Using Correlation to Compute Better Probability Estimates in Plan Graphs

Daniel Bryce
Dept. of Computer Science & Eng.
Arizona State University
Tempe Arizona 85287-5406
dan.bryce@asu.edu

David E. Smith
Intelligent Systems Division
NASA Ames Research Center
Moffet Field, CA 94035-1000
de2smith@email.arc.nasa.gov

Abstract
Plan graphs are commonly used in planning to help compute heuristic "distance" estimates between states and goals. A few authors have also attempted to use plan graphs in probabilistic planning to compute estimates of the probability that propositions can be achieved and actions can be performed. This is done by propagating probability information forward through the plan graph from the initial conditions through each possible action to the action effects, and hence to the propositions at the next layer of the plan graph. The problem with these calculations is that they make very strong independence assumptions - in particular, they usually assume that the preconditions for each action are independent of each other. This can lead to gross overestimates in probability when the plans for those preconditions interfere with each other. It can also lead to gross underestimates of probability when there is synergy between the plans for two or more preconditions.

In this paper we introduce a notion of the binary correlation between two propositions and actions within a plan graph, and show how this improves probability estimates for planning. This notion of correlation can be thought of as a continuous generalization of the notion of mutual exclusion (mutex) often used in plan graphs. At one extreme (correlation = 0), two propositions or actions are completely mutex. With correlation = 1, two propositions or actions are independent, and with correlation > 1, two propositions or actions are synergistic. Intermediate values can and do occur indicating different degrees to which propositions and action interfere or are synergistic. We compare this approach with another recent approach by Bryce that computes probability estimates using Monte Carlo simulation of possible worlds in plan graphs.

Introduction
Plan graphs are commonly used in planning to help compute heuristic "distance" estimates between states and goals. A few authors have also attempted to use plan graphs in probabilistic planning to compute estimates of the probability that propositions can be achieved and actions can be performed. This information can then be used to guide a probabilistic planner towards the most effective actions for maximizing probability or for achieving the goals with a given probability threshold.

Typically, probability information is given for the propositions in the initial state and is propagated forward through the plan graph, in a manner similar to the propagation of cost and resource estimates in classical planning. The probability of being able to perform an action is taken to be the probability that its preconditions can be achieved, which is usually approximated as the product of the probabilities of the preconditions. The probability of a particular action effect is taken as the product of the action probability and probability of the effect given the action. Finally, the probability of achieving a proposition at the next layer is taken to be either the sum or maximum of the probabilities for the different effects matching that proposition. As an example, consider the plan graph layer shown in Figure 1 where we have two actions a and b each with two preconditions and two unconditional effects. Suppose that the probabilities for the propositions p, q, and r are 0.8, 0.5, and 0.4 as shown in the diagram. The probability that action a is possible would then be the probability of the conjunction p ∧ q which would be 0.8 × 0.5 = 0.4. Similarly, the probability for action b would be 0.5 × 0.4 = 0.2. Action a produces effect e with certainty (probability 1), so e simply inherits the probability of a from a. Similarly, action b produces effect g with probability 0.5, so the probability of g can be calculated as 0.5 × 0.5 = 0.1. The calculation for the effect f is a bit harder because both actions a and b can produce f, and we could in fact develop a plan that uses them both to increase the chances of f. Using a alone, the probability of f is 0.4 × 0.5 = 0.2, and using b alone the probability is 0.2 × 0.5 = 0.1, so the probability of f using both actions is 0.2 + 0.1 = 0.36.

Figure 1: A plan graph layer with simple probability calculations made using the independence assumption.
The problem with these simple estimates is that they assume independence between all pairs of propositions and all pairs of actions in the plan graph. This is frequently a very bad assumption. If two propositions are produced by the same action (e.g., e and f), they are not independent of each other, and computing the probability of the conjunction by taking the product of the individual probabilities can result in a significant underestimate. Conversely, if two propositions are mutually exclusive, then the probability of achieving them both is zero, and the product of their probabilities will be a significant overestimate. In our example, we first assumed that the propositions p, q, r, and w were independent of each other when computing the probabilities of actions a and b. Even if this is so, we then proceeded to assume that actions a and b were independent, when computing the probability of effect f. Clearly this is wrong, since a and b share a precondition.

