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Abstract:  The main objective of this research is to extract fault features from sensor 
faults and process faults by using advanced fault detection and isolation (FDI) 
algorithms. A tank system that has some common characteristics to a NASA testbed 
at Stennis Space Center was used to verify our proposed algorithms. First, a generic 
tank system was modeled. Second, a mathematical model suitable for FDI has been 
derived for the tank system. Third, a new and general FDI procedure has been 
designed to distinguish process faults and sensor faults. Extensive simulations clearly 
demonstrated the advantages of the new design. Copyright © 2006 IFAC 
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1. TANK MODEL DEVELOPMENT 
 
The purpose of modeling a tank system is to provide 
the simulated data of the process, including data from 
the normal situation and also data from some typical 
fault situations. All the generated data sets will be 
used for evaluating the performance of the various 
FDI algorithms. 
 
Based on input from NASA, the tank system includes 
a liquid oxygen (LOX) tank, vertical pipe line, 
nitrogen tank, horizontal pipe line, and two valves, 
one is a three-way valve for liquid; the other is for 
gas. We assume the complete gaseous state after the 
second valve and the complete liquid state before the 
second valve. This assumption may not be realistic. 
However, making everything liquid is 
straightforward. The full picture of the diagram is 
shown in Fig.1.  

 
Ullage and Nitrogen Tank 
The gas in the ullage of the tank is assumed to follow 
the ideal gas law 
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where R is gas constant, MO2 and MNr are respective 
gas oxygen and gas nitrogen holdup in mole, ρNr is 
the nitrogen density.  
 
Dynamics of Liquid Level  
The dynamic process of the liquid level in the tank 
(Marlin, 1995) can be described as 
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Here KF is the level dynamic constant and SF is the 
inlet area of the tank. Correspondingly, the volume 
of the ullage is described as 
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where Vu0 is the initial volume of the ullage space.  
 
Fluid Mechanism  
We utilize the mechanical energy equation of steady 
incompressible flow (Gerhart, 1992) to describe the 
dynamics of the liquid fluid 
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Here two arbitrary locations, namely 1 and 2, along 
the  pipe are considered. The p1 and p2, v1 and v2, z1 
and z2, are the respective pressure, flowrate, and 
height at these points.  
 
Mass Balance 
This law is based on the fact that the mass of the total 
input material should be equal to the mass of the total  
output material of a system no matter what has 
happened inside the system. The specific balance 
equations are 
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where ρliquid and ρgas are the density of the liquid fluid 
and the gas fluid, vi are the flow rate, and SF and SP 



                     
 
Fig.1 External tank schematics 

 
are the inlet areas of the tank and the pipe line, 
respectively. Note that the flow rate v1 is equal to v2 
based on the law.  
 
Simplified Temperature Dynamics 
In the ullage, the temperature dynamics can be 
described as 
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where k is a heat transfer constant, M is the total 
holdup (gas oxygen and gas nitrogen) in the ullage 
space. 
   
We consider the general energy equation for steady 
compressible flow (Gerhart, 1992) along the 
streamline 
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Here two arbitrary locations, namely 1 and 2, along 
the stream of the gas fluid are considered. Cp is the 
heat transfer constant, the T1 and T2, v1 and v2, are the 
respective temperature and flow rate.  
 
Valve Model 
We apply the general valve model (Marlin, 1995) to 
our process 
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where Cv is the valve coefficient, V is the valve 
opening position, F is the mass flow rate, ∆p is the 
pressure difference, and ρ  is the density of the fluid.   
 

Table 1: Summary of the tank system parameters 
 

System parameters are chosen as: 
a = 1.360, b = 0.03803, R0 = 8314, rtank = 1.2m, 
and SF = 0.1464m2, Cp = 1kcal/(K, mol), C1 = 1, 
C2 = 2, KF = 0.35, k = 1 
The initial values of some process variables are: 
Tu = 50K, T0 = 215K, p0 = 1×105Pa, L0 = 2.0m, 
pu0 = 1.51×105Pa, vtop0 = 0 m/sec, pNr = 
8.92e7Pa(13,000 PSI). 

