I | 9002 AINF 1I-ONS

€85 °P0D O4SO VSVN
A0S eSeu @NOW[I/\ | UeIeno

10tuqx\ Ueyietof

SW)SAS 2ILMIJOS JYSI]
J[qesnay J0J AMINIYIY Ae[J pue Injd MODV

J2u9D) W31 29ed§ preppon VSYN
uonIsmboy Jo 99IN0§ a

¢ 9002 AN LIFDINS

syuouodurod aqesnar Jo Joyered Ae[J pue aIngijuo), m
STOMIUIEI] 2TeM1JOS JYSIJ PAIUILIO JTAIIS Yuspuadopur-uLioie[J w

yoeoidde H,ysOH

Arenb aremajos 1y3yJ UreIuTe[N!

S pue ‘Q[Payds IS0 0NPIY
Arxarduod uorsstu 3ursearou]
Awouoine 1Jerdadeds arowr 103 Surysnd SUOTSSTA

sobus|jeys uoIssI

e | 900Z AN 11-ONS

suauraImbaz feurro] dofpas] m

purw ur Aiiqepuedxo pue AIqeAjoAs
ﬁﬂ? moﬁﬁoﬁm um@ﬁao«%woEﬁuoﬁﬁéamﬁﬁmm-

SIIOWIAIMbar UOUWIIod 196Xy m
SIMIAIYOIE STOTSSIU snotaaid azdfeuy m

S9oUSLIadX OpLM I ST99IBUS AremIjos IOTUdS J9Y19301 SuLrg m

sisAleuy abejliay

1% 900z AINT LI-ONS

(600z) 0¥ (200z) oas (00/5) S-LS

SpuwUNLISUT PUD
Yo.10200dS 24ngn.g

(L0/90 pPayoune}) dvw

BINIISBYIYALY MS PONOAT

(LL02)
WISI LSMr

(66/24 payouney) 31x

(voreL) f (26/2 Layoune))
Av8 ms (youney 104 Buyrem) (6672 poyouney) (86/e peyoune)) ooy pagoune)) Xduvs
A euepy Jum FOVYL

Syms

SISAJEUY UOISSI]A 95¥ILIoL]

g 900Z AINP LI-ONS

S8OIAISS UOWWOD BuijpueH ejeq 3 puewwo)

ONO poddns uolssi

BuidoayasnoH
‘anusiog

uopisod LBLULIOD

9 | | 900z AInf LI-ONS

PUO003S T 1940 %G ueyl Sso] m
UONEZIMIN J105$9001d 210)) =

$Aqedow 7017 m
UONEZIIN AIOWSW 910D J[qededs =

a4qeSowr 1 01 SALQO[] ZTG
L1d100] 218M1JOS 2100 [[eWS ™

paurensuod soueuiopad are suttope[d 1y3dyeoeds =

sjeoon) ubisa(g adsuew.opdd

L 9002 AIne LI-ONS

sonsouderp wr Mg m

SIONUOW UOTRZINN WSS m

913 SUTUTNI JURLMD SY1 03 AIIqISIA Jogerad) m
Kouaredsuery euoneredpy m

dnueap ywouodwo)
Sunsjun orrewdp pue onels poq woddng m
WNSAS SUTUUNI WOI} PIPEO[UN Pue Papeo] 9q ued syuauoduo)

Surpeou) /Supeo] orrenA(q m

pas[ur] pue paprdurod %:msﬁu%ﬁ 9q ued syuouodwio) m
[dV Yysnoiy: waishs qam 10eraur ssusuodwo) m
SOUI] [eUONIOUN] Ued[d SuOfe pasodtwodsp arem1jog m

Arefpolp wweuodwo) m

JUSWIUOIIAUT SWI | -uny

900z AIne 1I-ONS

(1) 2A1N2XH W3 30D

SOJIALSS dw-uny m
ddRHANU] JoureIdox
uonednddy prepurels m

sng /aeM3[ppr
2quIsqng /Ystqng m

ANDINIYIIY pAIAe] m

uonejudwddu]

