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Abstract 

The Flight So&are Branch, at Goddard Space 
Flight Center (GSFC), has been working on a run-time 
approach to facilitate a formal software reuse process. 
The reuse process is designed to enable rapid 
development and integration of high-quality software 
systems and to more accurately predict development 
costs and schedule. Preyious reuse practices have been 
somewhat successful when the same teams are moved 
fiom project to project. But this typically requires 
taking the sojiiare system in an all-or-nothing 
approach where useful components cannot be easily 
extractedfiom the whole. As a result, the system is less 
jlexible and scalable with limited applicability to new 
projects. This paper will focus on the rationale behind, 
and implementation ox the run-time executive. This 
executive is the core for the component-based jlight 
software commonality and reuse process adopted at 
Goddard. 

1. Introduction 

Flight software developers are currently faced with 
some challenging trends. Missions are pushing for 
more spacecraft autonomy, increasing the mission 
complexity, and at the same time expecting decreases 
in the cost and schedule. One approach to reduce cost 
and schedule is to increase the amount of software 
reuse. This approach has been used at Goddard with 
some success but only within the context and funding 
of a single project limiting the reuse potential. In 2002 
the software branch was tasked with two new projects 
and had some resources to development a common 
software base. After much heritage system analysis, the 
concept of a component based reuse model was 
developed. 

Application Programmer Interface (MI). This allows 
software developers to select components from a 
cataloghbrary and quickly integrate them into new 
systems achieving project goals of reducing cost and 
schedule. This system executive is called the core 
Flight Executive or cFE. The lower case "c" denotes 
its small footprint. 

The core Flight Executive consists of an operating 
system abstraction layer, a hardware abstraction layer, 
a set of common system services, and a Publish and 
Subscribe messaging middleware. All of these 
functions are designed for run-time plug and play of the 
cataloghibrary components. This executive, while 
facilitating reuse, also adds a great deal of development 
and operational flexibility in the areas of rapid 
prototyping, on-orbit software maintenance, 
redundancy management, and communications. 

It is important to note that most of the senior 
engineers within the Flight Software Branch were 
involved in the requirements and heritage analysis 
phases of this development. This involvement was 
crucial to insure that a wide range of mission 
experience and lessons learned was captured to develop 
a truly reusable set of software components and 
artifacts. 

To provide an operating basis for the component 
reuse model, we have developed a small footprint core 
system executive that supports runtime plug-and-play 
of software components that conform to the core 
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Figure 1 
cFE and Abstraction Layers 

2. Heritage Analysis 

The first phase of the software commonality and 
reuse model development was to perform a heritage 
analysis of previous mission software. The intent was 
to gather the common requirements and best designs 
from across a set of more than fourteen missions at 
Goddard ranging fkom Small Explorers to the Hubble 
Space Telescope. With the consolidation of flight 
software engineering within one organization, the reuse 
team was able to call on many of the original engineers 
who developed these missions and have them 
participate in requirements and design reviews. In 
addition to the mission analysis, some commercial 
middleware and operation system abstraction products 
were also reviewed and evaluated using the design 
goals. Though these were very good products ,they 
were not able to satisfy the resource utilization goals. 

3. Design Goals 

Based on the heritage analysis, but with an eye 
toward future needs, we established several general and 
specific goals for the flight software reuse architecture. 
The first goal was to streamline the development 
process and keep the core system small and simple. 
The remaining goals fell into the broad categories of 
performance and the runtime environment and more 
directly drove the software architecture and its 
implementation. 

3.1 Performance 

The performance of space-qualified processing 
platforms is still relatively low compared to terrestrial 
systems, with flight processors and support chips a few 
generations behind. A typical high end flight 
processing platform may be a 166Mhz PowerPC with 4 
megabytes of non-volatile storage and 8 megabytes of 
RAM. Other spacecraft subsystems or instruments can 
be even less. These constraints must be considered 
when developing any flight system. 

3.1.1 Software Footprint 
The footprint is defined as the memory allocation 

for the software code. Flight systems store software in 
the non-volatile memory space and load it into RAM 
for execution. A target of 512Kbytes to lMbytes, 
depending on the operating system selected, was set as 
the allocation goal for the core executive. This goal 
was set to allow the architecture to be used on the 
smaller subsystems and instruments. 

3.1.2 Scaleable Memory Utilization 
Memory utilization was defined to be run-time 

allocation of RAM for code, variables, and 
configuration data. To maximize scalability, the 
software architecture needed to meet two goals. The 
first was to minimize the needs of the core software 
itself, and the second was to allow the number of 
applications to vary without making fimdamental 
changes to the architecture. A target of 1 to 2Mbytes 
was set for the core software, again depending on the 
operating system selected. The second goal was 
satisfied by implementing both static and run-time 
configuration parameters that allowed the number of 
buffers, files, and tables to scale with the needs of the 
flight applications. 

