
 
 

 

  
Abstract— Description of the performance of a simplified 

dynamic inversion controller with neural network 
augmentation follows. Simulation studies focus on the results 
with and without neural network adaptation through the use 
of an F-15 aircraft simulator that has been modified to include 
canards. Simulated control law performance with a surface 
failure, in addition to an aerodynamic failure, is presented. 
The aircraft, with adaptation, attempts to minimize the 
inertial cross-coupling effect of the failure (a control 
derivative anomaly associated with a jammed control surface). 
The dynamic inversion controller calculates necessary surface 
commands to achieve desired rates. The dynamic inversion 
controller uses approximate short period and roll axis 
dynamics. The yaw axis controller is a sideslip rate command 
system. Methods are described to reduce the cross-coupling 
effect and maintain adequate tracking errors for control 
surface failures. The aerodynamic failure destabilizes the 
pitching moment due to angle of attack. The results show that 
control of the aircraft with the neural networks is easier (more 
damped) than without the neural networks. Simulation results 
show neural network augmentation of the controller improves 
performance with aerodynamic and control surface failures in 
terms of tracking error and cross-coupling reduction. 

I. INTRODUCTION 
HE objective of the NASA Intelligent Flight Control 
System (IFCS) program is to develop and flight-test 

schemes that enhance control during primary control 
surface failures or aerodynamic changes resulting from 
failures or modeling errors. The first flight phase, known as 
generation one (Gen 1), required aerodynamic parameter 
identification and is not discussed in this report (please see 
[1] for a discussion on the Gen 1 flight phase). The second 
flight phase, known as generation two (Gen 2), evaluates a 
neural flight control system that can provide adaptive 
control without explicit parameter identification. The Gen 2 
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approach does not require information on the nature or the 
extent of the failure, knowledge of the control surface 
positions, or information on aerodynamic failures or 
unmodeled parameters. The Gen 2 tracking controller adds 
direct adaptive neural network signals to the control law 
[2]–[6]. These neural networks are used to generate 
command augmentation signals to compensate for errors 
caused by unmodeled dynamics, including dynamics 
resulting from damage or failure. Flight demonstration 
began in early 2006 on the NASA F-15 aircraft. An F-15 
six-degree-of-freedom (6-DOF) simulator was used in the 
evaluation test, which compared stabilator and canard 
failure compensation with the neural network algorithm. A 
canard failure emulates a change in pitching moment due to 
angle of attack, Cm! , and is considered an aerodynamic 

malfunction caused by modeling errors or damage. The 
specific objectives of Gen 2 are to 1) implement and fly a 
direct adaptive neural network–based flight controller, 
2) demonstrate the ability of the system to adapt to 
simulated system failures by suppressing transients 
associated with the failure, 3) reestablish sufficient control 
and handling of the vehicle for safe recovery, and 
4) provide flight experience for the development of 
verification and validation processes for flight-critical 
neural network software. 

II. DESCRIPTION OF THE GENERATION 2 
CONTROLLER 

The general control scheme of the Gen 2 controller is 
based on an adaptive neural controller that cancels errors 
associated with the dynamic inversion of the model. 
Initially, constant values of aerodynamic stability and 
control derivatives for a fixed condition in the flight 
envelope are used for model inversion. In addition, desired 
handling qualities are achieved with low-order reference 
models, which are based on pilot preferences [7]. The yaw 
axis controller is not a reference-based controller, but rather 
a classical yaw system. The Gen 2 control structure that 
uses a direct adaptive control method is shown in Fig. 1. 
The symbol dd in a subscript indicates direct derivative and 
ad indicates adaptation. 

