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Results from a numerical and experimental study on the effects of laminate orthotropy 

and circular cutout size on the response of compression-loaded composite curved panels are 

presented.  Several 60-in-radius composite panels with four different laminate 

configurations were tested with cutout diameters that range from 10% to 60% of the panel 

width.  Finite-element analyses were performed for each panel in order to identify the effects 

boundary conditions, measured initial geometric imperfections and thickness variations had 

on the nonlinear and buckling behavior of the panels.  The compression-loaded panels 

considered herein exhibited two separate types of behavior depending on the laminate 

stacking sequence and cutout size.  More specifically, some of the panels exhibited the 

classical “snap-through” type buckling response; however, some of the panels exhibited a 

monotonically increasing stable response and achieved compressive loads in excess of twice 

the predicted linear bifurcation buckling load.  In general, the finite-element analyses were 

able to predict accurately the nonlinear response and buckling loads of the panels and the 

prebuckling and postbuckling out-of-plane deformations and strains. 

I. Introduction 

URVED panels are a common structural element found in many aerospace vehicles.  With the requirement to 

reduce structural weight of aircraft and to exploit stiffness tailoring of fiber-reinforced, laminated-composites to 

enhance performance, it is necessary to understand the structural stability characteristics of thin-walled curved 

panels that may possess high degrees of material orthotropy and anisotropy. In addition, many new vehicle designs 

are allowing for panel elements to operate in the postbuckling regime in an effort to reduce overall structural weight.  

Thus, the prebuckling and postbuckling response characteristics of composite curved panels also need to be well 

understood.  For the past thirty years, buckling loads for shell structures have been obtained, to a large extent, by 

conducting linear bifurcation buckling analyses of idealized, geometrically perfect shell structures and by using 

empirical “knockdown” factors that account for the effects of geometric imperfections and other unknowns.  This 

analysis approach can result in overly conservative estimates of the buckling load of the shell. Furthermore, very 

little information on the postbuckling stiffness of composite panels with cutouts is available for design purposes.  An 

alternative method for the design of compression-loaded curved panels is the use of a highly accurate or “high-

fidelity” finite-element analysis or semi-analytical analyses that include the effects of initial geometric 

imperfections, thickness variations, boundary conditions, and load introduction effects
1
.  Whereas the capability to 

perform high-fidelity analyses has existed for some time, the accuracy of these methods has not been experimentally 

validated for the entire range of practical panel geometries and materials used in aerospace applications. 

The lack of experimental validation for the stability analysis of curved panels is due, in part, to the difficulty in 

accurately quantifying the differences between an idealized panel analysis and a corresponding experimentally 

tested panel.  In particular, the initial geometric imperfections, boundary conditions, and load distribution must be 

known to a high degree of accuracy.  The sensitivity of the buckling load of compression-loaded composite panels to 

initial geometric imperfection has been well documented 
2-5

.  However, it has been shown that curved panels can 
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also be very sensitive to mismatches between the panel and fixture geometries, the magnitude of elastic edge 

restraints along the loaded edges, and the selection of knife edges that are sometimes used to simulate test-fixture-

induced in-plane friction effects and rotational restraints
6
. Previous testing of curved quasi-isotropic panels 

demonstrated that some panels exhibit larger magnitude prebuckling out-of-plane deformations and buckling loads 

than those predicted using finite-element analysis
7
.  It was suggested by the author that this observed difference in 

the test and analysis results was primarily caused by test-fixture-induced friction along the clamped end creating 

circumferential restraint.  Subsequent work
6
 also showed other possible causes for the observed behavior.  In 

general, there still exists a need for better understanding of the mechanics of the stability of compression-loaded 

curved composite panels. 

It is a common practice in aerospace structural design to add cutouts to curved panels in order to serve as access 

ports, doors, and often reduce structural weight.  These panels are expected to meet safety margins and other design 

requirements.  Multiple authors have studied the effects of rectangular cutouts on the buckling response of 

compression-loaded composite panels 
8-11

.  Several studies also appear in the literature that illustrate the effects of a 

circular cutout on the buckling response of compression-loaded curved panels constructed from aluminum
12

 and a 

quasi-isotropic graphite-epoxy laminated composite
7
.  Both of these works indicated that the circular cutout size 

greatly affects the buckling characteristics of curved panels.  For example, panels with relatively small circular 

cutouts (e.g., cutout-diameter-to-panel-width ratios ≤ 0.2) exhibit a distinct buckling event with an inward collapse, 

similar to the classical snap-through buckling response of a compression-loaded curved panel without a cutout.  

However, panels with larger cutouts (e.g., cutout-diameter-to-panel-width ratios > 0.3) typically exhibit a stable, 

monotonically increasing nonlinear load-shortening response with large magnitude out-of-plane deformations from 

the onset of loading. 

A review of the literature indicates that whereas the response of isotropic and quasi-isotropic compression-

loaded curved panels with cutouts is becoming better understood, the interaction between panel orthotropy, cutout 

size, geometric imperfection and boundary conditions is not fully understood for compression-loaded composite 

curved panels.  Thus, the objective of this paper is to identify the effects of laminate orthotropy and circular cutout 

size on the response of compression-loaded composite curved panels, and to provide validation data for high-fidelity 

finite-element analysis of these panels.  To this end, curved composite panels with four different laminate 

configurations were tested with cutout diameters that range from 10% to 60% of the panel width.  Finite-element 

analyses were performed for each panel in order to identify the effects of boundary conditions, initial geometric 

imperfections, and thickness variations on the prebuckling and postbuckling response of the panels. 

