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Abstract— An aircraft model that incorporates independently
adjustable engine throttles and ailerons is employed to develop
an adaptive control scheme in the presence of actuator failures.
This model captures the key features of aircraft flight dynamics
when in the engine differential mode. Based on this model an
adaptive feedback control scheme for asymptotic state tracking
is developed and applied to a transport aircraft model in the
presence of two types of failures during operation, rudder
failure and aileron failure. Simulation results are presented to
demonstrate the adaptive failure compensation scheme.
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I. I NTRODUCTION

Effective compensation of control component failures is
crucial for aircraft flight safety. Considerable research has
focused on the design of control systems that can provide
safe performance when failures occur. In [5], an emergency
flight control system that can utilize engine thrusts to ma-
neuver an aircraft was developed and tested on an MD-
11 airplane. In [7], a propulsion controlled aircraft design
by H-infinity model matching was introduced. In [1], an
indirect adaptive LQ controller was developed for aircraft
control, which is able to implicitly reconfigure the control
law using on-line estimates of the changed aircraft dynamics,
so that the failures in the pitch control channel or the
horizontal stabilizer can be accommodated. In [2], several
multivariable adaptive control algorithms for flight control
reconfiguration were presented with a failure characterized
by a locked left horizontal tail surface. An adaptive controller
was used to compensate this failure. In [13], a direct adaptive
reconfigurable flight control algorithm was presented. An on-
line adaptive neural network was applied to regulate the error
between the plant model and the actual aircraft, and appli-
cation of this control approach to a tailless advanced fighter
aircraft was demonstrated. In [9], an algorithm for aircraft
failure detection and compensation was presented, which
incorporated multiple model adaptive estimation methods.
In this approach failures are detected by a bank of parallel
Kalman filters and a reconfiguration algorithm is used to
redistribute control commands to the non-failed surfaces.
In [3], a new parametrization for the modeling of control
effector failures in flight control applications was proposed,
including lock in place, hard over and loss of effectiveness

patterns. An algorithm based on multiple model adaptive re-
configuration control approach was presented and illustrated
by simulation results of the F/A-18 aircraft during carrier
landing. In [12], an F-16 fighter aircraft subject to asymmet-
ric actuator failure was discussed, including system modeling
and control system design. The problem was formulated as
a nonlinear disturbance rejection problem in the presence
of actuator failures and simulation results using an F-16
aircraft model were discussed. In [6], fault-tolerant control
system design against stuck actuators was investigated using
an iterative learning observer that provides information of the
system state estimates and fault compensation transients.The
performance of the controller design was evaluated using an
F-8 aircraft model.

In this paper, we present a failure compensation scheme
based on an adaptive control approach that can utilize the
remaining (functioning) controls to achieve desired perfor-
mance in the presence of uncertain system failures. To com-
pensate for aircraft failures such as rudder failure or engine
malfunction, asymmetric engine thrusts may be inevitably
needed [10]. For the design of such control schemes, an
aircraft model with independently adjustable engine thrusts
is necessary. In [8], we derived such an aircraft model and
used it to develop an adaptive failure compensation control
scheme using engine differentials for stateregulation. In this
paper, we shall use this aircraft model to develop an adaptive
failure compensation control scheme for statetracking, and
apply the scheme to a transport aircraft model. We shall
consider two simulation cases representing realistic scenarios
in which the rudder or an aileron are stuck at unknown
constant values at unknown time instants.

The paper is organized as follows. In Section 2, we
describe an engine differential based aircraft flight dynamic
model. In Section 3, we develop an adaptive compensation
scheme that is able to handle uncertain actuator failures and
guarantee asymptotic state tracking. In Section 4, we apply
this compensation scheme to a transport aircraft model and
present simulation results to illustrate the effectiveness of the
scheme.