One obvious way to improve the estimation process would be to propagate and use mutual exclusion information, and assign a probability of zero to actions with mutex preconditions at a given level. However, this only helps with the extreme case where propositions or actions are mutex. It does not help with cases of synergy, or with cases where propositions are not strictly mutex, but it is much ‘harder’ (less probable) to achieve them both.

To attempt to address this problem, we introduce a more general notion which we call “correlation” to capture both positive and negative interactions between pairs of propositions, pairs of actions, and pairs of action effects. In the section that follows, we first give a formal definition of our notion of correlation. We then show how to compute and use correlation information within a plan graph to get better probability estimates. Finally we show some preliminary results, and compare this technique with another recent technique developed by Bryce, Kambhampati, & Smith (2006b).

Definitions and Representation

Action Representation

Similar to the representation used in (Bryce, Kambhampati, & Smith 2006b) an action a is taken to have:
- an enabling precondition, Pre(a)
- a set of probabilistically weighted outcomes, \(\Phi_i(a) \)

The enabling precondition Pre(a) is a conjunction of literals, just as for an action in probabilistic PDDL (PPDDL) (Younes et al. 2005; Younes & Littman 2004) or an ordinary classical action in PDDL (McDermott 1998). Each outcome \(\Phi_i(a) \) has a weight \(\omega_i(a) \) giving the probability that the outcome is realized, and \(\Phi_i(a) \) consists of a conjunction of conditional effects \(\phi_{ij}(a) \) of the form:

\[
\phi_{ij} \rightarrow \epsilon_{ij}
\]

where both \(\phi_{ij} \) and \(\epsilon_{ij} \) are conjunctions of literals. Of course, \(\phi_{ij} \) may be empty, in which case \(\epsilon_{ij} \) is an unconditional effect. This representation of effects follows the 1ND normal form presented in (Rintanen 2003).\(^2\)

Correlation

Formally, we define the correlation between two propositions, two actions, or two effects \(x \) and \(y \) as:

\[
C(x, y) = \frac{\Pr(x \land y)}{\Pr(x) \Pr(y)}
\]

which by Bayes Rule can also be seen as:

\[
= \frac{\Pr(z|y)}{\Pr(z)} \frac{\Pr(y|x)}{\Pr(y)}
\]

Correlation is a continuous quantity that can range from zero to plus infinity. Essentially, it measures how much more or less probable it is that we can establish \(x \) and \(y \) together as opposed to if we could establish them independently. It has the following characteristics:

\[
C(x, y) = 0 \quad \text{if } x \text{ and } y \text{ are mutex} \\
= 1 \quad \text{if } x \text{ and } y \text{ are independent} \\
= \frac{1}{\Pr(x)} \frac{1}{\Pr(y)} \quad \text{if } x \text{ and } y \text{ are completely correlated}\(^3\)
\]

More generally, \(0 < C(x, y) < 1 \) means that there is some interference between the best plans for achieving \(x \) and \(y \) so it is harder (less probable) to achieve them both than to achieve them independently. Similarly, \(1 < C(x, y) < \frac{1}{\Pr(x)} \) means that there is some amount of synergy between plans for achieving \(x \) and \(y \), so it is easier (more probable) to achieve them both than to achieve them independently.

Instead of computing and keeping mutex information in the plan graph, we will compute correlation information between all pairs of propositions and all pairs of actions at each level. It is worthwhile noting that for a pair of propositions or actions \(x \) and \(y \) we could instead choose to directly store the probability \(\Pr(x \land y) \) or either of the two conditional probabilities \(\Pr(x|y) \) or \(\Pr(y|x) \) instead of the correlation \(C(x, y) \). This is because these quantities are essentially equivalent - from our definition of correlation and Bayes Rule any of these quantities can be computed from any other. We have chosen to introduce the notion of correlation and store this quantity because:

1. it is symmetric, unlike the conditional values.
2. we only need to store it for cases where it is not one - i.e. the propositions/actions are not independent.
3. it can be easily interpreted and understood in terms of the intuitive concepts of mutex, independence, and synergy.