9002 AIne 1I-ONS

SIIIIIN SULIONUOUT OULULIOFIO] ™
S30] waIsAG m
surpuey] idnirsur pue wondaoxy m
peofun /peo] /dois arels Juouoduio) m
wre1sal /dnirels waysAq m

SIJTAISG JAIINIOIXYT m

SUIO)SAS
surerado IS} UOUIOd J0 $I0TATRS PUE [POZI[EWLION] M

uondensqy SO m

S99JAIBS J 4O

Ol 900z AP LI-OINS

UO11999s uod 1Ay m
3urd3o[[eo0T m
Buuayly pue SWNEULIO] JUSAY m

IS[PUEL] JUAY m

IOIAIDG JO ATend) pue ‘pud g fog m

JUO-01-AUeW ‘AULUI-01-3UO QU0 -01-0U() m

Surdessour JUsUOdWOD-ToIUT PASIOMIOU PUE [220T m

STeMI[PPIUL mﬁwmmmoa dqLIdSQNS PUE YSqnJ m
sng a7em1Jjog =

S99IAI9S 349

Ll . 900Z AN LI-ONS

SOTIIIN SWI], W
uonnqguisip [ed0J m
S9OBJLISIUT [ETLISIXS PUE JOUBUIUTEWI SUII], W

TUSUWISSEUEA SWI],

ANy /dum (] /peo] =
93e101S B1Ep poUwEN] m

TUSWSSeUe] J[qe], m

S92IAJ9G J49

cl

900z AINf 1I-ONS

Idy swi} uopdaoxg ooxg
sisyi4 StajpueH
9 SJUSAT uondeox3
Apog apoo ;
uoneoyjddy sa|i4
sabessaly ssjqe |
Idv ,
3Se] @ 09X3 Idv 98 Idv ueAz | |dv sigel

9jdwex3 jusuodwon alem)jog

9P0d 2@ “TWONLIUAWNOOP ‘1591 P[INg ‘s1s93 AU
‘syuourarmbay ‘syoeiire spnpowr syusuodwo)

sadessowr 01 aqUOSqNG o

sadessour ysqny e

SI[qeT, 191SI39Y o

TOUIJ PUe SIUNOD JUIAY INSIITY o

s19[puey uondooxo JaIsI39Y e
SIITATSS J0J 1181391 syuauoduwro)) o

‘uoniesado s 1 aurjep
O1 P3P BIEP [[€ SUTEINO0D SIuauodiwiod V e

SOTISIJE)S UOTIEZIIN SIPIACL] e

synej Jusuoduros Iaye dn uea[d 01 EEQ&NU -
$90INOSAI 1rauodurod 3[0€I1 $90TAISS O @

'S, IdV 0 241 ydnoxy A[uo chjaneileg i

cl 900Z AN LIFONS

Papasu se papeo] o pue

SopOUI Wa1sAs 10 so1Ap I 3nid yam
Pa1eIO0SSe 9q Ued syuouodurod arem1jog m

"Y31J wr J0 JuadoyPadp

Surmp sum Aue 1e pad3nyd pue ymq
Pam3Iyuod 9q Ued sJUsuoduwrod arem1jog m
stusuoduros £oedas] pardepy

4

syusuodurod orroads TorssmI wroisn))
syuauodurod a[qesnay

SOTAISS 210))
WOy J[INg ST WNSASY =
PAUWNIO(J ‘PIAYIUY) PAIss)y, m
‘SIS pue sjusuoduwod
J[qesnax Jo 3o[ered ® Ol PIIOrIISR
U993 sey Aneuonouny A\ G, UOWWO)