II. ENGINE DIFFERENTIAL BASED MODEL

As described in [8], a nonlinear aircraft dynamic model
in body-axis coordinate system which incorporates engine
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differentials can be described by the force equations

m(u̇+ qw − rv) = X −mg sin θ + (TL + TR) cos ǫ (II.1)

m(v̇ + ru− pw) = Y +mg cos θ sinφ (II.2)

m(ẇ+pv−qu) = Z+mg cos θ cosφ−(TL+TR) sin ǫ (II.3)

and moment equations

Ixṗ+Ixz ṙ+(Iz−Iy)qr+Ixzqp = L+l(TL−TR) sin ǫ (II.4)

Iy q̇ + (Ix − Iz)pr + Ixz(r
2 − p2) = M (II.5)

Iz ṙ + Ixz ṗ+ (Iy − Ix)qp− Ixzqr = N + l(TL − TR) cos ǫ
(II.6)

wherem is the mass of the aircraft.u, v andw are the body-
axis components of the velocity of the center of mass.p, q
andr are the body-axis components of the angular velocity
of the aircraft.X, Y andZ are the body-axis aerodynamic
forces about the center of mass.L, M andN are the body-
axis aerodynamic torques about the center of mass.θ andφ
are the Euler pitch and roll angles of the aircraft.ǫ represents
the angle between thrust and bodyx-axis.Ii are the moments
(or products) of inertia in body axes.g is the gravitational
force per unit mass.TL andTR are the left and right engine
thrusts, andl is the distance between engines andx–z plane.

By applying the linearization procedure around the equi-
librium point of interest, we can obtain the linearized aircraft
model with engine differentials. For this purpose, the state
and control vectors of the linearized model are

x = [u w q θ v r p φ ψ ]
T (II.7)

U = [ δe δtl
δtr

δal
δar

δr ]
T (II.8)

where the notation “δ” has been dropped fromδx and δU
for simplicity of presentation. Thus (u, v, w) represent the
velocity perturbations along each axis and (p, q, r) are the
angular velocity perturbations about each axis. (θ, φ, ψ) are
the pitch, roll and yaw angle perturbations, andδe, δal

, δar
,

δr are the deflection perturbations of the elevator, the left
and right ailerons and the rudder.δtl

andδtr
are the left and

right throttle perturbations.
In our study, we consider a steady-state rectilinear wings-

level flight condition as the equilibrium point. For this
steady-state flight condition, the derivatives of all states, the
angular velocity components (p, q, r) and the roll angleφ at
the equilibrium point are all zero, that is,

[ u̇ ẇ q̇ θ̇ v̇ ṙ ṗ φ̇ ψ̇ ]xo, Uo
= 0 (II.9)

po = qo = ro = φo = ψo = vo = 0, (II.10)

wherexo andUo are determined as

xo =[uo wo 0 θo 0 0 0 0 0 ]
T
,

Uo =[ δeo δtlo
δtro

δalo δaro δro ]
T
. (II.11)

By applying the linearization around this equilibrium point,
we can obtain the linearized aircraft model as

ẋ =

[

A
(1)
4×4 A

(2)
4×5

A
(3)
5×4 A

(4)
5×5

]

x+

[

B
(1)
4×3 B

(2)
4×3

B
(3)
5×3 B

(4)
5×3

]

U, (II.12)

whereA(2) andB(2) are zero matrices,A(1), A(4), B(1) and
B(4) are of the same forms as in the literature [4], and the
matrices

A(3)=











0 0 0 0
T̄u T̄w 0 0
T̄ ′

u T̄ ′
w 0 0

0 0 0 0
0 0 0 0











, B(3) =













0 0 0
0 T̄ ′′

δtl

−T̄ ′′
δtr

0 T̄ ′′′
δtl

−T̄ ′′′
δtr

0 0 0
0 0 0













(II.13)
represent the effect of engine thrust differentials, that is, if
the left and right engine thrusts are equal, these matrices are
zero. See [8] for details of this model.

We note that this aircraft model is different from standard
models used in most of the literature [4] that assume equal
engine thrusts and aileron angles. This engine differential
based model in which the two engine thrusts and the ailerons
are taken into account separately captures the essential
dynamics of the aircraft in the engine differential mode,
and is capable of coping with some actuator failures such as
rudder failures or engine failure, which cannot be achieved
without using engine differentials. Therefore it is desirable
to develop an adaptive control scheme for aircraft actuator
failure compensation using engine differentials.