A. Reference Models 
The pilot generates flight commands through 
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Fig. 1.  Generation 2 architecture in which the inversion is applied to the B matrix. 

longitudinal and lateral stick deflections {dep, dap} and 
rudder pedals {drp}. When these inputs are used, the 
reference model (ref ) provides pitch ( p), roll (q) and yaw 
(r) rate commands { pref , qref } and acceleration 

commands {
 
!pref ,

 
!qref } by means of first-order roll rate 

and second-order pitch rate transfer functions, as shown in 
(1) and (2). The symbol !r  is rise time, in seconds, and s is 
the Laplace operator. The symbol K is for constant gain, 
with the subscripts lat for lateral and lon for longitudinal. 
Short period frequency, !sp , and short period damping, 

!sp , are in rad/sec. The symbol L represents neural 

network error-modification damping in rad/sec. 
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These transfer functions are low-order equivalent 

systems designed to achieve level-one handling 
qualities [7].  

B. Simplified Dynamic Inversion 
The inputs to the dynamic inversion controller are 

commanded angular accelerations {
 
!pc ,

 
!qc }, which are 

computed with the equation 
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in which {Upad ,Uqad } are augmentation commands 

generated by adaptive neural networks. The symbol U is 
controller command and the subscript c represents 
command. These augmentation commands compensate for 
the estimated errors resulting from the difference between 
reference ( pref or qref ) and aircraft angular rates (4). 

 
perr = pref ! p

qerr = qref ! q
 (4) 

 
The subscript err is for error. The pseudocontrol 
acceleration commands {Up ,Uq } are computed with the 

equations 
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in which K p  and Ki  are proportional ( p ) and integral ( i ) 

constants, respectively, for each axis. The computation 
process for the pseudocontrol acceleration commands is 
shown in Fig. 2. The simplified dynamic inversion 



 
 

 

 
Fig. 2.  Simple sigma pi neural network structure (∑ = sum, π = product). 

algorithm inverts a B  matrix with states for modeling the 
short period and roll modes. The symbol B indicates control 
and T means transpose in (7). To protect against a poorly 
ranked B  matrix, the inversion is generated by a 
pseudoinverse (7). 
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The inversion is used to determine necessary control 
surface deflections { !a (roll axis), !e (pitch axis)}. Control 
surface commands { !ac , !ec } are obtained with the 

equation 
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in which B  is the state space system control matrix and the 
terms {

 
!pc ! L1 ,

 
!qc ! M1 } are the differences between 

input acceleration commands and actual plant acceleration 
contributions { L1 (rolling moment, ft-lbf ), M1 (pitching 
moment, ft-lbf )}. These plant contributions are calculated 
from the appropriate states for modeling the short period 
and roll mode dynamics. 

C. Adaptive Neural Network 
The purpose of the neural network system is to 

accommodate large errors that are not anticipated in the 
nominal control law design phase. In a failed flight 
condition or configuration ( A  or B  matrix), errors will 
develop that are larger than expected. The adaptive neural 

network operates in conjunction with the error of the 
control system. By recognizing patterns in the behavior of 
the error, the neural networks can learn to remove the error 
biases through control augmentation commands (Fig. 1). 

The adaptation signal attempts to remove errors in the 
neural flight control system to improve handling qualities 
in the presence of unknown failures. The neural network 
that provides this online adaptation scheme is known as 
"sigma pi." A simple single hidden layer sigma pi network 
is shown in Fig. 2. The name "sigma pi" is derived from the 
underlying equations of the network that sum ( ! ) the 
products ( ! ) of the inputs to the neural network with their 
associated weights. The weights of the neural network, W , 
are determined by a training algorithm, also known as an 
adaptation or learning rule. Learning involves adjusting 
these weights so that the network has a valid relationship 
between the inputs and outputs, and in turn, minimizes the 
error. 

Because a neural network is designed to recognize 
patterns between inputs and errors, the selected inputs must 
provide enough coverage for the network to be able to 
capture the behavior of the error. If too many inputs exist, 
however, the neural network may not be able to adapt 
quickly enough for practical application. Although the 
adaptation gain can be used to increase the rate of 
adaptation, it can cause large transients in the neural 
network outputs when it becomes too big. These transients 
are caused by spikes and sometimes sign changes in the 
network weights, which are often encountered before the 
network converges to a learned state. 

