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Abstract

In flight control, the design objective and the aircraft dynamics may be different in low and
high angle of attack regions. This paper presents a systematic switching LPV control design
method to determine if it is practical to use for flight control designs over a wide angle of attack
region. The approach is based on multiple parameter-dependent Lyapunov functions. A family
of LPV controllers are designed, and each of them is suitable for a specific parameter subspace.
The state of the controller is reset to guarantee the stability requirement of the Lyapunov
function when the switching event occurs. Two parameter-dependent switching logics, hysteresis
switching and switching with average dwell time, are examined. The proposed switching LPV
control scheme is applied to an F-16 aircraft model with different design objectives and aircraft
dynamics in low and high angle of attack regions. The nonlinear simulation results using both

switching logics are compared.
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1 Introduction

In flight control, different performance goals are often desirable for different angle of attack regions.
For example, in a low angle of attack scenario, pilots desire fast and accurate responses for maneu-
vering and attitude tracking. While in a high angle of attack region, the flight control emphasis
lies in the maintainability of aircraft stability with acceptable flying qualities. A modern fighter
aircraft usually works in a wide angle of attack region, even near stall or poststall regime. In such
a case, it is difficult to design a single robust controller over the entire flight envelope. Typically,

the controller is designed by compromising the performance in some angle of attack region.

Another issue encountered in flight control is that the actuator dynamics may be different in low
and high angle of attack regions. It is known that the redundant control effectors, such as thrust
vectoring nozzles, are usually incorporated in the high angle of attack region to provide additional
control power. The usual way to generate the thrust vectoring command is a two-step procedure.
A controller is designed first based on the generalized control, and the real control input is then
generated using a control selector [1, 2, 3, 4]. It has not been clearly addressed how to develop the
control law with guaranteed stability and performance by considering the aerodynamic force and

thrust force in a unified frame.

To solve those problems, this paper considers a switching linear parameter-varying (LPV) control
technique to design a family of controllers, each suitable in different angle of attack region, and
switch among them according to the evolution of angle of attack. The whole framework is based
on LPV systems because of their relevance to nonlinear systems. The proposed switching LPV
control technique is the generalization of results in switched LTI systems. Obviously, stability
is an important and challenging problem in switched systems, and it has received considerable
attention in the recent literature (see Refs. [5, 6, 7]). For a family of stable LTI systems, the
existence of a common Lyapunov function provides sufficient conditions for stability of switched
systems under arbitrary switching sequences [8, 6]. However, this kind of stability guarantee is
deemed to be too conservative when a particular switching logic is concerned. For restricted class
of switching signals, multiple Lyapunov functions have been shown to be very useful tools for
stability analysis purpose. Specifically, non-traditional stability conditions have been developed
using either piecewise continuous Lyapunov functions [9, 10, 11, 12], or discontinuous Lyapunov

functions [13, 14]. In the former case, the values of Lyapunov functions corresponding to the active



subsystems form a decreasing sequence. This constraint is relaxed in the latter one by requiring
each Lyapunov function V), to decrease when the pth subsystem is active with possible jump at
switching time. The results of switched LTI systems have been generalized to the analysis and
control of switched LPV systems [15], which is further extended in Ref. [16] by incorporating
average dwell time switching logic [17]. The stability of switched LPV systems was analyzed by
multiple parameter-dependent Lyapunov functions, which are allowed to be discontinuous at the

switching surfaces.

Recently, the authors have developed switching LPV control techniques under hysteresis and av-
erage dwell time switching logics [18]. The multiple parameter-dependent Lyapunov functions [16]
are used for analyzing the stability of switched LPV systems. We also considered the optimized
performance, which is another important issue and has not been addressed adequately in the most
of current work. However, the control synthesis conditions for both switching logics are formu-
lated as non-convex matrix optimization problems, which are difficult to solve. In this research,
we will bypass the non-convex condition by resetting the state of the controller when the switching
event occurs. If the plant state is measurable, we can assign the controller state equal to the plant
state at switching instances to guarantee the stability requirement of the Lyapunov functions. It is
noted that the controller state reset is not always a feasible option due to lack of the information
of the plant state. In this case, the state of the plant may be estimated by adding an observer.
To simplify the theoretical derivation, we assume that the state of the plant is measurable in this
research. The effect of an observer and the constraints for the observer design in order to guarantee

the exponential stability will be studied in our future research.