III. A DAPTIVE FAILURE COMPENSATION

In this section, we shall first formulate an actuator failure
compensation problem for linear systems, and then develop
an adaptive failure compensation scheme for closed-loop
stability and asymptotic tracking of the system state variables
in the presence of certain actuator failures.

A. Problem Formulation

Consider the linear time-invariant system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, (III.1)

whose actuatorsu = [u1, u2, . . . , um]T may fail during
system operation. A typical failure model is

ui(t) = ūi, t ≥ ti, i ∈ {1, 2, . . . ,m}, (III.2)

where ti is the unknown failure time instant and̄ui is the
unknown failure constant [11]. An example of such actuator
failures is when an aircraft control surface (such as the rudder
or an aileron) is stuck at some unknown fixed position at an
unknown time instant.

The control objective is to design an adaptive state feed-
back control signal to be applied to the actuators inu,
to ensure closed-loop signal boundedness, and asymptotic
tracking:limt→∞(x(t)−xd(t)) = 0, wherexd(t) is a desired
state trajectory, in the presence of unknown actuator failures.

B. Adaptive Compensator Designs

In the presence of actuator failures,u(t) can be expressed
as

u(t) = v(t) + σ(ū− v(t)), (III.3)
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wherev(t) ∈ Rm is the applied control input vector,̄u =
[ū1, ū2, . . . , ūm]T is the failure vector, andσ represents the
failure pattern and is defined as

σ = diag{σ1, σ2, . . . , σm} (III.4)

with σi = 1 if the ith actuator has failed, that is,ui = ūi,
and σi = 0 otherwise. The failures are assumed to occur
instantaneously, i.e.,σi are piecewise constant functions of
time. There are2m possible combinations of actuator states
(each actuator is either normal or failed), and therefore2m−1
possible failure patterns that constitute a set denoted byΣ̄.
The system (III.1) can then be rewritten as

ẋ(t) = Ax(t) +B(I − σ)v(t) +Bσū. (III.5)

For our adaptive control design for actuator failure compen-
sation, the following assumption is needed:

Assumption 3.1: (A,B) is known and stabilizable, and
there exists a non-empty setΣ of “recoverable” failures such
that rank[B(I −σ)] = rank[B] ∀σ ∈ Σ. Σ is a subset of̄Σ.

Remark 3.1: This assumption characterizes the built-in
redundancy needed for failure compensation as well as all the
failure patterns that can be accommodated. This condition is
needed for the existence of a (fixed) failure compensation
controller that can achieve the desired performance when
the system and failure parameters areknown. The adaptive
control design for unknown failure parameters is developed
based on the same condition. For instance, when the aircraft
rudder fails during flight, this condition can still be satisfied
so that the aircraft can be controlled by the remaining
actuators and the failure can be accommodated (which is
demonstrated in the simulation in Section 4.2). 2

For asymptotic tracking, we first present a desired nominal
design for the system (III.1) without any actuator failures.
The nonadaptive nominal controller is

u(t) = Kx(t) + κrd(t), (III.6)

whereK = −R−1BTP ∈ Rm×n is an optimal LQ gain
with P satisfying the Riccati equation

ATP + PA− PBR−1BTP +Q = 0 (III.7)

for some chosenn×n matrixQ = QT > 0 andm×m matrix
R = RT > 0, and the reference inputrd(t) ∈ Rmr and
κ ∈ Rm×mr are chosen for some desired system trajectory.

