
Source of Acquisition 
NASA Goddard Space Flight Center 

For the Annual Review of Environment and Resources. 

The Earth’s Cryosphere: Current State and Recent Changes 

Claire L. Parkinson 

1 

Cryospheric Sciences BrmchKode 6 14.1 , NASA Goddard Space Flight Center, Greenbelt, 

MI3 2077 1 USA; email: Claire.L.Parkinson@nasa.gov 

Shortened Title: The Earth’s Cryosphere 

Key WordsRhrases: Climate change, ice sheets, glaciers, sea ice, ice shelves, permaikost, sea 

level rise 

Corresponding author contact information: Claire.L.Paxkinson@sa.gov; phone: 30 1-6 14- 

5715; fax: 301-614-5644 



2 

Abstract. The Earth continues to have a third of the ice that it had at the peak of the last ice 

age, although that ice continues to decrease, as it has, overall, for the past 18,000 years. Over 

the last 100 years, the retreat signal has been especially strong in ice shelves of the Arctic and 

along the Antarctic Peninsula, with a more mixed signal elsewhere. For instance, since the 

early 1990s the massive Greenland and Antarctic ice sheets have thinned along the coasts but 

thickened in the interior, and since the late 1970s sea ice has decreased in the Arctic but 

increased (slightly) in the Antarctic. Major difficulties in the interpretations of the climate 

record come fiom the high interannual variability of most cryosphere components and the 

lack of consistent long-term global data records, the latter problem now being slowly 

remedied, in part, through satellite technology. 
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1 - INTRODUCTION 

Throughout the period of human existence, and for many millions of years before, the 

Earth has had a substantial cryosphere, with many and varied impacts on the Earth’s climate 

and its ecosystems. As the ice cover advanced equatorward and retreated poleward during the 

glaciaYinterg1acid cycles, coastlines changed, surface topography changed, and atmospheric 

and ocean circulations were forced to adjust. Plant and animal species throughout the 

immediate region of the ice cover were forced also to adjust, mostly by moving out of the way 

of the advancing ice and then, eventually, reoccupying areas after the ice retreated from them. 

Quite counter to common perceptions, the Earth still retains about one-third of the ice 

cover that it had at the peak of the last Ice Age approximately 18,000-20,000 years ago (1). 

Scientists have known for some time the basic qualitative impacts of the cryosphere, defmed 

as encompassing the frozen-water (ice or snow) and frozen ground (permafiost) on or just 

beneath the Earth’s land and ocean surfaces. Ice and snow are strong reflectors of solar 

radiation, reducing the amount of solar energy that is absorbed within the Earth system. They 

are strong insulators, restricting exchanges between the atmosphere and the underlying 

surface. They store water, in some locations in vast quantities, with the overall volume of land 

ice on Earth today being enough to raise sea level worldwide by approximately 70-80 m. 

They provide recreation and tourist possibilities and sometimes severe transportation hazards. 

Atmospheric circulation and composition are affected by the topography of the land ice and 

by sea ice’s restriction of evaporative and other chemical fluxes between the ocean and the 

atmosphere. Ocean circulations and salinity distributions are affected by the discharge of salt 

to the underlying ocean as sea ice forms and as melt water flushes through the ice, and also by 

the transport of relatively fresh water through ice dynamics. Icebergs present major hazards to 
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ships in their vicinity although also provide scenic beauty and sometimes much-needed fresh 

water. Permafi-ost affects the solidity of the ground, the ability of plant roots to penetrate the 

ground, and flows of heat and chemicals within the ground and between the ground and the 

atmosphere. As permafi-ost decays, considerable structural damage can result to buildings, 

roads, and other infrastructure built above the permafrost. Additional examples and details of 

the impacts of land ice (2, 3), sea ice (4, 5), lake and river ice (6, 71, ice shelves (8, 9), 

icebergs (1 0, 1 l), snow cover (12, 13), and permati-ost (1 4, 15) abound. 

This article reviews the current understanding of the extent of today’s cryosphere and 

the changes occurring in it (Section 2), then broadens the discussion to the coupled climate 

system, the issue of causation, and the inadequacy of the data record (Section 3). 

2. THE CRYOSPHERE TODAY AND ITS RECENT CHANGES 

The Earth’s cryosphere includes the following diverse components: snow cover; land 

ice, formed through the accumulation and consolidation of snow; sea ice, lake ice, and river 

ice, formed through the freezing o f  liquid water in oceans and seas, lakes, and rivers, 

respectively; ice shelves, sometimes formed as former land ice flows outward over water 

(losing its classification as land ice but remaining attached to the land ice upstream) and other 

times formed from sea ice and snow; icebergs, formed &om the breaking off of land ice or 

shelf ice into bodies of water; and permafrost, formed by the freezing of ground materials 
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where the ground temperature remains below 0°C for two or more yeas. Land ice is further 

divided into ice sheets (covering continent or near-continent sized areas) and mountain 

glaciers, the latter including ice caps, which cover large portions of mountains or even groups 

of mountains. This section is subdivided according to these main cryosphere components, 
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with the text in each case first describing the particular component, then describing the recent 

changes occurring in it. 

2.1 Land Ice 

The overwhelming majority of the Earth's ice resides in its two remaining major ice 

sheets, those overlying the continent of Antarctica and the island of Greenland. These ice 

sheets and the Earth's mountain glaciers are important not just because of the space they 

occupy and the effects of that occupation but also because as land ice decreases much of the 

reduced mass is added to the oceans, raising sea levels and potentially causing worldwide 

coastal damage. Consequently, particular interest lies in the mass balance of the various land 

ice masses. Mass balance is positive if the accumulation of mass, generally through added 

snowfall, exceeds the loss of mass, generally through melt, iceberg calving, and flow of land 

ice into ice shelves; mass balance is negative if the loss of mass exceeds the accumulation. 

2.1.1 Antarctic Jee Sheet 

The Antarctic ice sheet (Figure 1) is by far the largest mass of ice on Earth, spreading 

over an area of 12.4 x lo6 km2 and containing approximately 25.7 x lo6 km3 of ice (16), with 

m average ice thickness of approximately 2 km and much of the ice sheet having a thickness 

exceeding 3 km. Despite the fact that this massive amount of ice exists because of the 

accumulation and consolidation of snowfall, the precipitation rate in Antarctica is sufficiently 

low that much of the continent is technically a desert ( 17). However, the temperatures are cold 

enough [averaging about -34°C ( 1 S)] that almost all the precipitation is snow and there is little 

summer melting (17), with the result that the precipitation that falls tends to accumulate. 

The Antarctic ice sheet is far from static, as snowfall adds mass, the ice flows in 

response to gravity and other influences, substantial pieces frequently calve off at its outer 
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margins, and it experiences localized melt. As a result, its size and the geography of its outer 

magins are constantly changing, even if by only small mounts. Satellite mapping reveals a 

complex pattern of surface ice velocities and ice-margin advances and retreats (19). 

The ice sheet is divided into two uneven masses by the Transantarctic Mountains, with 

the bulk of the ice contained in the East Antarctic ice sheet, largely in the Eastern 

Hemisphere, and the remainder contained in the West Antarctic ice sheet, largely in the 

Western Hemisphere. Besides size, another key contrast between the East and West portions 

of the Antarctic ice is the fact that the East Antarctic ice is largely grounded above sea level 

while the West Antarctic ice is largely grounded below sea level, making the West Antarctic 

ice sheet likely more unstable and more susceptible to surges (20). The East Antarctic ice 

sheet is believed to have been relatively stable for millions of years, whereas the West 

Antarctic ice sheet is believed to have disappeared at least once within the last 600,000 years 

(18). 