The notation is standard. R stands for the set of real numbers and Ry for the non-negative real
numbers. R™*" is the set of real m X n matrices. The transpose of a real matrix M is denoted
by MT. Ker(M) is used to denote the orthogonal complement of M. We use S"*" to denote the
real symmetric n X n matrices and Sﬁxn to denote positive definite matrices. If M € S"*", then
M >0 (M > 0) indicates that M is positive definite (positive semidefinite) and M < 0 (M < 0)
denotes a negative definite (negative semidefinite) matrix. For z € R™, its norm is defined as
Ty)s

|z|| :== (2" z)2. The space of square integrable functions is denoted by Lo, that is, for any u € Lo,

ull2 == [f3° uT(t)u(t)dt]% is finite.

The paper is organized as follows: the problem addressed in this paper is first briefly formulated

in Section 2. In Subsection 2.1, we provide the synthesis condition for hysteresis switching LPV



control via controller state reset, and the result for switching with average dwell time is provided
in Subsection 2.2. The proposed technique is applied to an F-16 longitudinal flight control system
with thrust vector augmentation in Section 3. The nonlinear simulations of the closed-loop system
under these two switching logics are presented and also compared. Finally, the paper concludes in

Section 4.

2 Switching LPV Control via Controller State Reset

Consider a generalized open-loop LPV system as functions of the scheduling parameter p. It
is assumed that p is in a compact set P C R with its parameter variation rate bounded by
v < pp < Uk, k= 1,2,---,s5. The time-varying parameter value is assumed measurable in
real-time. For notational purposes, we denote V = {v: v, <wvp <y, k=1,2,...,s}, where V
is a given convex polytope in R® that contains the origin. Suppose that the parameter set P
is partitioned into a finite number of closed subsets {P;};., by means of a family of switching
surfaces S;; (i,j € Zy), where the index set Zy = {1,2,...,N}. In each parameter subset, the

dynamic behavior of the system is governed by the equation

o (t) Ai(p)  Bui(p) Bailp) | |z(t)
e(t)| = |Cri(p) Diri(p) Dizilp)| |d(t)] > VpePi, (1)
y(t) C2i(p) Dari(p) Dazi(p)| |u(?)

where the plant state x € R". e € R" is the controlled output, and d € R"¢ is the disturbance
input. y € R™ is the measurement for control, and u € R™ is the control input. All of the
state-space data are continuous functions of the parameter p. Note that each LPV model should
have the same number of state, and the reason will be clarified in the sequel. It is also assumed

that

(A1) (Ai(p),B2,i(p), C2,i(p)) triple is parameter-dependent stabilizable and detectable for all p.

(A2) The matrix functions [B%l(p) Dﬂyi(p)] and [Ca;(p) D21,4(p)] have full row ranks for all
p € P

(A3) Dll,i(p) =0 and DZQ,Z'(IO) =0.

Note that the assumption (A3) can be relaxed by loop transformation [19], but the controller

formula will become more complicated.



Given the open-loop LPV system (1), it is sometimes hard to find single LPV controller working
for the entire parameter region based on a single Lyapunov function (quadratic or parameter-
dependent) [20, 21]. Switching LPV control technique permits use of most suitable controllers in
different parameter subsets, and switch among them according to the evolution of the parame-
ters. It will be beneficial to improve controlled performance and enhance design flexibility. In the
previous research of switching LPV control [18], the state of the controller was preserved before
and after switching, and this resulted in non-convex matrix optimization problems. In this paper,
the controller state is reset at switching instances. As a result, this modification leads to a linear
matrix inequality (LMI) optimization problem, which can be solved efficiently. The switched LPV

controllers with state reset are in the form of

Tk(t)|  |Aki(e,0) Brilp) | |2k(t) v
= , VpeP;
u(t) Cri(p)  Drilp)| | y(t) (2)
Tp(tT) = z(t), v p € Sij,

where the dimension of controller state is x; € R™, and n; = n. Each controller is activated in a
specific parameter subset P;, and the state of the controller evolves continuously within the subset
P;. When the parameter trajectory hits the switching surface S;;, the controller state is reset to

the current value of the plant state.

Then the closed-loop LPV system can be described by

T (t) B Acl,a(Pa p) Bcl,a(P) Te(t) v
= , VpeP;
e(t) Ccl,a(p) Dcl,a(p) d(t) (3)
ra(t™) = [z(t); =(t)], Vp € Sij,

where 7, € R"™ with 2, = [z7 z]], and o is a switching signal, which is defined as a piecewise
constant function. It is assumed that o is continuous from the right everywhere. The value
of switching signal o represents the active parameter subset and thus determines the dynamic
behavior of the plant and the controller. It is desirable that each controller stabilizes the open-loop
system with best achievable performance in a specific parameter region, and meanwhile maintains

the stability of the closed-loop system when switching the controller.

