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1 Introduction

Cartesian-mesh methods [1] are perhaps the mogst promising approach for addressing the issues of flow solution
automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is
decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry
of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric
Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods
with an efficient computation of design sensitivities. We address this issue using the adjoint method, where the
computational cost of the design sensitivities, or objective function gradients, is egsentially independent of the
number of design variables. In previous work [2, 3], we presented an accurate and efficient algorithm for the
solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries.
Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based
on parametric-CAD models and the linearization of the coupling between the surface triangulation and the
cut-cells. . .

The objective of the present work is to extend our adjoint formulation to problems involving general shape
changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable
approximation of the objective function gradient. Motivated:by the success of mesh—perturbation schemes com-
monly usedin body-fitted unstructured formulatlons we propose an a,pproa,ch based on a local linearization
of & mesh-perturbatlon scheme similar to the spring analogy. This approach- arcumvents ‘most of the difficul-
, _tles that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides
- consistent approximation to the exact gradient of the discretized obJectwe function. A detauled gradient
"accumcy study is presented to venfy our. approach. Thereafter we focus on a shape optlmlzamon problem
for an. Apollo-like reentry capsule. The optimization beeks to enhance the lift-to-drag ratio of the capsule by

modifying the shape of its heat-shield in conjunction with a centex-of gravxty (c.g.) offset. This multipoint and
multi-objective optimization problem is used to demonstrate the overall effectiveness.of the: Cartesmn adjoint
method for addressing the issues of complex aerodynamic desipn. This abstract presents only a br'zef outline of
the numerical method and results; full details will be given in the final paper. e

2 Problem Formulation

The spatial discretization of the three-dimensional Buler equations uses a second-order accurate finite volume
method with weak imposition of boundary conditions, resulting in a discrete system of equations

R(Q,M) =0 - : | 5

where Q = [Q1,Qa,. - ,Q N7 is the discrete solution vector for all N cells of a given mesh M, and R is the flux
residual veetor. The influence of a shape design variable, X, on the residuals is implicit via the computational
mesh M = f[T'(X)], where T' denotes a surface triangulation of the CAD model. Hence, the gradient of a
diserete objective function J(X, M, Q) is given by
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where the vector 1 represents adjoint variables given by the adjoint equation, for details see [3]. The focus of this

work is on the evaluation of the partial derivative terms A and B in Eq. 2, which represent the differentiation

of the objective function and residual equations with respect to design variables that alter the surface shape.

3 Results

This example targets the optimization of a heat-shield shape for a reentry capsule. The objective of the op-
timization is to enhance the lift-to-drag ratio (L/D) of the capsule, thereby improving its trajectory control
for landing-site selection, and reducing the reentry load factor and heat rates. We cousider a two-point opti-
mization problem where the design Mach numbers are 10 and 25. High-temperature effects are approximated
by the use of an “effective” ratio of specific heats, -y, at each design point. We use 7 = 1.231 and v = 1.125,
respectively. The target value of L/D at each design point is set to 0.4. This value is based on the aerodynamic
characteristics of the symmetric Apollo capsule, which attained an L/D of 0.3 using a c.g. offset. We use a
similar c.g. offset. in_the present study. The parametric-CAD model of the capsule is shown on the left side of
Fig. 1. The heat-shield shape is controlled by a B-spline parameterization of its center-line. The design variables
are associated with three B-spline control points near the shoulder of the capsule. The pitch stability of the
capsule, i.e., trim and negative Cy,, slope, is ensured by introducing penalty terms in the objective function.
The angle of incidence at each design point is used to enforce the pitching-moment constraints, resulting in a
total of five design variables. In this abstract, the gradients are computed using finite differences. The results
are summarized by the two sets of images on the right side of Fig. 1, which shows pressure contours of the
baseline and optimal designs at the two operating conditions. The L/D is increased from 0.37 to 0.4 in 15
design iterations and the gradient is reduced by roughly 2.5 orders of magnitude.

Fig. 1. Shape optimization of reentry capsule: Pro/ENGINEER CAD model (left image); pressure contours for the
baseline and optimal shapes at M = 10 and M = 25 (center and right images, respectively).
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1 Introduction

Complex geometry remains a challenging issue facing the application of ad-
joint and flow-sensitivity methods in practical engineering design. Among the
most promising approaches for complex-geometry problems is the embedded
boundary Cartesian-mesh method [1]. In this approach, the discretization of
the surface geometry is decoupled from that of the volume mesh; which enables
rapid and robust mesh generation, and ultimately, an automatic analysis of
aerodynamic performance. The purpose of this work is to extend the automa-
tion and efficiency of Cartesian methods to the computation of aerodynamic
sensitivities for shape optimization problems.