\(^3\)The representation in PPDDL (Younes et al. 2005; Younes & Littman 2004) is a bit more general since it allows arbitrary nesting of conditional effects and probabilistic outcomes. We have chosen to use the 1ND normal form here because it is a bit easier to work with, and PPDDL can be expanded into this form.

\(^2\)This cannot occur without \(y \), and vice versa, which means that their probabilities must be the same.
Computing Probability and Correlation

To compute probability and correlation information in a plan graph, we begin at the initial state (level 0) and propagate information forward through the plan graph to subsequent levels (just as with construction and propagation in ordinary classical plan graphs). In the subsections that follow, we give the details of how to do this beginning with the initial proposition layer and working forward to actions, then effects, and finally to the next proposition layer. ²

Computing Action Probabilities

Suppose that we have the probabilities and correlation information for propositions at a given level of the plan graph. How do we use this information to compute probabilities and correlation information for the subsequent action layer? First consider an individual action a with preconditions \{x_1, \ldots, x_n\}. The probability that the action can be executed is the probability that all the preconditions can be achieved:

\[
Pr(a) = Pr(x_1 \land \ldots \land x_n) = Pr(x_1) Pr(x_2 | x_1) \ldots Pr(x_n | x_1 \ldots x_{n-1}) \tag{2}
\]

If the propositions \(x_i\) are all independent this is just the usual product of the individual probabilities of the preconditions. However, if they are not independent then we need the conditional probabilities, \(Pr(x_i | x_1 \ldots x_{i-1})\). Since we have pairwise correlation information we can readily compute the first of these terms:

\[
Pr(x_2 | x_1) = C(x_2, x_2) Pr(x_2)
\]

However, to compute the higher order terms (i.e. \(i > 2\)) we must make an approximation. Applying Bayes Rule we get:

\[
Pr(x_i | x_1 \ldots x_{i-1}) = \frac{Pr(x_i \land x_1 \ldots x_{i-1}) Pr(x_i)}{Pr(x_1 \land \ldots \land x_{i-1})}
\]

If we make the assumption that \(x_1 \ldots x_{i-1}\) are independent for purposes of this computation we get:

\[
Pr(x_i | x_1 \ldots x_{i-1}) = \frac{Pr(x_i | x_1) \ldots Pr(x_i | x_{i-1}) Pr(x_i)}{Pr(x_1 \ldots x_{i-1})}
\]

Applying our analogue of Bayes Rule again \(i - 1\) times, we get:

\[
Pr(x_i | x_1 \ldots x_{i-1}) = Pr(x_i) C(x_i, x_1) \ldots C(x_i, x_{i-1})
\]

Returning to the calculation of:

\[
Pr(a) = Pr(x_1 \land \ldots \land x_n) = Pr(x_1) Pr(x_2 | x_1) \ldots Pr(x_n | x_1 \ldots x_{n-1})
\]

if we plug in the above expression for the \(Pr(x_i | x_1 \ldots x_{i-1})\) we get:

\[
Pr(a) = Pr(x_1 \land \ldots \land x_n) = \prod_{i=1}^{n} \prod_{j=1}^{i-1} Pr(x_i) C(x_i, x_j) \tag{4}
\]

Several properties of this approximation are worth noting:

1. The above expression is easy to compute and does not depend on the order of the propositions.
2. If the \(x_i\) are independent, the \(C(x_i, x_j)\) are 1 and the above simplifies to the product of the individual probabilities.
3. If any \(x_i\) and \(x_j\) are mutex then \(C(x_i, x_j) = 0\) and the above expression becomes zero. If the \(C(x_i, x_j)\) are positive but less than one then the probability of the conjuction is less than the sum of the probabilities of the individual elements.
4. If the \(C(x_i, x_j)\) are greater than one, there is synergy between the conjuncts. The probability of the conjunction is greater than the sum of the products of the individual conjuncts, but less than or equal to the minimum of those probabilities.