Drainage fi-om the Antarctic ice sheet is predominantly through glaciers and ice 

streams, most of which flow into ice shelves (1 17). Ice streams are typically 100s of km long 

and dozens of km wide, and sometimes flow many times faster than an average glacier (18). 

This flow, however, can be decidedly intermittent, as illustrated by a 2003 report. of a “stick- 

slip” behavior of the’whillans Ice Stream flowing into the Ross Ice Shelf. This ice stream 

experienced quiet periods lasting 6-18 hours interrupted by rapid bursts (or slips) of ice 

movement at rates on the order of 1 m h-l, lasting 10-30 minutes and felt to be tidally 

con-trolled (21). 

, 

In view of its size, estimating overall (e.g., mass balance) changes in the,htarctic ice 

1 sheet has been difficult, although satellite altimetry and imaging provide a means for eventual 
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comprehensive records. Currently, it is uncertain even whether the Antarctic ice sheet as a 

whole is in a state of positive mass balance, negative mass balance, or equilibrium (e-g., 22, 

7 

23). However, satellite radar altimeter data covering 77.1% of the ice sheet from mid-April 

1992 to mid-April 2001 indicate that over that 9-yeax period the East Antarctic ice sheet had a 

positive mass balance of 17 f 11 Gt year-' and the West Antarctic ice sheet had a negative 

mass balance of -47 k 4 Gt year-', combining to an overall negative mass balance of -30 2 12 

Gt year-', equivalent to 0.09 mm year-' sea level rise, for the 77.1% of the Antarctic ice sheet 

covered by the satellite data (24). 

Because of the importance of ice streams to ice sheet drainage and the possibility that 

the West Antarctic ice sheet might be unstable, particular attention has been paid to the West 

Antarctic ice streams. In the latter part of the 20* century, much concern and effort centered 

on the flow of ice into the Ross Ice Shelf; and the inflowing Ross Ice Streams (originally 

lettered A-F from south to north along the eastern boundary of the Ross Ice Shelf; later 

renamed after individuals) were estixnated in 1987 as having a negative mass balance of -23 k 

15 km3 year-' (25). More recent and spatially comprehensive estimates show instead a 

positive mass balance mounting to approximately 26.8 Gt of ice per year for these same ice 

streams (26). This shift fiom a negative to a positive mass-balance lessens concern that decay 

in this region is likely to precipitate a massive outflow and significant sea level rise. Concern - 
subsequently has centered on the region of the Thwaites and Pine Island glaciers (lOOOW- 

1 10°W), which show evidence of thinning, at an overall rate of about 1 m year-' during the 

199Os, and associated retreat of the grounding line (where the ice sheet loses contact with the 

underlying ground), at a rate of about 7.2 km year-' (27). The Pine Island Glacier, with the 

largest discharge of any West Antarctic ice stream, at 75 Gt year-', thinned by up to 1.6 m 
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yea.? between 1992 and 1999 (28). Total mass losses for the Pine Island and Smit.h/Thwaites 

systems over the period from mid-April 1992 to mid-April 2001 are estimated at 17.2 2 1.4 Gt 

year-' and 45.6 r 1.4 Gt year-', respectively, fi-om satellite radar altimetry (24). 

Along the Antarctic Peninsula, juning north toward South America, glacier retreat has 

been dominant over the past several decades. Of 244 peninsula glaciers considered by Cook et 

al. (29), 87% retreated overall from the mid-20* century (average record start: 1953) through 

2004, with advances more common through 1964 and retreats more common since 1964, and 

with a general geographic tendency for the predominance of retreat to advance southward. 

Still, the individual glaciers fluctuate between advances and retreats, and the retreat 

percentages for shorter time periods are less than the 87% figure for the full period. In the 

most recent 5-year period of the record, 2000-2004,75% of the glaciers were in retreat (29). 
- 

2.1.2 Greenland Ice Sheet 

The Greenland ice sheet (Figure 2) covers an area of 1.7 x 106 km' and contains 

approximately 3 x lo6 km3 of ice (on the order of one-tenth the volume of the Antarctic ice), 

with an average ice thickness of about 1.6 km (17). Averaged over the ice sheet, the snow 

accumulation each yeas is approximately 0.3 m, more than twice the spatially averaged 

accumulation on Antarctica (17). Furthermore, roughly half the Greenland ice sheet 

experiences summer melting at the upper surface (I 7). Another contrast with the Antarctic ice 

sheet is that around much of the island, the Greenland ice sheet does not extend to the coast 

and so in those locations does not have ice shelves, although a few ice shelves exist along the 

north and northeast coasts. Much of the flow from Greenland emerges through outlet glaciers 
r- 

that tend to be much narrower but flow much faster than the primary outlet glaciers in 

Antarctica (17). In fact, the JaErobshavn glacier on the west coast of Greenland (69*N, 5O0Vc3 
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has the fastest average speed of any land ice on Earth, with an m u a l  velocity of 8 km year-' 

(1930). 

During recent yeas, repeat aircraft surveys have indicated that the Greenland ice sheet 

has, overall, been losing mass at low elevations while being in approximate balance for 

elevations above about 2000 m. From aircraft laser altimeter surveys undertaken in 1993/94 

and 1998/99, at low elevations some local thickening occurred but thinning predominated, 

with the thinning exceeding 1 m year-' in many areas and reaching 10 m year-' near the 

terminus of the Kangerdlugssuaq Glacier in southeastern Greenland (31). In contrast, at 

elevations above 2000 m, the pattern of thinning and thickening was more evenly mixed, with 

thickening of approximately 14 f 7 mm year-' in the north &d thinning of approximately 1 1 f 

7 mm year-' in the south (32). Repeat aircraft surveys in 2003 yielded further low-elevation 

thinning between 1997 and 2003, with an increase in the rate of ice loss from about 60 km3 

year-' for the 1993/4-1998/9 period to about 80 kzn3 year-' for the 1997-2003 period (33). 

Combining satellite radar altimeter data for 1978-1988, aircraft laser altimeter data for 1993- 

1999, and volume budget calculations representing the past few. decades, Thomas et al. (34) 

fmd overall thickening in the southwest of the ice sheet, thinning in the southeast, and a 

balance to within 10 mm year-' for high elevations. 

Satellite radar altimeter data, covering 90% of the Greenland ice sheet over the period 

mid-April 1992 to mid-October 2002 and used in conjunction with airborne laser altimeter 

surveys of the margins, confirm thinning at the edges of the ice sheet. However, these data 

yield a growth at the higher elevations that actually outweighs the low-elevation thinning, 

producing a positive mass balance for the ice sheet as a whole. Specifically, the overall mass 

balance for Greenland over the 10.5 years of the satellite data record is calculated to be +11 f 
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3 Gt year-', equivalent to a 0.03 mm year-' sea level fall (24). Both the thinning at the 

margins, f?om increased melt, and the thickening inland, from increased snowfall, are viewed 

as expected responses to climate warming (24). The distribution of melt on the ice sheet has 

been mapped for the years 1979- 1999 using satellite passive-microwave data, and a positive 

trend of approximately 1% year-' has been found in the total melt area (35). 