3.1.3 Processor Utilization 
Processor utilization can be simply defined as the 

percentage of total central processing unit (CPU) time 
allocated to specific functions over a time period. A 
goal of 5% utilization over one second was established 
in line with the heritage systems. In the embedded 
processor environment, two other parameters must also 
be considered that cannot be easily specified outside of 
a specific mission context, that is , peak utilization and 
application jitter. Those parameters can be positively 
affected by implementing the core services in ways that 
minimize blocking calls, semaphore lock times, and 
other such service optimizations. 



4. Implementation Concepts 

3.2 Run-time Environment 

The primary goal of the run-time environment is to 
simplifj development and increase on-orbit flexibility. 
The heritage architecture required that all component 
interactions be defined at compile time for the entire 
system. This meant that adding a single telemetry 
packet to any component would involve compiling and 
linking the entire system and reloading it during 
development. On-orbit the user needed to perform the 
same steps, then difference the executable modules, 
develop patches for each different area and perform 
byte writes to those memory locations. This approach 
was tedious at best and error prone. With this in mind 
the run-time goals were established. 

3.2.1 Component Modularity 
In software terms, modularity is a property of 

programs that measure how well the software parts or 
modules are decomposed. Modular software typically 
does one thing and interacts through Well-defined 
interfaces. This property is a goal for reuse. For this 
effort, another property was added to the classic 
definition. All components needed to have compile 
and link modularity, where the files needed to compile 
the software component are contained within the 
components directory structure. This goal was 
established to allow components to be pulled easily 
from a repository and not require moving files around a 
complicated directory structure. 

3.2.2 Dynamic Loadingmnloading 
Dynamic loading is the ability to move a component 

into the operating environment and start it while the 
system is running. Unloading is the inverse, stopping 
the component and removing it fi-om the running 
system. 

3.2.3 Operational Transparency 
We use the term operational transparency to refer to 

the goal of visibility into the operational system state at 
a given time. This goal was established in response to 
concerns raised during the heritage analysis. One of 
the attributes of the heritage design was that system 
resources and timing could be determined statically by 
looking at software configuration parameters and 
structures. With dynamic loading some of these 
parameters and structures are created at runtime. To be 
accepted, any new architecture had to support methods 
to determine resources and timing. 

Much of the overall implementation can be traced 
back to the architecture concepts used on one of the 
first Small explorer missions at Goddard in 1992. Some 
common reuse concepts, layered software, component 
application programmer interfaces (MI), and the 
message bus concepts were all implemented even in the 
early designs. The new architecture formalizes and 
refines the interfaces, then adds a dynamic property to 
them. This dynamic property is fundamental to the 
reuse architecture. Each API resource allocation is 
tracked and an API is provided to de-allocate 
resources. For example, buffers, semaphores, pipes, 
etc, can all be added and removed from the running 
system by both the application that allocated it and 
other monitoring applications 

4.1. Layered Abstractions 

Each layer in the software architecture was design to 
abstract some variability in the implementation. The 
core executive software interacts with the layers in a 
vertical fashion: with the messaging middleware 
depending on the cFE services, and the cFE services 
depending on the OS abstraction User components on 
the other hand, interface horizontally to all three and 
are restricted to only those three. Operation systems 
and other interfaces &-e not exposed to user 
components, to avoid one of the portability issues in 
the heritage design. 

4.2 Application Programmer Interfaces 

Each layer in the architecture has a well-defined set 
of carefully selected Application Programmer 
Interfaces. The selection process relied heavily on the 
heritage analysis to determine which interfaces were 
required. This kept the number of APIs small and 
helped meet the design goals of the system. 

5. Implementation - The core Flight Executive 

The core Flight Executive is the minimal set of 
component services required for any generic processing 
element in the flight domain. This core is compiled 
and linked as a unit generating a single object and 
several configuration files. The core services are split 
into 7 logical subsystems that each typically include a 
library and an external interface application. The 7 
subsystems include: Software Bus, Event Handler, OS 
Abstraction, Executive Services, File Service, Table 
Management, and Time Management. The library 



contains the runtime services and the APIs. The 
external interface applications implement any required 
service state machines and contain the high level 
command and telemetry interfaces for ground system 
interactions. One of the subsystems, the OS 
Abstraction, is implemented as a library only. This 
subsystem may be used without the others as a stand- 
alone product. 

All of the cFE services maintain information for 
each user component and its tasks in order to provide a 
way of cleaning up after an application that may have 
crashed and to provide information to the ground for 
performance and resource monitoring. This feature is 
especially useful during development and can be used 
to restart single components on-orbit. 