Ke[J pue am3iuo)))
Ae[J pue 3n|J

1

145 900Z AINF LI-OWS

SOXuAT pue wEmHM Suruunx o6 /dowr /DI ‘SINHIY Suruun axiyp[o)) s108rel axnin,J

SMOPUL\ JopUn UMD Surrunt D J /98X =

XU 3UTUUnI O J /98X ®

X SO SWUunI qSoMe 98X /Odd =
SWANSAG doyso(] =

0¢/AVy dvd =

xnur] guruunt ¢opdow /D JJ =

Xnury AM@ SSIIOM XA hmm mMuO\V?M\/ wg OmNQUE\UAHAH |
SW3)SAS pappaquui =

SULIONE|J 3931 |

Gl 900Z AINF 1I-ONS

\

ATEMYOS SARNISXY JYSI] 10D Jo dse[ax 921no0s uado Surureyqo jo ssodoaxduy m

Anpwape) pue puetmuod (N /JI =

draress o[ty I T4 “Sumyun oWeIS ‘79 SIONXA m
€°¢ HAD durfaseq uonensyuod (OYT) FPNGIO IOUESSIEUU0IY Jeun 9007 =

sjuatodurod uonewone 10y paqisal Surpraoid ST oo pPopeo] 10 =
Anpurs|a) pue puewrtiod Jn /Jf =
V'S SIOMXA
UONEIISUOWIIP JIGHO U0 SITHD JIqUIII(™
$1591 JuoU0dwod X0q AWM 10§ Pado[aAdp ({1 [)) JFOMAWEL] 1S3 U m
XU PUe KGO ‘SSHOMXA TIM PISIOM e HJ0 “UOJJd IV 0 m
dniress opry 091-G ‘Sunyun onRIG 4G SYIOMXA m

S00¢
91 AON OY'T “(9.LV) Pog 353, AWOUOINY 03 PAIoAT[9p “Hd [' UOISIOA G007

«SY0e] XOq, 0] wonem3iyuodar snq ofessow onuend(] w
dnaress pue peoy wonesrdde onuend(q
ST0oUOdUIOD AIEMIJOG PUE SIAISS M\ G Jouss ‘a10) m

parensuourdp adfjojord xog /N JD-BNW H0o7 =

SME)S

ol 900Z AN LI-OWS

IdUBUUIELW JO 3582 pUt ‘Uorsuedxd ‘UONNJOAS 0] SMO[[Y =

SUOISSIUI 0] YSK pUe d[NPayYds 50 saoNpay] .

AUNIOAIYIE SN paseq Jusuodurod € J0J UOREPUNO] oY) SIPIACI] =
1eY) JHOMIUIRIJ 10D [[ewus € payudwd[dwy =

$9910Y JOJ SUIMO[[y =

SUOISSIWU 1NN} pIemo) SUTjooT =

uorssiw 98e3uay uo sis[eue pore3op € Suruops g =
urewiop aremyjos Jy3yjooeds o) uo JursndojAg m-

uoIsn[duo))

Source of Acquisition
NASA Goddard Space Flight Center

A Core Plug and Play Architecture for Reusable Flight Software Sysfems

Author: Jonathan Wilmot
Affiliation: NASA GSFC
Email: Jonathan.J. Wilmot@NASA.gov

Abstract

The Flight Software Branch, at Goddard Space
Flight Center (GSFC), has been working on a run-time
approach to facilitate a formal sofiware reuse process.
The reuse process is designed to enable rapid
development and integration of high-quality software
systems and to more accurately predict development
costs and schedule. Previous reuse practices have been
somewhat successful when the same teams are moved
Jfrom project to project. But this typically requires
taking the software system in an all-or-nothing
approach where useful components cannot be easily
extracted from the whole. As a result, the system is less
flexible and scalable with limited applicability to new
projects. This paper will focus on the rationale behind,
and implementation of, the run-time executive. This
executive is the core for the component-based flight
software commonality and reuse process adopted at
Goddard.

1. Introduction

Flight software developers are currently faced with
some challenging trends. Missions are pushing for
more spacecraft autonomy, increasing the mission
complexity, and at the same time expecting decreases
in the cost and schedule. One approach to reduce cost
and schedule is to increase the amount of software
reuse. This approach has been used at Goddard with
some success but only within the context and funding
of a single project limiting the reuse potential. In 2002
the software branch was tasked with two new projects
and had some resources to development a common
software base. After much heritage system analysis, the
concept of a component based reuse model was
developed.