A discontinuous Lyapunov function consisting of multiple parameter-dependent Lyapunov functions
is used for stability analysis and control design of switched LPV systems. If there exist a family of

positive definite matrix functions {X;(p)} and each of them is smooth over the corresponding
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parameter subset P;. The multiple parameter-dependent Lyapunov functions can then be defined

as

Vo(z,p) = 27 X;(p)z. (4)

Generally speaking, for a switched LPV system to be stable, the value of the discontinuous Lya-
punov function V, is not necessarily decreasing over the entire parameter trajectory. In fact, it is
often enough to require that the value of V,, decreases in the active parameter region P; provided
proper switching logic is adopted. This will lead to relaxed stability condition and provides en-
hanced design flexibility. In this section, we consider the synthesis conditions of switching LPV

control with two different switching logics by resetting the controller state.

2.1 Hysteresis Switching

When hysteresis switching logic is employed, it is assumed that any two adjacent parameter subsets
are overlapped, as shown in Figure 1(a). Thus there are two switching surfaces between two adjacent
parameter subsets. We use S;; to denote the switching surface specifying the one-directional move

from subset P; to P;.

o
] < N
. ) 2 N
l >
| | » P
P ES]',' P ESij
(a) Hysteresis switching region (b) Hysteresis switching signal

Figure 1: Hysteresis switching region and switching signal o.

The switching events occurs when the parameter trajectory hits one of the switching surfaces S;; or
Sji. The evolution of the switching signal o is described as follows. Let o(0) = i if p(0) € P;. For
each t > 0,if o(t~) =i and p(t) € P;, keep o(t) = i. On the other hand, if o(t~) =4 but p(t) & P;,
i.e., hitting the switching surface S;;, let o(t) = j. Similarly, if o(¢7) = j but p(t) € Pj, i.e., hitting

the switching surface Sj;, let o(t) = i. Obviously, the switching event is parameter-dependent,



as shown in Figure 1(b). For LPV systems, it is conceivable that parameter-dependent switching
is more practical than state-dependent or time-dependent switching. Since o changes its value
only after the continuous trajectory has passed through the intersection of adjacent subsets P; and
Pj, chattering is avoided. Also due to bounded parameter variation rates, only finite number of

switches will happen in any finite time interval.

For the closed-loop system (3) under the hysteresis switching logic, if on the switching surface
Sij, we have Vj(xq,p) > Vj([z;z],p), i.e. the Lyapunov function of the closed-loop system (3)
non-increases when switching from P; to P;. Then the jth controller can be activated safely. The
synthesis condition of switched LPV control with hysteresis switching is given in the following

theorem.

Theorem 1 Given an open-loop LPV system (1), the parameter set P and its overlapped partition
{Pi}iezlw if there exist positive definite matriz functions R;, S; : R® — S1"" i € Zn, such that for

any p € P,

Ri(p)AT (p) + Ai(p)Rilp) —Z{zk,vk}% Ri(p)CTi(p) Brilp)
k=1

Vi) Crilp)Ri(p) ok, 0 |MROIS0E
Bl (p) 0 —Yiln,
AT+ S DA + Y () S S Buate) o)
NEi(p) B o | M <0 ©
] Cy,i(p) 0 —Yiln, |
Ri(p)  In S0, ()
I Si(p)

where Ng;(p) = Ker BQT,Z'(P) D{Z,i(P) 0| and Ng;(p) = Ker [02,1'(,0) Ds1(p) 0], and for any
p € Sij,

Ri(p) < R;(p), (8)
then the closed-loop LPV system (3) is exponentially stabilized by switched LPV controllers with
state reset in the entire parameter set P, and its performance is maintained as |le|ls < 7y||d||2 with

v =max {Vi};cz, -

Proof: The proof is similar to that in Ref. [18]. Therefore, we only show that the Lyapunov



function on the switching surface S;; satisfies V;(z, p) > V;([z; z], p) given the boundary condition
(8). Following the idea in Ref. [18], we partition the Lyapunov function matrices of the closed-loop

system (3) according to the dimensions of the plant and controller states as

Xi(p) = Si(p)  Ni(p) ’ X-1(p) = Ri(p) M;(p) |

NT(p) 7 MI(p) 7

where M;(p) N} (p) = I — Ri(p)Si(p), and “?” means the elements we don’t care. By choosing
M;(p) = Ri(p) and N;(p) = R;*(p) — Si(p), the Lyapunov function X;(p) can be written as

Xip)=| " AN
R; " (p) — Si(p) Si(p) — R; " (p)

which can be further decomposed to

Therefore,

R;'(p) 0 v
Vg- el _ ZET Tr — T . 9
(et p) [ (24 = 2) ] 0 Selp)—R;'(p)| |(zk — ) v

Assume that the parameter trajectory hits the switching surface S;;. Then the Lyapunov function

before switching is
Vi(za, p) = T R (p)z + (21, — 2)T (Si(p) — R ' (p)) (zk — ).
Combining with the coupling condition (7) gives
Vi(za,p) > s R; ().