 
 

 

The whole simulation has been realized by 
MATLAB. Simulated process noise and 
measurement noise have been added to some 
variables. In Fig.2, the simulated dynamic behaviors 
in measurement variables and state variables have 
been shown. It can be seen that the system behavior 
is nonlinear, especially during the initial phase and 
around sample 500.  
 
 

2. DERIVATION OF A PRIMARY RESIDUAL 
MODEL FOR FDI 

 
As can be seen from the previous section, the tank 
system is a nonlinear dynamic system. To deal with 
the nonlinearity in the tank system, we used a 
piecewise linearization approach. Although this 
approach is simple, the accuracy of our model is 
actually quite well as we will see shortly. 
 
 

 
(a) Measurement Variables 
 

   
(b) Measurement variables 
 

 
(c) State variables 
 
Fig.2 Simulated process dynamics of a tank in 

normal situation  
 
 



Let x be the vector of process variables containing 
inputs and outputs and B the system parameter 
matrix. Suppose X is a collection of vectors of x.  
Then X can be decomposed by using Singular Value 
Decomposition (SVD) 

X = P ΣQT                                           (10) 

or by eigenstructure decomposition of the covariance 
matrix R of x 

           R = QΛQT .                                        (11) 

where 
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which can be decomposed into [Q1    Q2], consists of 
the representation subspace Q1 and the residual 
subspace Q2. The number of the columns in the Q2, 
which is a column-normalized matrix, is equal to the 
number of the linear relations (same as the number of 
outputs). The subspace theory indicates that Q2 is in 
the same subspace with BT. Thus, the matrix Q2 can 
be considered as an estimate of parameter matrix BT 
in real systems. That is,  

2
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It can be seen that (12) is directly derived from the 
sensor data. We will use this model to design the FDI 
algorithms. 
 
Here we use Q2 testing to validate the residual model. 
We first used a single model for the whole process. 
The result of Q2 testing is shown in Fig. 3. The Q2 
value is 0.0046. Obviously, this linearized 
approximation is not satisfactory, especially at the 
beginning, 400th, and 1000th sample regions. We then 
considered a piecewise linearization approach. The 
results of Q2 testing for one model and two-model 
approaches are both shown in Fig. 4 (the solid line is 
from Fig. 3 and the dotted line is the Q2 testing result 
by using two linearized models. Fig. 4 indicates that 
the piece-wise modeling yields much smaller error 
than the original approach. 
 
Therefore, we can utilize the piece-wise modeling 
approach to model the nonlinear tank system. That is, 
we use the first batch data from 1 to 400 to build the 
first linear model and use the second batch data from 
401 to 1000 to create the second linear model. Based 
on these two linear models, we can approximate the 
nonlinear system very well even though both the 
linear models are static in nature. 
 

 
3. SIMULTANEOUS FAULT FEATURE 

EXTRACTION FOR PROCESS AND SENSOR 
FAULTS IN THE PRESENCE OF DISTURBANCE 
 
3.1 Problem Formulation Motivation 
 
We consider the effect of process disturbances, 
which behaves like unknown inputs and is shown 
below  
 
 

  
 

Fig. 3 Q2 testing for a single model 
 

One model for 
the whole process

Two models for 
the whole process

 
 
Fig. 4 Comparison of Q2 testing results for the single 

model and the piecewise two-model approaches  

y(t) = Au(t) + Fp(t) +Kd(t) + ε(t)                    (13) 

where K is the disturbance transformation matrix, 
d(t) = [d1(t)  d2(t) … dh(t)]T. We assume there are h 
types of disturbance.  
 
Combining the sensor and process faults in the 
presence of disturbances, (13) can be re-written as 

B x(t) = B∆x(t) + Fp(t) + Kd(t) + ε(t)             (14) 

where x(t) represents the observations. Note that we 
assume the transformation matrices, F and K, are 
known. But p(t) and d(t) are unknown.  
 
