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Abstract 
Rigorous analysis of geometrically nonlinear structures demands creating 

mathematical models that accurately include loading and support conditions and, 

more importantly, model the stiffness and response of the structure.  Nonlinear 

geometric structures often contain critical points with snap-through behavior 

during the response to large loads.  Studying the post buckling behavior during a 

portion of a structure's unstable load history may be necessary.  Primary 

structures made from ductile materials will stretch enough prior to failure for 

loads to redistribute producing sudden and often catastrophic collapses that are 

difficult to predict.  The responses and redistribution of the internal loads during 

collapses and possible sharp snap-back of structures have frequently caused 

numerical difficulties in analysis procedures. The presence of critical stability 

points and unstable equilibrium paths are major difficulties that numerical 

solutions must pass to fully capture the nonlinear response.  Some hurdles still 

exist in finding nonlinear responses of structures under large geometric changes.  

Predicting snap-through and snap-back of certain structures has been difficult 

and time consuming.  Also difficult is finding how much load a structure may 

still carry safely.  Highly geometrically nonlinear responses of structures 

exhibiting complex snap-back behavior are presented and analyzed with a finite 

element approach. The arc-length method will be reviewed and shown to predict 

the proper response and follow the nonlinear equilibrium path through limit 

points.      
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1 Introduction 

Three-dimensional space trusses may experience loading conditions that cause 

large displacements that significantly change the geometry of the structure and 

require the equations of equilibrium to be formulated for the deformed structure.  

The large deflections are described by nonlinear differential equations that can 

be solved using incremental techniques.  In nonlinear analysis the tangent 

stiffness matrix replaces the stiffness matrix used in linear analysis.  Iterative 

time stepping is used to apply small incremental loads to the structure and find 

the corresponding incremental displacements.  A plot of the results defines a 

curve of the equilibrium path of the structure under the applied loading.   

     A truss structure undergoing large changes in geometry often exhibits critical 

points with an unstable snapping response during a static collapse.  The solution 

to these structural instabilities is difficult to find with common nonlinear 

equation solvers such as the Newton-Raphson method.  These methods often fail 

whenever snap-back behavior occurs along the loading path and they may not 

correctly define the response immediately after snap-through.  Large gaps in the 

equilibrium path will occur with artificial results being plotted.   

     Researchers have continually investigated these shortcomings and have 

offered improvements to the process that have been gradually introduced into 

commercial finite element analysis (FEA) programs. The techniques investigated 

bring the above FEA problems into focus.  Geometric nonlinear FEA may be 

challenged to find all possible responses during large loading.  A finite element 

computer program was created and tested by means of a number of examples 

exhibiting geometric nonlinearity.  The sophistication of the finite element 

program presented in this work is measured by the path-following techniques 

enabling the fundamental path to be followed after bifurcation.  The results are 

compared with nonlinear Nastran solutions and Crisfield [1] and [2]. 

2 Geometrically Nonlinear Finite Element Static Analysis by 

the Riks-Wempner Arc-Length Method   

Passing through critical points during the geometrically nonlinear response is 

challenging.  Two critical points encountered during this type of behavior are:  

load limit points that are reached whenever the response path has a local snap-

through; and control limit points that define a local snap-back.  At a control limit 

point the loading may reverse as the deflections change directions and a local 

maximum is passed.   

     An important family of nonlinear equations solvers called the arc-length 

method as developed by Riks-Wempner [6] can overcome the difficulties of 

passing critical points.  The technique resembles the Newton-Raphson method 

described in Riks [5] except the applied load increment becomes an additional 

unknown.  The Riks-Wempner method computes load magnitudes as part of the 

solution.  The length of a vector tangent to the equilibrium path is used to find a 

new point that is the intersection of the plane normal to the tangent.   

 



     A user-supplied load will estimate magnitudes of the initial load increment 

for a step.  Termination of the method is done by the user specifying a maximum 

load proportionality factor or a maximum nodal displacement. The process also 

ends when the maximum number of increments for a step is reached. 

2.1 Derivations of Arc-Length Formulas 

The Riks-Wempner arc-length method traces the nonlinear equilibrium path 

using an iterative process that begins with computing initial displacements due to 

a user defined load increment.  The method proceeds to find the next equilibrium 

point from the initial point i as shown in fig. 2 and detailed by Crisfield [1-2], 

Owen [3-4] and Riks [6].  The figure shows the load-displacement curve for a 

single-degree-of-freedom system.  A vector tangent to the curve at i can be 

drawn and written as  
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The normal vector, in
�

, is also shown in fig. 2 and can be written as 
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The tangent stiffness matrix, 
i

TK , is assembled using the nonlinear truss shown 

in fig. 1 and derived in [1].  Trusses undergoing large deflections must be 

analyzed for the deformed geometry of the structure.  The linear equations  

                 [ ]F K u=
�
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that relates the applied forces F
�

 with the truss element stiffness [ ]K  and 

displacements u
�

must be modified to account for changes in nodal geometry as 

the load is applied.  The sum of the linear elastic and nonlinear matrices produce 

the global tangent stiffness at point i along the load-displacement path of the 

single-degree-of-freedom system.  The standard elastic stiffness matrix 

[ ]
E

K will be modified to give the tangent stiffness: 
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Figure 1: Nonlinear 3d Truss variables 

 

 
Figure 2: Riks-Wempner arc-length method on a normal plane for a single-

degree-of-freedom system.  