II. Experimental Test Configuration 

The experiments presented in this paper were designed to illustrate how laminate orthotropy and cutout size 

affect the response of compression-loaded panels.  A total of twenty-eight panels were tested in this study.  Four 

laminate stacking sequences were tested, including an axially stiff laminate [02 / ±45]3s, a circumferentially stiff 

laminate [902 / ±45]3s, and two angle-ply laminates [±60]6s and [+606 / -606]s.  The panels were manufactured from 

AS4/3502 graphite-epoxy tape material with a nominal ply thickness of 0.005 in.  The panel geometry is illustrated 

in Figure 1.  Each panel had a total panel height, L, of 14.75 in. and an arc-width, W, of 14.5 in.  The panels were 

designed to have a nominal radius-of-curvature of 60 in., however residual curing stresses from the manufacturing 

process resulted in panel radii that range from 51 in. to 57 in. Panels without a cutout were manufactured and with 

panels having circular cutouts of six different cutout-diameter-to-panel-width ratios (d/W) that range from 0.1 to 0.6 

for each laminate. A summary of the panel geometry data, including the measured radius-of-curvature for each of 

the panels and the test-fixture radius used during experimental testing is presented in Table 1. 

The test fixture developed for this study was designed to apply clamped boundary conditions along the curved 

loaded edges (w = dw/dx = 0, Nxy = 0) and simply supported boundary conditions along the sides (w = 0, Mx = 0) 

(see Fig. 2).  The out-of-plane displacement is defined as w, and the inplane stress resultant and bending moment are 

symbolized by N and M, respectively.  The curved loaded edges of the panel were clamped between a set of 3/8-in-

thick clamping plates (g).  These plates were precision machined (±0.0005 in tolerance) to hold the curved edges at a 

precise radius-of-curvature and perpendicular to the loading plate.  In addition, the panels were each tested with 

clamping plate radii that closely matched the measured panel radii in order to minimize initial panel prestress 

associated with panel-fixture geometry mismatch, as described by Hilburger et al.
6
  The unloaded edges of the panel 

were supported by knife-edge supports (e) to simulate simply supported edges.  The knife-edge supports were 

mounted in fixed support towers (d) that allowed the knife edges to rotate about the loading axis and maintain 

vertical alignment during testing.  The clamping plates on the loaded edges of the panel and the knife-edge supports 
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were tightened against the panel to a finger tight condition (5-10 lb-in). The top loading plate (c) was free to move in 

the loading direction, relative to the rest of the fixture, by means of a set of linear bearings and guide posts (h).   

Three direct-current differential transformers (DCDTs) were used to measure the displacement of the upper 

platen relative to the lower platen and one DCDT measured the out-of-plane center displacement of the panel.  Two 

DCDTs were used to measure the lateral displacement near the top of the panel.  In addition, a three-dimensional 

video image correlation system VIC-3D was used to measure the in-plane and out-of-plane panel deformations, and 

the strains. VIC-3D is a commercially available displacement and strain measurement system developed by 

Correlated Solutions Inc. and uses a proprietary mathematical correlation method to analyze digital image data taken 

while a test specimen is subjected to load. Consecutive digital images taken during test are used to monitor changes 

in a high-contrast speckle pattern applied to the surface of the specimen as the specimen is loaded.   The image data 

is processed to produce in-plane and out-of-plane full-field displacements and full-field in-plane surface strains. 

A Coordinate Measurement Machine (CMM) was used to determine the geometric imperfection and thickness 

variation for each panel specimen prior to testing.  However, the resulting imperfection measurements were not as 

accurate as was desired.  The panels were first measured while installed in the test fixture prior to being 

instrumented with strain gages.  The test fixture used at that time was sized for a 60 in radius panel. The mismatch 

between the panel and test fixture geometries, as described earlier, would likely result in some unknown amount of 

panel deformation and prestress upon installation of the panel into the fixture.  By measuring the stress free panel 

shape and incorporating this data into the finite-element model, the initial test-fixture-induced deformation and 

prestress of the panel prior to loading, can be simulated.  Thus, the panel imperfection was subsequently remeasured 

in a stress-free state by using a specially designed panel fixture.  However, this second measurement occurred after 

the panels had been instrumented with strain gages, and the wires severely hindered the imperfection measurement 

and resulted in many erroneous data points in the imperfection where the CMM contacted a wire as opposed to the 

surface of the panel.  The imperfection data was filtered to remove the erroneous data values and a twenty-five term 

trigonometric series was fit to the imperfection data.  It was believed that five trigonometric terms in each direction 

would adequately approximate the geometric imperfection since shorter wavelength terms would have less influence 

on the buckling of panels with this geometry. 

III. Finite-Element Model and Analysis Method 

The panels presented in this study were analyzed with the STAGS (STructural Analysis of General Shells) finite-

element analysis code
13

.  STAGS is designed for the static and dynamic analysis of general shells and can include 

both geometric imperfections and nonuniform wall thickness in its analysis.  The panel is defined by an x-y-z 

curvilinear coordinate system with the origin at the center of the panel, as illustrated in Figure 3.  The positive x-axis 

is directed along the longitudinal axis of the panel; the z-axis is directed outward, normal to the surface of the panel 

and the y-axis is circumferential coordinate.  Displacements u, v and w refer to the mid-surface axial, circumferential 

and out-of-plane displacements, respectively.  The knife-edge-support conditions were simulated by prescribing a 

displacement, w, along a line 3/16 in. from each unloaded edge of the panel and the clamped edge conditions were 

applied in the boundary regions that extend 3/8 in. in from each loaded edge as shown in Figure 3.  The compressive 

load is introduced by applying a uniform end shortening displacement ∆ to one end of the panel while holding the 

other end of the panel fixed on the boundary; that is u(-L/2, y) = ∆ and u(L/2, y) = 0.   

Multiple analyses were performed for each panel to determine the effects of boundary conditions, initial 

geometric imperfections and thickness variation on the compression response.  Based on previous work
 6,14

 it was 

believed that test-fixture induced friction prevented circumferential expansion of the panel where it contacted the top 

and bottom loading plates.  In order to verify this assertion, the panel was modeled both with a v = 0 boundary 

condition and with free expansion along the top and bottom clamped edges.  In addition, both geometrically perfect 

panels and panels with an initial out-of-plane geometric imperfection were modeled, so that the effects of the 

loaded-edge boundary condition could be differentiated from the effects caused by imperfection.  Similarly, panel 

analyses were conducted that considered uniform thickness and measured thickness variations.  The comparison of 

these results permitted determination of the significance of thickness non-uniformity on the response of this class of 

curved panels.  The material properties were calculated using the rule-of-mixtures based on the properties of the 

graphite fibers and the epoxy matrix and assumed that the fiber volume was constant.  The material properties used 

in the analysis are listed in Table 2. 

