
 1 Copyright © #### by ASME

Proceedings of IMECE2005
2005 ASME International Mechanical Engineering Congress and Exposition

November 5-11, 2005, Orlando, Florida USA

IMECE2005-79403

INTELLIGENT SENSORS - STRATEGIES FOR AN INTEGRATED SYSTEMS APPROACH

Sanjeevi Chitikeshi1, Ajay Mahajan2, Lucas Utterbach4
Pavan Bandhil3 Department of Computer Science

Department of Mechanical Engineering and Southern Illinois University at Carbondale
 Energy Processes Carbondale, IL 62901
 Southern Illinois University at Carbondale

Carbondale, IL 62901

 Fernando Figueroa5
NASA

John C. Stennis Space Center
Technology Development and Transfer

Code HA30, Bldg. 8306
Stennis Space Center, Mississippi 39529-6000

 1. Graduate Student 2. Professor 3. Graduate Student
 4. Graduate Student 5. Scientist

ABSTRACT

This paper proposes the development of intelligent sensors
as an integrated systems approach, i.e. one treats the sensors as
a complete system with its own sensing hardware (the
traditional sensor), A/D converters, processing and storage
capabilities, software drivers, self-assessment algorithms,
communication protocols and evolutionary methodologies that
allow them to get better with time. Under a project being
undertaken at the Stennis Space Center, an integrated
framework is being developed for the intelligent monitoring of
smart elements. These smart elements can be sensors, actuators
or other devices. The immediate application is the monitoring
of the rocket test stands, but the technology should be generally
applicable to the Intelligent Systems Health Monitoring
(ISHM) vision. This paper outlines progress made in the
development of intelligent sensors by describing the work done
till date on Physical Intelligent Sensors (PIS) and Virtual
Intelligent Sensors (VIS).

INTRODUCTION
The need for intelligent sensors as a critical component for

Integrated System Health Management (ISHM) is fairly well
recognized by now. Even the definition of what constitutes an
intelligent sensor (or smart sensor) is well documented and
stems from an intuitive desire to get the best quality
measurement data that forms the basis of any complex health
monitoring and/or management system. If the sensors, i.e. the
elements closest to the measurand, are unreliable then the

whole system works with a tremendous handicap. Hence, there
has always been a desire to distribute intelligence down to the
sensor level, and give it the ability to assess its own health
thereby improving the confidence in the quality of the data at
all times.

Sensors are a critical component of complex and
sophisticated systems of today's technology and their role is
ever evolving in the smart systems of tomorrow. General
theories to treat intelligent sensor systems have been reported in
the literature since the mid 80’s [1-3]. Parallel work was done
in industry where sensors have been developed with built in
expert systems and look-up tables [4,5]. These sensors, called
smart sensors, were described as simple sensing devices with
built-in intelligence. This intelligence included simple decision-
making capabilities, data processing, conflict resolution,
communications, or distribution of information. It was
explained by Figueroa and Mahajan [6] that the autonomous
sensor was defined as a sensor that had an expert system with
extensive qualitative tools that allowed it to evolve with time
into a better and more efficient system. It differed, at least in
philosophy, from the previous models by having a dynamic
knowledge base as well as embedded qualitative and analytical
functions that gave it a higher degree of operational
independence, self-sufficiency and robustness. The underlying
philosophy behind the autonomous sensor was probably closest
to Henderson's [7,8] logical sensor models that also endeavored
to give more problem-solving capabilities to the sensor, but still
stayed away from any type of dynamic models.

RELEASED - Printed documents may be obsolete; validate prior to use.

 2 Copyright © #### by ASME

DeCoste [9] described a system, called DATMI that
dynamically maintained a concise representation of the space of
local and global interpretations across time that were consistent
with the observations. Each of the observations was obtained
from a sensor, and therefore the number of observations was
equal to the number of sensors in the control system. The truth
of the observations and the validity of the sensors was obtained
by cross-referencing with possible and impossible states of the
system. DATMI was designed for a complete control system
comprising of multiple sensors and actuators, and was the
inspiration for the formalized theory called DATA-SIMLAMT
(Dynamic Across Time Autonomous - Sensing, Interpretation,
Model Learning and Maintenance Theory) which was designed
for and is applicable to each sensor in the control system [10].

