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Abstract 

An overview is provided of the experimental wind tunnel program conducted at the NASA 

Langley Research Center Aerothermodynamics Laboratory in support of an agency-wide effort to 

prepare the Shuttle Orbiter for Return-to-Flight.  The effect of an isolated protuberance and an 

isolated rectangular cavity on hypersonic boundary layer transition onset on the windward 

surface of the Shuttle Orbiter has been experimentally characterized.  These experimental studies 

were initiated to provide a protuberance and cavity effects database for developing hypersonic 

transition criteria to support on-orbit disposition of thermal protection system damage or repair.  

In addition, a synergistic experimental investigation was undertaken to assess the impact of an 

isolated mass-flow entrainment source (simulating pyrolysis/outgassing from a proposed tile 

repair material) on boundary layer transition.  A brief review of the relevant literature regarding 

hypersonic boundary layer transition induced from cavities and localized mass addition from 

ablation is presented.  Boundary layer transition results were obtained using 0.0075-scale Orbiter 

models with simulated tile damage (rectangular cavities) of varying length, width, and depth and 

simulated tile damage or repair (protuberances) of varying height.  Cavity and mass addition 

effects were assessed at a fixed location (x/L = 0.3) along the model centerline in a region of near 

zero pressure gradient.  Cavity length-to-depth ratio was systematically varied from 2.5 to 17.7 

and length-to-width ratio of 1 to 8.5.  Cavity depth-to-local boundary layer thickness ranged from 

0.5 to 4.8.  Protuberances were located at several sites along the centerline and port/starboard 

attachment lines along the chine and wing leading edge.  Protuberance height-to-boundary layer 

thickness was varied from approximately 0.2 to 1.1.  Global heat transfer images and heating 

distributions of the Orbiter windward surface using phosphor thermography were used to infer 

the state of the boundary layer (laminar, transitional, or turbulent).  Test parametrics include 

angles-of-attack of 30 deg and 40 deg, sideslip angle of 0 deg, freestream Reynolds numbers from 

0.02x106 to 7.3x106 per foot, edge-to-wall temperature ratio from 0.4 to 0.8, and normal shock 

density ratios of approximately 5.3, 6.0, and 12 in Mach 6 air, Mach 10 air, and Mach 6 CF4, 

respectively.  Testing to simulate the effects of ablation from a proposed tile repair concept 

indicated that transition was not a concern.  The experimental protuberance and cavity databases 

highlighted in this report were used to formulate boundary layer transition correlations that were 

an integral part of an analytical process to disposition observed Orbiter TPS damage during STS-

114.   
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Nomenclature 

" blowing coefficient (see p. 18) 

D cavity depth 

M Mach number 

Re unit Reynolds number (1/ft) 

p pressure (psi) 

T temperature (°R) 

x longitudinal distance from the nose (in) 

L model reference length from nose to body-flap hinge line (9.7 in) or cavity length 

k roughness element height (in) 

# model angle of attack (deg) 

$ boundary layer thickness (in) 

% momentum thickness (in) 

Re% momentum thickness Reynolds number 

h heat transfer coefficient (lbm/ft2-sec) 

 = q/(Haw - Hw) where Haw = Ht2 

hF-R reference coefficient using Fay-Ridell calculation to stagnation point of a sphere (lbm/ft2-sec) 

q heat transfer rate (BTU/ft2-sec) 

H enthalpy (BTU/lbm) 

sccm standard cubic centimeters per minute 

Subscripts 

! freestream static conditions 

t1 reservoir conditions 

t2 stagnation conditions behind normal shock 

e local edge condition 

aw adiabatic wall 

w model surface 

tr transition onset 

inc incipient 

eff effective 

Introduction 

After the release of the Columbia Accident Investigation Board’s (CAIB) final report1 in August 2003, 

an Entry Aeroheating Panel Working Group led by NASA Johnson Space Center was formed to implement 

the CAIB recommendations specific to the aerothermodynamic assessment of thermal protection system 

(TPS) damage and repair.  Recommendation 3.8.2 requested that NASA develop and maintain physics 

based computer models to evaluate thermal protection system damage…and to establish impact damage 

thresholds that would trigger corrective action such as on-orbit inspection and repair, when indicated.  

Several months later, in support of Discovery’s Return-To-Flight (RTF), a team of researchers/engineers 

was assembled to develop one such tool; a predictive capability for a rapid aerothermodynamic assessment 

to determine the likelihood of high Mach number boundary layer transition (BLT) due to flow disturbances 

created from TPS damage or repair.  Laminar to turbulent flow transition can result in increased heating 

rates and heating loads on the TPS tiles and in terms of vehicle performance, transition can influence 

vehicle aerodynamics particularly if it occurs asymmetrically2.  Earlier than anticipated transition can 

produce excessive heating resulting in decreased structural subsystem margins and in a worst-case scenario, 

compromise tile/bond and structural integrity of the Orbiter in areas influenced by turbulent flow.  The 

BLT Prediction Tool is part of a suite of analytic tools to assess the surface heating within, near and 

downstream of TPS damage sites and the resulting temperatures to the Orbiter substructure. 

The existing Shuttle transition criterion prior to RTF was developed and implemented primarily from a 

ground operations perspective and is used to ensure that transition does not occur too early during entry by 

regulating roughness (step and gap) tolerances3,4 associated with the application/maintenance of 

approximately 25,000 TPS windward surface tiles prior to launch.  Tile impact damage (cavities), loose tile 
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gap filler material (protuberances) and/or subsequent repairs (protuberances with/without ablation) 

represent a significant deviation from this original framework.  A new predictive tool for estimating 

boundary layer transition onset from surface damage/repair was required to allow on-orbit disposition of a 

compromised TPS.  Within a year of the team’s inception, an analytic tool based on correlations of wind 

tunnel data was delivered to the program that identified boundary layer transition thresholds giving 

managers critical information from which to make decisions to re-enter “as is” or to effect repair.  The BLT 

predictive tool infers the expected time of boundary layer transition during entry based on observed damage 

and/or repair locations and geometries.  While a mechanism-based transition prediction methodology 

would have been more desirable, the analytic approach the Orbiter engineering community selected 

(correlations) successfully balanced timely on-orbit disposition capability against RTF cost effectiveness 

and developmental time constraints.  As with any correlation approach, the tool is specific to the Orbiter, 

and it carries uncertainties due to challenges in extrapolating ground-based measurements to flight.  The 

influence of high Mach number real-gas effects on the transition process remains uncertain.  It is 

recognized, however, that propagation of the transition onset location to the actual disturbance source (i.e., 

protuberances and cavities) requires high disturbance amplification rates that could diminish differences 

between ground and flight results. 