2.1.3 Mountain Glaciers 

Mountain glaciers exist scattered around the globe in all latitude zones, with 

increasingly high elevations generally required for the ice in progressively lower latitudes. 

Areally, the land ice outside of the Greenland and Antarctic ice sheets totals approximately 

785,000 lan2 (3). Of this, approximately 582,000 km2 are in the Northern Hemisphere, 

202,000 km2 in the Southern Hemisphere. In the Northern Hemisphere, the distribution breaks 

down as: 151,433 lun2 in the Canadian Arctic Archipelago, 120,680 km2 in Asia, 92,356 km2 

in the islands of the Arctic Ocean, 76,200 km2 in Greenland outside of the Greenland ice 

sheet, 74,600 km2 in Alaska, 49,660 km2 in North America outside of Alaska and the 

Canadian Archipelago, and 17,290 km2 in Europe. In the Southern Hemisphere, the 

distribution is: 169,000 km2 in Antarctica outside of the Antarctic ice sheet, 25,000 km2 in 

South America, 7,000 km2 on subantarctic islands, 1,160 km2 in New Zealand, 6 km2 in 

Afiica, and 3 km2 in New Guinea, Irian Jaya (3). To gain a sense of how much ice is involved, 

consider that even in AErica, with its slim 6 km2 areal total, the south-facing wall of ice of 

Mount Kilimanjaro's northern icefield is still imposing, at approximately 25 m high (36). 

Broad ranging historical information, drawings, photographs, and satellite imagery of 

many of the Earth's glaciers can be found in the 1 1-volume Satellite Image Atlas of Glaciers 

of the Work? (2)- A further effort currently underway to inventory and assess the state of the 
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Earth’s land ice is the international project entitled Global Land Ice Measurements from 

Space (GLMS). The GLMS project is centered largely on satellite data from the Enhanced 

Thematic Mapper Plus on Landsat 7 and the Advanced Spacebome Thermal Emission and 

Reflection Radiometer on Terra and aims to create a much more comprehensive and 

homogeneous data base on the Earth‘s glaciers than currently exists (37). In the meantime, the 

existent record is f a  from complete or homogeneous. 

Few of the Earth’s more than 160,000 glaciers have any scientific records, and even 

fewer have records appropriate for studies of climate change. For instance, only 246 glaciers 

liave mass-balance records for any year within the extended period 1946-1995, only 86 of 

those have a record length of at least 10 yews (38), and only about 40 glaciers have 

continuous mass balance measurements for a period of at least 20 years (39). Furthermore, 

glacier measurements have often been done based more on ease of access or the importance of 

the specific glacier for the hydroelectric industry than on the representativeness of the selected 

glaciers (38, 39). Nonetheless, despite the limited measurements, the evidence that exists 

suggests widespread retreat of glaciers both over the past few decades and over the past 100- 

200 yews. For the glaciers with data, most have lost mass, overall over the past several 

decades, although all glaciers fluctuate in their behaviors and at any time some glaciers are 

gaining mass while others are losing mass- 

Despite the absence of a globally comprehensive record, several studies have attempted 

a global view by examining selected records from around the globe. Oerlemans (40) analyzes 

records from 169 glaciers, 93 from the European Alps and.the rest more widely distributed, 

and reports a decrease in average length of the glaciers starting in about 1800 and continuing 

nearly unabated to-the end of his record in 2000. Of the 36 glaciers with records for the 1860- 
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1900 period, 35 of them retreated during that period; and of the 144 glaciers with lrecords for 

1900-1980, 142 of them retreated during that period (40). Braithwaite (38) examines the 

available mass-balance records for 11 regions around the globe for the years 1980-1995, 

'fmding predominantly negative mass balances (except in Scandinavia, the Caucasus, and the 

Altai mountains) but no trend toward either more or less negative mass balances over the 

course of the 15 years. Dyurgerov and Meier (41) examine the period 1961-1997, finding 

considerable variability both spatially and temporally but overall a global reduction in volume 

of mountain glaciers averaging 100 km3 year-'. They note in particular the contrast between 

glaciers ia dry regions, which tended to contribute to the overall negative mass balance, and 

glaciers in moist maritime regions, many of which instead grew over the 196 1 - 1997 period. 

Regional studies reveal additional details, although with a mixture of temporal and 

spatial scales. Aircraft surveys of 67 glaciers in Alaska and nearby Canada indicate an 

average thickness change of -0.52 m year-' between the mid-1950s and the mid-1990s7 with 

fewer than 5% of the glaciers experiencing thickening. Later repeat aircraft surveys of 28 of 

the 67 glaciers indicate continued and accelerated thinning, with an average rate of 1.8 m 

year-' thinning from the mid-1990s to 2000-2001 (39). The latter result, when extrapolated to 

all the Alaskan and nearby Canadian glaciers corresponds to a sea level equivalent of 0.27 +: 

0.10 mm yew-' (39). Further east, repeat aircraft surveys over the major ice caps of the 

Canadian Arctic Archipelago in 1995 and 2000 reveal thickening (averaging about 5 cm year- 

') or little change above 1600 m elevation but an outweighmg of this by thinning, in general, 

below 1600 my with a total regional mass balance for the archipelago ice estimated at -25 km3 

year-', equivalent to 0.064 mm yew-' sea level rise (42). The most pronounced thinning was 

on southern Baffin Island's Barnes ice cap, at over 1 m year-' (42). 
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- For the period 1961-1990, the glaciers in Asia, North America, and the Arctic islands, 

overall, were found to be losing mass (8, 43), but the glaciers of Europe, overall, were found 

to be growing, especially in the western mountain regions of Scandinavia and in portions of 

Switzerland (43). Iceland and Scandinavian glaciers gained mass in the 1960s to 199Os, then 

started losing mass (44). From a longer perspective, the Europe volume of the Satellite Image 

Atlas of Glaciers of the World reveals overall retreat of European glaciers in the lgth and 20th 

centuries, although,with each glacier and regional grouping of glaciers showing its own 

pattern of fluctuating advances .and retreats. For instance, Italim glaciers predominantly 

retreated from the 1930s to the 1960s, then advanced afterwards (2). 

In the tropics, Qori Kalis, the largest outlet glacier of the Quelccaya ice cap .in Peru, 

retreated markedly from 1963 to 2000, and the retreat accelerated over that time period, with 

the exception of a stall in 1991-1993 thought to have been influenced by the 1.991 eruption of 

Mount Pinatubo (45). In Africa, the ice fields of Mount Kilimanjaro, Africa’s highest 

mountain, lost 80% of their area between 1912 and 2000, with a remaining ice cover of only 

2.6 km2 by 2000 (36, 46); and the ice fields of Mount Kenya lost nearly 40% of their area 

between 1963 and 1987 (47). More generally, tropical glaciers in South America, Africa, and 

New Guinea appear to have experienced widespread although nut uniform retreat since the 

mid- 19& century, near the end of the Little Ice Age (LIA) (36,48). Retreat, overall, appears to 

have been strong in the second half of the 19& century, to have slowed in the early 20* 

century, with some glaciers advancing back close to their LIA extents, and to have dominated 

again in the 1930s-1950s. The 1960s and 1970s witnessed some notable advances, followed 

by a reemergence of dominant retreat in the 1980s and 1990s (48). 

