

M
is

si
o

n
 ~

h
ia

ll
e

n
g

e
s

m
 M

is
si

on
s

pu
sh

in
g

fo
r m

or
e

sp
ac

ec
ra

ft
 a

ut
on

om
y

ln
cr

ea
sl

ng
 rm

ss
lo

n
co

m
pl

ex
ity

R

ed
uc

e
co

st
, s

ch
ed

ul
e,

 a
nd

 ri
sk

m

 M
ai

nt
ai

n
fli

gh
t s

of
tw

ar
e

qu
al

ity

G
SF

C
 a

pp
ro

ac
h

Pl
at

f o
m

- i
nd

ep
en

de
nt

, s
er

vi
ce

 o
ri

en
te

d
fli

gh
t s

of
tw

ar
e

fr
am

ew
or

k
"C

on
fig

ur
e

an
d

Pl
ay

"
ca

ta
lo

g
of

 r
eu

sa
bl

e
co

m
po

ne
nt

s

S
M

C
-IT

 J
ul

y
20
06

2

0
2

1 ' 1 -

t

C
m
u) a?

a-

n
Q)
0

m
v,
m

E
Q)

E v)

'c
S
0

>
S

L
w-

"d
4
&
0 u -B W

a,
E
Q)

v) E
i= c
lz

rd

6
0
4
e

Q)
d
d
6 u

d
6 u

5. .
W

v)
Q1

Is
d
c3
cd
4

0

3

8
0
6
I\

3
E
s
d

b
4
I\

2r
0
b

rd
d
6

v) a
0

W
LL
0

1 .

Q) aa
0
c,
v,

w

v)

3
cd rcc

a4 E

0 ' I

h3 e - - &
& 5

B B

rd
d
6

2
I3
Pi

A k

-c
X m
8 A

Ll

-c Ll

P
0 m
t\
Plc

5 &
ck

m
0
d-
c4

5 ck
&

16
x" v v

ck.
\ \ 3

r\,
17.

2 s E R x " F4
a" I I I . II

0 o m . . cv
m m
00
00 cvcv
W

0 u

0

3
a d
cn

.A
v,
3 u
0 ck

m

h,
"d

v)
d) u
.d

2 u
$4

0
Qd

0

2
m...

I .

Source of Acquisition
NASA Goddard Space Flight Center

A Core Plug and Play Architecture for Reusable Flight Software Systems

Author: Jonathan Wilmot
Affiliation: NASA GSFC

Email: Jonathan. J. Wilmot@NASA.gov

Abstract

The Flight So&are Branch, at Goddard Space
Flight Center (GSFC), has been working on a run-time
approach to facilitate a formal software reuse process.
The reuse process is designed to enable rapid
development and integration of high-quality software
systems and to more accurately predict development
costs and schedule. Preyious reuse practices have been
somewhat successful when the same teams are moved
fiom project to project. But this typically requires
taking the sojiiare system in an all-or-nothing
approach where useful components cannot be easily
extractedfiom the whole. As a result, the system is less
jlexible and scalable with limited applicability to new
projects. This paper will focus on the rationale behind,
and implementation ox the run-time executive. This
executive is the core for the component-based jlight
software commonality and reuse process adopted at
Goddard.

1. Introduction

Flight software developers are currently faced with
some challenging trends. Missions are pushing for
more spacecraft autonomy, increasing the mission
complexity, and at the same time expecting decreases
in the cost and schedule. One approach to reduce cost
and schedule is to increase the amount of software
reuse. This approach has been used at Goddard with
some success but only within the context and funding
of a single project limiting the reuse potential. In 2002
the software branch was tasked with two new projects
and had some resources to development a common
software base. After much heritage system analysis, the
concept of a component based reuse model was
developed.

Application Programmer Interface (MI). This allows
software developers to select components from a
cataloghbrary and quickly integrate them into new
systems achieving project goals of reducing cost and
schedule. This system executive is called the core
Flight Executive or cFE. The lower case "c" denotes
its small footprint.