If the states of the controller are reset when switching, i.e., x; = z, then the Lyapunov function
after switching is

Vj(lw;al, p) = 2" B; (o).

Therefore, Vi(zq,p) > Vj([z;7],p) is satisfied at the switching surface S;; if Ry '(p) > Rj_l(p),

which is equivalent to the boundary condition (8). Q.E.D.



Note that the hysteresis-based switching LPV control via controller state reset is formulated as
a convex optimization problem, and can be solved using efficient LMI numerical algorithms [22].
It should be pointed out that the functional dependency of matrices R; and S; to parameters
pr,k =1,...,s has to be chosen before solving the problem. The notation Y ;_, {v}, 7} (%c in
(5)-(6) represents the combination of derivative terms in the form of Vka%k when vy is taken as

either v, or 7. Therefore each inequality means 2° different LMIs which must be checked.

After solving matrix functions R;(p) and S;(p), the gains of switched LPV controllers can be

constructed using the following formula [23]

T
Avilp,) = =N, o) 47 0) = 810 5 - Nl 32

+Si(p) [Ai(p)

+By,i(p)Fi(p) + Li(p)C2i(p)] Ri(p) + ,Ylsi(ﬁ’) [B1i(p) + Li(p)Da1i(p)] B i(p)

3

+ L) 00 + PR B | 0 (10)
Bi(p) = N ' (p)Si(p) Li(p) (11)
Cri(p) = Fi(p)Ri(p)M; " (p) (12)

where the matrix functions Fj(p) and L;(p) defined as

Fi(p) = — (Dg,i(P)DH,i(P)) [%Bu( )R (p )+D12z )CLi(p)]

Li(p) = — [%:S; "(0)C¥:(p) + Bui(p) Da.i(p)] (Dari(p) Dhri(p))

To comply with the proposed controller state reset scheme, we need to choose particular realizations

of LPV controllers with M;(p) = R;(p) and N;(p) = R; (p) — Si(p).

)

Remark 1 For general specification of M;(p) and N;(p), the synthesis conditions (5)-(8) still hold.
However, the controller state on the switching surface S;; is not simply reset to the plant state. From

the structures of the Lyapunov function matriz and its inverse, one can get

Xi(p) = Si(p) Ni(p) , Vie Zn.

NT(p) —NT(p)Ri(p)M; * (p)

Combined with the constraint M;(p) NI (p) = I — R;(p)Si(p), X;(p) can be decomposed and further

simplified to



Therefore, on the switching surface S;;, the controller state needs to be reset to

z(t7) = M ()R} (p)x(2).

2.2 Switching with Average Dwell Time

If the overlapped region between two adjacent parameter subsets shrinks, it eventually becomes
a single switching surface, as shown in Figure 2(a). Different from hysteresis switching, here S;;
and §j; represent the same switching surface between subsets P; and P; regardless which direction
the parameter trajectory moves from. As shown in Figure 2(b), the switching signal changes
its value right after the parameter hits the switching surface S;; no matter which direction the
parameter evolves from. This usually requires the continuity of Lyapunov function across the
switching surfaces. To relax the continuity requirement, we will consider the switching logic with
average dwell time [17, 16], and only limited number of switchings is allowed between a finite time

interval.

| » P
pPes;

(a) Switching region with dwell time (b) Switching signal with dwell time

Figure 2: Switching region and switching signal o with dwell time.

Denote N, (T,t) as the number of switchings among subsets P; on an interval (¢,7'). The switching

signal o has average dwell time 7, if there exist two positive numbers Ny and 7, such that

Tt
Na(Tat)§N0+ ) VOStSTa

Ta

where Ny is called the chatter bound. This idea relaxes the concept of dwell time, allowing the
possibility of switching fast when necessary and then compensating for it by switching sufficiently

slow later on.
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Basically, all we need is the fact that there exists a positive constant p such that Vj(p) < pVi(p)
when switching from P; to P; [7]. Due to the interchangeability of 4 and j, the Lyapunov function
on the switching surface must satisfy

iVj(p) <Vilp) <uVilp) VY p€ Sy, (14)

where ¢ > 1. It allows the change of Lyapunov function by u times of its value before switching.
As a consequence, the average switching frequency over a finite time interval is limited to % to

compensate for possible increase of Lyapunov functions.