This paper provides an overview of the experimental program to characterize the influence of damage 

or repair on Shuttle hypersonic boundary layer transition.  The content reflects the status of new wind 

tunnel testing and analysis that was completed at the time of an RTF Technical Peer Review Panel in 

March 2005.  The correlation methodology used in the BLT predictive tool was developed via the 

simulation of damage or repairs on scaled Shuttle wind tunnel models, Fig. 1.  Collectively, over 1000 wind 

tunnel runs representing approximately 150 wind tunnel occupancy days and 50 models were required to 

develop the required BLT database.  The following references are five companion papers that summarize 

the development of an analytic tool to predict transition.  Campbell, et al (Ref. 5) provides an overview of a 

suite of new analytic tools developed to support Orbiter TPS damage/repair assessment.  Berry, et al 

(Ref.6) provides an overview of the integrated effort that was involved in developing a BLT tool for 

estimating Orbiter transition onset times.  Greene, et al (Ref. 7) discusses the Boundary Layer Properties 

Interpolation tool developed for both the BLT and Tile Damage Cavity Heating tools (see Ref. 5).  

McGinley, et al (Ref. 8) reviews the historical Orbiter flight data and analysis techniques utilized to 

calibrate the BLT Tool.  Berry, et al (Ref. 9) provides the results of the BLT Tool as applied to the first 

RTF flight, STS-114. 

Motivation and Background 

The Columbia accident investigation1 identified the need for a capability to identify and repair damage 

to the Orbiter TPS.  Damage can manifest itself in several forms.  Impact damage from ice or foam shed 

from the external tank during 

ascent (or from orbital debris) 

can lead to the formation of 

localized cavities on the tiled 

windward surface.  Protruding 

gap fillers are another form of 

damage.  Gap fillers were 

initially developed to serve as a 

thermal barrier in areas where 

localized heating into gaps 

between adjacent tiles was 

unacceptable.  Successfully 

implemented as a thermal 

barrier, gap fillers were later 

inserted between adjacent tiles 

to provide cushioning between 

tiles in areas on the Orbiter 

found to be susceptible to 

damage from launch 

vibrations.  Increased gap filler 
 

Fig. 1 Transition from damage or repair induced roughness 
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use and process deficiencies (e.g., improper gap filler installation and bonding to the inner mold line) 

occasionally resulted in gap fillers protruding above the nominal outer mold line surface prior to entry. 

Similar to protruding gap fillers, most repair concepts presently being pursued embody a form of a 

protuberance.  The allowable surface roughness of the repair would be determined by a criteria based upon 

the earliest allowable onset of transition.  In the case of debris impact with a wing leading edge Reinforced 

Carbon-Carbon (RCC) panel, the resulting damage could be potentially repaired using a plug concept (Fig. 

1), which will create steps (protuberances) on the surface.   

Should the predicted local heating environment within a tile cavity necessitate a repair, an astronaut 

would have executed a space walk to apply a tile repair material with a pneumatically controlled handheld 

applicator (note: this tile repair concept is no longer considered for use).  Had it been used, the repair 

material would have been “smoothed” with special tools to minimize surface protrusions that could have 

led to transition.  Furthermore, as the material was a cure-in-place ablator, the char layer formed during 

entry would not have been shape stable; swelling (protuberance) and outgassing (mass addition) into the 

boundary layer would have occurred during entry, so both effects on transition had to be considered in the 

experimental program, Fig.1.  The heritage roughness criteria for the Shuttle program is not able to quantify 

the expected transition time associated with these specific types of localized perturbations to the nominally 

smooth surface.  The experimental boundary layer transition wind tunnel program was designed to simulate 

the surface conditions associated with limited types of TPS damage/repair; that is, cavities from un-repaired 

tile damage, protuberances from RCC (nose or wing leading edge) or tile repairs, and localized out-gassing 

from tile damage sites repaired with the proposed ablating compound. 

A promising Orbiter-specific transition correlation methodology was identified for protuberances10.  In 

general, isolated protuberance induced transition has been extensively investigated experimentally and 

theoretically and is well documented in the open literature.  References 11- 20 provide a few of the relevant 

historical reports on the subject of roughness induced boundary layer transition at hypersonic speeds.  

While the Shuttle Orbiter flight history with early boundary layer transition21 and supplemental wind tunnel 

data form the basis for the protuberance height restriction, little is known about the influences of isolated 

cavities.  Thus, experimentalists were tasked with the development of enhanced (protuberances) or new 

(cavities, ablation) wind tunnel databases from which to determine Shuttle boundary layer transition 

thresholds from TPS damage/repair.  Relatively speaking, studies involving hypersonic transition induced 

from cavities or localized ablators are scarce in the open literature.  Understanding the detailed physical 

dynamics of cavity flows or mass addition leading to transition was beyond the scope of the desired Orbiter 

engineering assessment capability.  A review of the literature served to guide the initial framework of the 

Orbiter specific experimental program, and in particular the ablation screening studies.  The following 

section briefly reviews the public-release literature for information relevant to hypersonic boundary later 

transition downstream of cavities and localized ablating surfaces (as opposed to transition on large acreage 

ablating heatshields). 

Cavities 

Some similarities in local flow features and physics within a Shuttle damage (cavity) site may be 

inferred from a larger body of work, namely, the supersonic weapons store problem.  In an open weapons 

bay, the approaching boundary layer separates from the bay leading edge and may pass over or be entrained 

into the weapons store area (i.e., a large “cavity”), depending on the bay dimensions.  Within this 

geometrically large cavity, flow separation, reattachment, recirculation, vorticity, unsteadiness, resonance 

and transition are all possible.  One important conclusion to draw from this large body of literature [see 

Charwat (22, 23) and Nestler (24)] is that for supersonic conditions there are two stable flow regimes 

associated with flow over a rectangular 2-D cavity.  For cavities of sufficient length-to-depth (L/D) ratio, 

the boundary layer flow approaching the cavity enters into the cavity and the shear layer reattaches to the 

floor.  This type of cavity flow is classically referred to as a closed cavity.  In contrast, if L/D is sufficiently 

small, the flow essentially skips over the cavity.  This type of cavity flow is classically referred to as an 

open cavity.  A grey area exists where the cavity flow oscillates between open and closed behavior.  

Naturally, a TPS damage site (cavity) on the Orbiter is at a far smaller geometric scale.  Whether a cavity 

exhibits open or closed behavior depends largely on both the local flow conditions and the cavity 

dimensional characteristics.  The Shuttle, as opposed to military aircraft, re-enters at far greater speeds 
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(M=25) and flies at relatively high angles of attack (#=40-deg) to manage heating rates and loads during 

entry.  Despite hypersonic freestream Mach numbers, the Shuttle post shock Mach numbers are generally 

supersonic (1<M<4) with local boundary layer edge Mach numbers between 2-3 downstream of the rapid 

expansion about the nose and wing leading edge.  Thus, much of the local flow phenomenon associated 

with the available supersonic literature is arguably relevant.   From the Shuttle perspective, these flow 

phenomenon along with the location, size, and orientation of a cavity from impact damage will, at some 

point during entry, destabilize the boundary layer/shear layer resulting in premature transition downstream. 