This paper proposes the development of intelligent sensors

as an integrated system approach. Over the years some work
has been done in this area, but most of the work has been for
customized applications. It is certainly now time to think of
generic models for such types of sensors that can be quickly
fitted in to any application. Under a project being undertaken at
the Stennis Space Center, an integrated framework is being
developed for the intelligent monitoring of smart elements.
These smart elements can be sensors, actuators or other
devices. The immediate application is the monitoring of the
rocket test stands, but the technology should be generally
applicable to the ISHM vision. This paper outlines progress
made in the development of intelligent sensors by describing
the following:
• A strategy for using a qualitative approach to process data

and recognize problems in the data and/or in the health of
the sensor itself.

• The introduction of a condition assessment sheet for each
sensor that functions as a report card, and allows the
system to make critical decisions during or after a run.

• The development of an integrated environment to run these
intelligent sensors monitoring real processes.

• A Physical Intelligent Sensor (PIS) or a smart sensor that
connects directly to an Ethernet bus and has processing and
storage capabilities embedded in it. Its output is data as
well as an indicator of the quality of the data.

• A Virtual Intelligent Sensor (VIS) that takes data from a
traditional sensor and has the same output as that of a PIS.

FORMALIZED THEORY FOR INTELLIGENT
SENSORS

DATA-SIMLAMT (Dynamic Across Time Autonomous -
Sensing, Interpretation, Model Learning and Maintenance
Theory) [10] is a philosophy that has been inspired by the need
for autonomous sensors, and these in turn were inspired by the
need for autonomous systems. Some of the terms that will be
used in this paper are defined as follows:
Property - is a parameter that has different state values based on
the sensor performance, e.g. an amplitude check that monitors
the amplitude of the current data point compared to the past few
readings. It could have state values of (N)ormal or (H)igh
signifying normal state of affairs or a potential problem.
Concept - is a set of properties with same state values, e.g.
amplitude is high for a certain duration of time.

Behavior - is a set of concepts, e.g. a normal operation followed
by a duration of very high amplitude may signify a problem
such as a spike.
Envisionment - is a known, hence pre-defined, concept/
behavior similar to a known pattern in the pattern recognition
problem, and is stored in the sensors' knowledge bases.

Eight properties with their state values (at any given time)

form a pattern which constitute a concept as shown in Table 1.

Table 1: Some Properties and theirs description
 Properties States Description
1 Deviation_check High,

Normal,
Zero

Obtained by comparing the
standard deviation of past
few readings with a pre-
defined limiting check value.
This is essentially a noise
level check. The limiting
value can also be extracted
from an FFT analysis or a
curve fitting routine.

2 Amplitude_
check

High,
Normal,
Low

Obtained by comparing the
difference of the present
value with the moving
average of the past few
readings. This gives the
notion of a sudden increase
in the amplitude.

3 Limit_check High,
Normal,
Low

Obtained by comparing the
current reading to pre-defined
high and low limits. This is a
specification limit check.

4 Estimate_check Good,
Bad

Obtained by comparing the
current value with an
estimated value obtained
from an FFT analysis, curve
fitting, Kalman filter, etc.
This is essentially a check for
the validity of the assumed
model.

5 Zero_check No,
Yes

Obtained by checking for a
zero reading. This is
essentially a check for a
power failure.

6 Sign_check Plus,
Minus,
Same

Obtained by checking against
the past few readings. This is
a check for trends in
measurand behavior.

7 STC_check Valid,
Invalid

This is obtained by checking
to see if the sensor could
possibly have detected a fast
change. It is useful in
identifying an impossible
situation.

8 MTC_check Valid,
Invalid

This is obtained by checking
to see if the measurand could
have changed at the given
rate. It is essentially used to
identify external
disturbances to the sensor
due to influences other than
the measurand.

A concept is defined as a period in time in which the

properties have the same state values. A concept, as stated
earlier, is defined by the eight properties and their unique state

RELEASED - Printed documents may be obsolete; validate prior to use.

 3 Copyright © #### by ASME

values. The states are represented by the first letter of the words
shown in the third column of the table. It is these first letters, or
symbols, that make up the patterns. Two or more concepts, in a
definite order, constitute a behavior.

Example of a behavior comprising of two concepts is:
Spike(Present) :- Previous_Noise(Low) + Amplitude(High)

Previous_Noise(Low) is defined by the pattern shown on
the Fig. 1. Each column represents the state values of the
properties defined above. Consecutive columns of the same
state values (or symbols) can be bunched
together. The pattern for this concept
signifies that the standard deviation was
normal (low noise level), the amplitude
was normal, the value was between
specified limits, the value agreed with an
estimated value, the trend was positive,
and the limiting values for the sensor
and measurand time constants were not
violated in any way.