Equation (14) can be written in more compact form 
as 

   e(t) = Bx(t) = Cs(t) + Kd(t) + ε(t)                    (15) 

where C = [B  F],  s(t) = [∆x(t)T  p(t)T]T, e(t) is the 
set of primary residuals which are computed from 
the observations but depend only on the faults and 
noise.  
 
For fault isolation, the structured or enhanced 
residuals are then obtained by a transformation W to 
yield 

r(t) = We(t) = WC s(t) + WKd(t) + Wε(t)      (16)           

Hence, we need to derive a more powerful FDI 
scheme, which can: 

(1) Decouple disturbance from faults; 
(2) Detect two types of faults, sensor fault and 

process fault, in one framework; 
(3) Diagnose simultaneous faults from different 

fault types; 
(4) Identify fault sizes in the various fault 

situations. 
In the next section, we present an approach that can 
achieve all of the above requirements. Here we 



present a general approach to extract fault features 
for both sensor and process faults in the presence of 
process disturbances.  
 
 
3.2  Structured Residual Design 
 
Disturbance Decoupling 
The disturbance behaves like an unknown input. 
From Eq. (14), we can clearly see that it affects the 
primary residual. Since our focus is to detect and 
isolate sensor and process faults, we have to 
decouple its effect on the residual by designing W 
such that 

WK = 0                                              (17) 

This means the effects of disturbances will be 
annihilated. The price we pay for this decoupling is 
that we will lose some degrees of freedom in 
maximizing the amplitude of structured residuals. 
Moreover, we may lose some freedoms in 
simultaneous fault isolations. However, disturbances 
will affect the fault detection and isolation 
performance if we do not decouple them. Thus, we 
have to pay the price to cancel the disturbance 
effects. 

 
Fault Isolation 
For fault isolation, the goal is to develop a structured 
residual scheme. That is, the ith row of W, T

iw  is 
designed so that the zeros assigned for the ith row of 
the structure matrix can be implemented. This 
requires that 

#T i
i =w C 0                                          (18) 

where Ci#  contains those columns of the matrix C, 
which is [B  F], which belong to the faults assigned 
for zero response in the ith residual structure. On the 
other hand, the other part of matrix C, Ci, should 
satisfy 

T i T
i i=w C v                                         (19) 

Here each element of the vector vi must be nonzero. 
Obviously, in order to design the structured residuals 
that are able to isolate faults from sensor faults and 
process faults, and to be free from the effect of 
disturbances, Eqs. (17)-(19) should be satisfied. 
Finally, we mentioned there are ways to optimize 

T
iw  by using a max-min procedure (Xu and Kwan 

2003) so that the isolation residuals will be robust to 
measurement noise. 
 
Simultaneous Fault Isolation 
When more than one fault is present in the system 
simultaneously, the effect of these faults on the 
residuals will be added up. In other words, the 
combination of the effects is algebraic. It is possible 
to construct residual structures with multiple fault 
isolation. Table 2 shows an incidence matrix that can 
perform multiple fault isolation. There are 4 faults 
and 4 residuals. It can be seen that, for example, fault 
code [1 0 0 0] corresponds to fault x1 and [1 1 0 0] 
corresponds to simultaneous faults in x1 and x2. 

 
Table 2 Fault codes for multiple faults isolation 

 
     x1   x2    x3  x4   x1x2    x1x3     x1x4    x2x3   x2x4   x3x4  
r1    1    0    0    0      1      1         1       0       0      0  
r2    0    1    0    0      1      0         0       1       1      0 
r3    0    0    1    0      0      1         0       1       0      1 
r4    0    0    0    1      0      0         1       0       1      1 
 
We will use incidence matrices that are similar to the 
above one in our design. 
 
Fault Identification (Fault size estimation) 
After fault isolation, it is also important to determine 
the fault magnitude, which will tell us the seriousness 
of the fault. Here we present an approach to estimate 
the fault size. For simplicity, we do not consider the 
disturbance term in the next few paragraphs.  In the 
presence of disturbances, we may use the decoupling 
technique to decouple the disturbances.   
 