While these properties are certainly desirable, and match our intuitions, it is reasonable to ask how good the approximation in Equation 4 is in other cases. As it turns out, for a conjunction with \(n\) terms, Equation 4 turns out to be exact if only about \(n^2\) of the \(C(x_i, x_j)\) are not equal to 1. More precisely:

Theorem 1 Consider the undirected graph consisting of a node for each conjunct \(x_i\), and an edge between \(x_i\) and \(x_j\) whenever \(x_i\) and \(x_j\) are not independent. If this graph has no cycles, then Equation 4 is exact.

As an example, consider the simple case of:

\[
Pr(a \land b \land c) = Pr(a) Pr(b | a) Pr(c | b a)
\]

Our graph consists of the three nodes \(a\), \(b\), and \(c\), and zero to three edges depending on the \(C(i, j)\). If \(b\) and \(c\) are independent, there are only two edges in the graph, and no cycle, so the theorem states that Equation 4 is exact. To see this, with \(b\) and \(c\) independent the above expansion becomes:

\[
Pr(a \land b \land c) = Pr(a) Pr(b | a) Pr(c | a)
\]

Which is the approximation in Equation 4, since \(C(b, c) = 1\).

More generally, the proof of this theorem relies on the fact that a graph without cycles can be represented as a tree.

Proof: Suppose we have a conjunction \(x_1 \land \ldots \land x_n\) that obeys the conditions of the theorem. Since the graph has no cycles, it can be arranged as a tree. Without loss of generality, assume the conjuncts are in the same order as a depth first traversal of that tree.

In general, we know that:

\[
Pr(x_1 \land \ldots \land x_n) = \prod_{i=1}^{n} Pr(x_i | x_1 \ldots x_{i-1})
\]
But since the conjuncts are ordered according to a depth first traversal of the tree, each conjunct x_i has only one predecessor $x_{par(i)}$ (its parent in the tree) for which $C(x_i, x_j)$ is not one. As a result:

$$Pr(x_1|x_1 \ldots x_{i-1}) = \Pr(x_i| x_{par(i)})$$

$$= \Pr(x_i) C(x_i, x_{par(i)})$$

This means that:

$$\Pr(x_1 \ldots \land x_n) = \prod_{i=1 \ldots n} \Pr(x_i) C(x_i, x_{par(i)})$$

But since $C(x_i, x_j) = 1$ for all $j < i$ and $j \neq par(i)$ there is no harm in adding these terms and we get:

$$\Pr(a) = \Pr(x_1 \land \ldots \land x_n)$$

$$= \prod_{i=1 \ldots n} \Pr(x_i) \prod_{j=1 \ldots i-1} C(x_i, x_j)$$

which is Equation 4. ■

Computing Correlation Between Actions

As with propositions, the probability that we can execute two actions, a and b, may be more or less than the product of their individual probabilities. If the actions are mutually exclusive (in the classical sense) then the probability that we can execute them both is zero. Otherwise, it is the probability that we can establish the union of the preconditions for the two actions.

$$Pr(a \land b) = \begin{cases} 0 & \text{if } a \text{ and } b \text{ are mutex} \\ Pr(\land(Pre(a) \cup Pre(b))) & \text{otherwise} \end{cases}$$

Using Equation 4 we can compute the probability of the conjunction $Pr(\land(Pre(a) \cup Pre(b)))$. By our definition of correlation, Equation 1, we can then compute the correlation between two actions a and b.