With this nominal controller, the closed-loop system is
ẋ(t) = (A+BK)x(t)+Bκrd(t), based on which, we define
the desired state trajectoryxd(t) from the reference system

ẋd(t) = (A+BK)xd(t) +Bκrd(t). (III.8)

Define the tracking errore(t) = x(t) − xd(t). As the new
adaptive failure compensation scheme for asymptotic state
tracking, the feedback control law is

v(t) = K̂x(t) + κ̂rd(t) + θ̂, (III.9)

where K̂ = [K̂1, K̂2, . . . , K̂m]T ∈ Rm×n, κ̂ =
[κ̂1, κ̂2, . . . , κ̂m]T ∈ Rm×mr , and θ̂ = [θ̂1, θ̂2, . . . , θ̂m]T ∈

Rm×1, are the parameters updated from the adaptive laws

˙̂
Ki = −Γixe

TPbi, i = 1, 2, . . . ,m (III.10)
˙̂κi = −γirde

TPbi, i = 1, 2, . . . ,m (III.11)
˙̂
θi = −λie

TPbi, i = 1, 2, . . . ,m, (III.12)

whereΓi = ΓT
i > 0, γi = γT

i > 0, λi > 0, bi is the ith
column ofB, i = 1, 2, . . . ,m, andP = PT > 0 satisfying
(III.7). Γi, γi, andλi denote the design parameters for the
adaptive laws. This adaptive actuator failure compensation
scheme has the following desired properties:

Theorem 3.1: The control law (III.9), updated from
(III.10)–(III.12) and applied to the system (III.1) subject
to the actuator failures (III.2) under Assumption 3.1, en-
sures that all closed-loop system signals are bounded and
limt→∞(x(t) − xd(t)) = 0, for any failure patternσ ∈ Σ
with uncertain parameters.
Proof: For Q̄ = Q+ PBR−1BTP , using (III.7), we obtain

P (A+BK) + (A+BK)TP = −Q̄ < 0. (III.13)

Suppose that at timet there arep < m actuator failures,
that is, ui(t) = ūi, i = i1, i2, . . . , ip, {i1, i2, . . . , ip} ⊂
{1, 2, . . . ,m}, and that actuator failures happen at time
instantstk, with tk < tk+1, k = 1, 2, . . . , N .

From the condition of Assumption 3.1:rank[B(I−σ)] =
rank[B], ∀σ ∈ Σ, it follows that for eachσ ∈ Σ, there exist
constant matricesKσ ∈ Rm×n andκσ ∈ Rm×mr such that

B(I − σ)Kσ = BK, B(I − σ)κσ = Bκ. (III.14)

Therefore, for eachσ, there are constantKσ satisfying

P [A+B(I−σ)Kσ]+ [AT +(I−σ)Kσ
TBT ]P = −Q̄ < 0,

(III.15)
andκσ satisfyingB(I − σ)κσrd(t) = Bκrd(t). In addition
there exists constantθ = [θ1, θ2, . . . , θm]T ∈ Rm, whereθi,
i 6= i1, i2, . . . , ip, are solutions of the following equation

∑

i6=i1,i2,...,ip

biθi = −
∑

j=i1,i2,...,ip

bj ūj , (III.16)

and θi = 0, for i = i1, i2, . . . , ip, such thatB(I − σ)θ =
Bσū.

From (III.5), (III.8), and III.9, we have

ė(t) = Ax(t) +B(I − σ)(K̂x(t) + κ̂rd(t) + θ̂) +Bσū

−(A+BK)xd(t) −Bκrd(t)

=Ax(t)+B(I−σ)(Kσx(t)+κσrd(t)+θ)+Bσū

−(A+BK)xd(t)−Bκrd(t)+B(I−σ)[(K̂−Kσ)x(t)

+(κ̂− κσ)rd(t) + (θ̂ − θ)] (III.17)

With equations (III.14) and (III.16), the dynamic equation
for tracking error can be simplified as

ė(t) = (A+BK)e(t) +B(I − σ)[(K̂ −Kσ)x(t)

+(κ̂− κσ)rd(t) + (θ̂ − θ)]. (III.18)
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With the adaptive laws (III.10)–(III.12), a Lyapunov func-
tion candidate can be chosen as

V= eTPe+
∑

i6=i1,i2,...,ip

(K̂i −Ki)
T Γ−1

i (K̂i −Ki)

+
∑

i6=i1,i2,...,ip

(κ̂i − κi)
T γ−1

i (κ̂i − κi) +
∑

i6=i1,i2,...,ip

λ−1
i (θ̂i − θi)