2.2 FloatinP Ice 
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Volume-wise, the Earth's floating ice is quite minor versus its land ice; and because the 

floating ice is already displackg the same volume of water as the volume it would have when 

melted, changes in floating ice are not relevant to sea level. However, areally, floating ice is 

considerably more expansive than land ice, directly affecting a much larger area in terms of 

the reflection of solar radiation and the insulation between the underlying surface and the 

atmosphere; and the floating ice has major impacts on local and regional climate, ecosystems, 

and human activities despite its lack of impact on global sea level. Of the floating-ice 

components of the climate system, by far the most areally expansive is sea ice. 

2.2.1 Sea Ice 

Sea ice covers substantial ocean areas in both polar regions at all times of the year, 

although with large seasonal cycles and quite noticeable variability from one year to another. 

In the Northern Hemisphere, ice extents (areal coverages of ice) typically range from a 

minimum of approximately 7 x lo6 km2 in September to a maximum of approximately 15 x 

lo6 km2 in March, with the summertime ice extending over most of the Arctic Ocean and 

much of the Canadian Archipelago and the northernmost Greenland Sea and the wintertime 

ice extending throughout the Arctic Ocean, Canadian Archipelago, Hudson Bay, Baffm Bay, 

and Kara Sea and also covering much of the Sea of Okhotsk, Bering Sea, Davis Strait, 

Labrador Sea, Greenland Sea, and Barents Sea (Figure 3; 49). In the Southern Hemisphere, 

ice extents typically range from a minimm of approximately 3 x lo6 km2 in February to a 

maximum of approximately 18 x lo6 km2 in September (49). The summertime Southern 

Hemisphere ice is confined largely to the western Weddell Sea, the southern Bellingshausen 

. and Amundspn Seas, and the southeastern Ross Sea, with much lesser ice amounts around the 

coast of East Antarctica. The wintertime Southern Hemisphere ice surrounds the'htarctic 
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continent, extending northward beyond 55"s in the far eastern Weddell Sea and to 45" - 55"s 

around most of the rest of the continent (Figure 3). 

Sea ice thicknesses are not nearly as well known as the ice distributions and extents, the 

latter being readily determined on a routine basis fiom satellite data (49). The ice thicknesses, 

however, are, like the ice extents, also critical for ice volume and mass determinations. Ice 

thicknesses traditionally have been obtained largely from in situ and submaxine data, 

providing measurements that are quite nonuniformly distributed in both space and time. With 

that qualifier, sea ice thicknesses in the central Arctic probably average somewhere in the 

range 2-4 m, and ice thicknesses in the surrounding seas and bays, where the ice tends to be 

seasonal rather than year-round, are predominantly less than 1 m, as are the sea ice 

thicknesses in the Southern Hemisphere, where over 80% of the ice cover is seasonal (e-g., 

50, 51,52, 53). 

In the Northern Hemisphere, sea ice coverage has decreased, overall, in the past several 

decades. The retreat in areal coverage since the late 1970s has averaged approximately 36,000 

km2 year-', or 3% per decade, for the ice cover as a whole (e.g., 49,54,55) and approximately 

7-9% for multiyear ice (ice that has survived a summer melt period) and late-summer ice 

(e-g., 56, 57, 58). Correspondingly, the length of the sea ice season has decreased (59) and the 

length of the melt season has increased (60). 

Northern Hemisphere sea ice, overall, has also thinned, although the magnitude of the 

thinning is less certain than the retreat, in view of the spatially and temporally incomplete 

thickness measurements and the added complications produced by the highly uneven nature 

of the ice cover and the fact that the ice floes are in motion. Submarine-based estimates of 

thinning of the Arctic Ocean sea ice include values as high as 40% from the period 1958-1976 



17 

to the period 1993-1997 (61), reduced to approximately 32% for the same period after 

incorporation of additional submarine tracks (62), but also include suggestions of no thinning 

between 1991 and 1997 (51) and substantial uncertainty in all periods. Surface-based 

measurements from Russian drifting ice stations suggest a thinning of approximately 10 cm 

(less than 4%) over the 20-year period 1971-1990 (63). In view of the uncertainties and wide 

range of published estimates, Holloway and Sou (64) examined the ice tbinning issue with a 

coupled ice/ocedsnow model, concluding that the large thickness decreases reported in some 

studies probably were not representative of the Arctic as a whole. Still, although the 

magnitude varies depending on location and time, the preponderance of evidence suggests 

that there has been at least some Arctic sea ice thinning over the past several decades. 

In contrast to the Northern Hemisphere sea ice, the Southern Hemisphere sea ice, which 

underwent a rapid retreat in the 1970s (65), experienced a slight areal advance of 

approximately 11,000 km2 year-', or approximately 1% per decade, since the late 1970s, as 

determined from satellite passive-microwave observations (49, 66, 67). In line with the 

advance, the Southern Hemisphere sea ice, overall, has also experienced a lengthening of the 

sea ice season, although spatial contrasts are marked, with a noticeable shortening of the sea 

ice season in the vicinity of the Antarctic Peninsula and extending well to its west, throughout 

the Bellingshausen and Amundsen seas (5). The limited amount of thickness data available 

for the Southern Hemisphere sea ice prevents determination of reliable ice thickness trends. 

2.2.2 Lake Iee and River Ice 

'Although the lake ice most f ~ l i a r  to most people is visible, seasonal, wintertime ice 

formed on lakes immediately in contact with the atmosphere, by far the thickest lake ice on 

Earth is probably on Lake Vostok at the bottom of the Antarctic ice sheet at about 77"S, 
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105"E. Lake Vostok is known so far only through remote sensing and is estimated though 

remote sensing to have an area comparable to Lake Ontario (68) and a lake-ice thickness of 

approximately 210 m (69). 

More directly visible, ice exists year-round on a few surface lakesin Antarctica and in 

the northern Arctic and, more COD.UIIQ~~Y, routinely forms each a u W w i n t e r  on lakes and 

rivers throughout the high and mid-latitudes of the Northern Hemisphere. Freeze-up on the 

seasonally ice-covered Northern Hemisphere lakes and rivers occurs as early as early 

September in the far north, with progressively later freeze-up dates typical as one moves 

farther south. However, freeze-up timings depend additionally on factors other than latitude, 

with, for instance, deeper lakes generally taking longer to cool to the freezing point than 

shallow lakes, other factors being equal (6). Ice seasons of more than 100 days are common 

on North American rivers as far south as 42"N and on Asian rivers as far south as 30"N (7). 

Lake and river ice thicknesses vary considerably, with the greatest thicknesses for 

seasonally ice-covered lakes and rivers, in the early 2lSt century, tending to be on the order of 

1.8-2.6 m in the Canadian High Arctic (6). Much greater ice thicknesses, even as high as 19 

m, can occur on perennially frozen surface lakes (Q- 

All lakes and rivers on which ice forms have significant interannual variability in their 

ice covers. However, analyses of the available records reveal multi-decadal trends on many 

lakes and riyers, both individually and regionally. For the period 1893- 1985, significant trends 

were found toward later fieeze-up dates and earlier breakup dates for river ice in western 

Siberia, the European portion of the Former Soviet Union, and the region of the Black Sea (7). 

The timing of break-up on many of the western Siberian and European Former Soviet Union 

rivers has advanced, on average, by 7-10 days per 100 years (7). In the case of the Lower Don 
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River, the length of the ice season has been reduced by a full month (7). However, rivers in 

central and eastern Siberia show generally weaker but still significant trends in the opposite 

direction: toward earlier freeze-up dates and later break-up dates (7). 