The core Flight Executive consists of an operating
system abstraction layer, a hardware abstraction layer,
a set of common system services, and a Publish and
Subscribe messaging middleware. All of these
functions are designed for run-time plug and play of the
cataloghibrary components. This executive, while
facilitating reuse, also adds a great deal of development
and operational flexibility in the areas of rapid
prototyping, on-orbit software maintenance,
redundancy management, and communications.

It is important to note that most of the senior
engineers within the Flight Software Branch were
involved in the requirements and heritage analysis
phases of this development. This involvement was
crucial to insure that a wide range of mission
experience and lessons learned was captured to develop
a truly reusable set of software components and
artifacts.

To provide an operating basis for the component
reuse model, we have developed a small footprint core
system executive that supports runtime plug-and-play
of software components that conform to the core

4

F===

sw
Componant.

-

I

""
Compomn

L

Figure 1
cFE and Abstraction Layers

2. Heritage Analysis

The first phase of the software commonality and
reuse model development was to perform a heritage
analysis of previous mission software. The intent was
to gather the common requirements and best designs
from across a set of more than fourteen missions at
Goddard ranging fkom Small Explorers to the Hubble
Space Telescope. With the consolidation of flight
software engineering within one organization, the reuse
team was able to call on many of the original engineers
who developed these missions and have them
participate in requirements and design reviews. In
addition to the mission analysis, some commercial
middleware and operation system abstraction products
were also reviewed and evaluated using the design
goals. Though these were very good products ,they
were not able to satisfy the resource utilization goals.

3. Design Goals

Based on the heritage analysis, but with an eye
toward future needs, we established several general and
specific goals for the flight software reuse architecture.
The first goal was to streamline the development
process and keep the core system small and simple.
The remaining goals fell into the broad categories of
performance and the runtime environment and more
directly drove the software architecture and its
implementation.

3.1 Performance

The performance of space-qualified processing
platforms is still relatively low compared to terrestrial
systems, with flight processors and support chips a few
generations behind. A typical high end flight
processing platform may be a 166Mhz PowerPC with 4
megabytes of non-volatile storage and 8 megabytes of
RAM. Other spacecraft subsystems or instruments can
be even less. These constraints must be considered
when developing any flight system.

3.1.1 Software Footprint
The footprint is defined as the memory allocation

for the software code. Flight systems store software in
the non-volatile memory space and load it into RAM
for execution. A target of 512Kbytes to lMbytes,
depending on the operating system selected, was set as
the allocation goal for the core executive. This goal
was set to allow the architecture to be used on the
smaller subsystems and instruments.

3.1.2 Scaleable Memory Utilization
Memory utilization was defined to be run-time

allocation of RAM for code, variables, and
configuration data. To maximize scalability, the
software architecture needed to meet two goals. The
first was to minimize the needs of the core software
itself, and the second was to allow the number of
applications to vary without making fimdamental
changes to the architecture. A target of 1 to 2Mbytes
was set for the core software, again depending on the
operating system selected. The second goal was
satisfied by implementing both static and run-time
configuration parameters that allowed the number of
buffers, files, and tables to scale with the needs of the
flight applications.

3.1.3 Processor Utilization
Processor utilization can be simply defined as the

percentage of total central processing unit (CPU) time
allocated to specific functions over a time period. A
goal of 5% utilization over one second was established
in line with the heritage systems. In the embedded
processor environment, two other parameters must also
be considered that cannot be easily specified outside of
a specific mission context, that is , peak utilization and
application jitter. Those parameters can be positively
affected by implementing the core services in ways that
minimize blocking calls, semaphore lock times, and
other such service optimizations.

4. Implementation Concepts

3.2 Run-time Environment

The primary goal of the run-time environment is to
simplifj development and increase on-orbit flexibility.
The heritage architecture required that all component
interactions be defined at compile time for the entire
system. This meant that adding a single telemetry
packet to any component would involve compiling and
linking the entire system and reloading it during
development. On-orbit the user needed to perform the
same steps, then difference the executable modules,
develop patches for each different area and perform
byte writes to those memory locations. This approach
was tedious at best and error prone. With this in mind
the run-time goals were established.