References 25-39 provide a few of the relevant historical reports on the subject of cavity induced 

boundary layer transition at hypersonic speeds.  It is commonly believed that cavities which are long in the 

streamwise direction are much more important than cavities that are long spanwise and narrow 

streamwise39.  This would support the hypothesis that it is transition in the shear layer above the cavity that 

induces transition of the flow downstream of the cavity.  It is reasonable to postulate that a larger shear 

layer length Reynolds number is more likely to lead to transition, other things being equal.  A cavity, which 

is longer in the streamwise direction, is more likely to induce transition downstream.  It also seems 

plausible that long streamwise cavities introduce streamwise vorticity into the flow, similar to 3-D 

roughness elements, and that this is a likely tripping mechanism.  Several studies focused on 2-D cavity 

geometries.  Ginoux26 examined transition aft of a 2-D rectangular cavity placed on a sharp 20-degree 

wedge.  Shadowgraphs were used to determine that the L/D = 2.5 cavity tested at Re/ft = 6x106 did not 

induce transition.  Ginoux25 also examined transition aft of an axisymmetric cavity on a 10-degree half 

sharp circular cone at Mach 5.3 (edge Mach number somewhat higher than Shuttle).  Transition onset 

downstream of the L/D = 1.85 and 2 cavities were measured at Re/ft = 4.94x106.  Effective transition 

(immediately behind cavity) was not obtained.   

A gap simulating the nosecap RCC/tile interface on a 4% scale Shuttle was tested by Carver28 in 

Arnold Engineering Development Center Tunnel B.  Relative to transition onset location obtained on a 

smooth baseline Shuttle, no movement in onset location was observed in the presence of a 0.040-in. long, 

0.080-in. deep annular gap (L/D = 0.5) at Re/ft = 2.0x106.  No data was taken at higher or lower Reynolds 

numbers so there is no way to determine when transition onset began or what the effective Reynolds 

number may have been. 

Cheatwood34 and Hollis36 presented measurements related to transition on blunt bodies with cavities, as 

part of studies carried out for the design of heatshields for planetary probes.  In these two studies, the 

presence of penetrations (circular cavities) during entry were a design concern due to the possibility of 

localized heating augmentation at the downstream cavity wall from flow separation and subsequent 

reattachment within the cavity.  The penetrations also served as a potential disturbance source that could 

induce boundary layer transition downstream of the cavity site.  In both cases, the bodies were very blunt, 

so that the flow over the cavity is subsonic, possibly causing significant differences from the Shuttle case.  

These studies were included as correlations were developed that defined laminar-turbulent thresholds based 

upon dimensional characteristics of the cavity and local boundary layer properties at the cavity site. 

Localized Ablators 

Influences of ablation on boundary layer transition have been generally restricted to earth and 

planetary hypervelocity entries with vehicles having blunt heatshields; most of these applications involve 

massive ablation40 from the heatshield as opposed to the isolated case corresponding to a tile repair.  

Ablating antennae windows found in some high performance reentry vehicles may provide insight into the 

influence of an isolated ablator (possibly in the presence of a cavity), but much of this information would 

not be available in the public domain.  Isolated blowing has also been studied from an aerodynamic control 

perspective, but the blowing rates (relative to that from an ablating material) are generally too large to 

apply to the tile repair issue. 

Several studies have shown that gaseous injection into the boundary layer has a significant effect on 

transition (promoting or delaying) depending on the flow rate, distribution, and molecular weight of the 

gas.  Berry et. al.41 demonstrated that mass injection from discrete orifices could successfully induce 

boundary layer transition consistent with that observed with the more conventional protuberance-based 

discrete roughness.  Stalmach et. Al.,37 used three gases (molecular weights 16 to 86) to determine 

distributed mass injection effects on transition on a sharp 12-degree half angle cone at Mach 7 and 12.  
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Stalmach concluded that the heavy molecular weight gases stabilized the boundary layer by increasing the 

density near the surface in a manner similar to the well-known wall cooling stabilizing effect.  The 

measurements were obtained in a hot-shot tunnel and the flow quality was thus questionable.  From a 

qualitative perspective, the movement of transition onset location as a function of the gas molecular weight 

is consistent with other studies. 

Ginoux25 examined the effects of isolated mass injection on transition.  Gases of various molecular 

weights were injected into the flow from an axisymmetric cavity located on a on a 10-degree half sharp 

circular cone at Mach 5.3.  With no blowing, transition onset was located downstream of the L/D = 1.85 

and 2 cavities.  Injection of air or light gases (helium or hydrogen) produced an upstream movement 

movement of the transition onset location with increasing blowing rates.  Consistent with the conclusions 

of Stalmach37 (see above), heavy molecular weight gases (such as Freon) delayed transition onset to the 

point of completely re-laminarizing the flow - up to a critical blowing rate.  Beyond a critical mass flow 

rate, transition onset was again detected near the cone base and moved progressively forward with 

increasing blowing.  In the presence of blowing, high frequency (~50kHz) pressure fluctuations within the 

cavity suggested the presence of a complex instability mechanism. 

The preceding literature review produced useful parametric trends and suggested ways to correlate the 

data. Shuttle specific data was lacking and it was felt that new experimental results on the Orbiter were 

required for cavities and ablation over as wide a range of simulation parameters as possible (#, M!, Re!, 

TW, etc.).  For protuberances, additional data along the wing leading edge and for a larger range of angles of 

attack were required. 

Experimental Methods 

Wind tunnel models 

The cast ceramic models used in the RTF cavity and protuberance transition studies were fabricated 

from a pre-existing mold created from a machined 0.075-scale stainless steel aerodynamic model, Fig. 2.  

Standard methods, materials and equipment developed at NASA Langley Research Center (LaRC) were 

used in fabricating the ceramic aeroheating test models42 for the present experimental studies.  The 

fabrication process includes forming a wax pattern in the shape of the test model, using a lost-wax 

investment casting process to transform the pattern into a ceramic model, sintering the ceramic model to 

give it strength, mounting supports, machining cavities, coating with phosphor, marking fiducials (spatial 

 

Fig. 2 Ceramic model fabrication and preparation 
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location reference points) and applying protuberances.  An optical 3D surface profiler was used for 

capturing high-resolution cavity geometries and making surface roughness measurements.  Both uncoated 

and phosphor coated ceramic models were evaluated.  Surface roughness values of approximately 400 

micro-inches (rms) were measured on a Shuttle model prepared for testing (200 micro-inches on an 

uncoated model) which is more than an order of magnitude smaller than the smallest protuberance height 

tested.42 

The models used in support of the ablation screening study were fabricated using the stereolithography 

(SLA) rapid prototyping method.  With this approach a CAD part file is used to build the model cross-

section by cross-section by focusing a laser into a bath of a liquid polymer resin.  The wind tunnel model 

was manufactured to the same Cad description used to create a common structured grid system used for 

CFD in support of the Columbia Accident Investigation and RTF.  The SLA fabrication approach had the 

advantages of manufacturing speed along with the fact that the internal gas delivery plumbing in the 

models was an integral part of the resin buildup of the model.  To raise the temperature limit that the resin 

models could be exposed to during a typical run (320-degree F), they were coated with spray carbon. 