2

for each time interval(tk, tk+1), k = 0, 1, . . . , N , with t0 =
0 and tN+1 = ∞, whereKi is the ith row of Kσ andκi is
theith row ofκσ. The time-derivative ofV in each(tk, tk+1)
is

V̇ = e
T [P (A + BK) + (AT + K

T
B

T )P ]e

+2e
T
PB(I−σ)[(K̂−Kσ)x(t)+(κ̂−κσ)rd(t)+(θ̂−θ)]

+2
∑

i6=i1,i2,...,ip

(K̂i−Ki)
T Γ−1

i

˙̂
Ki + 2

∑

i6=i1,i2,...,ip

(κ̂i − κi)
T
γ
−1
i

˙̂κi

+2
∑

i6=i1,i2,...,ip

λ
−1
i (θ̂i − θi)

˙̂
θi

= e
T [P (A + BK) + (AT + K

T
B

T )P ]e

+2e
T
PB(I−σ)[(K̂−Kσ)x(t)+(κ̂−κσ)rd(t)+(θ̂−θ)]

−2
∑

i6=i1,i2,...,ip

(K̂i−Ki)
T
xe

T
Pbi − 2

∑

i6=i1,i2,...,ip

(κ̂i − κi)
T
rde

T
Pbi

−2
∑

i6=i1,i2,...,ip

(θ̂i − θi)e
T
Pbi,

For the considered actuator failure pattern, that is,ui(t) =
ūi, σi = 1, i = i1, i2, . . . , ip, using the fact thatB(I −
σ)(K̂−Kσ) =

∑

i6=i1,i2,...,ip
bi(K̂i−Ki)

T and the commu-
tativity property of the matrix trace operator, i.e.,Tr(XY ) =
Tr(Y X), the following equalities hold:

eTPB(I−σ)(K̂−Kσ)x(t) =
∑

i6=i1,i2,...,ip

(K̂i−Ki)
TxeTPbi,

eTPB(I−σ)(κ̂−κσ)rd(t) =
∑

i6=i1,i2,...,ip

(κ̂i − κi)
T rde

TPbi,

eTPB(I−σ)(θ̂−θ) =
∑

i6=i1,i2,...,ip

(θ̂i − θi)e
TPbi.

So the time-derivative ofV in each(tk, tk+1) is simplified
as

V̇ = −eT Q̄e ≤ 0, (III.19)

where (III.13) is used for the last equality. It follows thate ∈
L2 ∩ L∞, andK̂i ∈ L∞ and θ̂i ∈ L∞ for i 6= i1, i2, . . . , ip,
wherei1, i2, . . . , ip are the indexes of failed actuators.

From (III.10)–(III.12), we have
[

Γ−1
1

˙̂
K1,Γ

−1
2

˙̂
K2, . . . ,Γ

−1
m

˙̂
Km

]

= −xeTPB,
[

γ−1
1

˙̂κ1, γ
−1
2

˙̂κ2, . . . , γ
−1
m

˙̂κm

]

= −rde
TPB,

[

λ−1
1

˙̂
θ1, λ

−1
2

˙̂
θ2, . . . , λ

−1
m

˙̂
θm

]

= −eTPB, (III.20)

which implies thatK̂i ∈ L∞, κ̂i ∈ L∞ and θ̂i ∈ L∞ for
i = i1, i2, . . . , ip, becauseB can be represented by a linear
combination ofbi, i 6= i1, i2, . . . , ip.

The functionV is not continuous attk, k = 0, 1, . . . , N ,
and only has finite value jumps at those time instants. So

we can conclude thate ∈ L2 ∩ L∞, K̂ ∈ L∞, κ̂ ∈ L∞,
and θ̂ ∈ L∞. For the nominal design (III.6),A + BK is
asymptotically stable such thatxd(t) ∈ L∞ with a bounded
reference inputrd(t). Hence we conclude thatx(t) ∈ L∞,
so doesv(t). Furthermore, sincėx(t) ∈ L∞ and ẋd ∈ L∞,
given thate(t) ∈ L2, we also havelimt→∞ e(t) = 0. 2