Software Bus: 
The Software Bus (SB) is a Publish and Subscribe 

messaging middleware that handles both local and 
distributed and inter-task communications, in a 
transparent way. This application uses much of the 
heritage implementation but adds a dynamic 
middleware interface. The primary abstraction of 
Software Bus is to provide a mechanism that allows 
data providers to send packets without knowledge of 
the data consumers. This allows the one or more 
subscribers to be on any platform within scope of the 
bus and not affect the sending application. Software 
Bus’s message-based subscription supports the heritage 
concepts of one-to-one, one-to-many, and many-to-one 
routing configurations along with the Poll (non- 
blocking) and Pend (blocking wlwo timeout) options 
for message receipt. The quality of service (QoS) 
concepts of priority and reliability are implemented for 
all off-processor messages. 

Event handler: 
Event Handler handles the ground interface, 

filtering, formatting, sending, and counters for event 
messages. Event messages are informational text 
generated by an application in response to commands, 
software errors, hardware errors, application- 
initialization, etc. Event messages are sent to alert the 
Flight Operations team that some significant event on- 
board has occurred. Event messages may also be sent 
for debugging application code during development, 
maintenance, and testing. 

OS Abstraction Layer (OSAL): 
The OSAL is the API and library abstractions for 

common operating systems used in development and 
deployment of flight software systems. To keep it 
simple, the OSAL implements only the subset of 

operating system functions as required in heritage 
analysis and system goals. 

The OSAL is a Goddard stand-alone open source 
project. More information and a list of currently 
supported operating systems and target platforms can 
be obtained from, 
http://opensource.gsfc.nsa.gov/projects/osal/osal.php 

Executive Services: 
The Executive Services (ES) subsystem provides 

system startup, interfaces for run-time control of the 
cFE and component applications, system logging and 
intermptlexception handling. Many of the control 
features for stopping, starting, suspending, and 
resuming component applications were not present in 
the heritage architectures but are required to meet the 
fundamental design goals. 

On system startup the boot firmware copies the cFE, 
and operating system from non-volatile memory into 
pre-determined addresses in volatile memory. Control 
is then transferred to the OS and then to ES which 
handles the startup of the cFE and the rest of the cFE 
Applications as indicated in a configuration file. Each 
application has one main task and may have additional 
child tasks. The cFE itself is linked and loaded with 
the RTOS and BSP as a single static executable in non- 
volatile memory 

File Services: 

and writing standard file headers. 
File Service provides access functions for reading 

Table Management: 
A table is a related set of data values (equivalent to 

a C structure or array) that can be loaded and dumped 
as a single unit by the ground. Tables are used in the 
flight code to give system operators the ability to 
update constants used by the flight software during 
spacecraft operation without the need for patching the 
software. Some tables are also used for dumping 
Sequently needed status information to the ground on 
command. 

The cFE implements Table Services using a 
different paradigm than has been used in heritage 
missions. A Table is considered a shared memory 
resource. An Application requests the creation of the 
shared memory from the cFE and the Application must 
routinely request access and subsequently release 
access to the Table. In this way, Table Services is able 
to perform Table updates without the Application being 
involved. 



Time Management: 
Time Management handles the ground time 

interface, intra-processor time distribution and provides 
the time utilities API for local applications. For intra- 
processor time distribution, time management provides 
both server and client interfaces. 

7. Putting it All Together- Plug and Play 

What the cFE and the build system enables is an 
environment where individual components can be 
created, compiledlinked and inserted into a m i n g  
system. This in turn provides a foundation for a 
component based reuse catalog and library where much 
of the component integration is done at run-time, 
creating true component Plug and Play. 

Key to the cFE is the fact that individual cFE 
applications can be compiled and statically linked 
separately f?om the cFE and other cFE applications. 
Static linking means the global Load Image symbols 
don’t change when the application is bound to the 
original image. 

The results are: 
0 Faster integration of applications during 

development 
0 Facilitation of rapid prototyping and 

deployment of advanced concepts and 
algorithms 

c Reduced cost, schedule and risk to 
missions 

0 Improved flight software maintenance 
support 

8. Conclusion 

By focusing on the flight software domain for the 
common core services and the reuse model, many of 
the failings of previous reuse attempts have been 
avoided, thus creating a reuse process that will reduce 
the cost, risk, and schedule of new mission 
development. In addition, the implementation has the 
footprint and run-time performance of the heritage 
system with only a small startup delay penalty. 

A prototype cFE was flown on the CHPsat mission 
in December 2005. The first class B mission to use the 
cFE and library components will launch in late 2008 or 
early 2009 on the Lunar Reconnaissance Orbiter 
(LRO). 


