Intelligent Sensors and Components for On-Board ISHM

F. Figueroa, J. Morris
(NASA-Stennis)

D. Nickles, J. Schmalzel,
D. Rauth (Rowan U.)

A. Mahajan, L. Utterbach, C.
Oesch (Southern Illinois U.)

AIAA Session
46-SCP-4
10 JUL 2006
Outline

- Motivation
- ISHM
- Intelligent Components
- IEEE 1451
- Intelligent Sensors
- Application
- Future Directions
Origin:

Support rocket engine test mission with highly reliable, accurate measurements.
New Needs: Constellation Systems

Aries V:
Cargo Launch Vehicle

- 25-mT payload capacity
- 2-Mlb gross lift-off weight
- 309 ft in length

Aries I: Crew Launch Vehicle

- Derived from current Shuttle reusable Solid Rocket Motor Booster (SRM/B)
- Five segments / Polybutadiene Acrylonitrile (FBAN) Propellant
- Recoverable
- New Forward Adapter

Upper Stage
- 293-kib Liquid Oxygen/Liquid Hydrogen (LOX/LH2) Stage
- 5.5-m Diameter
- Aluminum-Lithium (Al-Li) Structures
- Instrument Unit and Interstage
- RCS / Roll Control for First Stage flight
- CLV Avionics System

Upper Stage Engine
- Saturn J-2 Derived Engine (J-2X)
- Expendable

First Stage
- Core Stage
 - LOX/LH2
 - Five RS-68B Engines
 - Al-Li Tanks/Structures

Lunar Habitat

Composite Shroud
Ascent Stage
Descent Stage
Earth Departure Stage
- LOX/LH2
- One J-2X Engine
- Al-Li Tanks/Structures

Interstage
Five Segment RSRBs

RELEASED - Printed documents may be obsolete; validate prior to use.
System-of-System
Integrated Systems Health Management (ISHM)
R&D PROGRAM: Co-Development of a Centralized G2-based IIHMS System with Highly Autonomous Sensors

High Level Controller

Processes or Systems

Highly Autonomous Sensors

P1 P2 ... Pi

S1 S2 ... Sj

Process/System Bus

Sensor Bus

G2 ISHM

Conventional Sensors

Highly Autonomous Sensors

Smart Sensors

(Hardware, Software)

Ap Code

(MATLAB)

Development Path

RELEASED - Printed documents may be obsolete; validate prior to use.
Key Components & Technologies

- SSC Test environment
 - Production and developmental rocket engine testing—many different facilities, many sensors and actuators
 - Long documentation history of transducer/actuator failures
 - Physical model opportunities—e.g., Trailer-mounted test stand (TMTS) for development/prototyping and validation

- Fault signatures
 - Network-enabled embedded processors w/ operating systems and high-level language development tools
 - IEEE 1451.2: Smart transducer interface for sensors and actuators—Transducer to Transducer communication protocol (TEDS)
 - IEEE 1588, Precision clock synchronization protocol for networked measurement and control systems

- Smart sensors
 - Knowledgeware system software—Gensym G2
 - Smart sensors
 - Network-enabled embedded processors w/ operating systems and high-level language development tools
 - IEEE 1451.2: Smart transducer interface for sensors and actuators—Transducer to Transducer communication protocol (TEDS)
 - IEEE 1588, Precision clock synchronization protocol for networked measurement and control systems

- Physical model opportunities—e.g., Trailer-mounted test stand (TMTS) for development/prototyping and validation

- Long documentation history of transducer/actuator failures

- Network-enabled embedded processors w/ operating systems and high-level language development tools

- IEEE 1451.2: Smart transducer interface for sensors and actuators—Transducer to Transducer communication protocol (TEDS)

- IEEE 1588, Precision clock synchronization protocol for networked measurement and control systems

- Knowledgeware system software—Gensym G2

- Smart sensors
Smart Sensor

STIM

1451.x device

TEDS

NCAP or Host

Software

Network

TEDS: Manufacturer, S.N., Cal date, Calibration factors

+ HEDS: Health parameters-
Bandwidth, Max rise time, etc.

Smart Sensor ≡ Sensor + SC + DAQ + Comm + Diagnostics
IEEE-1451 Model of Smart Sensor: STIM <-> NCAP

STIM: Smart Transducer Interface Module
TII: Transducer Independent Interface
NCAP: Network Capable Application Processor

XDCR + ADC
TEDS
HEDS

Network
Prototype Smart Sensor Arch:

- ADC, Cygnal C8051F300, Etc.
- iButton
- TEDS & HEDS
- Type K
- TC Signal Conditioning & Health Monitoring
- AD595
- Embedded Processor & Software (OS + Ap)

ADC

I2C, SPI

Wireless

Data + Health

Test Stand Data

10BaseT

TCP/IP

STIM & NCAP

PC: Process, IIHMS Analysis Support (MATLAB)

IIHMS G2

PC: Sensor IEF, IDM

Release - Printed documents may be obsolete; validate prior to use.
Sensor Architecture

- Embedded processor architecture
 Z-World Rabbit 2000
- Embedded operating system
 - Dynamic C
 - MicroC/OS-II (FAA RTCA DO-178B)
- Sensor system partition (mono-, multi-processor)
 - Redundant EP architecture
- Library functions
 - Network, Basic math, I/O
 - Health assessment
Generic Smart Sensor

Ethernet Core NCAP + Custom STIM piggy-back card

Sensor function:
3-axis Accelerometer
Smart Sensor Issues

- Uncertainties of smart sensors
 - Uncertainty in data domain
 - Uncertainty in the time domain