The physical meaning of state tracking for the aircraft
dynamic model linearized at an equilibrium point (xo, Uo) is
that the operation of the aircraft follows a desired trajectory
in a neighborhood of the equilibrium point. When we apply
this adaptive failure compensation scheme to aircraft flight
control, we want the aircraft to maintain the desired trajec-
tory that was originally set for the nominal case of no failure,
even if unknown actuator failures occur. Theorem 3.1 gives a
solution to the problem of state tracking. The stabilizability
and rank condition in Assumption 3.1 characterizes the
system redundancy condition needed for actuator failure
compensation. As shown in next section, it is satisfied for
the rudder or aileron failure case and the system state is
able to track the desired trajectory asymptotically, which
implies that the aircraft can maintain the desired performance
under normal as well as failure conditions. Assumption
3.1 also requires the knowledge ofA andB. However, it
may be noted that, if the actual system matrix given by
Ap = A+ δA (whereδA is the parameter error) is such that
(Ap +BK)TP +P (Ap +BK) < 0, the asymptotic tracking
and signal boundedness of Theorem 3.1 will still hold. (This
condition basically implies that the nominal LQ regulator
used for generating the desired trajectory is designed to be
robust to parameter uncertainties). Further research is needed
in order to investigate robustness of the adaptive scheme to
model errors, and to relax the requirement of knowledge of
A andB.

IV. A PPLICATION TO FLIGHT CONTROL

In this section, we demonstrate application of the adaptive
failure compensation technique to a transport aircraft by
presenting some simulation results for trajectory tracking in
the presence of unknown rudder and aileron failures. We
shall first describe the aircraft model used in simulation, and
then present the simulation results.

A. Aircraft Model for Simulation Study

For our simulation study, we use a transport aircraft model.
The airplane flies at a velocity of 774 ft/sec and an altitude
of 40 kft. The linearized dynamic model is

ẋ(t) =

[

A
(1)
4×4 A

(2)
4×5

A
(3)
5×4 A

(4)
5×5

]

x(t) +

[

B
(1)
4×3 B

(2)
4×3

B
(3)
5×3 B

(4)
5×3

]

U(t)(IV.1)

whereA(2) andB(2) are zero matrices, andA(1), A(4), B(1)

andB(4) are of the same forms as in [8], and

x= [u w q θ v r p φ ψ ]T ,

U= [ δe δtl
δtr δal

δar δr ]T ,

A(3) =







0 0 0 0
0.001 0.001 0 0
−0.001 −0.001 0 0

0 0 0 0
0 0 0 0







, B(3) =







0 0 0
0 0.8 −0.7
0 −0.5 0.6
0 0 0
0 0 0
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The non-zero terms inA(3) andB(3) represent the engine
thrust differential effect. The basic units used in this model
are ft, sec and crad (0.01 radian).

We consider two types of constant actuator failures: rudder
failure and aileron failure. The rudder failure is denoted as

U6(t) = U6(tf ) t ≥ tf , (IV.2)

wheretf is the failure time instant. It represents the rudder
stuck in its position at instanttf , and cannot be moved. The
aileron failure we consider is

U5(t) = 0 t ≥ tf , (IV.3)

which indicates that at failure time instanttf , the right
aileron angle drops to zero and is stuck from then on. These
failure patterns satisfy Assumption 3.1.

B. Simulation Results

In this subsection, we present the simulation results for
the asymptotic tracking ofxd(t) by x(t) to demonstrate
the performance of the system with the adaptive failure
compensation scheme described in Section 3.2. For our
simulation, the values ofκ and rd were chosen asrd = 1,
and

κ = [ 0.7344 0.6842 1.5974 −0.5817 −0.7853 1 ]
T

that is, rd = r0d ∈ R is a scalar, which leads to the final
values of the desired states:

x∞d = [ 4 −1.06 0 1 0 0 0 0 −1.8 ]
T

This trajectory represents a steady state flight condition
in which the aircraft is climbing with a 4 ft/sec velocity
perturbation along thex-axis, a -1.06 ft/sec velocity per-
turbation along thez-axis, a pitch angle of 1 crads (0.57
degrees), and a yaw angle of -1.8 crads (-1.0 degree). The
initial value of the state vector is zero, i.e., the airplane
is in steady wings-level flight. The physical meaning of
state tracking is that the aircraft flies from one steady state
flight condition to another steady state flight condition while
closely following a reference state-trajectory. The choice
of the reference trajectory (in particular,κ and rd) in this
paper was arbitrary, the main purpose being demonstration
of the adaptive scheme. For the controller design, we choose
Q = I9 andR = diag{2, 6, 6, 2, 2, 2}.