The measured geometric imperfections and thickness variations were included into the finite-element models by 

using a user-defined imperfection subroutine, DIMP, and a user-defined shell wall property subroutine, WALL, 

respectively.  The test fixture support conditions along the clamped edges and knife-edges were defined by using a 

user-defined load subroutine, USRLD.  A USRLD subroutine was used because it provided a convenient means of 



 

American Institute of Aeronautics and Astronautics 

 

4 

applying the displacements on the panel edges that simulate putting a geometrically imperfect panel specimen into a 

more geometrically precise test fixture.  More specifically, the subroutine specifies displacements on the edges of 

the panel to be equal to the negative of the imperfection values of the panel associated with the four boundary 

regions.  Thus, the stress-free panel (initial geometry plus imperfection) is forced to conform to the geometry of the 

fixture, which was assumed to be perfect (see Fig. 4).  These boundary conditions are held constant throughout the 

loading of the panel and the compression load is applied to the panel by enforcing a uniform end-shortening 

displacement in a second load set. 

IV. Experimental Results 

The measured load–end-shortening and load–out-of-plane-displacement response curves for all twenty-eight 

panels are presented in Figures 5-8. The end-shortening ∆ is normalized by the total panel length L, and the out-of-

plane displacement δ is normalized by the panel thickness t.  The out-of-plane displacement is measured at either the 

center of the panel or edge of the cutout.  The axial compression load P is normalized using the linear bifurcation 

buckling load for the corresponding geometrically perfect quasi-isotropic [±45 / 0 / 90]3s panel
Quasi

crP  = 15850 lbs.  

Each figure contains the results for a particular laminate stacking sequence, for each of the cutout sizes tested.  The 

results for the [02 / ±45]3s, [902 / ±45]3s, [±60]6s and [+606 / -606]s laminates are shown in Figs. 5, 6, 7 and 8, 

respectively.  Overall the compression-loaded panels exhibited two separate sets of behavior depending on the 

laminate stacking sequence.  The circumferentially stiff laminates (Fig. 6) and two angle-ply laminates (Fig. 7 and 

8) all exhibited a similar nonlinear response trends for each of the various cutout sizes, whereas the axially stiff 

laminates behaved in very different manner.  Based on this observed behavior, the results for the circumferentially 

stiff laminates and angle-ply laminates will be presented first, and the corresponding results for the axially stiff 

laminates will discussed separately. 

A. [902 / ±45]3s, [±60]6s and [+606 / -606]s laminates  

The results indicate that the panels with no cutouts and relatively small cutouts exhibited a distinct buckling 

point, marked with an open circle symbol in Figs. 6-8, followed by a dynamic inward snap-through buckling 

response and a significant reduction in axial load.  It should be noted that the snap-though portion of the response 

curves in Figs. 5-8 are omitted for clarity.  The panels all initially deformed radially outward at low load levels prior 

to buckling (Figs 6(b), 7(b), and 8(b)).  This outward deformation at low load levels is characteristic of compression-

loaded curved panels that are circumferentially restrained along the loaded edges.    This prebuckling outward 

deformation response has been shown to cause a significant increase in the buckling load, e.g., in some cases greater 

than twice the predicted linear bifurcation buckling load, and a nonlinear load–end-shortening response
7
.  In 

contrast, the circumferentially stiff laminates and the two angle-ply laminates presented here do not exhibit the 

nonlinear load–end-shortening response curves or large magnitude buckling loads as observed in the corresponding 

quasi-isotropic panels.  In general, the panels exhibited a slight decrease in the buckling load as cutout size 

increased.  The exception was the [902 / ±45]3s panel with a cutout size of d/W = 0.1, which had a larger buckling 

load than the corresponding panel without a cutout.  This difference in the response trend is attributed to differences 

in the initial geometric imperfections of the panel without the cutout and panel with a d/W = 0.1.  Specifically, the 

panel without the cutout has an initial inward bulge and the panel with a d/W = 0.1 has a slight outward bulge.  The 

inward bulge in the panel will tend to promote inward radial deformations sympathetic to buckling and overall panel 

softening whereas the initial outward bulge leads to initial outward deformations and an overall panel stiffening as 

indicated in Fig. 6b. 

Typical measured out-of-plane displacement contours for panels without a cutout and with small cutouts are 

shown for the [+60 / -60]6s panel with no cutout, at compressive load levels of 
Quasi

crPP = 0.306, 
Quasi

crPP = 

0.630, and incipient to buckling at 
Quasi

crPP = 0.957 in Fig. 9.  The out-of-plane deformation initially develops an 

hourglass shape, and then as the load approaches the buckling load the two outward bulges become more 

pronounced.  Just prior to buckling the center of the panel starts to move radially inward while the two outward 

regions continue to deform outward.  This inward deformation leads to the inward snap-through of the panel 

indicated in the load–out-of-plane-displacement response curves shown in Figures 6(b), 7(b) and 8(b). 

The circumferentially stiff panels and the angle-ply panels with large cutouts exhibited stable monotonically 

increasing load–end-shortening response curves and outward deformations near the edges of the cutout until 

material failure, marked with an X symbol in Figs. 6-8.  The magnitude of the out-of-plane deformation increased 

and the failure load decreased as cutout size increased.  The large-magnitude out-of-plane deformations near the free 
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edges of the cutouts activated an interlaminar shear-type failure of the panels.  Typical measured out-of-plane 

displacement patterns for panels with large cutouts are shown for the [+60 / -60]6s panel with d/W = 0.4, at 

compressive loads of 
Quasi

crPP = 0.379, 0.654, and 1.041 are shown in Fig. 10.  At low load levels the deformation 

was characterized by a pair of large outward bulges near both sides of the cutout, as shown in Figure 10(a).  As 

loading increases, the outward deformation became more concentrated along the horizontal mid-length of the panel, 

and regions directly above and below the cutout, as shown in Figs. 10(b) and 10(c).  The magnitudes of the 

displacements above and below the cutout were often not equal and this difference is attributed to asymmetry in the 

initial panel imperfection shape. 