In North America, analysis of 39 lake and river records for the 150-year period 1846- 

1995 yields shorter ice seasons for 38 of the 39 records, with 14 of the 15 freeze-up records 

indicating later fieeze-up and all 24 of the break-up records indicating earlier breakup (70). 

Linear trends show freeze-up dates later, overall, by 5.8 2 1.9 days (100 years)-' and breakup 

dates earlier by 6.5 2 1.4 days (100 years)-', for a decrease of 12.3 days (100 years)-' in the 

duration of the ice cover (70). Another analysis of selected long-term lake-ice breakup records 

in North America obtained quite different results, fmding progressively later breakup dates 

from 1870 until 1940, followed by a stabilizing of the breakup dates from 1940 through 1971 

(71). Still, from the majority of records available, overall the tendency from the late 19th 

century to the end of the 20th century appears to have been toward shorter lake-ice and river- 

ice seasons in North America as well as in Eurasia (e.g., 7,70). In the case of the perennially 

ice-covered far northern lakes, two along the north coast of Ellesmere Island actually lost their 

ice covers temporarily in the summers of 1998 and 2000 and others in the vicinity 

experienced a considerable reduction in their ice areas (72). 

On a shorter, more recent time frame, Pavelsky & Smith (73) examine 1992-2003 

satellite data for the four largest rivers flowing into the Arctic Ocean. While not fmding 

strong trends for any of the four rivers, they do find systematic internannual variations that 

show a strong positive correlation between the Ob' and Yenisey Rivers, in Asia, and a strong 

negative correlation between the Asian Lena River and the North American Mackenzie River, 

with some suggestion of a connection, in the latter case, with the Pacific Decadal Oscillation. 
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2.2.3 lee Shelves 

At many locations around the Antarctic continent, totaling apprpximately 40% of the 

coastline (8), the massive Antarctic ice sheet extends outward over the surrounding oceans, 

forming glacially-fed ice shelves (Figure 4)- The largest of these is the Ross Ice Shelf, at 

approximately 525,000 Ism' in area and with thicknesses varying from approximately 1000 m 

at its landw&d edge to approximately 250 m at its seaward edge (74). The second largest is 

the Ronne-Filchner Ice Shelf, also exceeding 400,000 h' in area and having thicknesses of 

hundreds of meters. Altogether, ice shelves cover approximately 11% of the area of 

Antarctica (75). 

In the Arctic, there are no ice shelves comparable in size to the large Antarctic ice 

shelves, as the Arctic's main ice sheet, overlying Greenland, generally does not extend 

outward to the coast. In fact most of the Arctic ice shelves, along the northern Ellesmere 

Island and Greenland coasts, are not predominantly glacially fed, instead being formed fiom 

landfast sea ice, bottom accretion of additional sea ice, and overlying accumulation of snow 

(8; 76, 77). The largest of the Arctic ice shelves is the Ward Hunt Ice Shelf, located at 83"N, 

74"W on the north coast of Ellesmere Island and formed from sea ice (77). Smaller ice 

shelves on Ellesmere Island include some that are largely glacially fed, such as the Milne Ice 

Shelf, and others that have substantial glacial feeding and substantial sea ice growth, such as 

the Alfred Ernest Ice Shelf (76). When summed, however, all of the Ellesmere ice shelf areas 

total less than 1350 km2, miniscule in comparison to the Antarctic's Ross and Ronne-Filchner 

ice shelves (76). 

The Arctic ice shelves constitute one segment of the cryosphere in which a 20th century 

trend is unquestionable: these ice shelves underwent substantial decay (8). At the start of the 
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20* century, an Ellesmere Ice Shelf estimated at 7500 km2 - 8900 km2 in area extended along 

500 km of the northern Ellesmere Island coast and was described in detail by Robert Peary 

and other explorers (8, 76). This ice shelf bad largely disintegrated by the 1960s and by the 

end of the century was reduced to less than 20% of its former size, the remnants consisting of 

the Ward Hunt and other remaining small ice shelves along the coast (8, 76). The Ward Hunt 

Ice Shelf underwent a massive calving event in 1961-1962, losing half its mass in those two 

years (76). Although the ice shelf stabilized for a while after 1982, it experienced substantial 

further break up in 2000-2002, recorded by satellite synthetic aperture radar, helicopter 

transects, and in situ measurements, as initial small fractures lengthened, widened, and split 

the ice shelf (77). 

In the Southern Hemisphere, substantial ice shelf decay has occurred since about 1970 

along the Antarctic Peninsula, with a loss of over 13,500 km' in ice shelf area (78, 79), 

although has not occurred elsewhere around the continent. Along the west coast of the 

Peninsula, the retreats were preceded in some cases by advances in the mid-20* century, as 

the Miiller Ice Shelf expanded rapidly from the mid-1940s to the mid-1950s before decaying 

in extent by over a third from the mid-1950s to the mid-l990s, and the Wordie Ice Shelf 

experienced an expansion fi-om the late 193 Os to the mid- 1960s (78) before decaying by over 
- 

60%, from approximately 2000 km2 in 1966 to only 700 km2 in 1989 (8). In contrast, the 

George VI Ice Shelf, farther south along the Peninsula than the Wordie or Miiller shelves, 

retreated between 1949 and 1974 but remained largely stable from 1974 to the mid-1990s 

(78). The Wilkins Ice Shelflost 1100 km2 in the single month of March 1998 (79). 

On the east coast of the Antarctic Peninsula, the Prince Gustav channel Ice Shelf in the 

far north decayed by well over 50% and the Larsen A Ice Shelf to its south decayed by 
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approximately 50% between the mid-1940s and the mid-1990s (78). Larsen A lost an 

additional 1,300 h2 as it fiactured and disintegrated in a 50-day period in early 1995, with 

1000s of icebergs generated (78). The larger Larsen B Ice Shelf, just south of Larsen A, also 

suffered substantial losses in January 1995 (75), then collapsed further in March 2002, losing 

over 12,000 km2 of ice (80). 

One feared consequence of the loss of ice shelves is that these shelves might be 

buttressing land ice masses upstream and that the loss of the ice shelves might precipitate a 

massive outflow of land ice, causing enhanced sea level rise (81). This is of particular 

relevance in the Antarctic case in view of the massive amount of land ice. Although the 

inflow to the ice shelves along the Antarctic Peninsula is from Pgninsula glaciers and not the 

bulk of the Antarctic ice sheet, and there appears to be no immediate threat of massive decay 

of the larger and more critical Ross and Rome-Filcbner ice shelves, still it is sobering to note 

that tributary glaciers into the Larsen A Ice Shelf increased in velocity by up to three-fold in 

the 1995-1 999 period after the January 1995 Larsen A collapse (82) and that tributary glaciers 

into the Larsen B Ice Shelf increased in velocity by factors of 2-6 after the March 2002 Larsen 

B collapse (9, 79). The importance of the ice shelves in buttressing the upstream ice has been 

controversial (e.g., 83), but the events after the Larsen A and Larsen B collapses, including 

not just the acceleration of ice flow into the regions of collapse but also the lack of 

acceleration of two glaciers flowing into the remnant portions of Larsen By i-e., glaciers still 

buttressed by the ice shelf, strongly support the importance of the butkessing effect (9). 