A similar pattern can be generated for the

concept, Amplitude (High) as shown in Fig. 1.
Hence, the sensor knowledge base consists of
numerous such patterns. It must be emphasized here
that this example has been illustrated by using only 8
generic properties. The proposed work goes much
further and attempts to identify many more generic
and sensor specific properties.

Figure 1: Spike behavior and Amplitude behavior

Fig 2 shows a typical example in how a behavior pattern,

or envisionment, is recognized in real time data. As shown in
Fig. 3 the numeric sensor data is converted to the symbolic data
set in real time and a pattern recognition is done. The lightly
shaded segment has been identified as Previous_Noise (Low)
concept and the heavily shaded portion has been identified as
Amplitude (High) concept. Together, in that order, the behavior
of Spike (Present) has been identified this would cause the
sensor to take appropriate action, which in this case could be to
send a predicted value to the main controller rather than the
actual data which is probably faulty.

 Figure 2: Real time data

 Figure 3: Pattern Recognition in real time data

CURRENT IHMS NETWORK MODEL

Fig. 4 shows the layout of the sensors and the governing
Intelligent Systems Health Monitoring (ISHM) vision.

Figure 4: ISHM Layout

The whole system of intelligent and traditional sensors is

tied together in the governing system designed in the G2
software environment. The overall system is being designed by

N N N N
N N N N
N N N N
G G G G
N N N N
P P P P
V V V V
V V V V

H
H
H
B
N
P
I
I

Previous_Noise(Low) Amplitude(High)Concepts --->

Behavior -------------------------> Spike(Present)

Previous_Noise(Low) Amplitude(High)Concepts --->

Behavior -------------------------> Spike(Present)

 Numeric sensor data ���� 3.1 3.2 3.3 3.2 3.2 3.1 6.0 3.0 3.1 2.9 3.0 3.1 3.2 3.3 3.3 3.2 3.0 3.2 3.1

1 Deviation_check N N N N N N H N N N N Z N N N N N N N
2 Amplitude_check N N N N N N H N N N N N N N N N N N N
3 Limit_check N N N N N N H N N N N N N N N N N N N
4 Estimate_check G G G G G G B G G G G G G G G G G G G
5 Zero_check N N N N N N N N N N N N N N N N N N N
6 Sign_check P P P P P P P P P P P P P P P P P P P
7 STC_check V V V V V V I V V V V V V V V V V V V
8 MTC_check V V V V V V I V V V V V V V V V V V V

Condition Assessment Sheet (CAS)

Confidence

Factor Level

(CFL)

CFL=100% CFL=0% CFL=60%

Previous_Noise(Low) Amplitude(High)Concepts --->

Behavior -------------------------> Spike(Present)

 Numeric sensor data ���� 3.1 3.2 3.3 3.2 3.2 3.1 6.0 3.0 3.1 2.9 3.0 3.1 3.2 3.3 3.3 3.2 3.0 3.2 3.1

1 Deviation_check N N N N N N H N N N N Z N N N N N N N
2 Amplitude_check N N N N N N H N N N N N N N N N N N N
3 Limit_check N N N N N N H N N N N N N N N N N N N
4 Estimate_check G G G G G G B G G G G G G G G G G G G
5 Zero_check N N N N N N N N N N N N N N N N N N N
6 Sign_check P P P P P P P P P P P P P P P P P P P
7 STC_check V V V V V V I V V V V V V V V V V V V
8 MTC_check V V V V V V I V V V V V V V V V V V V

Condition Assessment Sheet (CAS)

Confidence

Factor Level

(CFL)

CFL=100% CFL=0% CFL=60%

Previous_Noise(Low) Amplitude(High)Concepts --->

Behavior -------------------------> Spike(Present)

 Numeric sensor data ���� 3.1 3.2 3.3 3.2 3.2 3.1 6.0 3.0 3.1 2.9 3.0 3.1 3.2 3.3 3.3 3.2 3.0 3.2 3.1