The transition between the two types of structural behavior exhibited by  the circumferentially stiff and angle-ply 

panels, that is the transition between panels that exhibit unstable snap-through buckling and stable monotonically 

increasing response characteristics, occurred between d/W = 0.2 - 0.3.  Panels for this range of d/W typically 

exhibited a combination of response characteristics from the both the panels with small cutouts and the panels with 

large cutouts.  For example, measured out-of-plane displacement contours for the [+606 / -606]s panel with a d/W = 

0.2, at loads of 
Quasi

crPP = 0.440 and 0.618 are presented in Figure 11.  The panels exhibits large-magnitude 

prebuckling outward radial deformations near each side of the cutout, similar to those exhibited by panels with large 

cutouts, however, as loading continues in the prebuckling range, regions of inward deformation develop in the panel 

and cause the panel to buckle  and is similar to the response exhibited by panels with smaller cutouts. 

B.  [02 / ±45]3s  laminate  

The response of the corresponding compression-loaded axially stiff [02 / ±45]3s panels was very different from 

the circumferentially stiff and angle-ply panels discussed previously.  In particular, the axially stiff panels without a 

cutout and with d/W = 0.1, exhibited a monotonically increasing stable load–end-shortening response until material 

failure occurred at approximately 2.5 times the predicted linear bifurcation buckling load, as indicated in Fig. 5a.  

Similarly, the out-of-plane displacements increased monotonically, as shown in Fig. 5b.  Selected measured out-of-

plane displacement contours for the panel without a cutout at loads of 
Quasi

crPP = 0.628, 1.260 and 1.893 are 

shown in Figs. 12(a-c), respectively.  The deformation shape at low load levels was a uniform outward bulge, as 

seen in Fig. 12(a).  As the loading increased, the deformation shape evolved to become increasingly concentrated 

along the mid-length of the panel, as illustrated in Figures 12(b) and 12(c) and the magnitude of the center out-of-

plane displacement grows rapidly to many times the wall thickness of the panel as shown in Fig. 5b.  It is at this 

point in the loading that the load–end-shortening response curve (Fig. 5a) shows a significant amount of 

nonlinearity.  This nonlinear panel behavior is caused by a coupling of the circumferential and out-of-plane 

displacements near the loaded edges, which produce an outward bulge in the panel as the loading increases as shown 

by Hilburger et al.
6
 for compression-loaded curved panels with elastic edge restraints. For this particular panel 

configuration, the outward bulge acts to stiffen the panel, by increasing the moment of inertia in the central region, 

and raises the buckling resistance in the same manner as reported by Hui
3
 for panels with a geometric imperfection 

in the shape of an outward bulge.  In contrast, the circumferentially stiff and angle-ply panels do not appear to 

exhibit the same level of coupling and thus do not develop this type of nonlinear behavior. 

As the cutout size increased the panels exhibit localized large magnitude deformations on both sides of the 

cutout, similar to the circumferentially stiff and angle-ply panels shown in Fig 10.  The panels with d/W = 0.5 and 

d/W = 0.6, deformed monotonically outward until failure, as indicated in Fig 5b.    In spite of the presence of the 

large cutouts, the axially stiff panels were capable of sustaining axial load levels that exceed 1.5 times the linear 

bifurcation load for the corresponding panel without a cutout before material failure occurred.   

In contrast, the three axially stiff panels with cutout sizes of d/W = 0.2 - 0.4 response characteristics were 

significantly different from the other axially stiff panels.  In particular, these panels initially deform in a manner 

similar to the panels with large cutout, with symmetric outward deformation regions on each side of the cutout, 

similar to that shown for d/W = 0.4, at load levels 
Quasi

crPP = 0.760, 
Quasi

crPP = 1.344 in Figs. 13(a) and 13(b), 

respectively.  However, as additional loading occurs, a distinct deformation shape change occurs in the panels 

similar to that shown for d/W = 0.4 at a load of 
Quasi

crPP = 1.755 in Fig. 13(c) forms.  Specifically, the localized 

deformations near each side of the cutout become skewed and regions of inward deformation form in the upper right 

and lower left corners of the panel. This mode shape change is indicated by the open diamond symbol in Figs. 5a 

and 5b. For the panels with d/W = 0.3 and d/W = 0.4, the mode shape change occurs in a stable manner, whereas for 

d/W = 0.2, the panel exhibits a slight instability and reduction in load prior to panel collapse. As loading is increased 
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further, the regions of localized inward radial displacements in the panel grow in magnitude and eventually cause 

the overall collapse of the panel. 

V. Test and Analysis Correlation 

Test and analysis correlation was conducted for all twenty-eight panels and selected results are presented in this 

section.  As discussed previously, multiple analyses were performed for each panel to determine the effects of 

boundary conditions, initial geometric imperfections, and thickness variations on the response of the panels.  In 

addition, the test and analysis results were used to determine the actual as-tested boundary conditions on the panel 

loaded edges.  First, selected examples that illustrate the effects of the as-tested loaded edge boundary condition, 

initial geometric imperfection, and thickness variation on the prebuckling and buckling response are presented.  

Then, typical postbuckling response characteristics are presented and discussed. 

A. Effects of the Loaded Edge Boundary Condition 

The work presented by Thornburgh and Hilburger
14

 and Hilburger et al.
7
 illustrated the effect of the loaded edge 

boundary condition on the buckling response of compression-loaded curved quasi-isotropic panels. Similar 

behavioral characteristics can be clearly seen in the results for the axially stiff panel with no cutout, as shown in 

Figure 14.  Specifically, experimentally measured results and numerically predicted results for two boundary 

conditions on the loaded edges, and with and without geometric imperfections are presented in the figure.  The load–

end-shortening response is shown in Fig. 14(a); the out-of-plane center displacement δ response is shown in Figure 

14(b); and the circumferential displacement vt at the top of the panel is shown in Figure 14(c).  As discussed earlier, 

the experimental data showed a stable monotonically increasing out-of-plane displacement response and did not 

buckle during the test.  In contrast, the FEM model that assumed free expansion along the loaded edges and no 

geometric imperfection, denoted as case FEM1, exhibited  slight inward radial displacements prior to a unstable 

snap-through buckling event at 
Quasi

crPP = 1.073.  In addition, FEM1 exhibits circumferential expansion until deep 

into the postbuckling regime. When the effect of the measured geometric imperfection is included in the model, 

denoted FEM2, the character of the out-plane deformation more closely resembles the experimental results and is 

characterized by a monotonically increasing outward radial displacement in the direction of the initial imperfection. 