3.2.1 Component Modularity
In software terms, modularity is a property of

programs that measure how well the software parts or
modules are decomposed. Modular software typically
does one thing and interacts through Well-defined
interfaces. This property is a goal for reuse. For this
effort, another property was added to the classic
definition. All components needed to have compile
and link modularity, where the files needed to compile
the software component are contained within the
components directory structure. This goal was
established to allow components to be pulled easily
from a repository and not require moving files around a
complicated directory structure.

3.2.2 Dynamic Loadingmnloading
Dynamic loading is the ability to move a component

into the operating environment and start it while the
system is running. Unloading is the inverse, stopping
the component and removing it fi-om the running
system.

3.2.3 Operational Transparency
We use the term operational transparency to refer to

the goal of visibility into the operational system state at
a given time. This goal was established in response to
concerns raised during the heritage analysis. One of
the attributes of the heritage design was that system
resources and timing could be determined statically by
looking at software configuration parameters and
structures. With dynamic loading some of these
parameters and structures are created at runtime. To be
accepted, any new architecture had to support methods
to determine resources and timing.

Much of the overall implementation can be traced
back to the architecture concepts used on one of the
first Small explorer missions at Goddard in 1992. Some
common reuse concepts, layered software, component
application programmer interfaces (MI), and the
message bus concepts were all implemented even in the
early designs. The new architecture formalizes and
refines the interfaces, then adds a dynamic property to
them. This dynamic property is fundamental to the
reuse architecture. Each API resource allocation is
tracked and an API is provided to de-allocate
resources. For example, buffers, semaphores, pipes,
etc, can all be added and removed from the running
system by both the application that allocated it and
other monitoring applications

4.1. Layered Abstractions

Each layer in the software architecture was design to
abstract some variability in the implementation. The
core executive software interacts with the layers in a
vertical fashion: with the messaging middleware
depending on the cFE services, and the cFE services
depending on the OS abstraction User components on
the other hand, interface horizontally to all three and
are restricted to only those three. Operation systems
and other interfaces &-e not exposed to user
components, to avoid one of the portability issues in
the heritage design.

4.2 Application Programmer Interfaces

Each layer in the architecture has a well-defined set
of carefully selected Application Programmer
Interfaces. The selection process relied heavily on the
heritage analysis to determine which interfaces were
required. This kept the number of APIs small and
helped meet the design goals of the system.

5. Implementation - The core Flight Executive

The core Flight Executive is the minimal set of
component services required for any generic processing
element in the flight domain. This core is compiled
and linked as a unit generating a single object and
several configuration files. The core services are split
into 7 logical subsystems that each typically include a
library and an external interface application. The 7
subsystems include: Software Bus, Event Handler, OS
Abstraction, Executive Services, File Service, Table
Management, and Time Management. The library

contains the runtime services and the APIs. The
external interface applications implement any required
service state machines and contain the high level
command and telemetry interfaces for ground system
interactions. One of the subsystems, the OS
Abstraction, is implemented as a library only. This
subsystem may be used without the others as a stand-
alone product.

All of the cFE services maintain information for
each user component and its tasks in order to provide a
way of cleaning up after an application that may have
crashed and to provide information to the ground for
performance and resource monitoring. This feature is
especially useful during development and can be used
to restart single components on-orbit.

Software Bus:
The Software Bus (SB) is a Publish and Subscribe

messaging middleware that handles both local and
distributed and inter-task communications, in a
transparent way. This application uses much of the
heritage implementation but adds a dynamic
middleware interface. The primary abstraction of
Software Bus is to provide a mechanism that allows
data providers to send packets without knowledge of
the data consumers. This allows the one or more
subscribers to be on any platform within scope of the
bus and not affect the sending application. Software
Bus’s message-based subscription supports the heritage
concepts of one-to-one, one-to-many, and many-to-one
routing configurations along with the Poll (non-
blocking) and Pend (blocking wlwo timeout) options
for message receipt. The quality of service (QoS)
concepts of priority and reliability are implemented for
all off-processor messages.