1 Deviation_check N N N N N N H N N N N Z N N N N N N N
2 Amplitude_check N N N N N N H N N N N N N N N N N N N
3 Limit_check N N N N N N H N N N N N N N N N N N N
4 Estimate_check G G G G G G B G G G G G G G G G G G G
5 Zero_check N N N N N N N N N N N N N N N N N N N
6 Sign_check P P P P P P P P P P P P P P P P P P P
7 STC_check V V V V V V I V V V V V V V V V V V V
8 MTC_check V V V V V V I V V V V V V V V V V V V

Condition Assessment Sheet (CAS)

Confidence

Factor Level

(CFL)

CFL=100% CFL=0% CFL=60%

A/D

Central Controller

Membership Functions Heuristic
Knowledge Base

Knowledge Base
of Properties

Behavior Patterns

Sensor Sensor Output Numeric Data
Symbolic Data

Action

Pattern Matching

Corrected Output to Controller

New Patterns

New Parameters Clustering to Identify
New Properties

Le
ar

ni
ng

 N
ew

 P
ro

pe
rt

ie
s

VG

L H Z G

H
V

Z
L

IEEE 1451.1
NCAP

TED
S

HED
S

Transducer
Subsystem

Knowledge Base

IEEE 1451.1
Gateway &

Bridge

MATLAB CE
Gateway

Gigabit Ethernet Switch

MATLAB
Computational

Engine

MATLAB
Bridge

IEEE 1451.1
NCAP

TED
S

HED
S

Historical
Data

File I/O

n copies of
hardware

m copies of
virtual

G2
Server

RELEASED - Printed documents may be obsolete; validate prior to use.

 4 Copyright © #### by ASME

Stennis Space Center, but the scope of this work resides solely
on the single sensor level. In this layout the brown is the
software control of the IHMS system. The grey is external
systems including from left to right

• an external Matlab program to do computation that G2
cannot e.g. FFT’s, etc.

• hardware smart sensors from 1…..n
• virtual sensors from 1…..m

All of these external systems connect to G2 through a

bridging program written in C\C++. The central system
collects the data from the sensors and external programs and
then applies it to the model of the system contained in its
knowledgebase, as shown in Fig. 5. The model that this work is
currently being applied to is that of a liquid oxygen tank at
Stennis Space Center. Since this paper deals primarily in the
single sensor realm a detailed discussion of the overall system
will not be given.

Figure 5: Central IHMS system with its knowledge base

Different types of sensors comprising a dynamic system
will be instantiated as smart sensors that will fit within an
object oriented integrated framework that uses embedded
knowledge to monitor all the elements within the system. The
concept of smart sensors may be extended to other types of
elements as well as processes. Each element will have a
specification sheet (SS) that will be fitted in to TEDS, and a
new entity called the condition assessment sheet (CAS) that
will be fitted into HEDS (see Fig. 2 for an example
implementation). The CAS shows the condition (or the health)
of the element and its confidence in its own working for the
duration of the operation. This “health” information is provided
over and beyond the numeric output of the sensor. These smart
elements will have decision making capability derived from
embedded knowledge bases and their own intrinsic
specification sheets.

Networks of elements with autonomous character will

cooperate to perform as a system composed of a collection of
processes, each managing a collection of sensors, actuators, and
other components. The emphasis is on knowledge bases that
support each element of the hierarchy and the relationships
between them. A key feature of the proposed framework is the
evaluation of condition for all elements performed both
autonomously and using feedback from other higher-order
elements. The proposed effort will develop and validate a
hierarchical intelligent architecture composed of a system,
processes, and sensors. Each element, as mentioned before, will

be a smart or intelligent entity, where they possess the capacity
to perform actions, assess those actions, and modify actions
based on self assessment and external assessment of results by
others. Implementing this level of intelligence involves
embedding agents within each element that communicate,
integrate, and adapt based on access to knowledge bases and
autonomous learning algorithms.

The smart elements will be developed in the MATLAB

environment which is very conducive for research purposes,
while the system integration will be done using the G2
software, which is designed to handle complex intelligent
systems. G2 software has been chosen since it offers the
opportunity to develop layered behaviors analogous to the
hierarchical autonomous architecture we seek to develop. SSC
provides an ideal test bed for this development effort due to
ready access to a broad range of rocket engine test stands,
associated data acquisition systems, and archival data. In
addition, there is a large experienced user base, which can be
drawn from to develop, refine, and validate the architecture
elements.