Different from hysteresis switching, the synthesis condition of switching LPV control with average
dwell time cannot be convexified under some conservative assumptions if the control state is pre-
served when switching [18]. The next theorem shows that the non-convex synthesis condition can
be bypassed by resetting the control state. It is an important step for actual implementation, and

we will give the detailed proof.

Theorem 2 Given scalars A\g > 0, u > 1, an open-loop LPV system (1), the parameter set P and
its partition {P;i};c . if there exist positive definite matriz functions R;,S; : R® — ST i€ Zn,

such that for any p € P;

Ri(p) AT (p) + Ai(p)Ri(p)

s OR; Ri(p)CT;(p) Bu(p)
=3 {7} 5+ Mo Bilp) b
=1 Pk

Nii(p) Nri(p) <0 (15)
C1i(p)Ri(p) —%iIn, 0
L sz(p) 0 _'YiInd_
[ AT(0)Si(0) + Silp) Ailp) ) '
> dS; Si(p)Bui(p)  Ci;(p)
Vi, U AoS; ’
NEi(p) +;; i) opr " ) Ns,i(p) <0 (16)
B{,(p)Si(p) —%iln, 0
i Cl’i(p) 0 _'YiIne_
In Sz(p)

where Ng;(p) = Ker Bg,i(p) Dg,i(ﬂ) 0| and Ng;(p) = Ker [02,1'(,0) Ds1(p) 0], and for any
p € Sij

;Rj(p) < Ri(p) < nR;(p), (18)

11



then the closed-loop LPV system (8) is exponentially stabilized by switched LPV controllers with

state reset in the entire parameter set P for every switching signal o with average dwell time

In p
. > —, 19
To > " (19)

and its performance is maintained as ||e||2 < y[|d||2 with v = max {y;},c 5 -

Proof: We still assume that the Lyapunov function of the closed-loop system (3) is in the form of
(4). If on the switching surface S;j;, the inequality (14) holds, which is equivalent to
1

;Xj (p) < Xi(p) < pX;(p)- (20)

Meanwhile, the closed-loop system satisfies the following LMI performance level v; over each pa-

rameter subset P;

. R _, 0X;
AL ((p,£)Xi(p) + Xi(p)Acti(p, ) + > {k, Tk} W/: +X0Xi(p) Xi(p)Beai(p) ClLilp)
k=1

<0,
BZZ,i(p)XZ-(P) —Yiln, Dﬁ,i(p)
Ccl,i(p) Dcl,i(p) _’YiIne
(21)
where
Ai(p) 0| Bui(p) 0 Bailp)
Agi(p.p) Bui
cl,z(P p) cl,z(P) _ 0 0 0 | 0
Ccl,i(p) Dcl,i(p)
Cri(p) 0| D11,i(p) 0 Di2i(p)
Aki(p,p)  Br,i(p) 0 I 0

Cri(p)  Dri(p)| | Cailp) 0] Dari(p)

Then the closed-loop system is exponentially stable for every switching signal o with average dwell

time (19) and its performance is maintained as [le[s < y[|d||2 with v = max {;},c 5 -

The proof of the exponential stability for average dwell time switching is similar to that in [7] and
will be omitted here. In addition, given the initial condition z(0) = 0, it can be shown from the

condition (20)—(21), the inequality
. 1
V, + ;eTe —yd"d <0,  y=max{yi}iczy
holds within each parameter subset. Integrate on both sides of the inequality, we get

1
Vo (za(T)) = Vo(za(0)) + ;II@II% —7lldlI3 < 0.

12



Since Vy(z(T)) > 0 and V;(z4(0)) = 0, we have [|e||2 < 7||d||2 hold as desired.

Using Elimination lemma, one can verify the equivalence between condition (21) and LMIs (15)-
(17). Moreover, when M;(p) = R;(p) and N;(p) = R;'(p) — Si(p), recall the expression of the
Lyapunov function V;(z, p) in (9). If switching from the parameter subset P; to P;, it is required
that V;([z;z], p) < uVi(zq, p) to guarantee the stability condition of switching with average dwell
time. Obviously, it is satisfied if uR;(p) > R;(p). Similarly, R;(p) > %Rj (p) is sufficient to hold
Vi([z; 2], p) < pVj(xer, p) when switching from the other direction of the switching surface S;;.

Combining them together gives the boundary condition (18). Q.E.D.

Note that the switching LPV synthesis condition for this switching logic is different from hysteresis
switching LPV control results. The (1,1) term in (15)-(16) implies that the closed-loop switched
LPV system has its convergence rate at least /\—20 The open-loop plant can be thought as a shifted
system with its A; matrix changing to 4; + %I . It is the same for controller Ay ; matrix. Therefore,
if the matrix functions R;(p) and S;(p) can be solved, then the gains of the switching LPV controllers
will be constructed by replacing A; and Ay, ; in the standard LPV controller formula (10) by Aﬁ—%[
and Ay ; + %I .