From Eq. (15), we have 

e(t) = Bx(t) = Cs(t) + ε(t)                               (20) 

where C = [B  F],  s(t) = [∆x(t)T  p(t)T]T, e(t) is the 
primary residual. If the ith fault has been detected and 
isolated, we only need to pay attention to ith column 
of the matrix C. That is, 

  e(t) = ci si (t) + ε(t)                                                

where si (t) could be either sensor faults or process 
faults. From the fault isolation step, we would have 
known what faults have occurred. There are two 
approaches to perform the estimation. For a single 
fault, one may directly compute its size as 

 ( ) ( ( ). / )i is t mean t= e c$    

Note that “./ ” means dot division. The estimated 
fault size has been smoothed by taking the mean 
value. As for the simultaneous faults, the Least 
Square (LS) estimation method should be used, 
which is given by 

1( ) ( ) ( )T T
i i i it t−=s c c c e$           

                     
3.3 Simulation Experiments 
 
Here we employ the tank model to demonstrate the 
above approach. We use 6 variables to illustrate the 
design procedures and performance. They are: L, Pu , 
P2 , v1, PNr, vNr , which are symbolized by x1  x2  x3  x4  
x5  x6, and f1 and f2 indicate type 1 and type 2 process 
faults.  We consider two types of process faults, the 
fault-transformation vectors are 

f1  =  [0.1  0   2.0×104  10   0   0] T 
f2  =  [0    0   3.0×104  10   0   0]T 

First of all, we obtain the residual model by PCA. 
The result indicates that the last three eigenvalues are 
very close to zero and the first three eigenvalues 
contribute most of the variance of the data set. Thus, 
in this case, m = 3, and the maximal number of zeros 
is m − 1 = 2. In order to isolate 8 different faults (6 



sensor faults and 2 process faults), we have to assign 
at least one zero for this purpose. Thus, we must 
reserve at most one zero for possible disturbance. 
Obviously, we are only able to decouple one 
disturbance. The disturbance direction vector is given 
by 

      k  =  [0.5  0  2.0×104  4.0×104  4.0×104  10  0  0]T 

We assume three types of sensor faults associated 
with L, P2 , vNr. The fault sizes are roughly 8%, 1.6%, 
and 1.5% of the respective average in the normal 
situation. For process faults, we simulate a # 1 
process fault, which is a step-likely fault and whose 
amount is 0.6, and a # 2 fault, which is an x2-likely 
fault. All the faults occur at sample 500. At the same 
time, we add one scalar disturbance in all the 
simulations. Its size is 0.5.  
 
As for simultaneous fault detection and isolation of 
sensor and process faults, the situation will be much 
more complicated than the single fault case. If one 
ignores sensor problems and tries to detect process 
faults, this will not work if both sensor fault and 
process occur. Similarly, if one ignores process faults 
and tries to detect sensor faults, this will not work if 
both sensor and process faults occur.  
 
Now we will use some simulations to illustrate the 
above points. Table 3 shows two structured residual 
designs. One is for sensor FDI by assuming no 
process faults and the other one is for process FDI by 
assuming perfect sensors.  
 

Table 3: Two incidence matrices for sensor and 
process FDI 

 
Sensor FDI design (assuming no process faults)    
                     x1   x2   x3   x4   x5   x6                              
                r1   0   1    1   1    1    1              
   r2   1   0    1   1    1    1             
   r3   1   1    0   1    1    1  

r4   1   1    1   0    1    1    
r5   1   1    1   1    0    1    
r6   1   1    1   1    1    0    

 
Process FDI design (assuming perfect sensors) 
                      p1      p2 
             r1       0     1 
             r2       1     0 

 
We consider one case of simultaneous faults: 
simultaneous #6 sensor fault and #1 process fault. In 
Fig. 5, we tried to detect and isolate sensor faults by 
assuming no process faults. It can be seen that all 
structured residuals went up. Hence we were not able 
to isolate the sensor faults. In Fig. 5, we also tried to 
detect and isolate the process faults by assuming 
perfect sensors. Since all residuals went up, we could 
not isolate these process faults. In order to detect 
simultaneous fault, we have to use the unified 
approach below. 
Here we design the structured residual as shown in 
Table 4. It can be seen that each fault (single or 
simultaneous) has a unique code or signature. 
 