It should be noted, that the results from FEM1 and FEM2 presented in Fig. 14(b) mimic those of the classical 

asymmetric bifurcation buckling solution for a compression-loaded curved panel, as expected. The circumferential 

displacement response for FEM2, shown in Fig. 14c, indicates that the panel initially exhibits an outward expansion 

response, but then begins to contract inward at load levels of approximately 
Quasi

crPP = 0.9.  The experimental 

results indicate a similar circumferential contraction with an increase in load, but to a much lesser extent. This 

circumferential contraction response is attributed to the coupling between the in-plane deformation response and the 

out-of-plane radial deformation response of the panel.  More specifically, the panel tends to contract 

circumferentially inward as the out-of-plane deformations grow in magnitude. 

Geometrically perfect and imperfect panels that are fully restrained on the loaded edge, v = 0, were modeled and 

are denoted as FEM3 and FEM4, respectively.  The results correlate well with the measured results. However, the 

predicted results begin to deviate from the experimental results at load levels greater than 
Quasi

crPP = 1.7 .  This 

deviation is likely caused by nonlinear material behavior.  In addition, the results from FEM3 and FEM4 are nearly 

identical in all respects and indicate that the fully restrained boundary condition has a much stronger influence on 

the panel response than the initial imperfection for this particular panel.  Overall, the comparison between the 

measured results and the predicted results indicate that the test boundary condition on the loaded edges more closely 

resembles a fully retrained, v = 0, boundary condition. 

B. Geometric Imperfection 

In general, the overall response of the panels was dominated by the boundary condition along the load edges.  

However, the geometric imperfection did affect the response of several panels and some selected results are 

presented in this section.  All results presented in this section are from models that assume fully constrained v = 0 

circumferential boundary conditions on the loaded edges and nominal panel thickness. In most cases the inclusion of 

the geometric imperfection only caused small changes in the out-of-plane deformation response, similar to that 

exhibited by the axially stiff panel without a cutout (Fig. 14(b)). However, the overall character of the predicted 

deformation patterns typically remained unaffected. For the panels with large cutouts, i.e., d/W ≥ 0.4, the inclusion 

of the measured imperfection in the finite-element model had little influence on the predicted response.  The out-of-
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plane deformation response of these panels was dominated by the large outward deformations on either side of the 

cutout and the small magnitude imperfections had no measurable effect on the panel response. 

The finite-element analyses were able to predict accurately the buckling loads of the panels, due to the accurate 

predictions of the out-of-plane deformation response prior to buckling. For example, the predicted out-of-plane 

deformation for the [+60 / -60]6s panel with no cutout incipient to buckling is shown in Fig. 15, and corresponds to a 

load of 
Quasi

crPP = 0.946. This predicted deformation contour has a similar hourglass-like pattern and magnitude to 

that exhibited by the corresponding test specimen shown in Fig. 9.  

The deformation of panels with large cutouts was also accurately predicted by the finite-element analysis.  For 

example, the predicted out-of-plane deformation contours for the [±60]6s panel with a cutout-diameter-to-panel-

width ratio of 0.4 for prebuckling load levels of 
Quasi

crPP = 0.379 and 
Quasi

crPP = 1.037 are shown in Figs. 16(a) 

and 16(b), respectively, and correspond to the measured deformations shown in Figure 10.  The results indicate that 

the analysis predicted accurately the shape and magnitude of the panel deformations throughout the nonlinear 

prebuckling response 

Most inaccuracies in the prediction of out-of-plane deformation occurred for panels with cutout sizes in the 

transition range.  As noted above, the deformation pattern for these panels was highly dependent upon their 

geometric imperfection.  These panels generally had inward deformation regions in addition to the outward 

deformation on both sides of the cutout, and the location and magnitude of the inward regions varied depending on 

the imperfection used.  Often the inward regions would not be symmetric, such as in the case of panel MPN-95-14-1 

shown in Fig. 11, and sometimes only one inward region would form.  In order for improvements between the test 

and analysis to be made on the buckling loads and nonlinear deformation for panels with cutout sizes in this range, 

accurate high resolution measurements of the geometric imperfection are required.  

The inclusion of geometric imperfection in the panel models affected the predicted buckling loads of the panels, 

as expected.  The experimentally measured buckling loads and the predicted results for panels with and without 

measured initial geometric imperfections are listed in Table 3. For the most part, the data in Table 3 shows that the 

analysis with geometric imperfection included was able to improve the accurately of the predicted buckling load of 

almost all of the panels to within ±15%.  However, there are several cases where the buckling load prediction did 

not improve when the initial geometric imperfection was included in the model.  In these cases the geometric 

imperfection created out-of-plane deformations that were not observed during the experiment.  As mentioned earlier, 

the distribution of geometric imperfection over the panels was not measured as accurately or with as much 

resolution as would normally be possible because the imperfections were measured after the strain gages where 

mounted on the specimens.  The importance of using accurately measured imperfection was most pronounced for 

the panels with cutout sizes near the response transition point.  The response of these panels is very sensitive to the 

out-of-plane deformation induced by the initial geometric imperfection.  For example, three panels with cutout–

diameter-to-width ratios of 0.3 or 0.4, MPN-95-02-3, MPN-95-10-1 and MPN-95-03-1, exhibited unstable snap-

through behavior during the test.  The analysis of the geometrically perfect panel did not predict snap-through for 

any of the panels.  The analyses for panels MPN-95-02-3, MPN-95-10-1 and MPN-95-03-1 that included the 

measured geometric imperfection predicted the snap-through response accurately.  However, the model of MPN-95-

02-1 with the measured imperfection did not capture some of the complex behavior observed during the 

experimental.  In particular, the predicted and measured load-end-shortening response and the out-of-plane 

displacement for panel MPN-95-02-1 are shown in Figs. 17(a) and 17(b), respectively.  The predicted response 

includes results with and without geometric imperfection included in the model.  The results indicate that the 

measured results and corresponding results for the geometrically perfect panel exhibit a benign instability prior to 

overall  panel collapse.  This benign instability is characterized by a slight change in the local deformation pattern 

near the cutout and a 3.6% reduction in axial load.  In contrast, the analysis of the geometrically imperfect panel 

does not predict this benign instability response. 