D.   Application of the Adaptive Neural Network 
The adaptive neural network implemented for the flight 



 
 

 

test is divided into three separate networks, one each for the 
pitch, roll, and yaw axes. Inputs to the network consist of 
control commands, sensor feedback, and bias terms. The 
number of inputs to each individual neural network vary; 
the roll axis uses six, the pitch axis uses seven, and the yaw 
axis uses ten. The output of each neural network is an 
angular acceleration command that augments the control 
signal from the research controller for each axis. To couple 
the three networks, pitch information is included in the roll 
and yaw neural networks, and some roll axis signals are 
included in the pitch and yaw neural networks. 

The neural network output, Uad , is the control 
augmentation command comprised of three components: 
roll, pitch, and yaw (Upad , Uqad , Urad ). This neural 

network output is computed with (9) (see Fig. 1). 
 

Uad =W
T
BaC  (9) 

 
The vector of basis function, Ba , is computed from the 
inputs in each signal input category by means of a product. 
The network weights, W , are computed by an adaptation 
law, which includes an adaptation gain, G , and an error-
modification term, L . The error-modification term helps 
contain the parameter growth of the weights and can be 
considered a damping term. The final adaptation law is 
 

 

!W = !G UerrBa + LUerrW( )dt  (10) 
 
in which  

!W is the weight increment for the current time 
step; W is the weight from the previous time-step; dt is the 
time-step, which is 0.0125 seconds (80 Hz); G  is the 
adaptation gain, which is sometimes called the learning 
rate; and Uerr  is the error compensation. This weight 
calculation is currently implemented in the Gen 2 system. 

The squashing function used to normalize inputs to the 
neural network is a sigmoid function and has the form (also 
shown in Fig. 2) 

 
f (x) = (1! e

!x
) / (1+ e

!x
) . (11) 

 
The adaptation law is computed as a function of the 

proportional and integral (PI) controller gains and tracking 
error ( perr , qerr , and rerr ) equated to err  in (12). The z 
subscript indicates pitch ( p), roll (q) or yaw (r). 

 
Uerr = Kzi err + Kzpe! rr  (12) 

 
This computation allows the neural networks to work in 
conjunction with the dynamic inversion PI controllers. 
Furthermore, because the adaptation gain can be used to 
specify the overall rate of adaptation, the adaptation law 

gains can be viewed as specifying the relative rates of 
adaptation.  

III. SIMULATION RESULTS 
The first type of simulated failure ( A  matrix failure), 

which represents an aerodynamic failure, inserts a 
multiplier onto the canard surface command (change in 
Cm!

). The second type of simulated failure ( B  matrix 

failure), which represents a surface failure, inserts a 
jammed stabilator failure. Simulation results illustrate the 
experiment that was flown and highlight the benefits 
provided by the Gen 2 control system. The flight condition 
used in this research is at a Mach number of 0.7 and an 
altitude of 6,096 m. All of the pilot inputs to the simulation 
time histories are “canned” piloted stick inputs, and no 
attempt to correct for the aircraft attitudes is added to the 
piloted inputs. This “canned” pilot input method was used 
only for comparison purposes and is not intended for flight 
test at this point in time. Because the controller is a rate 
command system, attitudes such as bank angle, φ, are used 
only for comparison and disturbance rejection trade-off 
studies. For instance, when a failure is imparted on the 
aircraft and the resulting attitudes change minimally, the 
control system is considered to have good robustness 
properties.  

A. A  Matrix Failure (Aerodynamic Failure) 
The first case is an A  matrix failure imposed on both the 

left and right canards, with a multiplier of – 0.5 on the 
nominal angle-of-attack schedule. This failure forces the 
canards to a less stable configuration. A 30-second time 
history with three longitudinal pilot stick inputs and a 
failure imposed at 11 seconds is shown in Fig. 3. Neural 
network is labeled NN and nz  indicates normal 
acceleration. In the first 10 seconds a normal response 
demonstrates how the pitch rate follows the commanded 
pitch rate (represented by the solid black line). The blue 
lines in Fig. 3, which represent the aircraft response when 
the neural network is inactive, show that after the failure is 
inserted the aircraft is stable but it experiences two or three 
overshoots. When the neural network is active (represented 
by the red lines in Fig. 3), the response is better damped 
and the commanded pitch rate is followed more closely 
than when the neural network is inactive. By the third pilot 
input, the neural network response is very close to the 
commanded pitch rate (represented by the solid black line). 
The results demonstrate that with this type of failure the 
neural networks help with tracking and damping.  