PHYSICAL INTELLIGENT SENSOR (PIS)

The PIS or smart sensor is a combination of a sensing
element, a data acquisition chip, a microprocessor and an
Ethernet connection that allows one to directly connect the
sensor to an Ethernet Bus. A PC is connected to the
microprocessor to down load the software to the RAM and also
debug the program. Once the software is running, this PC is
removed and all the data is collected by a remote PC thru the
Ethernet Bus. Several such smart sensors can be connected to
the same Ethernet Bus and controlled by the single remote PC.

Figure 6: Block diagram of the PIS system

Fig. 6 is the block diagram of the PIS system. As shown in the
block diagram the first block is the sensor connected to the
Analog to Digital Converter (ADC), where the analog data
from the sensor is converted into digital data. The ADC is then
connected to the microprocessor) which is then connected to a
computer with a programming cable (RS-232). The program is
downloaded onto the microprocessor. In this current work ADC

A
D
C

S
E
N
S
O
R

PC1

R
E
M
O
T
E

PC2

M
I
C
R
O

PROCESSOR

RELEASED - Printed documents may be obsolete; validate prior to use.

 5 Copyright © #### by ASME

0801 and ADC7794 are being used for Analog to Digital
conversion. In these former one is parallel out converter and the
later one is serial out converter. The microprocessor being used
is the RCM3300. This microprocessor is compatible with
Dynamic ‘C’ (9.01) software along with assembly language.
Hence, one can do the software coding directly in Dynamic ‘C’
(9.01), thus reducing the complexity of the problem, and can
see the results on the computer (stdout window). One can also
send the programmed data from the microprocessor to a remote
system using TCP\IP Protocols thru an Ethernet bus. The
analog data from the sensor is given to the ADC. According to
the specifications of the ADC, if the analog data from the
sensor exceeds 5V then the analog voltage is scaled as 5V and
is sent to the ADC. The same case is applied when the actual
voltage is dropped below 0v i.e. dropped to negative voltage,
then the voltage is scaled to 0V and is sent to the ADC. The
analog data is converted into digital data and is supplied to the
microprocessor (RCM3300), where this data is controlled by
the software program installed on the microprocessor.

Fig. 7 shows the functional block diagram of the AD7794.
The analog output from the sensor is given to the multiplexer
and then the multiplexer output is given to the buffer. Then in
order to amplify the signal from the sensor we have to give this
signal to an operational amplifier due to the possibility of small
strength signals. These signals are sent to the ADC where these
analog signals are sampled and are converted into digital
signals which are then fed to the microprocessor. This data is
processed using the smart software program. The digital data
can be available at the (digital out) DOUT pin of the AD7794
Evaluation board. When the data is ready at the DOUT pin then
the SCLK pin goes high indicating to the microprocessor that
the data is ready. The microprocessor then accepts the data and
makes the (digital in) DIN pin high indicating the data transfer
is complete. This process continues until there is data available
at the DOUT pin.

Figure 7: Functional Block diagram of the AD7794

The SCLK has a Schmitt-triggered input, making the

interface suitable for opto-isolated applications. The serial
clock can be continuous with all data transmitted in a
continuous train of pulses. Alternatively, it can be a non
continuous clock with the information being transmitted to or
from the ADC in smaller batches of data. Clock In/Clock Out.

The internal clock can be made available at this pin.
Alternatively, the internal clock can be disabled and the ADC
can be driven by an external clock. This allows several ADCs
to be driven from a common clock, allowing simultaneous
conversions to be performed. Chip Select Input. This is an
active low logic input used to select the ADC. CS can be used
to select the ADC in systems with more than one device on the
serial bus or as a frame synchronization signal in
communicating with the device. CS can be hardwired low,
allowing the ADC to operate in a 3-wire mode with SCLK,
DIN, and DOUT used to interface with the device.

The main interface part in the smart sensor is the

interfacing between the ADC and Microprocessor. The output
data from the ADC is a 24bit serial data or 8 bit parallel data, so
there are three pin connections between the ADC and the
microprocessor. The following are descriptions of the pins:

1. Interrupt pin from the ADC indicating that the data is

ready at the ADC for transfer (SCLK pin from the
ADC).

2. Data transfer pin (DOUT/READY pin from ADC).
3. Data acknowledgement pin from the microprocessor

(DIN to the ADC).