3 Flight Control Example

The system to be controlled is the longitudinal F-16 aircraft model based on NASA Langley Re-
search Center (LaRC) wind tunnel tests [24], which is described by Stevens and Lewis in great
detail [25]. In this research, a simple thrust vectoring model is added to the aircraft model and
will be activated in the high angle of attack region to provide additional longitudinal axis control

power.

3.1 Longitudinal Model of F-16 Aircraft with Thrust Vectoring

The states used to describe the motion of the aircraft in longitudinal axis over entire operating
envelope are as follows: V' (ft/s) is the total aircraft velocity, « (deg) is the angle of attack, ¢
(deg/s) is the pitch rate, and 6 (deg) is the pitch angle. For the original aircraft model, the

available control inputs are the throttle setting d;, and the elevator angle 0, (deg). The resulting

13



nonlinear equations of motion in longitudinal axis are given as follows:

14 :% (Fycosa+ F, sina) (22)
& = (=Fysina + F,cosa) + ¢ (23)
g :J‘f—;’ (24)
6 =q, (25)

where m is the aircraft mass, F, and F, are the force components along z and z body axes
respectively, I, is the moment of inertia about the y body axis, and M, is the pitching moment.
Note that the throttle setting indirectly affects the states through the power output from the engine.
Therefore, the actual power level is also considered as a state variable in longitudinal dynamics,
and the detailed dynamical model of the engine can be referred in the NASA data. In addition, V/,

a, and g are selected as outputs.

The = and z axes forces and pitching moment in Eqs. (22)-(25) contain aerodynamic, gravitational

and thrust components.

F, =qS5C;; —mgsint + T,
F, =qSC,; +mgcost + T,

My ZQSECm,t + M,

where ¢ is the dynamic pressure, S is the wing surface area, and ¢ is the wing mean aerodynamic
chord. A complete description of the total coefficients C, ;, C., and Cy,; can be founded in Ref.

[24], which also provides the aerodynamic data in tabular form.

%I_T,
s [©] Tx
/.—/_I+ T c.g. A :; 5ptv

c.g. T, d

(a) Original aircraft model (b) Aircraft model augmented with thrust vectoring

Figure 3: Aircraft model with and without thrust vectoring.

The F-16 aircraft is powered by an after-burning turbofan jet engine, which produces a thrust force

in the z axis direction, as shown in Figure 3(a). In this research, the F-16 aircraft is augmented

14



with a simple thrust vectoring model, which is similar to that in Ref. [2]. Denote the thrust vector
angle by 6y, as shown in Figure 3(b). With the right-handed (forward, starboard, and down)
coordinate system, the thrust components along the x, z axes and the pitching moment due to

thrust vector are then given by

Ty = T cos dppy
T, = =T sin dpyy

MT = —lTT sin 5ptva

where I7 is the moment arm from the center of gravity to the thrust application point. A more
complicated model of thrust vectoring can be found in Refs. [26, 27], but will not be used in our

study.

To develop an LPV representation of the nonlinear F-16 model, we first need to find the wings-
level equilibrium points at several flight conditions in the design envelope. The local linear models
are then obtained by linearizing the nonlinear equations of motion at those points. The flight
envelope of interest covers aircraft speeds between 160 ft/s and 200 ft/s and angles of attack from
20° to 45°. These two variables are used as scheduling parameters in the LPV modeling of F-16
longitudinal dynamics. The points at which the nonlinear model is linearized are marked by a “x”
symbol in Figure 4. To apply the switching LPV control synthesis technique, the flight envelope is
partitioned into two subregions. For hysteresis-based switching, the striped area in Figure 4(a) is
the overlapped parameter region. So there are two switching surfaces, a = 30° and « = 35°. For
the switching with average dwell time, the overlapped region shrinks to a line. Here, we take the

line o = 33° shown in Figure 4(b) as the switching surface.

In this research, two different sets of actuators are used in the different angle of attack regions.
The actuators used in the low angle of attack region (region 1), are the throttle and the elevator,
and the thrust vectoring nozzle is inactive. The local linear models in this region are based on
the original aircraft model, which is corresponding to the case of dpy, = 0. In the high angle of
attack region (region 2), the thrust vectoring nozzle is incorporated to provide additional force and
moment. Therefore, the switching of controllers is based on the trajectory of the angle of attack,
i.e., the controller is switched only when the aircraft flies from one angle of attack region to the

other.
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Figure 4: Flight conditions and partitioned flight envelope for two switching logics.