To provide an operating basis for the component
reuse model, we have developed a small footprint core
system executive that supports runtime plug-and-play
of software components that conform to the core

Application Programmer Interface (API). This allows
software developers to select components from a
catalog/library and quickly integrate them into new
systems achieving project goals of reducing cost and
schedule. This system executive is called the core
Flight Executive or cFE. The lower case "c¢" denotes
its small footprint.

The core Flight Executive consists of an operating
system abstraction layer, a hardware abstraction layer,
a set of common system services, and a Publish and
Subscribe messaging middleware. “All of these
functions are designed for run-time plug and play of the
catalog/library components. This executive, 'while
facilitating reuse, also adds a great deal of development
and operational flexibility in the areas of rapid
prototyping, on-orbit software maintenance,
redundancy management, and communications.

It is important to note that most of the senior -
engineers within the Flight Software Branch were
involved in the requirements and heritage analysis
phases of this development. This involvement was
crucial to insure that a wide range of mission
experience and lessons learned was captured to develop
a truly reusable set of software components and
artifacts.

Figure 1
cFE and Abstraction Layers

2. Heritage Analysis

The first phase of the software commonality and
reuse model development was to perform a heritage
analysis of previous mission software. The intent was
to gather the common requirements and best designs
from across a set of more than fourteen missions at
Goddard ranging from Small Explorers to the Hubble
Space Telescope. With the consolidation of flight
software engineering within one organization, the reuse
team was able to call on many of the original engineers
who developed these missions and have them
participate in requirements and design reviews. In
addition to the mission analysis, some commercial
middleware and operation system abstraction products
were also reviewed and evaluated using the design
goals. Though these were very good products ,they
were not able to satisfy the resource utilization goals.

3. Design Goals

Based on the heritage analysis, but with an eye
toward future needs, we established several general and
specific goals for the flight software reuse architecture.
The first goal was to streamline the development
process and keep the core system small and simple.
The remaining goals fell into the broad categories of
performance and the runtime environment and more
directly drove the software architecture and its
implementation.

3.1 Performance

The performance of space-qualified processing
platforms is still relatively low compared to terrestrial
systems, with flight processors and support chips a few
generations behind. A typical high end flight
processing platform may be a 166Mhz PowerPC with 4
megabytes of non-volatile storage and 8 megabytes of
RAM. Other spacecraft subsystems or instruments can
be even less. These constraints must be considered
when developing any flight system.

3.1.1 Software Footprint

The footprint is defined as the memory allocation
for the software code. Flight systems store software in
the non-volatile memory space and load it into RAM
for execution. A target of 512Kbytes to 1Mbytes,
depending on the operating system selected, was set as
the allocation goal for the core executive. This goal
was set to allow the architecture to be used on the
smaller subsystems and instruments.

3.1.2 Scaleable Memory Utilization

Memory utilization was defined to be run-time
allocation of RAM for code, variables, and
configuration data. To maximize scalability, the
software architecture needed to meet two goals. The
first was to minimize the needs of the core software
itself, and the second was to allow the number of
applications to vary without making fundamental
changes to the architecture. A target of 1 to 2Mbytes
was set for the core software, again depending on the
operating system selected. The second goal was

* satisfied by implementing both static and run-time

configuration parameters that allowed the number of
buffers, files, and tables to scale with the needs of the
flight applications.

3.1.3 Processor Utilization

Processor utilization can be simply defined as the
percentage of total central processing unit (CPU) time
allocated to specific functions over a time period. A
goal of 5% utilization over one second was established
in line with the heritage systems. In the embedded
processor environment, two other parameters must also
be considered that cannot be easily specified outside of
a specific mission context, that is , peak utilization and
application jitter. Those parameters can be positively
affected by implementing the core services in ways that
minimize blocking calls, semaphore lock times, and
other such service optimizations.