When there is data ready at the ADC then the interrupt pin

is high indicating that the data is ready for the microprocessor.
When the microprocessor receives the interrupt signal from the
ADC then the serial/parallel data is transferred to the
microprocessor through the data transfer pin of ADC. When the
data is transferred then the microprocessor sends a data
acknowledgement signal to the ADC indicating the completion
of the data transfer. As the data transfer includes serial/parallel
data transfer, the clock of the microprocessor and ADC are
made the same, so that there is a minimal probability of data
loss. The clock adjustment and the port pins (I/O) of
microprocessor are controlled by the software (Dynamic ‘C’) in
the microprocessor. The actual physical set-up of this interface
connections is shown in Fig. 8.

Figure 8: Interface between ADC and the Microprocessor

 ADC
0801
 (Can be
AD7794

MICROPR
OCESSOR
RCM3300

RELEASED - Printed documents may be obsolete; validate prior to use.

 6 Copyright © #### by ASME

The microprocessor and the PC1 are connected by an RS32
programming cable. The code that has to be stored on the
microprocessor has to be first written on PC1 and is then
downloaded to the microprocessor. It is compiled and run by
using the SRAM (or) FLASH (each of 512KB) of the
microprocessor. There is a memory back up of 8MB in the
form of serial flash on the RCM3300 core module to create
files and to store data. This then has to be transferred to the
remote PC2 for further analysis using TCP\IP protocols and
Ethernet cable connected to the microprocessor and the remote
PC2. The physical set-up is shown in Fig. 9.

Figure 9: Sending Results to Remote computer

VIRTUAL INTELLIGENT SENSOR (VIS)

The realization of IHMS Intelligent sensors brings with it
the need for virtual implementations of these sensors. The
applications for intelligent sensors create a need for a way to
test whether or not these sensors are applicable to various
systems. The sensors themselves are somewhat limited in the
amount of data storage available to archive and store programs,
so a method for more powerful versions of these sensors is also
useful. Having a software implementation of these sensors also
lends itself to being an ideal test bed for future sensor
development.

Fig. 10 shows an early realization of the governing system.
The following objects in this G2 KB are the result of an earlier
attempt to encapsulate the behavior of a Virtual Intelligent
Sensor in G2.

� SMALL-SENSOR-SYSTEM window contains an instance
of our sensor

• TEMP-SENSOR-READOUT window contains the GUI to
monitor the values of the sensor.
� the first graph is the actual reading and the average
� the second graph (disabled in this image) is standard

deviation over 5 seconds and 5 minutes
� the table contains the values of the 20 most recent

history properties for zero, limit and deviation check
• RULES-OP window contains the rules that are inferred

upon every time the sensor receives a reading and then
inserts appropriate values into the history lists. This
populated history is then used to realize the DATA-
SIMLAMT philosophy.

Figure 10: Early realization of Governing system

It was later decided that the VIS should consist of the

actual code going into the sensor and not G2 rules. These rules
were created as a proof of concept, as the history lists will later
be populated with data from a Virtual Intelligent Sensor using
the C\C++ routines actually used on the sensor as well. Since
the governing system is created in G2 it grants a very powerful
palette of tools that suit themselves very well to some of the
ideas stated DATA-SIMLAMT. The G2 environment will later
be used to do further processing of the data, including data
fusion, where we can infer even more about the sensors
reliability by cross checking it values with those of other
sensors.

Another Advantage to the integrating system being
developed in G2 is that it grants a common ground for the
development of the virtual sensor. The development of the
Virtual Intelligent Sensors is best started in c\c++. As
mentioned earlier, in order for G2 to interface with external
systems or programs, a “bridge” must be erected. This
“gateway bridge”, as Gensym has coined it, is an external c\c++
program written using GSI API functions to allow for G2 to
connect to it through TCP. Now the task is to take this bridge
and embed a software version of the sensor into it. Since the
sensor itself uses routines to process the data, the routines
themselves are being coded into a separate program and then
this program is run by our bridge to simulate the sensor. The
common ground between the PIS and the G2 KB is that many
of the routines used for event detection have already been
developed in C\C++.

MICROPROC

ESSOR
RCM3300

PC1

REMOTE
PC2

RELEASED - Printed documents may be obsolete; validate prior to use.

 7 Copyright © #### by ASME

Most of the routines needed for the sensors have already
been written by NASA’s Glen Research Center, including noise
detection, spike detection, drift detection, etc. These routines
as well as others developed for the PIS are taken and
modularized. Each routine being a separate program, they are
then compiled. The bridge, being the connection between G2
and the external systems, facilitates all of the information
transfer as well as external processing. The goal is to run the
various routines as an intelligent sensor and feed that
information to the G2 system as if it were an actual sensor.