Over 50 ceramic and 5 resin SLA models were manufactured over the course of the testing campaigns.  

Fiducial markings were applied to the model surface using a coordinate measuring machine (CMM).  Fig. 2 

shows the probe configuration during application of a fiducial point.  The reference marks on the model 

surface were used to align the model in the tunnel and to aid in the placement of protuberances and cavities 

on the model.  All models were supported in the wind tunnel by a base-mounted 0.75-in. cylindrical sting.  

Details specific to the manufacture of simulated damage/repair (protuberances, cavities, and outgassing) on 

the models will be described in the corresponding results section. 

Facilities 

The data to be presented have been based on measurements obtained in the NASA LaRC 

Aerothermodynamics Laboratory (LAL), Fig. 3.  This laboratory presently consists of three hypersonic 

wind tunnels.43  Collectively, they provide a wide range of Mach number simulation (6-18), unit Reynolds 

number (0.01-8 million/ft), and normal shock density ratio  (5.3 to 12).  This range of hypersonic 

simulation parameters is due, in part, to the use of two different test gases (air and tetraflouromethane 

 

Fig. 3 Facilities and global heating technique used in RTF transition tests 
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which is 3 times the molecular weight of air).  The perfect gas flows are well characterized in terms of 

composition and uniformity.  The LAL facilities offer run times from 20 sec to 20 minutes (for the heat-

transfer/ transition tests, the model residence time in the flow is limited to a few seconds.) and are ideally 

suited for fast-paced aeroheating boundary layer transition studies. 

The relative disturbance environment of all three hypersonic tunnels in the LAL is not known. 

Measurement of free-steam noise levels in the LaRC 20-Inch Mach 6 Air Tunnel using a hybrid constant 

current anemometer (CCA) have been recently obtained44 yielding mass flux and total temperature 

fluctuations of 0.83% and 0.17%, respectively.  When vehicle surface “roughness” is present, it is believed 

that the free stream noise contamination present in conventional tunnels has only a marginal, yet 

conservative effect, on the location of transition.  Specifically, experimental studies45 have suggested that in 

general, facility noise has little effect for roughness heights large enough to be considered “effective” (for a 

protuberance, turbulence initiated immediately downstream of the roughness element site).  It is recognized 

there may be an influence of wind tunnel noise on transition onset data derived from roughness that are less 

than “effective” (transition not at, but down stream of roughness site)46,47. 

20-Inch Mach 6 Air Tunnel: Heated, dried, and filtered air is used as the test gas.  Typical operating 

conditions for the tunnel are: stagnation pressures ranging from 30 to 500 psia; stagnation temperatures 

from 760 deg to 1000 deg R; and freestream unit Reynolds numbers from 0.5 to 8 million per ft.  A two-

dimensional, contoured nozzle is used to provide nominal freestream Mach numbers from 5.8 to 6.1.  The 

test section is 20.5 by 20 in; the nozzle throat is 0.399 by 20.5 in.  A floor-mounted model injection system 

can insert models from a sheltered position to the tunnel centerline in less than 0.5 s. 

20-Inch Mach 6 CF4 Tunnel:  Heated, dried, and filtered tetrafluoromethane (CF4) is used as the test 

gas. Typical operating conditions for the tunnel are: stagnation pressures ranging from 85 to 2000 psia, 

stagnation temperatures up to 1300 R, and freestream unit Reynolds numbers from 0.01 to 0.3 million per 

ft. A contoured axisymmetric nozzle is used to provide a nominal freestream Mach numbers from 5.9 to 

6.01.  The nozzle exit diameter is 20 in with the flow exhausting into an open jet test section; the nozzle 

throat diameter is 0.466 in. A floor-mounted model injection system can inject models from a sheltered 

position to the tunnel centerline in less than 0.5 s.  In conjunction with the Mach 6 air tunnel, this tunnel 

provides the capability to test at the same free-stream Mach and Reynolds numbers, but at two values of 

density ratio (approximately 5 in air and 12 in CF4).  This density ratio of 12 for CF4 is relatively close to 

the values of 15-18 encountered near peak heating during entry of the Orbiter.  Thus, generating large 

values of density ratio simulates many of the effects on aerodynamics and aeroheating associated with a 

high temperature gas. 

31-Inch Mach 10 Air Tunnel:  Heated, dried, and filtered air is used as the test gas.  Typical operating 

conditions for the tunnel are: stagnation pressures ranging from 150 to 1350 psia; stagnation temperatures 

from 1750 deg to 1850 deg R; and freestream unit Reynolds numbers from 0.25 to 2 million per ft.  A 

three-dimensional, contoured nozzle is used to provide nominal freestream Mach number of 10.  The test 

section is 31 by 31 in; the nozzle throat is 1.07 by 1.07 in.  A side-mounted model injection system can 

insert models from a sheltered position to the tunnel centerline in less than 0.5 s. 

Test Technique 

Phosphor Thermography:  Advances in image processing technology have made digital optical 

measurement techniques practical for wind tunnel applications.  One such optical acquisition method is 

two-color relative-intensity phosphor thermography48,49,50 which has been utilized in several aeroheating 

tests conducted in the hypersonic wind tunnels of NASA LaRC 10,51,52. The process surrounding this global 

technique is shown in Fig. 3.  All Shuttle surface heating data used to infer transition from simulated 

damage/repair was obtained from phosphor thermography.  With this technique, ceramic wind-tunnel 

models are fabricated and coated with phosphors that fluoresce in the visible spectrum when illuminated 

with ultraviolet light.  The visible fluorescence from the model surface is emitted with a spectral 

distribution of intensity that is temperature dependent.  By acquiring fluorescence intensity images with a 

two-color video camera of an illuminated phosphor model exposed to flow in a wind tunnel, surface 

temperature mappings can be calculated on the portions of the model that are in the field of view of the 

camera.  A temperature calibration of the system conducted prior to the study provides tables used to 

convert the ratio of green and red intensity images to global temperature mappings.  The two-color 
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approach removes the fluorescence dependency on the incident illumination levels.  With temperature 

images acquired at different times during a wind-tunnel run, global heat-transfer images are computed 

assuming one-dimensional semi-infinite heat conduction.  The primary advantage of the phosphor 

technique is the global resolution of the quantitative heat-transfer data.  Such data can be used to identify 

the heating footprint of complex, three-dimensional flow phenomena (e.g., transition fronts and turbulent 

spreading angles) that are extremely difficult to resolve by discrete measurement techniques. 

Flow Visualization:  When appropriate, flow visualization in the form of schlieren and surface oil-

flow was used to complement the surface heating/transition tests.  The LaRC 20-Inch Mach 6 Air and CF4 

Tunnels are equipped with a pulsed white-light, Z-pattern, single-pass schlieren system with a field of view 

encompassing the entire test core.  Images were recorded on a high-resolution digital camera and enhanced 

with commercial software. 