3.2 Run-time Environment

The primary goal of the run-time environment is to
simplify development and increase on-orbit flexibility.
The heritage architecture required that all component
interactions be defined at compile time for the entire
system. This meant that adding a single telemetry
packet to any component would involve compiling and
linking the entire system and reloading it during
development. On-orbit the user needed to perform the
same steps, then difference the executable modules,
develop patches for each different area and perform
byte writes to those memory locations. This approach
was tedious at best and error prone. With this in mind
the run-time goals were established.

3.2.1 Component Modularity

In software terms, modularity is a property of
programs that measure how well the software parts or
modules are decomposed. Modular software typically
does one thing and interacts through well-defined
interfaces. This property is a goal for reuse. For this
effort, another property was added to the classic
definition. All components needed to have compile
and link modularity, where the files needed to compile
the software component are contained within the
components directory structure. This goal was
established to allow components to be pulled easily
from a repository and not require moving files around a
complicated directory structure.

3.2.2 Dynamic Loading/Unloading

Dynamic loading is the ability to move a component
into the operating environment and start it while the
system is running. Unloading is the inverse, stopping
the component and removing it from the running
system.

3.2.3 Operational Transparency

We use the term operational transparency to refer to
the goal of visibility into the operational system state at
a given time. This goal was established in response to
concerns raised during the heritage analysis. One of
the attributes of the heritage design was that system
resources and timing could be determined statically by
looking at software configuration parameters and
structures. With dynamic loading some of these
parameters and structures are created at runtime. To be
accepted, any new architecture had to support methods
to determine resources and timing.

4. Implementation Concepts

Much of the overall implementation can be traced
back to the architecture concepts used on one of the
first Small explorer missions at Goddard in 1992. Some
common reuse concepts, layered software, component
application programmer interfaces (API), and the
message bus concepts were all implemented even in the
early designs. The new architecture formalizes and
refines the interfaces, then adds a dynamic property to
them. This dynamic property is fundamental to the
reuse architecture. Each API resource allocation is
tracked and an API is provided to de-allocate
resources. For example, buffers, semaphores, pipes,
etc, can all be added and removed from the running
system by both the application that allocated it and
other monitoring applications

4.1. Layered Abstractions

Each layer in the software architecture was design to
abstract some variability in the implementation. The
core executive software interacts with the layers in a
vertical fashion: with the messaging middleware
depending on the cFE services, and the cFE services
depending on the OS abstraction User components .on
the other hand, interface horizontally to all three and
are restricted to only those three. Operation systems
and other interfaces are not exposed to user
components, to avoid one of the portability issues in
the heritage design. ' :

4.2 Application Programmer Interfaces

Each layer in the architecture has a well-defined set
of carefully selected Application Programmer
Interfaces. The selection process relied heavily on the
heritage analysis to determine which interfaces were
required. This kept the number of APIs small and
helped meet the design goals of the system.

5. Implementation - The core Flight Executive

The core Flight Executive is the minimal set of
component services required for any generic processing
element in the flight domain. This core is compiled
and linked as a unit generating a single object and
several configuration files. The core services are split
into 7 logical subsystems that each typically include a
library and an external interface application. The 7
subsystems include: Software Bus, Event Handler, OS
Abstraction, Executive Services, File Service, Table
Management, and Time Management. The library

contains the runtime services and the APIs. The
external interface applications implement any required
service state machines and contain the high level
command and telemetry interfaces for ground system
interactions. One of the subsystems, the OS
Abstraction, is implemented as a library only. This
subsystem may be used without the others as a stand-
alone product.

All of the cFE services maintain information for
each user component and its tasks in order to provide a
way of cleaning up after an application that may have
crashed and to provide information to the ground for
performance and resource monitoring. This feature is
especially useful during development and can be used
to restart single components on-orbit.