For the most part, the inclusion of the measured initial geometric imperfection improved the accuracy of the 

finite-element analysis results.  It is uncertain what contributed to the inaccuracies of some of the finite-element 

predictions of the imperfect panels.  It is likely that the difficulties are a result of the sparsely distributed data, 

erroneous surface measurement values caused by the instrumentation, and the process of fitting a trigonometric 

series to the measured imperfection values.  For future tests the panel imperfection will be measured prior to 

attaching instrumentation and will be performed with the panel out of the test fixture to ensure proper measurement 

of a stress-free panel specimen. Regardless of the difficulties in using geometric imperfection in this work, the 

finite-element analysis methods described herein have been shown to provide accurate predictions of the buckling 

loads for these curved composite panels over a wide distribution of cutout sizes and laminate orthotropies. 
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C. Effects of Thickness Variation 

A typical measured thickness profile for the panels is shown in Fig. 18 for the axially stiff panel without a 

cutout.  The measured thickness across the surface of all of the panels varied by about ±0.005 in. from the average 

thickness.  This corresponded to about a ±8 percent variation in the bending stiffness.  However, in most cases the 

results for the analyses that included the effects of the thickness variation were indistinguishable from the results for 

the analyses that assumed uniform thickness.  The reason for this insensitivity to the thickness non-uniformity is that 

the deformation responses of the panels considered herein have much longer wavelengths than the wavelength of the 

thickness variation.  In thin-walled cylinders, for example, where the initial buckling event is more localized, the 

short wave-length thickness variations of this magnitude can have a greater effect on the deformation and buckling 

load. 

D. Typical Postbuckling Response Characteristics 

The results presented in the previous sections indicate that good correlation can be obtained when the proper 

boundary conditions and the measured initial geometric imperfections are included in the finite-element model.  

Subsequent analyses were conducted for each panel using these validated finite element models and the results were 

used to identify typical panel response characteristics.  Selected results from analyses of panels that exhibited 

unstable snap-through type buckling behavior are presented in this section.  Specifically, load–end-shortening 

response curves, load–radial-displacement response curves, and stress and strain distributions are presented.  All 

results presented in this section were obtained by using finite-element models that assumed a v = 0 boundary 

condition on the loaded edges (i.e., fully restrained circumferential displacement), included the measured initial 

geometric imperfection, and measured thickness variation. 

A comparison was made between the experimentally measured and numerically predicted postbuckled 

deformations for the panels that exhibited a snap-through buckling event during testing and did not suffer significant 

material failure.  A typical example of the measured and predicted load-shortening response and the out-of-plane 

displacement at the edge of the cutout are presented for the circumferentially stiff [902 / ±45]3s panel with a cutout–

diameter- to-panel-width ratio of 0.2 in Figs. 19(a) and 19(b), respectively.   The results indicate that the load–end-

shortening response exhibits a nonlinear response above a load level of approximately P/Pcr = 0.8 (see Fig. 19a) and 

is attributed to the rapid loss of effective axial stiffness associated with the large magnitude radial deformation 

response indicated in Fig. 19b.  The results also indicate that the complex nonlinear prebuckling load–end-

shortening response is predicted accurately by the finite-element analysis however, there is a slight discrepancy in 

the radial deformation prediction.  A portion of the observed discrepancies in the radial deformations can be 

attributed to the fact that the displacement measurement is very sensitive to the location in which the measurement 

was made, particularly when it is in a region of rapidly varying displacements near a discontinuity like a cutout.  

Specifically, a slight shift in the displacement measurement position can cause a significant change in the measured 

displacement value.  The overall character of the post buckling response was also predicted accurately and indicates 

inward radial deformations that are greater than six times the panel wall thickness.  However, there are some slight 

discrepancies in the load–end-shortening and radial displacement response.  Specifically, the finite-element analysis 

under predicts the end-shortening and the out-of-plane displacements by approximately 5%.  Although this under 

prediction in the postbuckled region was relatively small, it was typical of all of the comparisons made, and 

indicated a trend rather than a random event.  The exact cause of this is discrepancy is uncertain.  The strains in the 

postbuckled region are very large (>1%) and it is likely that there is some material nonlinearity that is being 

manifested.  This hypothesis is supported by the fact that panels which did not buckle also showed an under 

prediction of both the out-of-plane displacements and load-shortening at large load levels.  This can be seen in the 

results presented for the axially stiff panel with no cutout shown in Figure 14.  The radial deformation response 

could also be strongly influenced by any errors in the measured thickness and lamina stiffness properties.   

Another possible contributor to the under prediction of the displacements in the postbuckled region can be 

observed when the axial stress resultants along the loaded edges of the panel are examined.  Figure 20 shows the 

finite-element analysis prediction of the axial stress resultant (Nxx) distribution along the top edge (x = L/2) of the 

circumferentially stiff panel with a cutout size of d/W = 0.2.  The stress resultant is normalized by the average axial 

stress resultant (Nxx
o
 = P/W) and the circumferential coordinate is normalized by the panel arc-width (W).  Figure 20 

shows results at prebuckling load levels of 
Quasi

crPP = 0.379, 0.817 and 0.906, and at postbuckling load levels of 

Quasi

crPP = 0.522 and 1.190.  The results show how the load is shifted away from the center of the panel towards 

the edges after the panel buckles.  An important characteristic to note is that, in the postbuckled region of loading, 

the center of the loaded edge is under a tensile load in the finite-element model.  Physically, this is not possible with 
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the test fixture used since the panel would simply deform away from the loading plates during the experiment.  This 

response phenomenon will create an error in the panel load and out-of-plane deformations predicted by the finite-

element analysis.  This error in modeling could be eliminated by one of the various finite-element methods to model 

the contact region between the panel and the top and bottom loading plates, but this has not been done in the present 

study. 