As an example, consider the plan graph in Figure 1 again.

$$\Pr(a \land b) = \Pr(\land(Pre(a) \cup Pre(b)))$$

$$= \Pr(p \land q \land r)$$

$$= \Pr(p) \Pr(q) \Pr(r) C(p, q) C(q, r) C(p, r)$$

$$= .8(.5)(.4) = .16$$

assuming that the correlations are all one. The correlation between a and b is therefore:

$$C(a, b) = \frac{\Pr(a \land b)}{\Pr(a) \Pr(b)} = \frac{.16}{.4(.2)} = 2$$

Computing Effect Probabilities and Correlation

Given the tools we have developed so far, it is relatively straightforward to compute the probability of an individual action effect. Let Φ_k be an outcome of action a with weight w_k, and let $\phi_{ij} = \rho_{ij} \rightarrow e_{ij}$ be a conditional effect in Φ_k. If the effect is unconditional -- that is the antecedent ρ_{ij} is empty -- then:

$$Pr(e_{ij}) = w_k Pr(a)$$

However, if the antecedent ρ_{ij} is not empty, there is the possibility of interaction (positive or negative) between the preconditions of a and the antecedent ρ_{ij}. As a result, to do the computation right we have to compute the probability of the conjunction of the preconditions and the antecedent:

$$Pr(e_{ij}) = w_k Pr(\land(Pre(a) \cup \rho_{ij}))$$

For convenience, we will refer to the weight w_i associated with an effect e_{ij} as $w(e_{ij})$. We will also refer to the union of the action preconditions and the antecedent ρ_{ij} for an effect e_{ij} as simply the condition of e_{ij} and denote it $Cnd(e_{ij})$.

For an effect e, the above expression then becomes simply:

$$Pr(e) = w(e) Pr\left(\land(\text{Cnd}(e))\right)$$

As with actions, we can compute the probability of the conjunction of $\text{Cnd}(e)$ using the approximation in Equation 4.

We can also compute the correlation between two different effects just as we did with actions. For two effects e and f we have:

$$Pr(e \land f) = w(e) w(f) Pr\left(\land(\text{Cnd}(e) \cup \text{Cnd}(f))\right)$$

As before, the probability of the conjunction of $\text{Cnd}(e) \cup \text{Cnd}(f)$ using the approximation in Equation 4. By our definition of correlation, Equation 1, we can then compute the correlation between the two effects e and f.

As an example, consider the two unconditional effects e and f from Figure 1. Since both these effects are unconditional, $\text{Cnd}(e)$ and $\text{Cnd}(f)$ are just the preconditions of a and b respectively. As a result:

$$Pr(e \land f) = w(e) w(f) Pr\left(\land(\text{Cnd}(e) \cup \text{Cnd}(f))\right)$$

$$= w(e) w(f) Pr(p \land q \land r)$$

$$= .8(.5)(.4)(.4)$$

$$= .08$$

since p, q, and r were assumed to be independent. Using this, we get:

$$C(e, f) = \frac{Pr(e \land f)}{Pr(e) Pr(f)} = \frac{.08}{.4(1)} = 2$$

Note that Equation 5 for $Pr(e \land f)$ applies whether the effects e and f are from the same or different actions. In the case where they are effects of the same action, there will be overlap of the action preconditions between $\text{Cnd}(e)$ and $\text{Cnd}(f)$. However, the antecedents of the conditional effects may be quite different, and there can be interaction (positive or negative) between literals in those antecedents, which will be captured by the probability calculation in Equation 5.

Computing Proposition Probabilities

Computing the probability for a proposition is complicated by the fact that there may be many actions with effects that produce the proposition, and we are not limited to using only one such action or effect. For example, if two action effects e and f both produce proposition p with probability .5, then we may be able to increase our chances of achieving p by performing both of them. However, whether or not this is a good idea depends upon the correlation between the two effects. If the effects are independent or synergistic, then it is advantageous. If the two effects are completely mutex ($C(e, f) = 0$), then it is not a good idea. If there is
some degree of mutual exclusion between the actions (i.e.,
$0 < C(e, f) < 1$) then the decision depends on the specific
probability and correlation numbers.