Event handler:
Event Handler handles the ground interface,

filtering, formatting, sending, and counters for event
messages. Event messages are informational text
generated by an application in response to commands,
software errors, hardware errors, application-
initialization, etc. Event messages are sent to alert the
Flight Operations team that some significant event on-
board has occurred. Event messages may also be sent
for debugging application code during development,
maintenance, and testing.

OS Abstraction Layer (OSAL):
The OSAL is the API and library abstractions for

common operating systems used in development and
deployment of flight software systems. To keep it
simple, the OSAL implements only the subset of

operating system functions as required in heritage
analysis and system goals.

The OSAL is a Goddard stand-alone open source
project. More information and a list of currently
supported operating systems and target platforms can
be obtained from,
http://opensource.gsfc.nsa.gov/projects/osal/osal.php

Executive Services:
The Executive Services (ES) subsystem provides

system startup, interfaces for run-time control of the
cFE and component applications, system logging and
intermptlexception handling. Many of the control
features for stopping, starting, suspending, and
resuming component applications were not present in
the heritage architectures but are required to meet the
fundamental design goals.

On system startup the boot firmware copies the cFE,
and operating system from non-volatile memory into
pre-determined addresses in volatile memory. Control
is then transferred to the OS and then to ES which
handles the startup of the cFE and the rest of the cFE
Applications as indicated in a configuration file. Each
application has one main task and may have additional
child tasks. The cFE itself is linked and loaded with
the RTOS and BSP as a single static executable in non-
volatile memory

File Services:

and writing standard file headers.
File Service provides access functions for reading

Table Management:
A table is a related set of data values (equivalent to

a C structure or array) that can be loaded and dumped
as a single unit by the ground. Tables are used in the
flight code to give system operators the ability to
update constants used by the flight software during
spacecraft operation without the need for patching the
software. Some tables are also used for dumping
Sequently needed status information to the ground on
command.

The cFE implements Table Services using a
different paradigm than has been used in heritage
missions. A Table is considered a shared memory
resource. An Application requests the creation of the
shared memory from the cFE and the Application must
routinely request access and subsequently release
access to the Table. In this way, Table Services is able
to perform Table updates without the Application being
involved.

Time Management:
Time Management handles the ground time

interface, intra-processor time distribution and provides
the time utilities API for local applications. For intra-
processor time distribution, time management provides
both server and client interfaces.

7. Putting it All Together- Plug and Play

What the cFE and the build system enables is an
environment where individual components can be
created, compiledlinked and inserted into a m i n g
system. This in turn provides a foundation for a
component based reuse catalog and library where much
of the component integration is done at run-time,
creating true component Plug and Play.

Key to the cFE is the fact that individual cFE
applications can be compiled and statically linked
separately f?om the cFE and other cFE applications.
Static linking means the global Load Image symbols
don’t change when the application is bound to the
original image.

The results are:
0 Faster integration of applications during

development
0 Facilitation of rapid prototyping and

deployment of advanced concepts and
algorithms

c Reduced cost, schedule and risk to
missions

0 Improved flight software maintenance
support

8. Conclusion

By focusing on the flight software domain for the
common core services and the reuse model, many of
the failings of previous reuse attempts have been
avoided, thus creating a reuse process that will reduce
the cost, risk, and schedule of new mission
development. In addition, the implementation has the
footprint and run-time performance of the heritage
system with only a small startup delay penalty.

A prototype cFE was flown on the CHPsat mission
in December 2005. The first class B mission to use the
cFE and library components will launch in late 2008 or
early 2009 on the Lunar Reconnaissance Orbiter
(LRO).