Surface streamline patterns were obtained using the oil-flow technique.  Backup ceramic models were 

spray-painted black to enhance contrast with the phosphor-impregnated oils used to trace streamline 

movement.  A thin coat of clear silicon oil with phosphor particles in suspense was applied onto the 

surface. After the model surface was prepared, the model was injected into the air stream.  The phosphor 

was illuminated with UV light and the development of the surface streamlines was recorded with a 

conventional video camera.  The model was retracted immediately following flow establishment and 

formation of streamline patterns, and post-run digital photographs were taken. 

Computational Method 

Numerical Database and Boundary Layer Properties Interpolation Tool 

To support the BLT Task, computational solutions at both wind tunnel and flight conditions were 

required.  The wind tunnel solutions were used to generate the BLT correlation, while the flight solutions 

provide the means with which to apply the ground-based correlation at flight conditions.  With the large 

number of solutions required to cover a typical Shuttle trajectory, a new boundary layer properties 

(BLPROP) interpolation tool was generated to minimize the number of flight solutions and to automate the 

process of obtaining the necessary boundary layer data.  The numerical database, were first computed with 

LAURA53 to provide the inviscid flow field and then coupled with LATCH54 to determine the boundary 

layer properties.  The BLP database tool then interpolates both spatially within the solution grid to obtain 

the local properties at each damage or repair site of interest, then interpolates temporally within the solution 

database to provide the boundary layer properties along the trajectory.  Greene7 provides a more detailed 

description of the BLPROP tool and the solutions used to generate the boundary layer transition results for 

RTF. 

Results 

Protuberances 

Approximately 550 wind tunnel runs were performed on ceramic Orbiter models to determine the 

effect of an isolated protuberance on hypersonic boundary layer transition of the windward surface of the 

Shuttle Orbiter.  Previous protuberance testing on the Shuttle at LaRC had resulted in a large experience 

base regarding trip design10,11.  The isolated roughness elements that were utilized during the RTF BLT test 

campaign have evolved and been perfected over the last decade.  In the manufacturing process, adhesively 

backed high temperature Teflon tape is cut with a laser to the desired planform shape.  Height parametrics 

are controlled by the individual tape thickness.  In previous studies, each protuberance was fabricated to 

simulate a single tile raised above the surrounding surface (analogous to a pizza box on a table).  All RTF 

BLT testing that provided data to form a correlation was obtained on this heritage shape.  Over the last two 

years, various TPS repair concepts have been suggested that do not fall into the pizza box context.  A wing 

leading edge plug repair concept is one such example (analogous to a hockey puck on ice).  To address 

such differences in shape, a limited number of tests were performed with roughness elements manufactured 

by programming the laser to cut the desired shape.  The present paper does not document these screening 

tests.  The limited protuberance shape testing has indicated that the swept sharp edges associated with the 

raised tile concept are more effective at initiating boundary layer transition - resulting in a more 

conservative correlation.  The focus of the new protuberance based BLT testing was to enhance the existing 
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database by extending its range of applicability to off-centerline locations.  Of particular interest was the 

attachment line where others have suggested an increased sensitivity to roughness55.  Previous testing at 

LaRC on another moderately blunt configuration (X-33) had not shown this sensitivity56 but it had never 

been demonstrated on the Shuttle thus, the off-centerline attachment line location parametric was of prime 

importance.  Placement of trips along the wing attachment line (where the local boundary thickness was 

small) also had the added benefit of extending the range of applicability of the correlation to higher 

protuberance height-to-boundary layer thickness ratio (k/$) values. 

The boundary layer trips used in the present tests were 0.050-in x 0.050-in with nominal heights of 

0.0035, 0.0045, 0.0065, and 0.0115-in.  The fiducial marks on the surface of the models facilitated the 

precise placement of the trips on the surface.  Fig. 4 shows a sketch of the Orbiter windward surface 

indicating the fiducial mark locations and details of the trip shape.  To enhance run productivity and 

provide a sense of repeatability, trips of identical height were placed on the model centerline and the port 

and starboard attachment lines.  Oil flow visualization, Fig. 5, was used to determine the attachment line 

position (red-black interface via image post processing) and correlate its location with viscous predictions 

(see Fig. 4).  However, subsequent heating tests (not shown) suggested the use of the attachment line 

defined by inviscid CFD for 

protuberance trip placement.  

That is, measured surface 

disturbances from protuberances 

propagated toward the wing 

leading edge from the inviscidly 

computed attachment line as 

opposed to the attachment line 

inferred from viscous numerical 

solutions.  This observation is 

reconciled by the fact that 

disturbances from the large 

protuberances (k/d~0.5) are most 

amplified at the top of the trip 

 
Fig. 4 Sketch of 0.0075 scale Orbiter showing fiducial mark locations and photograph of trip 

 

 
Fig. 5 Attachment line as determined by surface oil flow 
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near the critical layer and or supersonic boundary edge57 (inviscid solution) as opposed to near the wall 

(viscous solution).  Test parametrics included angle of attack of 30 and 40 degs, sideslip angle of 0 deg, 

freestream unit Reynolds numbers from 0.02x106 to 7.3x106, edge-to-wall temperature ratio from 0.4 to 

0.8, and normal shock density ratios ranging from 5.3 to 12.  The entire heating data set from all three 

hypersonic wind tunnels has been documented in Ref. [58]. 

Global heat transfer images using phosphor thermography of the Orbiter windward surface and the 

corresponding centerline heating distributions were used to infer the state of the boundary layer (laminar, 

transitional, or turbulent).  The correlation methodology adopted by the technical BLT team required the 

location of transition onset behind a protuberance to be identified and the progressive movement towards 

the roughness site to be determined.  The process of how this was accomplished is represented in Fig. 6.  

Global heating measurements are obtained over a range of Reynolds numbers.  The protuberances placed at 

x/L=0.5 on the centerline and port/starboard attachment lines create disturbances that are revealed as 

increases in local heating (based upon the images alone, transition is first observed on the wings).  Based 

upon the images, transition onset locations are then inferred from the corresponding centerline normalized 

heating distributions (heat transfer distributions along the attachment line could not be readily extracted 

from the global images and thus the onset locations were identified more subjectively from global images).  

Onset was defined as the departure of the heating distribution from the baseline laminar level.  The non-

dimensional onset locations (x/L)tr were subsequently plotted as a function of unit Reynolds number to 

form a transition map.  There exists a corresponding transition map for each of the roughness locations 

(axial stations) tested at 30 and 40-deg angle-of-attack in each of the three hypersonic tunnels.  This 

approach has been successfully used for previous Shuttle transition testing at LaRC and is similar to 

analysis reported in Ref. [11].  Due to the limited granularity of the Reynolds number test points, the 

transition maps form the basis of a method to infer the actual incipient (first departure from baseline 

laminar heating) and effective (transition onset to protuberance site) onset Reynolds numbers associated 

with each individual protuberance and angle-of-attack.  The resulting transition onset map for a typical 

protuberance is shown in Fig. 6.  A value of (x/L)tr of 1 signifies that the protuberance had no effect and 

transition onset was not observed on the Shuttle.  An (x/L)tr value corresponding to the axial location of the 

protuberance signifies a fully effective trip.  Any value in between represents a critical case.  Previous 

experimental work11 has demonstrated that the curve representing the movement as a function of Reynolds 

number is fairly smooth and shows a distinctive sharp bend as the effective value is approached 

 

Fig. 6 Process for determination of protuberance boundary layer transition onset 
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asymptotically.  As shown in Fig. 6, the Reynolds number test point increments were too coarse to use a 

straight-line approximation to infer the effective values.  When required, a smooth curve fairing of the 

transition map data was used to better define the incipient and effective transition point Reynolds numbers. 