Suppose we choose a particular set of effects $E = \{e_1, \ldots, e_k\}$ that produce a particular proposition p. Intu-
itively, it would seem that the probability that one of these
effects would yield p is:
\[
Pr(e_1 \lor \ldots \lor e_k)
\]
Unfortunately, this isn’t quite right. By choosing a particular
set of effects to try to achieve p, we are committing to (try-
ing to) establish the conditions for all of those effects, which
means establishing both the action preconditions and the an-
tecedents of each of the conditional effects. There may be
interaction between those conditions (positive or negative)
that increases or decreases our chances for each of the ef-
tects. The above expression essentially assumes that all of
the effects are independent of each other.

In this case, the correct expression for $Pr(p)$ using a set
of effects E is both complicated and difficult to compute.
Essentially we have to consider the probability table of all
possible assignments to the conditions for the effects E, and
multiply the probability of each assignment by the probability
that the effects enabled by that assignment will produce p.
Let $T(E)$ be the set of all possible proposi-
tions $\mathcal{C}(\mathcal{C}(E))$ truth assignments
to the conditions in $\mathcal{C}(E)$. Formally we get:
\[
Pr(p_E) = \sum_{\tau \in T(E)} Pr(\tau) Pr(p|\tau)
\]
where $Pr(p_E)$ refers to the probability of p given that we are
using the effects E to achieve p.

As an example, consider the calculation of the probability
for the proposition f in Figure 1 assuming that we are using
both the effects from action a and action b. The set of condi-
tions for these (unconditional) effects is just the union of the
preconditions for a and b which is $\{p, q, r\}$. There are eight
possible truth assignments to this set, but only three of them
permit at least one of the actions:

- $p \land q \land \neg r$ permits a but not b
- $\neg p \land q \land r$ permits b but not a
- $p \land q \land r$ permits a and b

The probabilities for these truth assignments are:

- $Pr(p \land q \land \neg r) = .8(1)(.6) = .48$
- $Pr(\neg p \land q \land r) = .2(1)(.4) = .08$
- $Pr(p \land q \land r) = .8(1)(.4) = .32$

The probability for g using both actions is therefore:

- $Pr(g) = .24(1)(.5) + .04(1) + .16(1) = .52$

This calculation was fairly simple because we were only
dealing with three propositions p, q and r and they were
independent. More generally, however, an expression like
$Pr(p \land q \land \neg r)$ is problematic when r is not independent
of the other two propositions, since we do not have correlation
information for the negated proposition. There are a number
of approximations that one can use to compute such probabili-
ties. For our purposes, we assume that two propositions
are independent if correlation information is not available.
Thus, in this case we make the assumption that:
\[
Pr(p \land q \land \neg r) = Pr(p \land q) Pr(\neg r)
\]

We now return to the problem of computing the proba-
bility for a proposition p. In theory we could consider each
possible subset E' of effects E that match the proposition $p
and compute the maximum:
\[
\max_{E' \subseteq E} Pr(p_{E'})
\]
and use Equation 6 to expand and compute $Pr(p_{E'})$. Unfor-
unately, when there are many effects that can produce a propo-
sition this maximization is likely to be quite expensive,
because 1) we would need to consider all possible subsets of
the set of effects, and 2) in Equation 6 we would have to
consider all possible truth assignments to the conditions for
each set of effects. As a result, some approximation is in
order. One possibility is a greedy approach that adds effects
one at a time, as long as they still increase the probability.
More precisely:

1. Let E be the set of effects matching p
2. Let E_0 be the empty set of effects, let $P_0 = 0$
3. let e be an effect in E not already in E_{i-1}, and let $P^* = Pr(p_{E_{i-1}})$. If
 - e maximizes P^*
 - $P^* > P_{i-1}$
 then set
 - $E_i = e \cup E_{i-1}$
 - $P_i = P^*$

Using this procedure the final set P_i will be a lower bound on:
\[
\max_{E' \subseteq E} Pr(p_{E'})
\]
Even this approximation is somewhat expensive to com-
pute, because it requires repeated computation of $Pr(p_{E'})$
at each stage using equation 6. A different approximation
that avoids much of this computation is to construct all max-
imal subsets E' of the effects in E such that there is no pair
of effects e and f in E' with $C(e,f) < 1$ (no interference).
Then we compute or estimate $Pr(p_{E'})$ for each such subset
and choose the maximum. This approximation has the ad-
"vantage that we must only calculate $Pr(p_{E'})$ for a relatively
small number of sets.