The most common way to account for the effect of boundary shape pertur-
bations in the adjoint and flow-sensitivity formulations is via domain mapping
approaches. This involves the use of mesh-perturbation schemes in conjunction
with body-fitted structured or unstructured meshes. For local shape deforma-
tions, the extent of the mesh perturbations can be limited to just the bound-
ary cells [2, 3, 4]. The approach we propose here for non-body-fitted Cartesian
meshes is similar, but the boundary faces of the volume mesh maintain their
Cartesian orientation as the surface evolves. This approach permits the com-
putation of mesh sensitivities via a direct linearization of the boundary-cell
geometric constructors of the mesh generator. '

2 Discrete Adjoints and Flow Sensitivities

Our goal is to minimize a scalar objective function 7, such as drag, by ad-
justing a design variable X using gradient-based optimization. To compute
the gradient, d.7/dX, we use a discrete formulation. Hence, a variation in X
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influences the computational mesh M and the flow solution @, which satisfies
the three-dimensional Euler equations of a perfect gas. The spatial discretiza-
tion of the flow equations uses a cell-centered, second-order accurate finite
volume method with a weak imposition of boundary conditions, resulting in
a system of equations :
R(X,M,Q) =0 &

where M is an explicit function of the surface triangulation T: M = f [T(X )R
The gradient of the objective function J(X, M, Q) is given by
&7 _ 87 , 87 OMOT A 87 dQ
dX 06X ' OM 0T 0X '0QdX
A

(2)

The evaluation of the term dQ/dX, referred to as the flow sensitivities, is
obtained by linearizing Eq. 1
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The adjoint equation is obtained by combining Eqs. 3 and 2 and defining
the following intermediate problem
8RT v = 87" @
QT 0Q
where the vector 1 represents the adjoint variables. Details of the solution
method for Eqs. 3 and 4 are given in [5]. We focus on the evaluation of the
terms A and B in Egs. 2 and 3, which are discussed in the next section.

3 Shape Sensitivities

The flow equations are discretized on a multilevel Cartesian mesh. The mesh
consists of regular Cartesian hexahedra everywhere, except for a layer of body-
intersecting cells, or cut-cells, adjacent to the boundaries. An infinitesimal
perturbation of the boundary shape affects only the cut-cells. The sensitivity
of the residual equations, Eq. 1, to a variation in the surface shape requires
the linearization of the Cartesian face areas and centroids, the wall normals
and areas, and the volume centroids of the cut-cells. The crux of these com-
putations is the linearization of the geometric constructors that define the
intersection points between the surface triangulation and the Cartesian hex-
ahedra.

We explain the salient steps of the linearization using the example shown
in Fig. 1, where a Cartesian hexahedron is split into two cut-cells by the
surface triangulation. We require the linearization of the intersection points
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that lie on Cartesian edges, e.g., point A, and also those that lie on triangle
edges, e.g., point B. Focusing on point B, its location along the triangle edge’
Vo V1 is given by

B=Vy+s(V1=Vp) (5)

where s denotes the distance fraction of the face location relative to the ver-
tices Vp and Vj. The linearization of this geometric constructor is given by

gB W vy W

s
ax ~ax " °lax ~ax) t (- Wax ©)

A similar constructor is used for point A [6]. An example result of the lineariza-
tion is shown in Fig. 1 for the position sensitivity of Cartesian face centroids.
Note that the “motion” of the face cen-
troids is constrained to the plane of the L
face. An advantage of this formulation is
that the shape sensitivities of the triangu-
lation, i.e.,, V1 /80X in Eq. 6 and the term
0T /80X in Eq. 3, are independent of the
volume mesh sensitivities, M /OT. Put
another way, there is no requirement for a
one-to-one triangle mapping as the surface
geometry evolves. This allows a flexible in-
terface for geometry control based on tools
such as computer-aided design (CAD).

Fig. 1. Sensitivity of face centroids
(solid vectors) to perturbation of
vertex V1.