2.2.4 Icebergs 

Thousands of icebergs calve into the ocean each year in both the Arctic and the 

Antarctic, amounting to over 300 km3 of ice per year in the Arctic and an estimated 2,600 km3 
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of ice per year in the Antarctic (84, 85). Depending on circumstances, the calving process can 

occur quite rapidly or can extend over many years, one example of the latter occurring along 

the Ninnis Glacier tongue in East Antarctica, which had a noticeable fiacture in 1989 but did 

not complete the calving process until January 2000, when an iceberg of area approximately 

800 km2 broke off (11). Debris within icebergs, useful in paleoclimate studies of marine 

sediments, tends to be concentrated in the bottom 3 m of the ice (84). 

The largest Antarctic icebergs are comparable in size to a small state in the United 

States, with many longer than 100 km. An iceberg larger than Delaware broke off the Rome 

Ice Shelf in 1998 (Iceberg A-138, approximately 150 km x 50 km) (85), and a much larger 

iceberg broke off the Ross Ice Shelf in March 2000 (Iceberg B-15, approximately 295 km 

long, up to 40 km wide, and 10,000 km2 in area; Figure 5) (10). B-15 is one of the largest 

icebergs ever recorded and is estimated to have originally had a thickness of approximately 

400 m and a total fiesh water content of 500-1000 trillion gallons (85). This iceberg 

precipitated a cascading sequence of impacts on the local environment and ecosystem that 

illustrates the impacts a large iceberg can have. By blocking the normal drift of sea ice, B-15 

resulted in heavy sea ice concentrations on its windward side, causing a substantial delay in 

the annual springtime phytoplankton bloom and thereby a substantial reduction in annual 

primary production, which spatially averaged approximately 40% below normal for the 

southwest Ross Sea. Animals up through the food chain were afTected, with local penguin 

populations having to alter their diet as well as their seasonal migration trajectories due to the 

iceberg presence and the altered sea ice coverage (10). Although icebergs divide and decay 

with time, they can remain sizeable for many years, as illustrated by Iceberg B-gB, which 
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calved from the Ross Ice Shelf in 1987 and was measured at approximately 97 km x 20-35 km 

in 1997 (11). 

Similarly to the case with Arctic versus Antarctic ice shelves, Arctic icebergs are 

considerably smaller than the largest Antarctic icebergs, rarely being longer than a few 10s of 

km. Among the Arctic icebergs are relatively large and flat versions called ice islands. These 

most commonly derive from the Ellesmere Ice' Shelf and are used on occasion for scientific 

and military research stations (8). The ice islands vary in area &om a few hundred m2 to a few 

hundred km2 (76). One of the smallest ever recorded was a 10 m x 11 m ice island off the 

north coast of Alaska, while one of the largest, named T-2, was 31.1 km x 33.4 km (76). 

Jef ies  (76) estimates a total of approximately 600 ice islands in the Arctic and surrounding 

waters from 1946 to 1992. Because of the nearly enclosed nature of the Arctic Ocean, the 

Arctic icebergs can float within the Arctic Basin for decades before emerging through Fram 

Strait into the warmer waters of the Greenland Sea and North Atlantic. 

Of most concern to humans are the icebergs that drift far enough south in the North 

Atlantic to reach the vicinity of major shipping routes. These often derive from the west coast 

of Greenland rather than Ellesmere Island or the east coast of Greenland. Because of their 

importance as potential hazards, there is a much better record of the icebergs near and 

upstream of major shipping routes than the icebergs elsewhere around the globe. In particular, 

the United States Coast Guard's International Ice Patrol (IIP) has since 1913, following -the 

1912 sinking of the Titanic, tracked icebergs that drift south of 52"N, the full patrol area being 

40-52"N, 3 9-57"W (www.uscg.miVlantarea/iip/General/mission.shtml), and icebergs in this 

vicinity have been tracked from radar tracking stations and satellite-tracked beacons (86). On 

average, approximately '600 sizeable icebergs arrive in the IIP patrol area each year, although 
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the recorded numbers have varied from 0 in 1996 to over 2,000 in 1984 (85, 86). Icebergs 

south of 48"N tend to be most numerous in the April-June time frame (86). Many of the 

icebergs reaching the IIP patrol area formed by calving from West Greenland into Baff i  

BayDavis Strait, sometimes flowing northward in the narrow, north-flowing West Greenland 

Current before turning west and then flowing south in the south-flowing western Baffin Bay 

and Labrador currents (86). Typical autumn and winter drift speeds of the south-flowing 

icebergs are 5-20 km day-' (86). 

When particularly large or numerous icebergs form, they often receive media attention. 

However, it is not known whether the frequency of iceberg calvings in.the past several years 

is unusual in any way (high or low), in view of the meagerness of the pre-satellite record in 

areas other than the IIP patrolled region of the North Atlantic. In the IIP region, there has been 

no prominent trend toward either more or fewer icebergs over the course of the nine-decade 

record (86). The decades of the 1950s and 1960s, near the middle of the record, had the 

fewest icebergs; and the decades after that had a few years with particularly high counts but 

also more years with low counts (under 200) than in the fxst half of the century (86). 

2.3 Snow Cover on Land 

Like sea ice, snow generally is a thin covering that spreads over large areas, reflecting 

solar radiation, insulating the underlying surface &om the atmosphere, and influencing the 

regional climate and ecosystems in numerous ways. Snow in the Southern Hemisphere is 

dominated by the perennial snow cover on the Antarctic continent, covering approximately 13 

x IO6 l a 2 .  The Northern Hemisphere contains much less perennial snow but approximately 

98% of the Earth's seasonal snow (87). 
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The seasonal cycle of continental snow coverage in the Northern Hemisphere is huge, 

typically ranging from a summer minimum of approximately 4 x lo6 km2 in August to a 

winter maximum of approximately 46 x lo6 km2 in January and February (Figure 6) (88,89). 

Over half (60-65%) of the Northern Hemisphere winter snow is in Eurasia, whereas most of 

the mid-summer snow is in Greenland (88). Large interannual variability exists, with, for 

instance, the Northern Hemisphere February snow extent varying between 40 x lo6 km2 and 

50 x lo6 km2 depending on year (15). Atmospheric circulation plays a major role in 

influencing snow extent and its variability, at least over North America in winter, although its 

impact has been found to be considerably less in springtime, during the ablation season (88). 

Northern Hemisphere snow distributions have been monitored from satellite visible 

andor infiared data since 1966, originally on a weeMy basis and now on a daily basis (89). 

Snow water equivalent, important for local fresh water supplies and flooding considerations, 

additionally requires snow thickness information, and this has been estimated for the period 

since October 1978 with satellite microwave data (89). Snow cover is in several ways more 

difficult to observe fiom satellites than sea ice is. When visible and/or infrared data are used, 

both snow and sea ice are obscured in the presence of a heavy cloud cover, but continental 

snow has the added complication that vegetation and manrnade structures can obscure the 

snow cover even in the absence of clouds. Furthermore, when microwave data are used, 

continental snow has the disadvantage that the background land is composed of markedly 

different natural and manmade surfaces, all compounding the microwave signal. Nonetheless, 

despite the complications, satellite data remain the primary mems of obtaining systematic 

large-scale data coverage. 
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Over the period of the satellite record, overall snow coverage in the Northern 

Hemisphere has declined, although with considerable interannual variability. Walsh et al. (1 5) 

indicate an approximate 10% decrease from 1972 to 2003, with decreases greater in Eurasia 

but present also in North America and with decreases greatest in spring and summer and 

insignificant in autumn and winter. Over shorter periods, Groisman et al. (90) report an 

approximate 10% decline in snow coverage from 1973 to 1992, and Armstrong & Brodzik 

(87) report an approximate 20% decline (0.2% year-') from late 1978 to early 1999. The 

calculated 2 1 -year trend in annual Northern Hemisphere snow extent from late 1978 to early 

1999 is higher, at 59,000 lun2 year-', or 0.26% year-', when determined from satellite visible 

data than when determined from satellite passive-microwave data, at 35,000 km2 year-', or 

0.17% year-' (87), reflecting uncertainties in the data sets, with, for instance, the passive- 

microwave data being less able to detect very thin snow (87) and the visible data being less 

able to detect snow under clouds. 