Experimentally measured and numerically predicted axial strains were compared during the investigation and 

selected results for two circumferentially stiff [902 / ±45]3s panels with d/W = 0.2 and d/W = 0.6 are shown in Figs 

21a and 21b, respectively.  The solid lines in Fig. 21 represent the predicted axial membrane strain (εxx), and the 

filled symbols represent the corresponding experimentally measured strains.  The strains were obtained at the mid-

length of the panel, x = 0, and the horizontal axis in Fig. 21 indicates the circumferential distance from the edge of 

the cutout.  The strains have all been normalized by the effective panel strain (εxx
o
 = ∆/L) to provide an indication of 

the magnitude of the strain concentration near the cutout.  The load levels being compared in Fig. 21a for d/W = 0.2 

are 
Quasi

crPP = 0.379, 0.817, and just prior to panel buckling, that is 
Quasi

crPP = 0.865 for the test and 
Quasi

crPP = 

0.906 for the analysis.  The results indicate two response characteristics which were typical of all of the panels with 

small cutouts, specifically, that the strain concentration near the cutout attenuates rapidly and the panel exhibits 

slight redistribution of load toward the unloaded edges as loading and out-of-plane displacements increased.  In 

general, as the panel cutout diameter increased, the magnitude of localized bending displacements and strains near 

both sides of the cutout increased and the membrane strain in that region decreased.  This type of membrane strain 

redistribution is typically very pronounced for panels with d/W > 0.3.  For example, results for the circumferentially 

stiff panel with d/W = 0.6, shown in Fig. 21(b), exhibits a factor of 4.5 reduction in local axial membrane strains 

near the cutout as the local bending in panel increases.   

It should be noted that in some cases the predicted strains were larger in magnitude (5-15%) than the 

corresponding measured strain.  Some of the observed discrepancies are attributed to the fact that the strain 

measurement is very sensitive to the location in which the measurement was made particularly when it is in a region 

of rapidly varying strains near a discontinuity like a cutout.  Specifically, a slight shift in the strain measurement 

position can cause a significant change in the measured strain value. 

VI. Conclusion 

Results from a numerical and experimental study on the effect of laminate orthotropy and circular cutout size on 

the response of compression-loaded composite panels have been presented.  Curved composite panels with four 

different laminate configurations were tested with cutout diameters ranging from 10% to 60% of the panel width.  

Overall the compression-loaded panels exhibited two separate types of behavior with characteristics that depended 

on the laminate orthotropy.  The circumferentially stiff laminates and the two angle-ply laminates with no cutouts 

and relatively small cutouts (e.g. d/W = 0.1) exhibited a distinct buckling point followed by a dynamic inward snap-

through buckling response.  The circumferentially stiff panels and the angle-ply panels with large cutouts exhibited a 

stable monotonically increasing response characterized by large magnitude outward deformations near the edges of 

the cutout.  In contrast, the compression-loaded axially stiff panels with no cutout or with a cutout size of d/W = 0.1 

exhibited a monotonically increasing stable response and did not buckle inward like the corresponding 

circumferentially stiff and angle ply panels.  However, the axially stiff panels with cutout sizes of d/W = 0.5 and d/W 

= 0.6, deformed monotonically outward until failure in a manner very similar to the deformation of the other panels 

with large cutouts.  The three axially stiff panels with cutout sizes of d/W = 0.2, 0.3, and 0.4 exhibited an unstable 

inward snap-through type buckling behavior and benign prebuckling deformation pattern changes prior to overall 

buckling.  Finite-element analyses were performed for each panel in order to identify the influence of specific 

modeling features, such as boundary conditions, initial geometric imperfections and thickness variation, on the 

accuracy of the analysis results.  A comparison of the finite-element analyses with the experimental results showed 

that the friction along the loaded edges prevented lateral expansion during loading and was best modeled by using a 

v = 0 boundary condition along these edges.  The inclusion of the measured panel thickness nonuniformity into the 

finite-element analysis did not have a noticeable effect on the predicted panel response.  The overall response of the 

panels examined was dominated by the boundary condition along the loaded edges, and, to a lesser extent, the 

measured geometric imperfection.  In general, the finite-element analyses were able to predict accurately the 

buckling loads of the panels and the prebuckling and postbuckling out-of-plane deformation response.  However, 

some discrepancies were observed for panels with intermediate sized cutouts, d/W = 0.2 and 0.3, because of an 

apparent increase in imperfection sensitivity and the fact that there were errors in the measured geometric 

imperfections used in the analysis models. 
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Figure 4.  Finite-element boundary conditions based on measured panel imperfection. 
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Figure 11.  Experimentally measured out-of-plane deformation of the [+606 / -606]s composite panel 

with a cutout size of D/W = 0.2 at compressive loads of 
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crPP = (a) 0.440 and (b) 0.618. 
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Figure 12.  Experimentally measured out-of-plane deformation of the axially stiff [02 / ±±±±45]3s composite 

panel without a cutout at compressive loads of 
Quasi

crPP = (a) 0.628, (b) 1.260 and (c) 1.893. 
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Figure 13.  Experimentally measured out-of-plane deformation of the axially stiff [02 / ±±±±45]3s composite panel 

with a cutout size of D/W = 0.4 at compressive loads of 
Quasi

crPP = (a) 0.760, (b) 1.344 and (c) 1.755. 
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Figure 14.  Experimental and finite-element (FEM) load-shortening (a), out-of-plane center 

displacements (b), and circumferential expansion (c) for axially stiff [02 / ±±±±45]3s composite panel with no 

cutout. FEM 1: Free expansion, no imperfection. FEM 2: Free expansion, with imperfection. FEM 3: v = 