- Health-Enabled smart sensors
 - Evolving catalog of fault behaviors
 - Algorithms for health assessment
SSC Test Environment: Discrepancy Reports (DRs)

- Rigorous method of documentation to identify and solve problems—especially sensor/actuator failures
- Complete files available for test stands
- DR Review methodology
 - +150 DRs reviewed/summarized from E1 focusing on sensor problems and descriptions
 - Failure ("health") descriptors (Aerospace Corp.)
Sample DR

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Sensor</th>
<th>Behavior Description</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>8/29/2000</td>
<td>TE-202-IGM</td>
<td>Reads over scale entire duration of recording</td>
<td>Replaced amp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-103B-CHM</td>
<td>Reads over scale entire duration of recording</td>
<td>Checked connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-103B-INJ</td>
<td>Becomes very hashy at T+1s. Possible loose conn.</td>
<td>Checked connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-103E-INJ</td>
<td>Reads over scale entire duration of recording</td>
<td>Checked connections: Swapped amp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-103L-INJ</td>
<td>Reads around -260F entire duration of rcd. Very noisy</td>
<td>Checked connections: Reconnect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-104-CHM</td>
<td>Reads opp dir of TE-105-CHM and gets noisy at T+2s</td>
<td>TC wired backwards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prob. Has TC leads swapped and a loose connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-203A-INJ</td>
<td>Should be close to 204B. It goes in the opp. Direction</td>
<td>MSID file error, wrong units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-204A-INJ</td>
<td>Appears to be identical data to TE-204B-INJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE-204B-INJ</td>
<td>Appears to be identical data to TE-204A-INJ</td>
<td>Wrong filename</td>
</tr>
</tbody>
</table>

Sample fault behavior descriptions

- Overscale
- Hashy, Noisy
- Readings deviate from expected
 - Polarity
 - Value
- Suspected alias
Summary of Typical Fault Behaviors

- Limits (signal, noise) - (High, Low)
- Saturation (High, Low)
- Bandwidth (signal, noise)
- Spike noise limit
- Attack, t_r (Max, Min)
- Decay, t_f (Max, Min)

- Nominal values (Mean, Variance)
- Alias
- Impossibility
- Instrumentation
 - Flat
 - Static (offset) error
 - Gain (slope) error
Fault Behaviors Modified by Phase

- Condition faults and values modified by context of the measurement—i.e., the state of the process or system modifies interpretation of signal/fault properties
- Example system state diagram
 - Idle
 - Pre-test (chill down)
 - Test
 - Post-test
 - Maintenance
 - Abort
Example Fault Behaviors: Condition

- Impossible
- +Saturation
- -Saturation
- Noise
- Attack Max/Min
- Expected
- Decay Max/Min
- Spike

RELEASED - Printed documents may be obsolete; validate prior to use.
Define, quantify, and model condition codes for each phase

Example: During **Idle**, expect Max/Min Attack/Decay to be function of environmental forcings; During **Pre-Test** chill down, expect Max/Min Attack/Decay to be function of internal (pipe flow) forcings.
Uncertainties of Smart Sensors

Problem: Shared references of existing data acquisition systems are replaced with distributed—non shared—references

1. Signal conditioning building (SCB) provides controlled environment for centralized data acquisition system (DAS) 2 that converts signals from test stand transducers such as thermocouples 3. A smart sensor would be placed on the test stand similar to existing 4-20 ma transmitters 4.
Timing

- Deterministic structure of conventional DAS makes time-stamping easy
- Nondeterministic networks supporting smart sensors makes time-stamping difficult
- New standard, IEEE-1588
IEEE-1588

- For spatially-localized networks (e.g., Test stand)
- μs to sub-μs accuracy
- Applicable to high- and low-end devices
- Local oscillators are synchronized to reference oscillator(s) by measuring network transport delays
Recommendations & Future Work

- Development
 - Expert system (G2)
 - Baseline smart sensor (incl. HEDS)
 - Network issues

- Test support
 - Smart sensor evaluation (Vref, Time)

- Application
 - Lab
 - Field
Recap: G2-centric View

For now, no trusted links to SSC net.
Task: Models

- Sensor data fusion and health assessment
 - Artificial Neural Nets (ANNs)
 - Wavelet transforms for feature extraction
- Models for failures; methods for detection
Smart Sensor Development

- Design/Implement smart sensor suite
 - Smart sensor architecture
 - TEDS/HEDS
 - Selected smart sensor
Task: HEDS Extensions to IEEE-1451

Data Structure Model for IEEE-1451

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Description</th>
<th>Type</th>
<th>No. of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data structure related data sub-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Extension: TEDS length</td>
<td>U32L</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Extension TEDS ID Number</td>
<td>U16E</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Extension TEDS version number</td>
<td>U16E</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Application related data sub-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fields 4-8 repeat for each health condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Phase code</td>
<td>U8C</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Condition code</td>
<td>U8C</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Detection algorithm + arguments</td>
<td>STRING</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>Data integrity data sub-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Checksum for the extension TEDS</td>
<td>U16C</td>
<td>2</td>
</tr>
</tbody>
</table>
Adapting IEEE-1451 for HEDS

- Full catalog/analysis of exemplar sensor (and actuator) faults
- Codify fault conditions and system phases
- Define HEDS as TEDS extensions
- Submit to IEEE-1451 WG
Task: Networking

- Timing per IEEE-1588
- Modeling of large number of sensors

High Level Controller

Processes or Systems

N Smart Sensors

Bus

Highly Autonomous Sensors
Sensor Test Suite

- Smart Sensor development/validation suite
 - NCAP w/ TII to support arbitrary STIM
 - Characterization capability
 - ENOB: Oven capability (-55°C to +125°C)
 - Jitter: Timing capability