For our simulation study, we examine two cases: (I)
system responses with adaptive failure compensation with
failure (IV.2) and (II) system responses with adaptive failure
compensation with aileron failure (IV.3).

Case (I). System performances with adaptive
compensation scheme and rudder failure (IV.2). The failure
instant is tf = 5 seconds.Γi (i = 1, . . . , 6) are chosen
as [0.01 0.01 0.01 0.06 0.01 0.01 0.01 0.04 0.08].
γi and λi (i = 1, . . . , 6) are chosen as
[0.01 0.05 0.05 0.02 0.02 0.01]. These design
parameters were chosen by trial and error. Some selected
states and control signals are shown in Figures 1 and 2,
which demonstrate how the rudder failure is accommodated
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0
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1
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y−axis velocity x
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Fig. 1. System statesx5 = v, x8 = φ, x9 = ψ (Case I).
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Fig. 2. Control signals:δtl, δtr , δal, δar , andδr (Case I).

immediately after its occurrence by the adaptive controller.
(The other states can also converge to the desired trajectory
after rudder failure, but are not shown in the figures due to
the limitation of space). The initial transients (before the
failure occurs) are because of the adaptive system response
when the system is first turned on with some arbitrary initial
values of the adaptive control gains.

Case (II). System performances with adaptive compensa-
tion scheme and aileron failure (IV.3). The failure instantis
tf = 20 seconds and the parameter setting is the same as
Case (I). The results are shown in Figures 3 and 4.
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Fig. 3. System statesx5 = v, x8 = φ, x9 = ψ (Case II).

In summary, in this study we simulated some typical
aircraft motions for realistic rudder and aileron failure con-
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Fig. 4. Control signals:δtl, δtr , δal, δar , andδr (Case II).

ditions. The failure uncertainties are characterized by the
failure value and failure time instant: both are unknown to the
adaptive controller. Simulation results indicate the ability of
the adaptive compensation scheme to accommodate unknown
actuator failures and to maintain the desired performance
regardless of whether a failure has occurred or not, and the
value of the failure. This objective cannot be achieved with
a fixed controller. We can see from the simulation results
that the engine differentials and ailerons, which characterize
the system redundancy mentioned previously, make the main
contribution to the failure compensation so as to achieve the
control objectives. The same goal cannot be achieved without
using engine differentials.

V. CONCLUDING REMARKS

A dynamic model of aircraft with independently adjustable
engine throttles and ailerons was considered for failure com-
pensation in the presence of rudder or aileron failure. This
model captures the key features of aircraft flight dynamics
when in the engine differential mode and facilitates the
development of an adaptive failure compensation approach
to handle actuator failures using functioning actuators that
can be of types different from the failed actuators. An
adaptive actuator failure compensation scheme was proposed,
which guarantees closed-loop signal boundedness as well
as asymptotic state tracking in the presence of unknown
actuator failures occurring at unknown time instants. Sim-
ulation results obtained for a large transport aircraft model
indicate that the adaptive scheme can provide satisfactory
performance in the presence of rudder or aileron failures,
i.e., the functioning actuators automatically and seamlessly
take over for the failed ones.

Several important and challenging issues need to be ad-
dressed in future research. First, robustness of the adaptive
scheme to model errors, and relaxation of the requirement of
knowledge of the system matrices, need to be investigated.
In addition, the effects of actuator nonlinearities including
output and rate saturation, as well as actuator dynamics, need
to be addressed. Also, extensions of the adaptive scheme
to model reference state and output tracking, as well as to
nonlinear aircraft models, should be addressed.
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