3.2 Control Problem Setup

The control design objective is to track the command of the angle of attack. It is formulated as
a model-following problem, where the ideal model to be followed is chosen to be a second-order
low-pass filter based on desired flying qualities. A block diagram of the system interconnection
for synthesizing the switched LPV controllers is shown in Figure 5, where P is the model set of
linearized aircraft dynamics at different trim points, and it has three outputs: the velocity V', the
angle of attack «, and the pitch rate q. The inputs of the open-loop system include 3-dimensional
sensor noise signal n, the angle of attack command «cmnq, and the control input u. The outputs of

the open-loop system are weighted error signals e, and e,, and the measurement y.
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| cmd
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| <« u VVaCt §cmd|
| I 53 e :
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Figure 5: Weighted open-loop interconnection for the F-16 aircraft.

As mentioned before, pilots desire fast and accurate responses in the low angle of attack region.
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While in the high angle of attack region, the requirement for the flying quality is not so critical, and
the emphasis of the control design is the maintainability of the stability. Therefore, we choose the
different performance weighting functions in the different angle of attack regions to reflect design

requirements.
100(s/20 + 1) ~ 80(s/10 + 1)
s/01+1 P2 5/0.01+1

where the subscripts 1 and 2 denotes the low and high angle of attack region, respectively. Note

Wy =

that the tracking error in the steady state is 1% in the region 1 and 1.25% in the region 2. Also,
the bandwidth in the region 1 is greater than that in region 2, and this is consistent with the design

objective.

Also, different actuator sets are used in different angle of attack regions. The dynamics of the

actuators are modeled as first order lag filters, and the time constants can be found in [24, 2].

o1 Opro 1 5 1
oemd T 02s+10 gumd T 0.07s+17 ognd T 0.05s + 1

In the low angle of attack region, the control inputs are throttle position d;, and elevator angle ..
Both the positions and the rates of control inputs are fed into W, to penalize the control effort.

Therefore, the system matrix of Wy is given by

—-51|5 —20 | 20
Wa.ct = dia'g 1 0 ) 1 0 )
—-51|5 —20 | 20

and the weighting function W, is given as

W, = diag {1, 10, %, &} .
In the high angle of attack region, the thrust vector is also activated. In order to use the proposed
switching condition, the weighted open-loop LPV plants in the different parameter subspaces must
have the same number of the states. Otherwise, the synthesis conditions on the switching surfaces
will not hold. Therefore, we ignore the dynamics of the throttle, which has the slowest time constant
among the three actuators, and keep the order of Wy as same as that in the low angle of attack

region. The related weighting functions Wje; and W, are given as follows.

~14.28 | 14.28 ~20 | 20

S Wo—dined L 2 L1

act = diag 1 O |- L [0 |¢> v = B350 1207507 120
~14.28 | 14.28 ~20 | 20
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The other common weighting functions are chosen as

6.25

n:d -0, ']-7 . ) i = )
W = diag{08,0.1,0.6} Wided = 55 65 4 6.25

where the ideal model is a second-order system with the natural frequency 2.5 rad/s, and the

damping ratio 0.72.

3.3 Design Results and Nonlinear Simulations

Two switched LPV controllers corresponding to hysteresis-based and average dwell time switching
logics are designed using the proposed switching LPV synthesis conditions in Theorem 1 and 2. The
multiple parameter-dependent Lyapunov functions at each parameter subset are parameterized as

affine functions of scheduling parameters. That is, we have for i = 1,2
Ri(p) = R} + ;iR + p2R;,  Si(p) = S7 + p1S} + p2S7,

where p; = «a, ps =V, and matrices Rf and Sf with £ = 0,1,2 are new optimization variables to
be determined. The general objective function to optimize is defined as min ZlZ:Nl w;7Y;, where w;
is the weight to penalize v; and ZZZ:N1 w; = 1. In this paper, we define the objective function as
minmax{7y;,y2}, which means minimizing the “worst-case” performance level ;. The performance

level v over the whole parameter set are 7.9913 for hysteresis switching logic, and 15.9914 for

average dwell time switching with A\p = 0.01 and p = 1.1.

For the switching with average dwell time, the influence of the constants Ay and p is also studied
by comparing five different sets of values listed in Table 1. The data in the first row are those used
in the previous control design and the next nonlinear simulation. We first keep Ay fixed at 0.01,
and change the value of u. It is noticed that the variation of u just changes the value of the average
dwell time 7,, and has no impact on the performance level y. This can be explained by the fact
that u is not involved in the synthesis conditions (15)-(18), and thus not related to the value of +.
We then keep p = 1.1 and let Ay vary. The performance level « is improved if Ag decreases, but
the resulted optimization problem for the case of Ay = 0.05 is infeasible. It is still an open question
to determine suitable values of Ay and p. One possible way is to try and obtain an acceptable

performance level as well as a reasonable average dwell time value.