0, no imperfection. FEM 4: v = 0, with imperfection. 
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Figure 15.  Predicted out-of-plane deformation for the [+60 / -60]6s panel with no cutout at 
Quasi

crPP = 0.946. 
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Figure 16.  Predicted out-of-plane deformation for the [+60 / -60]6s panel with a cutout size of D/W = 0.4 

at compressive loads of (a) 
Quasi

crPP = 0.379 and (b) 
Quasi

crPP = 1.037. 
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Figure 17.  Predicted and experimentally measured load-shortening (a) and out-of-plane center 

displacements (b) for axially stiff [02 / ±±±±45]3s composite panel with a cutout size of D/W = 0.2. 
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Figure 18. Measured thickness variation for axially stiff [02 / ±±±±45]3s composite panel with no cutout. 
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Figure 19.  Predicted and experimentally measured load-shortening (a) and out-of-plane displacement at the 

edge of the cutout (b) for the circumferentially stiff [902 / ±±±±45]3s composite panel with a cutout size of D/W = 0.2. 

Figure 20.  Finite-element prediction of the distribution of axial stress along the top edge (x = L/2) of the 

circumferentially stiff [902 / ±±±±45]3s composite panel with a cutout size of D/W = 0.2. 
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Figure 21.  Predicted and experimentally measured axial membrane strain for the circumferentially 

stiff [902 / ±±±±45]3s composite panel with a cutout size of (a) D/W = 0.2 and (b) D/W = 0.6 at various 

values of 
Quasi

crPP . 
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Table 1.  Curve panel properties and geometry. 

 

Name d/W Layup 

Measured 

Radius 

(in) 

Test Fixture 

Radius 

(in) 

Average 

Thickness 

(in) 

MPN-95-01-2 0 [02 / ±45]3s 53.35 53.0 0.1326 

MPN-95-06-1 0 [902 / ±45]3s 54.95 54.0 0.1300 

MPN-95-09-2 0 [±60]6s 51.65 51.0 0.1298 

MPN-95-13-2 0 [+606 / -606]s 52.77 52.0 0.1278 

MPN-95-01-3 0.1 [02 / ±45]3s 53.34 53.0 0.1326 

MPN-95-05-3 0.1 [902 / ±45]3s 53.66 53.0 0.1326 

MPN-95-09-3 0.1 [±60]6s 52.15 52.0 0.1293 

MPN-95-13-3 0.1 [+606 / -606]s 53.42 53.0 0.1280 

MPN-95-02-1 0.2 [02 / ±45]3s 55.49 55.0 0.1315 

MPN-95-06-2 0.2 [902 / ±45]3s 53.09 53.0 0.1322 

MPN-95-09-4 0.2 [±60]6s 52.96 52.0 0.1293 

MPN-95-14-1 0.2 [+606 / -606]s 53.77 53.0 0.1302 

MPN-95-02-3 0.3 [02 / ±45]3s 55.68 55.0 0.1317 

MPN-95-06-4 0.3 [902 / ±45]3s 53.41 53.0 0.1326 

MPN-95-10-1 0.3 [±60]6s 51.86 51.0 0.1269 

MPN-95-14-3 0.3 [+606 / -606]s 53.71 53.0 0.1303 

MPN-95-03-1 0.4 [02 / ±45]3s 55.60 55.0 0.1317 

MPN-95-06-2.2 0.4 [902 / ±45]3s 55.27 55.0 0.1308 

MPN-95-11-1 0.4 [±60]6s 52.80 52.0 0.1270 

MPN-95-15-1 0.4 [+606 / -606]s 53.57 53.0 0.1266 

MPN-95-03-3 0.5 [02 / ±45]3s 56.77 56.0 0.1317 

MPN-95-06-3 0.5 [902 / ±45]3s 54.71 54.0 0.1310 

MPN-95-11-3 0.5 [±60]6s 53.03 53.0 0.1272 

MPN-95-15-2 0.5 [+606 / -606]s 53.95 53.0 0.1265 

MPN-95-04-1 0.6 [02 / ±45]3s 56.53 56.0 0.1317 

MPN-95-06-4.2 0.6 [902 / ±45]3s 56.13 56.0 0.1304 

MPN-95-12-1 0.6 [±60]6s 52.73 52.0 0.1283 

MPN-95-16-1 0.6 [+606 / -606]s 54.42 54.0 0.1266 
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Table 2.  Material properties used in the finite-element analysis. 

Fiber Matrix 

Longitudinal modulus 29.4 Msi  Elastic modulus 0.70 Msi 

Transverse modulus 2.94 Msi  Poisson ratio 0.360 

Shear modulus 1.62 Msi    

Poisson ratio 0.269    

   

Nominal fiber volume fraction 0.62  

Nominal ply thickness 0.005 in.  

Nominal E11 18.49 Msi  

Nominal E22 1.64 Msi  

Nominal G12 0.87 Msi  

Nominal Poisson ratio 0.304  

 

 

 

 

 

 

Table 3.  Measured and predicted buckling loads in lbs. 

  STAGS analysis with 

imperfection 

STAGS analysis 

without imperfection 

Panel 

Experimental 

buckling load 

Buckling 

load % diff. 

Buckling 

load % diff. 

MPN-95-06-1 16080 15020 -6.6 15380 -4.4 

MPN-95-09-2 15090 15790 4.6 17510 16.0 

MPN-95-13-2 12640 12870 1.8 13140 4.0 

MPN-95-05-3 17850 12280 -31.2 14510 -18.7 

MPN-95-09-3 13750 11630 -15.4 14220 3.4 

MPN-95-13-3 11190 10600 -5.3 11120 -0.6 

MPN-95-02-1 34720 36400 4.8 37020 6.6 

MPN-95-06-2 13810 14380 4.1 14160 2.5 

MPN-95-09-4 12350 13380 8.3 13600 10.1 

MPN-95-14-1 10250 11900 16.1 11850 15.6 

MPN-95-02-3 28110 31710 12.8 n/a
a
 - 

MPN-95-10-1 12620 13550 7.4 n/a
a
 - 

MPN-95-03-1 27560 n/a
a
 - n/a

a
 - 

a
 STAGS analysis did not predict instability 

 