Computing Correlation Between Propositions

Finally, we consider the probability for a pair of propositions
p and q which will allow us to compute the correlation
between the propositions. As with a single proposition, this
calculation is complicated because we want to find the best
possible set of effects for establishing the conjunction. If we
let E be the set of effects matching proposition p, and F
be the set of effects matching proposition q, then what we are
after is:
\[
Pr(p \land q) = \max_{E' \subseteq E} \min_{F' \subseteq F} Pr(p_{E'} \land q_{F'})
\]
In order to compute $\Pr(p \land q)$, we must again resort to considering all possible truth assignments for the union of the conditions for E and E' as we did in Equation 6:

$$\Pr(p \land q) = \sum_{\tau \in \mathcal{P}(E \cup E')} \Pr(\tau) \Pr(p \land q | \tau)$$

Of course this would also be costly to compute, since it involves computing a complex expression for all subsets of effects in E and E'. To approximate this, we could use either the greedy strategy developed in the previous section, or the strategy of finding maximal non-interfering effect subsets.

Given $\Pr(p \land q)$ and the individual probabilities $\Pr(p)$ and $\Pr(q)$ we can compute $C(p, q)$ trivially from the definition in Equation 1.

Results

We have developed a preliminary implementation of the technique presented above. Correlation and probability information is computed using the above methods. This information is then used to guide construction of a relaxed plan, which is used to guide the POND heuristic search planner (Bryce, Kambhampati, & Smith 2006a) in a manner similar to that described in (Bryce, Kambhampati, & Smith 2006b). The planner is implemented in C and uses several existing technologies. It employs the PDDL parser (Younes & Litman 2004) for input, and the IPP planning graph construction code (Koenher et al. 1997). Because the implementation and debugging is still not complete, we have so far only tested the ideas on the small domains Sandcastle-67 and Slippery gripper. Figures 2 and 3 show some early results for time, plan length, and node expansion for the sandcastle-67 and slippery gripper domains respectively. The plots compare 4 different planners:

- CPPlan (Hyafil & Bacchus 2004)
- McLug-15 (Bryce, Kambhampati, & Smith 2006b), the POND planner using Monte Carlo Simulation on plan graphs
- pr-rp, relaxed plan construction using simple plan graph probability information computed using independence assumptions
- corr-rp, relaxed plan construction using probability and correlation information.

The other two entries (pr-rp-mx and corr-rp-mx) represent variants that are not fully debugged and should therefore be regarded as suspect.

Generally, performance of the four methods is similar on these simple domains. Plans are somewhat longer for pr-rp and corr-rp because the objective for these planners is to maximize probability rather than minimize the number of actions. There is some indication that corr-rp is showing less growth in time and number of node expansions as the probability threshold becomes high, but additional experiments are needed to confirm this and examine this behavior more closely.

Discussion and Conclusions

We have introduced a continuous generalization of the notion of mutex, which we call correlation. We showed how such a notion could be used to improve the computation of probability estimates within a plan graph. Our implementation of this technique is still preliminary and it is much too early to draw any significant conclusions about the practicality or efficacy of these computations for problems of any size. In addition to finishing our implementation and doing more significant testing, there are a number of issues that we wish to explore:

Correlation vs Relaxed Plans The approach of keeping correlation information is different from the method of using a relaxed plan to estimate probability in an important way: relaxed plans are constructed greedily, so a relaxed plan to achieve $p \land q$ would normally choose the best way to achieve p and the best way to achieve q independently. This will not always lead to the best plan for achieving the conjunction. Correlation information can be used to guide (relaxed) plan selection and would presumably give better relaxed plans. This is the approach we have taken in our preliminary implementation. Of course there is always a trade-off between heuristic quality and computation time, and this is something we intend to investigate further.