 



 
 

 

 
Fig. 3.  Time history of longitudinal aircraft states of an A matrix 
canard failure at 11 seconds (multiplier = – 0.5). 

B. B  Matrix Failure (Control Surface Failure) 
The second case is a B  matrix failure, involving a 

– 4-degree lock from trim, which is imposed on the right 
stabilator 11 seconds into the simulation run. A 40-second 
time history in which lateral pilot stick inputs are 
commanded is shown in Fig. 4. During the first 10 seconds 
the pitch rate does not move with the lateral pilot input. 
This situation is preferred; roll inputs should have little or 
no impact on longitudinal states. When the stabilator failure 
is injected at 11 seconds, note that transients occur in angle 
of attack, normal acceleration, and pitch rate. Initially 
cross-coupling reduces minimally when the neural 
networks are active, compared to when the neural networks 
are inactive, as shown in Fig. 4 (see angle of attack and 
normal acceleration time histories). As the “canned” pilot 
input resumes at 16 seconds, the neural networks continue 
to adapt and show improvement over the nonadaptive case. 
The amount of normal acceleration disturbance during a 
roll command is approximately 40-percent less when the 
neural networks are active.  

 

 
Fig. 4.  Time history of longitudinal aircraft states of a B matrix 
right stabilator lock failure (right stabilator = – 4 degrees lock 
from trim at 11 seconds). 

The lateral-directional states from the roll inputs are shown 
in Fig. 5. As previously noted, the inputs are “canned” and 
no other pilot commands are injected to level the aircraft 
after the failure. Note that the yaw rate, bank angle, and 
sideslip excursions are lower when the neural networks are 
active than when the neural networks are inactive. The roll 
axis is a roll rate command system (represented by the 
black solid line on the top plot). During the first 
commanded doublet no failure occurs and the tracking is 
good for both cases (neural networks inactive and active). 
After the failure is activated, the tracking is somewhat 
better when the neural networks are active than when they 
are inactive. And finally, Fig. 6 shows the neural network 
contribution commands to the roll, pitch, and yaw axes. An 
abundance of cross-coupling occurs with this failure, which 
in turn causes all three networks to become active. For a 
more detailed description of this research see [10]. 

 
 



 
 

 

  
Fig. 5.  Time history of lateral-directional aircraft states of a B 
matrix right stabilator lock failure (right stabilator = – 4 degrees 
lock from trim at 11 seconds). 

 

 
Fig. 6.  Time history of neural network activity of a B matrix right 
stabilator lock failure (right stabilator = – 4 degrees lock from trim 
at 11 seconds). 

IV. SUMMARY OF RESULTS 
Simulation results have been presented of a neural 

network adaptive controller that compensates for errors 
resulting from aerodynamic and control surface failures. 
This hybrid controller uses simplified dynamic inversion 

control for the pitch and roll axes and a classical sideslip 
rate controller for the yaw axis. The neural network is an 
on-line direct adaptive algorithm that attempts to drive the 
error between the reference model and commanded state to 
zero. An aerodynamic failure and jammed control surface 
failure have been demonstrated. In both failure cases the 
controller with neural network augmentation demonstrated 
improvements compared to the nonadaptive controller 
without neural network augmentation. 

During the aerodynamic failure, the neural networks 
improved the damping and tracking. During the jammed 
control surface failure, the neural networks reduced cross-
coupling, enabling the pilot to fly to the desired trajectory 
with fewer tracking errors. The neural networks also 
reduced the tracking errors. 
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