Table 4: Incidence matrix for simultaneous FDI of 
sensor and process faults 

 
       x1       x2     x3      x4      x5     x6      f1     f2    x1f1  x2f1  x3f1 
 r1     0     1     1      1      1     1     0    1     0     1      1        
 r2     1     0     1      1      1     1     0    1     1     0      1        
 r3     1     1     0      1      1     1     0    1     1     1      0        
 r4     1     1     1      0      1     1     0    1     1     1      1        
 r5     1     1     1      1      0     1     0    1     1     1      1        
 r6     1     1     1      1      1     0     0    1     1     1      1        
 r7     0     1     1      1      1     1     1    0     1     1      1        
 r8     1     0     1      1      1     1     1    0     1     1      1        
 r9     1     1     0      1      1     1     1    0     1     1      1        
 r10     1     1     1      0      1     1     1    0     1     1      1        
 r11     1     1     1      1      0     1     1    0     1     1      1        
 r12     1     1     1      1      1     0     1    0     1     1      1        

 
       x4f1  x5f1   x6f1    x1f2    x2f2   x3f2    x4f2   x5f2   x6f2 
r1       1       1        1      1       1       1        1       1       1 
r2       1       1        1      1       1       1        1       1       1 
r3       1       1        1      1       1       1        1       1       1 
r4       0       1        1      1       1       1        1       1       1 
r5       1       0        1      1       1       1        1       1       1 
r6       1       1        0      1       1       1        1       1       1 
r7       1       1        1      0       1       1        1       1       1 
r8       1       1        1      1       0       1        1       1       1 
r9       1       1        1      1       1       0        1       1       1 
r10     1       1        1      1       1       1        0       1       1 
r11      1       1        1      1       1       1        1       0       1 
r12      1       1        1      1       1       1        1       1       0 

 
Three simulations have been performed: (1) the # 6 
sensor fault, (2) the #1 process fault, (3) the 
simultaneous #6 sensor fault and #1 process fault. 
The structured residual responses are shown in 
Figures 6-a, 7-a, 8-a, respectively. The results of 
fault size identification for them are shown in 
Figures 6-b, 7-b, 8-b, respectively. 
 
The residual plot in Fig. 6 responds [1  1  1  1  1  0  1  
1  1  1  1  0]T (in the row-counted order) and it 
indicates the #6 senor fault. The residual plot in Fig.7 
gives [0 0  0  0  0  0  1  1  1  1  1  1]T and it indicates 
the # 1 process fault occurs. The residual plot in Fig. 
8 gives [1  1  1  1  1  0  1  1  1  1  1  1]T and it 
indicates the #6 sensor fault and #1 process fault 
occurs simultaneously.  
 
 

4. CONCLUSION 
 
The key objective of this research is to develop a 
systematic scheme to extract fault features in the 
presence of sensor faults, process faults, and 
disturbances. We have successfully developed such a 
systematic scheme. In particular, we have achieved 
the following important results: 
 
A tank model that has some common characteristics 
to a NASA testbed has been developed. The model is 
nonlinear. 
 
 
                 Process fault 1 and sensor fault #6      



  
 

Sensor fault #6 and process fault #1 

                
 
Fig. 5: The performance is not good because we 

ignore either the process or sensor faults in our 
design. 

 

 
Fig. 6-a: Sensor fault #6  

 

 
 
Fig. 6-b: Fault size identification (sensor fault #6)   

 
A systematic FDI algorithm for simultaneous 
detection and isolation of sensor and process faults 
has been developed and verified. The algorithm 
works well even in the presence of unknown process 
disturbances. Simulations by using the tank system 
demonstrated the performance of this method. 

 

 
 
Fig. 7-a: Process fault #1 

 

 
 
Fig. 7-b: Fault size identification (process fault #1) 
 

 
 
Fig. 8-a: Simultaneous sensor fault #6 and process 

fault #1      
 

 
 
Fig. 8-b: Fault size identification (simul. sensor fault 

#6 and process fault #1)  
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