When correlated against local properties at the protuberance site, transition onset along the attachment line 

was consistent with centerline observations. 

 As discussed by Berry6, the initial position going into this activity was to utilize a simple correlation 

methodology (Re%/Me) employing a simple engineering-based method to compute local conditions at the 

roughness site.  In the case of a protuberance, the disturbance parameter (k/$) was to be based upon the trip 

height (k).  As noted by Berry, the simplicity of this approach is that if the data falls along the straight line 

represented by (Re%/Me)(k/$)=C, where C is a constant, then the disturbance height, k can be directly linked 

to the transition parameter.  See Ref. 54 for a discussion of how the boundary layer thickness and 

corresponding local edge properties were computed with the two layer method LATCH.  As the new 

centerline and off-centerline data became available from all three facilities, this dependency was 

corroborated.  Unfortunately, the curve coefficient, C, was not universally consistent between the facilities.  

A modified approach using a temperature ratio correction along with the momentum thickness (instead of 

the boundary layer thickness) as the disturbance parameter, was found to more effectively collapse all three 

datasets (see Ref. 6).  However, when this modified correlation approach was applied to the existing flight 

calibration cases the results were again inconsistent.  In the end, it was determined that the original 

approach using the curve coefficient associated with the 20-In Mach air data provided the best comparisons 

relative to the flight calibration cases.  These findings were presented to a Peer Panel in hopes of reaching 

group consensus as to the best approach to use for moving forward with the first RTF mission. 

Based on the recommendations of the technical peer panel and concurrence with the Orbiter 

Configuration Control Board (OCCB), the protuberance BLT correlation used to support STS-114 was 

based on wind tunnel results along with a limited number of flight calibration cases6,8.  A curve coefficient 

of 27 was selected to conservatively capture, with 95% confidence, transition onset (incipient) for all the 

Mach 6 wind tunnel and flight data, shown in Fig 7.  [Post STS-114, higher Mach number testing has been 

performed in a reflected shock tunnel (CUBRC) with protuberances on a scaled Shuttle model.  Additional 

testing and analysis has been planned at LaRC and CUBRC to assess the effects protuberance shape (more 

gap filler-like) and higher Mach number].  As this information has not been OCCB certified, it has not been 

presented. 

 
Fig. 7 Protuberance correlations used for STS-114 
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Fig. 8 Laser ablation setup 

 

Cavities 

Approximately 400 wind tunnel runs were 

performed on 14 ceramic Orbiter models to 

determine the effect of an isolated cavity on 

hypersonic boundary layer transition of the 

windward surface of the Shuttle Orbiter.  Actual 

tile damage geometry from flight experience or 

from laboratory impact testing is very three-

dimensional (for the purposes of this experimental 

work, tile damage is assumed to be non-breaching-

flow path to the Orbiter interior does not exist).  

Because an infinite number of cavity geometries 

are possible in-flight (and they are difficult to 

manufacture at model scale) it was decided to 

perform testing on simplified cavity geometries 

more representative of a missing tile or a tile array 

(i.e., rectangular shoebox) rather than an actual 

impact site.  This approach facilitated a systematic characterization of the influence of cavity dimensions 

(length, width, and depth) on transition.   

Conventional machining (milling) could not accurately and repeatedly capture the desired cavity 

dimensions.  A high energy CO2 laser system was used to remove (etch) material and form cavities in the 

ceramic test models, Figs. 8 and 9.  Programming the laser for the desired cavity size and geometry 

controlled cavity dimensions.  The number of passes made by the laser controlled the cavity depth.  Cavity 

depth was measured with the laser system’s vertical height sensor and verified with a depth micrometer.  

The x-y dimensions of each cavity were verified using the video camera alignment system.  When possible, 

cavity dimensions were verified using a coordinate measuring machine. 

The cavity design strategy is illustrated in Fig. 10.  The cavity was positioned at a fixed location (x/L = 

0.3) along the model centerline in a region of near zero pressure gradient (the relatively flat surface in this 

location simplified the setup of the model in the laser ablation apparatus).  To determine the nominal cavity 

depth (D) at wind tunnel model scale the local boundary layer thickness ($) was computed at this location 

for # = 40-deg, Mach 6, and Re/ft = 4x106.  In flight, with D equal to a full tile thickness, the maximum 

value of D/$  anywhere on the Shuttle windward surface is approximately 2.5.  Thus, at wind tunnel 

conditions, with a local boundary layer thickness of 0.012-in at x/L=0.3, a nominal cavity depth of 0.030-

in. was required to satisfy the ratio D/$  = 2.5.  Cavity length-to-depth ratio was then systematically varied 

from 2.5 to 17.7 in anticipation of identifying “open” and “closed” cavity flow behavior as suggested by 

Charwat23.  At the time of test inception, this same classification was also used by the local cavity heating 

team5.  For the range of conditions tested, cavity depth-to local boundary layer thickness (D/$) varied from 

0.5 to 4.8.  Cavity length-to-width (L/W) ratio ranged from of 1 to 8.5.  Test parametrics included angle of 

attack of 30 and 40 degs, sideslip angle of 0 deg, freestream unit Reynolds numbers from 0.02x106 to 

7.3x106, edge-to-wall temperature ratio from 0.4 to 0.8, and normal shock density ratios ranging from 5.3 to 

12.  The entire data set from all three hypersonic wind tunnels has been documented in Ref. [59]. 

Global heat transfer images using phosphor 

thermography of the Orbiter windward surface and 

the corresponding centerline heating distributions 

were used to infer the state of the boundary layer 

(laminar, transitional, or turbulent).  In Mach 6 air, 

# = 40-deg, a zone of disturbed flow located 

downstream of an open cavity (L/D = 2.47) 

develops with increasing Reynolds number as 

observed in Fig. 11.  The precise location of the 

transition onset location is somewhat difficult to 

determine from the images alone.  The global 

heating patterns are however, very useful in the 

0.602-in

0.072-in

0.034-in

deep

Cavity shown L/D = 17.7

 
Fig. 9 Typical laser ablated cavity 
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sense that the local spreading of the disturbed boundary layer is readily discernable.  Transition was first 

observed on the wings due to a bow/wing shock-shock interaction.  Transition onset from the cavity on the 

aft windward centerline is actually observed at Re = 3.4x106.  A progressive increase in Reynolds number 

to Re = 5.4x106 resulted in fully turbulent flow immediately downstream of the cavity aft face.  Inspection 

of digitally zoomed images of the cavity floor indicated that the flow did not enter the cavity as the 

boundary layer separated from the cavity leading edge.  No elevated cavity floor heating was observed – a 

strong indication the cavity was indeed open as expected.  Note the sensitivity of the turbulent spreading 

angle to Reynolds number.   