The spatially comprehensive satellite record of North American snow extent for the 

period 1972-1994 was extended back to the start of the 20th century by Frei et al. (91) by 

determining regions of coherent interannual fluctuations, then using linear regression to 

expand the local information from limited station data (in the United States and southern 

Canada) to regional coverage. Results suggest, for example, that February snow extent 

decreased from 1900 to 1930, then increased from the 1930s to about 1980, prior to again 

decreasing in the 1980s and 1990s. Results vary by month, with March snow extents 

increasing from the mid-1920s to the early 1950s, and decreasing since then. November snow 

extent increased slightly from the 1960s to 199Os, and March snow extent decreased from the 

1950s to the 1990s (9 1). 
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Over Russia, ground data from 119 irregularly spaced stations in the extensive 'region 

encompassing 30"-140"E and 5O"-7O0N yielded an overall 2.4% per decade increase in snow 

depth for the study period 1936-1983, with snow depths tending to increase north of 60"N, at 

an overall rate of 4.7% per decade, and to decrease south of 60°N, at the much lower overall 

rate of 0.8% per decade (92). In contrast, over much of Canada snow depths during winter and 

early-spring decreased over the 1946-1995 period, and over most of western Canada snow 

cover duration during spring and summer decreased over the s m e  period (93). 

2.4 Permaii-ost 

Permafrost underlies approximately one-fourth of the surface land area in both the 

Northern and Southern Hemispheres. In the Southern Hemisphere, this is ahnost entirely in 

Antarctica, underneath the Antarctic ice sheet, In the Northern Hemisphere, permafrost 

underlies the Greenland ice sheet, much of the ice of the Himalayas, Rocky Mountains, and 

other alpine regions, and also vast areas of unglacialed terrain (1 4), for a total areal coverage 

of approximately 26 x 1 O6 Ism2 (1 5). Permafiost regions are typically divided into two zones: 

a zone of continuous permafrost, where permafrost is pervasive throughout the region, and a 

zone of discontinuous permafrost, where the permafi-ost is intermixed with un$-ozen ground 

(14). The boundaries of the continuous and discontinuous permafrost zones follow annual 

temperature isotherms fairly closely, with, for instance, the boundary between the two zones 

typically having mean annual air temperatures between -6°C and -9°C (14). Precipitation, 

however, is also a factor (94), as a thick snow cover insulates the ground, making it less likely 

to form permafrost, and high summer rainfall contributes to local permafi-ost degradation. 

Continuous permafrost underlies most (including the entire northern half) of the 

Greenland ice sheet, with discontinuous permafi-ost underlying the rest of the ice sheet. 
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Continuous permafrost also spreads over much of Asian Russia, the northern 25% of Alaska, 

and northernmost Canada. Discontinuous permafrost spreads over much of the rest of Asian 

Russia, much of Mongolia, some of China, almost all of Alaska other than the region of 

continuous permafrost, and much of Canada (14). 

Permafrost thicknesses in the continuous zone are hundreds of m in much of the 

Canadian north (94) and range up to 1500 m in parts of Siberia (95). Thicknesses in the. 

discontinuous zone generally decrease equatorward (94). 

Throughout the unglaciated permafi-ost regions, there is a ground layer between the 

permafi-ost and the upper ground surface that fi-eezes in winter and thaws in summer; this 

layer of summer thaw is termed the “active layer” and is typically between about 2 cm and 2 

m thick (14). As permafrost thaws, the thawed portion generally becomes part of the active 

layer above the permafrost, so that the active layer thickens (e.g., 96), although in some 

regions there is a permanently thawed layer (a “talik”) between the permafrost and the active 

layer (14). 

Significant warming and degradation of Northern Hemisphere permafrost appear to 

have occurred over the last 50 years (15, 97), with reports of permafrost warming andor 

degradation in Alaska (98), western Canada (94), Europe (99), and Russia (96). Beilman et al. 

(94) report an average 39 km northward movement of the southern boundary of the 

discontinuous permafi-ost zone in western Canada in the 20* century; and Frauenfeld et al. 

(96) report a 20 cm deepening of the active layer (due to degradation of the top of the 

underlying permafi-ost layer) in Russia over the period 1956- 1990. 

However, permafrost warming has not occurred everywhere. Serreze et al. (100) report 

a mixture of warming and cooling. For instance, near-surface permafrost temperatures 
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increased in northern Russia from 1970 to 1990 but decreased in northern Quebec fiom the 

mid-1980s to the mid-1990s. Permafrost surface temperatures in northern Alaska and far 

eastern Russia show a cyclical variation with a period of a decade or longer, although 

superimposed on a 20* century warming trend (100). Nelson (95) also mentions local regions 

of permafiost cooling; in addition to the dominant warming trends. 

In considering permafrost temperature changes, it is important to recognize that 

atmospheric warming does not necessarily translate to permafi-ost warming and degradation, 

as snow cover insulation is an additional major factor in pennafi-ost development and 

maintenance. If snow cover decreases, insulation decreases and the underlying permafrost 

could get colder even with a rise in air temperatures (e.g., 101). In fact, the warming trend 

found in pemafi-ost in Switzerland displays high-amplitude interannual fluctuations that 

correspond more closely with snow cover differences than with air temperature differences 

3. DISCUSSION 

3.1 The Coupled Climate System and the Issue of Causation 

The changes in the cryosphere are integrally coupled with changes in other elements of 

the climate system. Several reviews have examined the coherent nature of a multitude of 

changes in the Arctic environment (e.g., 100, 102, 103). There is widespread recognition that 

many changes are occurring and many factors are involved but that cause and effect are rarely 

straightforward (in some instances resembling a “chicken and egg” dilemma). Serreze et al. 

(100) report overall Arctic warming, sea ice decreases, snow cover decreases, glacier mass 

reductions, terrestrial precipitation increases, northward migration of the tree line, a 
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lengthening of the growing season, and a pattern of permafi-ost warming in Alaska and Russia 

but cooling in eastern Canada. However, given the tempord and spatial patterns of the 

changes, the limitations of many of the data sets, and the deficiencies of the global climate 

models used to examine climate change, they are unwilling to interpret the changes explicitly 

as signals of enhanced greenhouse gas wanning. Other possible key factors in the changes 

include solax variability, the El Niiio//southern Oscillation, the North Atlantic Oscillation, and 

the broader Arctic Oscillation (1 00). 