Admissibility Although probability estimates computed using correlation information should be more informative, they are not admissible. The primary reason for this is that keeping only binary correlation information, and approximating the probability of a conjunction using only binary correlation information can both underestimate and overestimate the probability of the conjunction. Note, however, that the usual approach of estimating probability by assuming independence is also not admissible for the same reason. Similarly, relaxed plans do not provide an admissible heuristic - they can underestimate probability because the relaxed plan may not take full advantage of synergy between actions in the domain. It is possible to construct an admissible heuristic for probability by taking:

- the probability of a conjunction to be the minimum probability of the conjuncts,
- the probability of a proposition as the sum of all the probabilities of the producing effects.

However, this heuristic is very weak and not likely to be very effective. It is not yet clear whether we can construct a stronger admissible heuristic using correlation.

Correlation in the Initial State The mechanism we have described easily admits the use of correlation information between propositions in the initial state. That information would be treated in the same was as at any other level in the plan graph. Thus, if the initial state has $\Pr(p \land q) = .5$ and $\Pr(\neg p \land \neg q) = .5$ we could represent this as $\Pr(p) = \Pr(q) = \Pr(\neg p) = \Pr(\neg q) = .5$ and $C(p, q) = C(\neg p, \neg q) = \frac{1}{2} = 2$. The limitation of this approach is
that binary correlation can only approximate joint probability information for conjunctions larger than two.

Bayesian Networks There are a number of similarities between techniques we have used here, and methods used in Bayesian Networks. We speculate that the calculation of probability information for individual actions and pairs of actions could be modeled using a simple Bayesian net with nodes for the preconditions and actions, arcs between the preconditions and corresponding actions and arcs between pairs of preconditions that are dependent (correlation not equal to one). These later arcs would be labeled with the conditional probability corresponding to the correlation. It would be necessary to structure the network carefully to avoid cycles among the preconditions. The more complex calculations for propositions would require influence diagrams with choice nodes for each of the establishing effects. There doesn't seem to be any particular advantage to doing this, however. Solution of this influence diagram would require investigating all possible sets of the decisions, which corresponds to the unwieldy maximization over all subsets of establishing effects.

Cost Computation in Classical Planning The idea that we have explored here – a continuous generalized of mutex – is not strictly limited to probabilistic planning. A similar notion of the “interference” between two propositions or two actions could be used in classical planning to improve plan graph estimates of cost or resource usage. To do this we could define “interference” as:

\[I(x, y) = \text{Cost}(x \land y) - (\text{Cost}(x) + \text{Cost}(y)) \]

Positive interference means that there is conflict between two propositions, actions or effects, and that it is more expensive to achieve the conjunction than to achieve them separately. Interference of plus infinity corresponds to mutex. Negative interference corresponds to synergy between the propositions, meaning that achieving them together is easier than achieving them independently. Interference of zero corresponds to independence. Essentially, this can be seen as the logarithm of the definition for correlation given in Equation 1.

The computation of interference for actions, effects and propositions is very similar to what we have described above. The primary difference is that computations for propositions are significantly simpler because there is no need to maximize over all subsets of possible effects that give rise to a proposition. Although we have worked out the equations and propagation rules for this notion of interference, we have not yet implemented or tested this idea. We intend to investigate this in the near future.

Acknowledgements Thanks to Ronen Brafman, Nicolas Meuleau, Martha Pollack and Sailesh Ramakrishnan, and Rao Kamhampati for discussions on this subject and on early versions of these ideas. This work has been supported by the NASA IS-NRA program.

References

Bonet, B., and Geffner, H. 2005. mGPT: A probabilistic planner based on heuristic search. *Journal of Artificial*
Intelligence Research 24:933-944.

