for further development. The final product VIS will be 
composed of a suite of all of the routines used on the PIS.   

Figure 11: Some VIS routines in G2 
 
The VIS should prove to be very useful in both confirming 

proper PIS behavior and testing the usefulness of the PIS in 
many different applications, as well as allowing the use of 
existing traditional sensors within this new IHMS paradigm.  
The integrated sensor software will then be able to take in both 
serial traditional sensor data routed thru the VIS and the newly 
developed PIS. The output of both the PIS and VIS will be 
identical, i.e. data as well as an indicator of the quality of the 
data.  

 

CONCLUSIONS 
This paper presents the progress made in the development 

of intelligent sensors as an integrated systems approach, i.e. one 
treats the sensors as a complete system with its own sensing 
hardware (the traditional sensor), A/D converters, processing 
and storage capabilities, software drivers, self-assessment 
algorithms, communication protocols and evolutionary 
methodologies that allow them to get better with time.  

 
Under a project being undertaken at the Stennis Space 

Center, an integrated framework is being developed for the 
intelligent monitoring of smart elements. These smart elements 
can be sensors, actuators or other devices. This paper focuses 
only on the sensors. The immediate application is the 
monitoring of the rocket test stands, but the technology should 
be generally applicable to the Intelligent Systems Health 
Monitoring (ISHM) vision. This paper outlines specific 
progress made in the development of intelligent sensors by 
describing the work done till date on Physical Intelligent 
Sensors (PIS) and Virtual Intelligent Sensors (VIS).  
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