 



 
Figure 3: Start of Riks-Wempner normal to a plane method 

 

     At the start of the Riks-Wempner arc-length method an initial load increment, 

0λ∆ , is used to compute the first displacement vector, 0q∆
�

, and the length of the 

first tangent vector 0t
�

.  The variables are shown in the load displacement plot in 

fig. 3.  Similar triangles are used to find the initial displacements, 0q∆
�

.  During 

this initial increment the tangent stiffness is the same as the linear stiffness.  The 

load increment is a user-defined value that divides the total applied load into 

even increments.  A given load increment starts the process and finds the 

displacements 0q∆  using the tangent stiffness matrix 
0

TK .  The initial 

displacements 0q∆  are found using 
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where 1λ =  and totq∆ is found from the expression 

0
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The length of the tangent vector 0t
�

 along the equilibrium path can be calculated 

as 
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Throughout the rest of the iterations the arc-length is constant or can be scaled 

by the user input into the following  
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The user decides on the required number of iterations, 1iI − , and on the number 

of desired iterations, desI . 



     The internal forces in the truss element are required for the tangent stiffness 

and will be defined using matrix notation.  The element strain formulation uses a 

constant cross sectional area and assumes the length/area of the truss will remain 

large.  The strain energy or work done is 1/2 the nodal forces multiplied by the 

corresponding deflections.  The internal force in the truss will now be defined to 

include nonlinear effects. The force is axially directed and is needed in updating 

the nonlinear stiffness matrix.  Now using the strain equation 
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the matrix notation can be written as 
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The first term on the right-hand side of (11) represents the linear strain and the 

second term is the nonlinear contribution.  The internal force in the truss is then: 

AN EAε=                                               (12) 

3 Verification Models 

The proposed finite element program was tested and verified using several 

examples found in literature with nonlinear Nastran solutions.  Of particular 

interest was the ability to reproduce snap-through and snap-back behavior found 

in some structures.  The examples were chosen as a robust test of this unstable 

behavior and bring confidence to the computer coding and numerical techniques.    

3.1 Single-Degree-of-Freedom Nonlinear Example 

The following single-degree-of-freedom example uses a truss that follows the 

National Agency of Finite Elements (NAFEMS) benchmark tests.  The problem 

is used in [1] and by others.  Fig. 4 shows the problem with the variables used in 

expressing the exact response equation.  

 
Figure 4: Single-degree-of-freedom truss snap through problem. 



The exact load-displacement path is given in [1] as: 
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where ( )Z z w= +  and E =Young's modulus, 0A =area 

     The truss in fig. 4 was solved using the exact eq. (13), performing a nonlinear 

Nastran FEA and using the proposed Hrinda FEA computer program for static 

nonlinear trusses presented in this work.  Letting 0 5. 7EA e= , 2500.x = , 

25.z = , 1 1.0q = , then the following plot of the solution points are: 
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Figure 5: Single-degree-of-freedom load/deflection plot 

3.2 Star dome truss 

The Crisfield shallow star dome model was taken from [2] and has been studied 

by others to demonstrate a complex equilibrium path. The 24 member 3d truss 

model, shown in fig. 6, has one concentrated load at the center and is solved in 

the arc-length computer program with results compared to a Nastran model.  The 

load increment vs. vertical displacements of the center node are plotted in fig. 7 

and compared.  This model introduced a major difficulty following the load path 

at snap points.  The proposed Hrinda FEA program was able to accurately follow 

the Nastran results through several snap-through and snap-back points.  The 

structure snaps through just before -13" of vertical displacement and then snaps 

back to -3.7".  The loading is reversed as shown by the horizontal axis in fig. 7.  

The maximum negative load increment is reached at -.443 and the displacements 

continue to increase.  



 

                   
Figure 6: Crisfield three-dimensional star dome 
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Figure 7: Star dome load increment vs. vertical displacement 



3.3 Crisfield arch truss   

The model is taken from [2] and tests multiple snap-through and snap-back 

behavior.  The model has 101 elements with 42 nodes with a total of 126 

degrees-of-freedom.  Fig. 8 shows the test model and the applied load at the 

apex.  Fig. 9 displays the Nastran results and the predicted response of the 

Hrinda arc-length FEA computer program.  The first snap-through, shown in 

figure 9, occurs at a load increment of -.1 and -29.2 inches.  A snap-back occurs  

at a load increment of .29 with a displacement of -3.33 inches.  A second snap-

through begins and continues with increasing loads.  The arc-length FEA 

program closely follows the equilibrium path found by a nonlinear Nastran 

solution.  

 

  

 

Figure 8: Crisfield large circular arch 

 

Load/Deflections for Crisfield Arch @ Apex 
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Figure 9: Arch load deflection apex comparisons of Nastran vs. Hrinda 



 
 

 
 

Figure 10: Arch deflections at snap-through and snap-back 

4 Conclusion and Future Work 

The arc-length method was used in a finite element program created to properly 

find the equilibrium path of highly geometrically nonlinear truss structures.  

Critical points along the path were found and passed to show snap-through and 

snap-back behavior of the truss structures.  Future work will include the Newark 

method for solving nonlinear transient problems.  The Hrinda finite element 

program for the nonlinear static load case will be revised to include nonlinear 

dynamics. 
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