Many additional studies also either athribute various of the cryosphere changes reported 

in Section 2 to one named oscillation or another or at least report strong correlations with 

these oscillations (e-g., 8, 70, 73, 88, 103). Furthermore, some cases that can appear to be a 

response to warming are not, such as the marked glacier retreat on Mount Kilimanjaro since 

the mid-l9& century, which was apparently predominantly due to a sharp drop in atmospheric 

moisture, starting around 1880, and was not accompanied by local warming (36). Glacier 

retreats elsewhere in the tropics since the mid-19* century might also be caused in substantial 

part by reductions in moisture (48); and permafrost thawing in Rusgia over the period 1956- 

1990 is more strongly correlated with snow depth than with air temperature, thicker snow 

producing more insulation, a deeper active layer, and reduced permafrost (96). 

Still, warming, which quite directly increases the likelihood of melt and decreases the 

likelihood of freezing, is at least a contributing factor in many of the reductions seen in the 

cryosphere in recent decades and has been asserted as the primary cause in many studies (e.g., 

40, 79, 94). It has also been implicated in some cryosphere increases, in particular in the 

growth of the inland ice of the Greenland ice sheet from mid-April 1992 to mid-October 
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2002, through the mechanism of increased ocean evaporation leading to increased snowfall 

(24). 

3 -2 The Inadequacv of the Record and Considerations for Future Research 

Some of the possible climate connections mentioned in the previous section will likely 

be eliminated, as invalid, once longer and more spatially complete records are obtained and 

the correlations are recalculated. In fact, the inadequacy of the observational record is a major 

issue for each of the cryosphere components: 

- In the case of land ice (Section 21), few of the Earth's approximately 160,000 glaciers 

have any mass balance records, and the mass balances of the Greenland and Antarctic ice 

sheets - critical in view of the approximately 68-70 m of sea level equivalent that they contain 

(16, 27) - remain uncertain even as to the sign of the balance. The Intergovernmental Panel 

on Climate Change 2001 report suggests that Greenland provided a slight positive 

contribution of 0.0-0.1 mm year-' to the 20* century's estimated 1.0-2.0 mm year-' sea level 

rise and that Antarctica had a countering effect, equivalent to a lowering of sea level by 0.0- 

0.2 mm year-' (16)- Satellite altimeter data suggest that more recently the respective balances 

instead show Antarctica with a slight positive contribution (0.09 mm yew-' fiom mid-April 

1992 to mid-April 2001, over 77.1% of the ice sheet) and Greenland with a slight negative 

contribution (0.03 mm year-' fiom mid-April 1992 to mid-October 2002, over 90% of the ice 

sheet), although aircraft altimeter data over Greenland show positive sea level contributions of 

0.15 mm year-' for the 1993/94-1998/9 period and 0.2 m year-' for the 1997-2003 period 

(Sections 2.1.1 and 2.1.2; 24, 33). The contrasts highlight not only the uncertainties but also 

the possibility that mass balance might vary considerably from year to year, including 
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changes in sign, in which case mass balance measurements might need to be made routinely 

over the full ice sheets for meaningful mass balance studies. 

- In the case of floating ice (Section 2.2), satellite data have provided a global record of 

sea ice distributions and extents since the 1970s, but there are far fewer data on sea ice 

thicknesses or on ice distributions and extents prior to the satellite record. Some lakes and 

rivers have much longer records, some exceeding 100 years, but the distribution of those is 

sparse. Nearly century-long iceberg records exist for the IIP patrol area in the North Atlantic, 

but iceberg records elsewhere are quite limited. Ice shelves are now being well monitored 

from satellites, although continual long-term records are not available. 

- In the case of snow cover on land (Section 2.3), satellite records, while hugely 

valuable, are hindered in several ways: snow cover can be hidden, e.g., under a forest canopy; 

cloud cover limits the visible data; the variety of background surfaces limits the microwave 

data; the microwave data fail to register very thin snow and are more appropriate, with current 

algorithms, for dry than for wet snowpacks. Long-term in situ records are far more numerous 

than for sea ice, but are, like those for lake and river ice, quite sparsely distributed. 

- In the case of permafrost (Section 2.4), the difficulties are even greater than for the 

other cryosphere components, because of its being under the ground and hidden from view. 

For the future, current satellite technology allows far more consistent and spatially 

comprehensive records for all cryosphere components except permafrost than were feasible in 

the past. This includes some possibilities for which satellite data to date have not been a 

primary resource, such as monitoring river ice breakup through visible and n e a r - i e d  

satellite imagery (73). It also includes new instrumentation, as illustrated by the fGst satellite 

laser altimeter for Earth observations, which was launched in January 2003 and is now being 
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used not just for its primary objective of obtaining ice sheet elevations (Figures 1-2) but dso 

for measurements of sea ice thickness (104). 

The satellite data alone, however, are not adequate for comprehensive climate-change 

studies. They need to be complemented by in situ measurements and by records for the pre- 

satellite era. Furthermore, the data need to be combined in systematic global studies that 

establish the interamual variabilities and spatial differences in a way that allows the trends to 

be cleanly identified, spatially and temporally, lessening the codusion regarding whether 

calculated trends differ because of the locations, the time periods, or the techniques. The 

cryosphere is a vital, continually-changing part of the Earth’s climate system; it is important 

that we obtain a better handle on exactly what the changes are and how they tie to the rest of 

the climate system and to the fbture. 
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FIGURE LEGENDS 

Figure 1. Antarctic ice sheet elevations (m), as determined from data collected over the period 

February 2003 - June 2005 by the Geoscience Laser Altimeter System (GLAS) on the Ice, 

Cloud and land Elevation Satellite (ICJ3Sat). Contours are plotted at 10 m and at 500 m 

intervals from 500 m to 3500 m; dark grey shading is used to highlight the low elevations (10- 

500 m)- The digital data were provided by Jay Zwally and John DiMarzio. 

Figure 2. Greenland ice sheet elevations (m), as determined from data collected over the 

period February 2003 - June 2005 by the GLAS instrument on ICESat. Contours are plotted 

at 10 m and at 500 m intervals from 500 rn to 3500 m; dark grey shading is used to highlight 

the low elevations (10-500 m). The digital data were provided by Jay Zwally and John 

DiMarzio. 

Figure 3. Global sea ice distributions, showing maximum and minimum monthly average sea 

ice coverages in each hemisphere, averaged over the years 1979-2004, as derived from 1979- 

1987 data from the Scanning Multichannel Microwave Radiometer on the Nimbus 7 satellite 

and 1987-2004 data from the Special Sensor Microwave Imager on satellites of the Defense 

Meteorological Satellite Program. 

Figure 4. Major Antarctic ice shelves. The background map was adapted from a CIA World 

Map database and was made available through the Interactive Data Language data 

visualization and analysis software application. 

Figure 5. Formation of Iceberg B-15, calved from Antarctica’s Ross Ice Shelf in March 2000. 

(a) The edge of the ice shelf on March 3,2000, showing no evidence of a crack. (b) The edge 

of the ice shelf on March 28,2000, showing B-15 fully fonned and about to break away. The 

iceberg at this time was approximately 300 km x 40 km, over twice the size of Delaware. The 
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data are from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra 

satellite; and the images were provided courtesy of Jacques Descloitres and the MODIS Land 

Science Team. 

Figure 6. Global snow cover in August and February 2005, as determined from data from the 

MODIS instrument on the Terra satellite. White indicates snow in both August and February, 

gray indicates snow in February but not August, and red indicates snow in August but not 

February. The Antarctic continent was not included in the processed data set, although is set 

to white because of its perennial snow cover. Also, the 5-km resolution of the mapped data 

limits the ability to see small snow fields. The digital data were provided by Dorothy Hall and 

the MODIS Snow and Ice Team. 
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