Software Bus: ‘

The Software Bus (SB) is a Publish and Subscribe
messaging middleware that handles both local and
distributed and inter-task communications, in a
transparent way. This application uses much of the
heritage implementation but adds a dynamic
middleware interface. The primary abstraction of
Software Bus is to provide a mechanism that allows
data providers to send packets without knowledge of
the data consumers. This allows the one or more
subscribers to be on any platform within scope of the
bus and not affect the sending application. Sofiware
Bus’s message-based subscription supports the heritage
concepts of one-to-one, one-to-many, and many-to-one
routing configurations along with the Poll (non-
blocking) and Pend (blocking w/wo timeout) options
for message receipt. The quality of service (QoS)
concepts of priority and reliability are implemented for
all off-processor messages.

Event handler:

Event Handler handles the ground interface,
filtering, formatting, sending, and counters for event
messages. Event messages are informational text
generated by an application in response to commands,
software errors, hardware errors, application-
initialization, etc. Event messages are sent to alert the
Flight Operations team that some significant event on-
board has occurred. Event messages may also be sent
for debugging application code during development,
maintenance, and testing.

OS Abstraction Layer (OSAL):

The OSAL is the API and library abstractions for
common operating systems used in development and
deployment of flight software systems. To keep it
simple, the OSAL implements only the subset of

operating system functions as required in heritage
analysis and system goals. _

The OSAL is a Goddard stand-alone open source
project. More information and a list of currently
supported operating systems and target platforms can
be obtained from,
http://opensource.gsfc.nasa.gov/projects/osal/osal.php

Executive Services: ,

The Executive Services (ES) subsystem provides
system -startup, interfaces for run-time control of the
cFE and component applications, system logging and
interrupt/exception handling. Many of the control
features for stopping, starting, suspending, and
resuming component applications were not present in
the heritage architectures but are required to meet the
fundamental design goals.

On system startup the boot firmware copies the cFE,
and operating system from non-volatile memory into |
pre-determined addresses in volatile memory. Control
is then transferred to the OS and then to ES which
handles the startup of the cFE and the rest of the cFE
Applications as indicated in a configuration file. Each
application has one main task and may have additional
child tasks. The cFE itself is linked and loaded with
the RTOS and BSP as a single static executable in non-
volatile memory

File Services: -
File Service provides access functions for reading
and writing standard file headers.

Table Management:

A table is a related set of data values (equivalent to
a C structure or array) that can be loaded and dumped
as a single unit by the ground. Tables are used in the
flight code to give system operators the ability to
update constants used by the flight software during
spacecraft operation without the need for patching the
software. Some tables are also used for dumping
infrequently needed status information to the ground on
command.

The cFE implements Table Services using a
different paradigm than has been used in heritage
missions. A Table is considered a shared memory
resource. An Application requests the creation of the
shared memory from the cFE and the Application must
routinely request access and subsequently release
access to the Table. In this way, Table Services is able
to perform Table updates without the Application being
involved.

Time Management:

Time Management handles the ground time
interface, intra-processor time distribution and provides
the time utilities API for local applications. For intra-
processor time distribution, time management provides
both server and client interfaces.

7. Putting it All Together- Plug and Play

What the cFE and the build system enables is an
environment where individual components can be
created, compiled/linked and inserted into a running
system. This in turn provides a foundation for a
component based reuse catalog and library where much
of the component integration is done at run-time,
creating true component Plug and Play.

Key to the cFE is the fact that individual cFE
applications can be compiled and statically linked
separately from the cFE and other cFE applications.
Static linking means the global Load Image symbols
don’t change when the application is bound to the
original image.

The results are:

e Faster integration of applications during
development

o Facilitation of rapid prototyping and
deployment of advanced concepts and

algorithms

o Reduced cost, schedule and risk to
missions

o Improved flight software maintenance
support

8. Conclusion

By focusing on the flight software domain for the
common core services and the reuse model, many of
the failings of previous reuse attempts have been
avoided, thus creating a reuse process that will reduce
the cost, risk, and schedule of new mission
development. In addition, the implementation has the
footprint and run-time performance of the heritage
system with only a small startup delay penaity.

A prototype cFE was flown on the CHIPsat mission
in December 2005, The first class B mission to use the
¢FE and library components will launch in late 2008 or
early 2009 on the Lunar Reconnaissance Orbiter
(LRO). '