4 Verification Studies

4.1 Supersonic Vortex Problem

We investigate the error convergence rate of a representative objective func-
tion and its gradient on a model problem with a known analytic solu-
tion [6]. The problem involves isentropic flow between concentric circular
arcs at supersonic conditions, as shown in Fig. 2. The objective-function
is the integral of pressure along the outer arc, which
is similar to the lift and drag objectives used in aero-
dynamic design. We compute the gradient and the
sensitivities of the flow solution, Eq. 3, with respect
to the inlet Mach number, M;. The problem is solved
on a sequence of five nested Cartesian meshes.
Figure 3 summarizes the results. Figure 3(a)
shows the error convergence rates in the L; norm of g & 3. ‘Problem setup
density and its sensitivity to variations in M;. The (37, = 225 r; = 1 and
error convergence rate of the objective function and r, =1.382)
its gradient is shown in Fig. 3(b). The asymptotic
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Fig. 8. Error convergence (slopes are computed using the three finest meshes)

convergence rate of all errbrs, which is measured over the three finest meshes,
is just slightly over 2. These results verify the accuracy of the linearization
and the convergence of these methods to the continuous problem.

4.2 Shape sensitivities for the NACA 0012 airfoil

The objective-of this verification test is to study the convergence of gradi-
ents for design variables that alter the shape of the boundary. We consider
a subsonic flow over the NACA 0012 airfoil at My = 0.5 and o = 1 deg.
We investigate the sensitivity of lift to the angle of attack using two equiv-
alent approaches. First, we consider the influence of the angle of attack via
& change in the fatfield boundary coriditions, which does not alter the rela~
tionship between the mesh and the airfoil. We contrast this with an angle of
attack change implemented via a rigid-body rotation of the airfoil about its
trailing edge within a fixed mesh. The mesh-refinement study is performed on
a sequence of five nested Cartesian meshes for each airfoil orientation.

The results are summarized in Fig. 4. Referring to Fig. 4(b), note that the
differences in the gradients between the farfield and rigid-body rotation cases
are decreasing as the mesh is refined. Additional regression analysis of this
data indicates that the rate of convergence is first-order. This is a consequence
of the fact that the mesh perturbations are confined to only the cut-cells.
Unlike the supersonic vortex problem, a perturbation of the angle of aftack
via rigid-body rotation modifies the cut-cell boundary and introduces an-error
in the objective function proportional to second-order spatial discretization.
Nevertheless, the gradient values for the rigid-body rotation case, even on the
coarsest mesh of roughly 3,200 cells, are within 1% of the fine-mesh values.

5 Design Example: Reentry Capsule

We target the optimization of a heat-shield shape for a reentry capsule. The
objective of the optimization is to enhance the lift-to-drag ratio, L/D, of
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Fig. 4. Oonvergence ‘of lift and its grad_lent ‘with respect to angle of attack: imple-
mented via the farﬁeld boundary (“Farﬁeld”) and rigid-body rotation (“Shape”)

the capsule, thereby improving traJectory control for 1andmrr—81te selection,
and reducing the reentry load factor and heat rates. The Pro/ ENGINEER®
Wildfire CAD system is used to create the geometry. model. The capsule
configuration is shown in Fig. 5(a), where the design yariables are the three
labeled spline points of the heat—shleld center-lme The freestream conditions
are Mo, = 10 and o = 156.5 deg.; measured clockwise from the positive z-axis. .
High-temperature effects are approximated by the use of an “effective” ratio
of specific heats, v. We use v = 1.3. The initial (symmetric) capsule generates
an L/D of 0.37, which is attained using a center-of-gravity offset. The target
value of L/D is set to 0.4. The volume mesh contains roughly 665,000 cells
and we use 64 processors to solve the flow and adjoint equations.

~ Convergence of the optimization problem is shown in Fig. 5(b). The target
L/D is reached within five design iterations and the Ly norm of the gradient is
reduced by roughly four orders of magnitude. The initial and final heat-shield
shapes are shown in Figs. 5(c) and 5(d), respectively. The shape modifica-
tions are relatively minor, yet the improvement in L/D is 8%. The wall-clock
time per design iteration is approximately 11 minutes. This time includes the
regeneration and triangulation of the part, as well as the flow solution and
adjoint gradient computation. We emphasize that for probleins with more
design variables, the design-cycle time would remain essentially constant.

6 Conclusions

We have presented an approach for the computation of aerodynamic shape
sensitivities using a discrete formulation on Cartesian meshes with cut-cells at
the wall boundaries. The verification studies show that the convergence rate
of gradients is second-order for design variables that do not alter the bound-
ary shape, and is reduced to first-order for shape design variables. This is a
consequence of confining the mesh sensitivities to the cut-cells. The design
example demonstrates the effectiveness of the new approach for engineering
design studies that require a fast turn-around and include CAD-based geom-
etry, complex flow, and many design variables.
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