A longer cavity (L/D = 17.7) shown in Fig. 12, exhibited closed cavity behavior.  That is, based upon 

the elevated cavity floor heating, the 

shear layer has apparently entered into 

the cavity producing a highly 3-

dimensional flow.  In terms of 

boundary layer transition downstream 

of the cavity, the closed L/D = 17.7 is 

more effective (transition to turbulence 

at the cavity site) at lower Reynolds 

number values than the short cavity.  

This is not surprising since (1) the 

shear layer length Reynolds number 

would be larger for the longer cavity, 

and (2) the separated/reattaching flow 

within the cavity would produce 3-

dimensional flow structures promoting 

transition.  One may infer from the 

close up heating image in Fig. 12, that 

the flow within the longer cavity 

appears to spread laterally and “spill” 

 
Fig. 10  Cavity BLT test plan 

 
Fig. 11  Progression of transition – open cavity 
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out of the simulated damage site.  It is 

plausible that interaction of this vortical 

outflow with the cavity wake will more 

quickly destabilize the boundary layer 

that redevelops downstream.  

The long cavities (L/D ~ 20) that 

exhibit closed behavior, while interesting 

from a fluid dynamic perspective, are of 

less concern from a Shuttle damage 

assessment perspective.  Historically, a 

very small percentage of actual flight tile 

impact damage fall into this category.  

Elimination of large debris sources 

should make damage of this nature even 

more unlikely.  The present experimental 

long cavity data bounded the problem, 

provided insight into the complexity of 

the fluid flow, and when supplemented 

with the shorter cavity data alluded to future challenges in correlating boundary layer transition to cavity 

dimensions.  For example, Fig. 13 summarizes the effects of Reynolds number on local cavity heating.  The 

heating distributions and the local images in the vicinity of the cavity were obtained by digitally zooming in 

from the full global image shown in Fig. 12.  This long cavity (L/D = 17.7) actually exhibited both open 

and closed cavity behavior.  Based upon the low heating measurements along the cavity floor at Re = 

1.1x106 it is postulated that the shear layer passed over the cavity, indicative of an open cavity.  The heating 

patterns observed downstream of the cavity (see corresponding global image, Fig. 12) suggested a 

disturbed wake flow for several cavity lengths before actual transition onset.  From the global image in Fig. 

12, it was observed that a small increase in Reynolds number to 1.4x106 appeared to move the location of 

transition onset to the cavity site.  In contrast, the corresponding cavity floor heating levels (Fig. 13) 

continued to exhibit open cavity behavior suggesting the shear layer passing over the cavity was still 

 
Fig. 12  Progression of transition – closed cavity 

 
Fig. 13  Local cavity floor heating 
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laminar.  An increase of Reynolds number to Re = 2.1x106 produced an abrupt increase in cavity floor 

heating levels indicative of the shear layer entering into the cavity and impinging on the cavity floor (i.e., a 

closed cavity).  Naturally, the boundary layer immediately downstream of the cavity was turbulent.  While 

the L/D ratio is an important parameter to classify open/closed cavity behavior and boundary layer 

transition, local properties must also be considered.  Note that as Reynolds number is increased the local 

boundary layer thickness ($) decreases; hence, the depth to the local boundary layer thickness ratio (D/$) 

increases by a factor of approximately 2 over the Reynolds number range shown in Fig. 12. 

Prior to testing, it was hoped that a correlation methodology based upon some unknown combination 

of cavity length, width, and depth could be developed.  As initial cavity BLT test results were made 

available, it appeared that transition thresholds could be determined based exclusively on L/D and D/$.  

Unfortunately these simplistic approaches would not allow for the prediction of BLT time in the absence of 

damage depth (photographs from the International Space Station would only indicate cavity location, 

length, and width).  Depth information would only be provided if laser scans were obtained with the robotic 

arm.  Thus, near the end of the test campaign, a new correlation for transition was formulated based 

exclusively on cavity length–to-boundary layer thickness ratio (L/$).  If damage site depth information 

were obtained on orbit, transition onset times would be re-evaluated with cavity depth-to-boundary layer 

thickness ratio (D/$).  Regarding tool certification prior to STS-114 launch, the BLT technical peer panel 

advocated separate correlations based upon cavity depth and length. 

The correlation methodology6 adopted by the technical BLT team required the location of transition 

onset behind a cavity to be identified and the progressive movement towards the cavity site to be 

determined.  The process of how this was accomplished is represented in Fig. 14.  Similar to the 

protuberance methodology previously discussed, global heating measurements are obtained over a range of 

Reynolds numbers.  Transition onset locations are then inferred from the corresponding centerline 

normalized heating distributions.  Onset was defined as the departure of the heating distribution from the 

baseline laminar level.  The non-dimensional onset locations (x/L)tr were subsequently plotted as a function 

of unit Reynolds number to form a transition map.  There exists a corresponding transition map for each of 

the 14 cavity configurations tested at 30 and 40-deg angle-of-attack in each of the three hypersonic tunnels.  

Due to the limited granularity of the Reynolds number test points, the transition maps form the basis of a 

 
Fig. 14  Process for determination of cavity boundary layer transition onset 
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method to infer the actual incipient (first departure from baseline laminar heating) and effective (transition 

onset within one cavity length) onset Reynolds numbers associated with each individual cavity and angle-

of-attack.  The resulting transition onset map for a short open cavity (L/D = 2.47) is shown in Fig. 14.  A 

value of (x/L)tr of 1 signifies that the cavity had no effect and transition onset was not observed on the 

Shuttle.  An (x/L)tr value of 0.3 (the cavity site location) signifies a fully effective cavity trip.  Any value in 

between represents a critical case.  As shown in Fig. 14, the Reynolds number test point increments were 

too coarse to use a straight-line approximation to infer the effective values.  As with the protuberance 

transition maps, a smooth curve fairing of the transition map data was used when necessary to better define 

the incipient and effective transition point Reynolds numbers. 

 As discussed in Ref. 6, the wind tunnel cavity BLT observations were correlated in the form 

(Re%/Me)(k/$)=C using a simple engineering-based methods to compute local conditions at the cavity site.  

In the case of cavities the disturbance parameter (k/$) was based upon either k=cavity length (L) or 

k=cavity depth (D).  Based on the review by the technical peer panel and concurrence with the Orbiter 

Configuration Control Board (OCCB), the cavity BLT correlation used to support STS-114 was based on 

the LaRC Mach 6 air wind tunnel results and a limited set of flight cavity calibration cases as identified in 

Fig. 15.  A curve coefficient of 100 was used based on cavity depth and 900 based on cavity length, as 

shown in Fig. 15.  Post STS-114, higher Mach number testing has been performed in a reflected shock 

tunnel (CUBRC) with cavities on a scaled Shuttle model.  Additional testing has commenced at LaRC to 

assess the effects of impact damage shape (non-rectangular) and location (off centerline/pressure gradient) 

on the existing BLT correlation.  In addition, a new correlation disturbance parameter that is based upon 

cavity volume has been identified and shows promise for future application to the BLT Tool.  As this 

information has not been OCCB certified, it has not been presented. 