To test the performance of the switching control system during the nonlinear simulation, two angle

of attack command inputs are defined as shown in Figure 6. The initial angle of attack command is
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Table 1: Effect of constants A\g and p on average dwell time switching.

Ao 7 Ta gl
0.01 1.1 953 159914
0.01 1.05 4.88 15.9914
0.01 1.5 40.55 15.9914
0.001 1.1 9531  8.4199
0.06 1.1 191 infeasible

selected as 36°, and thus the initial switching signal o(0) = 2. The trajectory of the angle of attack
command is defined as square waves, and deliberately chosen to cross the two parameter subsets
back and forth to illustrate the effect of switching LPV control. There are four switching events
happened. For the first command, the switches occur at 0 s, 15 s, 31 s, and 45 s, respectively.
Therefore, all the time intervals between switches satisfy the requirement 7, > 9.53 s. To see the
effect of the average dwell time 7,, we defined another command input which switches fast at the
beginning and then compensates by switching sufficiently slow. The switches occur at 0's, 5 s, 10
s, and 45 s, respectively, and thus the average dwell time still satisfy the requirement. Note that
the switching time of the actual angle of attack trajectory is slightly different from the command

input, since we try to track the response of a second-order ideal model, not the square wave.

40 40
2 3} D 3}
A A
2 2
o8 30} o8 30} ‘ \

25 1 1 1 1 1 25 1 1 1 1 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (s) time (s)
(a) Command input 1 (b) Command input 2

Figure 6: Command inputs for switching LPV control simulation.

The test flight condition is selected at V' = 180 ft/s and a = 36°. Figure 7 shows the nonlinear
responses of the aircraft model for the command input 1. The dotted lines in subplot (a) rep-
resent the angle of attack response of the ideal model, the solid and dashed lines in all subplots
represent the responses using hysteresis switching and average dwell time switching, respectively.

The tracking performances over the entire time history are acceptable for both switching logics.

19



It is noticed that the switching signal o in subplot (b) is a little different for those two switching
logics, since their switching surfaces are different. For hysteresis switching, the switch event occurs
when « = 30° or 35°. While for average dwell time switching, there is only one switching surface
a = 33°. The responses of the actuators are shown in subplots (d)-(f). Obviously, the thrust vector

is activated only when the aircraft flies in the high angle of attack region.

40 3
2 Ll | 1
] : |
1
25 1 1 Il Il Il 0 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (s) time (s)
(a) Angle of attack (b) Switching signal

1 1
10 20 30 40 50 60 0 10 20 30 40 50 60

time (s) time (s)
(c) Velocity (d) Throttle position

Bmv (deg)
3, (deg)

1
0 10 20 30 40 50 60 0 10 20 30 40 50 60

time (s) time (s)
(e) Thrust vectoring nozzle deflection (f) Elevator angle

Figure 7: Nonlinear simulation of switching LPV control for command input 1.

Figure 8 presents the nonlinear response to the command input 2. For the second switching logic,
although the first two switch events occur too fast, the average dwell time still satisfies the re-
quirement (19). Therefore, the tracking performance of switching with average dwell time is also
acceptable and a little bit worse than that achieved by the hysteresis switching. However, the
stability of the switched system will not be guaranteed if the condition of the average dwell time
is violated. Compared to the average dwell time switching, there is no such a restriction on the
hysteresis switching. In addition, according to the theoretical developments and the simulation re-

sults, the switching with average dwell time appears more complicated than the hysteresis switching
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since one has to choose the parameter A\g and p. Thus the hysteresis switching scheme seems more

flexible and has a potential for the high performance aircraft applications.

L
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time (s)

(a) Angle of attack
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Figure 8: Nonlinear simulation of switching LPV control for command input 2.

4 Conclusion

A switching LPV control approach based on multiple parameter-dependent Lyapunov functions is
presented for flight control design. The state of the controller is reset to the value of the plant
state when the switching event occurs. The controller state reset not only guarantees the stability
requirement of Lyapunov function, but also leads to the formulation of switching LPV control
synthesis conditions as LMI optimization problems. Two parameter-dependent switching logics,
hysteresis-based switching and switching with average dwell time, are used to avoid the possible
transient instability caused by switching among controllers. The proposed switching LPV control

technique is applied to an F-16 aircraft model switching between low and high angle of attack
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regions with different control objectives and actuator sets, and promising simulation results are

obtained.
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