Upon execution, the bridge waits for a G2 knowledgebase

to connect to it. Upon receiving a connection the bridge simply
loops its polling function after initializing the needed variables.
The following image shows one of the G2 modules being used
for testing the routines, in this case the Noise Detection
routines. Upon pressing the button “Start VIS, Noise” button,
G2 calls a function remotely in the bridge, this function then
proceeds to fork off a process and run the routine on our input
data then subsequently pipe the data back into the bridge. That
data is fed as raw data back into G2 into the VIS-READING
variable and the processed noise data is fed back into the VIS-
NOISE-READING variable in G2.

Fig. 11 shows the values of these variables in one second

intervals, the top being a pressure reading and the bottom being
the noise reading, 1 for Excessive noise and 0 for Acceptable
noise. The variable VSS-BRIDGE is the G2 side of the
interface. With the modular fashion of the VIS additional
algorithms are simple to test allowing for a useful framework
for further development. The final product VIS will be
composed of a suite of all of the routines used on the PIS.

Figure 11: Some VIS routines in G2

The VIS should prove to be very useful in both confirming

proper PIS behavior and testing the usefulness of the PIS in
many different applications, as well as allowing the use of
existing traditional sensors within this new IHMS paradigm.
The integrated sensor software will then be able to take in both
serial traditional sensor data routed thru the VIS and the newly
developed PIS. The output of both the PIS and VIS will be
identical, i.e. data as well as an indicator of the quality of the
data.

CONCLUSIONS
This paper presents the progress made in the development

of intelligent sensors as an integrated systems approach, i.e. one
treats the sensors as a complete system with its own sensing
hardware (the traditional sensor), A/D converters, processing
and storage capabilities, software drivers, self-assessment
algorithms, communication protocols and evolutionary
methodologies that allow them to get better with time.

Under a project being undertaken at the Stennis Space

Center, an integrated framework is being developed for the
intelligent monitoring of smart elements. These smart elements
can be sensors, actuators or other devices. This paper focuses
only on the sensors. The immediate application is the
monitoring of the rocket test stands, but the technology should
be generally applicable to the Intelligent Systems Health
Monitoring (ISHM) vision. This paper outlines specific
progress made in the development of intelligent sensors by
describing the work done till date on Physical Intelligent
Sensors (PIS) and Virtual Intelligent Sensors (VIS).

ACKNOWLEDGEMENTS
 The authors would like to acknowledge the support of
NASA for funding this work under Grant NNS04AB79G.

REFERENCES
1. Ghani, N., "Sensor integration in ESPRIT," IFAC

Proceedings, Karlsruhe, FDR 1988, pp. 323-328.
2. Pinkava, J., "Towards a theory of sensory robotics,"

Robotica, Vol. 8, 1989, pp. 245-256.
3. Lozano-Perez, T., Mason, M. T., and Taylor, R.,

"Automatic synthesis of fine motion strategies for robots,"
International Journal of Robotics Research, Vol. 3, No. 1,
1984, pp. 2-24.

4. AbdelRahman, M. and Smith M. L., "The Impact of AI On
Sensing Technology," SENSORS, September 1991, pp. 16-
22.

5. Studt, T., "Smart Sensors Widen Views on Measuring
Data," R&D Magazine, March 1994, pp. 18-20.

6. Figueroa, F. and Mahajan, A., "Generic Model of an
Autonomous Sensor," Mechatronics, Vol. 4, No. 3, pp.
295-315, 1994.

7. Henderson, T and Shilcrat, E., "Logical Sensor Systems,"
Journal of Robotic Systems, 1(2), 1984, pp. 169-193.

8. Henderson, T., Hansen, C. and Bhanu, B., "The
Specification of Distributed Sensing and Control," Journal
of Robotic Systems, 2(4), 1985, pp. 387-396.

9. DeCoste, D., "Dynamic Across-Time Measurement and
Interpretation," Artificial Intelligence, Vol. 51, 1991, pp.
273-341.

10. Mahajan, A. and Figueroa, F., “Dynamic Across Time
Autonomous - Sensing, Interpretation, Model learning and
Maintenance theory (DATA-SIMLAMT),” Mechatronics,
Vol. 5, No. 6, 1995, pp. 665-693.

RELEASED - Printed documents may be obsolete; validate prior to use.