Ablation 

Approximately 60 wind tunnel runs 

were performed on 5 SLA resin Orbiter 

models to determine the effect of an 

isolated mass injection source on 

hypersonic boundary layer transition of 

the windward surface of the Shuttle 

Orbiter.  The objective of the initial 

testing was to demonstrate test technique 

capabilities associated with localized 

blowing and to determine boundary layer 

transition behavior induced from mass 

addition into the boundary layer from a 

small-localized repair site.  Estimated 

blowing rates associated with the ablator 

 
Fig. 15 Cavity correlations used for STS-114 

 

 
Fig. 16 CAD representation of SLA model with internal 

gas system for isolated ablation testing 
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repair material were used to guide the mass 

injectant rates.  For a majority of the tests, the 

injected gas was of air; limited tests were 

performed with CF4 (three times the molecular 

weight than air) to assess the influence of a 

heavier molecular weight gas (the expected 

molecular weight of the pyrolysis products of the 

proposed ablator repair material was expected to 

be heavier than air). 

The RTF model design strategy for 

simulating localized ablation was leveraged from 

a similar process used during the Columbia 

Accident Investigation60 and is illustrated in Fig. 

16.  The local mass injection source was 

positioned at a fixed location (x/L = 0.3) along 

the model centerline in a region of near zero 

pressure gradient (consistent with the cavity 

testing).  Sintered metal porous plugs of 40 and 

100 media grade were press fit into the resin 

model at this site.  Gas was supplied to the 

porous plug via a regulator outside the tunnel.  A 

mass flow controller provided up to 1000 sccm 

flow rate.  Downstream of the mass flow 

controller, tubing led to the test section and the 

model strut.  Flexible metal tubing then provided 

a connection to one of the tubes extending from 

the aft end of the model. Out of the second tube 

from the model, two pressure gauges provided 

plenum pressure readings throughout the runs.  

Test parametrics included a fixed angle of attack 

of 40 degs, sideslip angle of 0 deg, freestream unit Reynolds numbers from 1.1x106 to 3.0x106, edge-to-

wall temperature ratio of approximately 0.6, and a freestream Mach number of 6 (normal shock density 

ratio of approximately 5.3). 

Transition observations were correlated using the same general approach as with the protuberances and 

cavities.  The transition parameter (Re%/Me) was unmodified.  The disturbance parameter was redefined as a 

mass blowing coefficient ".  The blowing coefficient for this study was defined as the mass flow injected 

into the boundary layer divided by an effective mass flow through the boundary layer, &avgUe$d, where &avg 

is the average of the densities at the wall and at the edge of the boundary layer, Ue is the edge velocity, 

$ the boundary layer thickness and d is the diameter of the porous plug.  All of these quantities were 

computed at nominal flow conditions using the same engineering methodology in support of the cavity and 

protuberance correlations.  It was later determined that the present blowing coefficient while 

unconventional, was directly proportional to more traditional methods25. 

The testing successfully demonstrated the capability of utilizing rapid-prototyped resin models with 

internal passages to provide local blowing to the windward surface.  As anticipated, localized mass 

injection was shown to promote transition earlier than the corresponding no blowing case, Fig. 17.  In these 

qualitative global heat transfer images, run-to-run differences in the surface roughness of the carbon 

coating (see model description section) on the Shuttle wing leading edge produced asymmetrical turbulent 

patterns on the lower wing.  The images presented in Fig. 17 were obtained on the same model and unit 

Reynolds number (3.0x106), however progressive loss of phosphors and carbon coating on the wing leading 

edge was observed run-to-run.  The thermal properties of the SLA resin material have not been determined 

which precluded quantitative measurements of heat transfer.  While the detection of temperature increases 

associated with boundary layer transition was feasible, direct comparison with heating measurements 

obtained on the ceramic models was not possible. 

 
40 media grade porous plug with 0 sccm air 

 
40 media grade porous plug with 1000 sccm air 

Fig. 17  Transition from localized mass injection 
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No coating loss was observed 

upstream of the porous plug and 

reasonable correlation trends were 

established as shown in Fig. 18.  

Consistent with protuberance and cavity 

correlations, an increase in the 

disturbance parameter (in this case, the 

blowing coefficient) lowered the value 

of the transition parameter required to 

trip the flow from a laminar to a 

turbulent state.  Expected flight ablation 

rates from the proposed tile ablator 

concept are an order of magnitude less 

than those observed to have an effect in 

the present test results.  That is, when 

the correlated wind tunnel results on the 

model centerline were compared against 

the estimated in-flight ablation rates expected from the ablator repair material (near zero), Fig. 18, the 

blowing coefficient required to initiate transition onset was an order of magnitude larger.  A heavier 

molecular weight injectant gas (believed to be more representative of the out-gassing constituents of the 

repair material) attenuated transition onset (consistent with observations in Refs. 25, 37).  In support of 

STS-114, it was concluded that localized ablation at the mass flow rates provided to the BLT team should 

not initiate high Mach number transition.  No further testing was performed and the BLT Tool baselined by 

OCCB for STS-114 did not implement a predictive capability based upon these wind tunnel results.  The 

ablator repair concept has since been replaced by a tile overlay concept (a local protuberance) and no future 

ablation simulation testing is anticipated. 

Summary 

To support the Shuttle RTF effort, a predictive tool was developed for estimating the onset of 

boundary layer transition from deviations to the OML.  The BLT Tool is the first step in the analysis 

process of the local TPS aerothermodynamics in order to allow informed disposition of damage for making 

recommendations to fly as is or to repair.  Using mission specific trajectory information and details of each 

damage site or repair, the expected time of transition is predicted to define the proper aerothermodynamic 

environment to use in the subsequent thermal and stress analysis of the structure.  The BLT correlations 

utilized for the tool were developed from ground-based measurements that have been summarized in this 

paper.  The experimental databases were developed by simulating the surface defects associated with TPS 

damage and/or repair on scaled wind tunnel models.  Using boundary layer edge conditions to correlate the 

results, specifically the momentum thickness Reynolds number over the edge Mach number and the 

boundary layer thickness, curve coefficients of 27, 100, and 900 were selected to predict transition onset for 

protuberances based on height, and cavities based on depth and length, respectively.  Testing to simulate 

the effects of localized ablation indicated that while transition was promoted by local surface blowing, the 

required blowing rates from the present tests were an order of magnitude higher than estimated for the 

ablator repair concept.  In addition, a heavier molecular weight gas (believed to be more representative of 

the out-gassing constituents of the repair material) was shown to attenuate boundary layer transition. 
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Fig. 18 Effect of blowing on boundary layer transition 
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