
AIAA-RS4 2006-6003

IMPLICATIONS OF RESPONSIVE SPACE ON THE FLIGHT SOFTWARE
ARCHITECTURE

Jonathan Wilmot, NASA GSFC, Greenbelt MD

ABSTRACT

The Responsive Space initiative has several
implications for flight software that need to be
addressed not only within the run-time element,
but the development infrastructure and software
life-cycle process elements as well. The run-
time element must at a minimum support “Plug
& Play”, while the development and process
elements need to incorporate methods to quickly
generate the needed documentation, code, tests,
and all of the artifacts required of flight quality
software. Very rapid response times go even
further, and imply little or no new software
development, requiring instead, using only pre-
developed and certified software modules that
can be integrated and tested through automated
methods. These elements have typically been
addressed individually with significant benefits,
but it is when they are combined that they can
have the greatest impact to Responsive Space.
The Flight Soha re Branch at NASA’s Goddard
Space Flight Center has been developing the run-
time, infrastructure and process elements needed
for rapid integration with the Core Flight
software System (CFS) architecture. The CFS
architecture consists of three main components;
the core Flight Executive (cFE), the component
catalog, and the Integrated Development
Environment (DE). This paper will discuss the
design of the components, how they facilitate
rapid integration, and lessons learned as the
architecture is utilized for an upcoming
spacecraft.

INTRODUCTION

Achieving rapid deployment of flight quality
software requires a different approach than our
heritage process. Using a standard spacecraft
development cycle, flight software typically
takes 2-3 years fi-om requirements definition to
spacecraft integration and test (I&T). Launch is
typically a year later. More complex spacecraft

can take even longer. To be fair, much of the
work at NASA GSFC requires developing one of
a kind custom science spacecraft where the
software process is typically paced by the
hardware schedule. But even with custom
spacecraft there is a great deal of commonality
that could be exploited. At Goddard the main
driver for changing the development process is
cost, but with software being a labor intensive
process, cost and schedule can be directly
related. An obvious way to reduce cost and
schedule is to increase the amount of software
reuse. After performing extensive analysis of
heritage missions the Flight Software Branch at
Goddard has adopted a product line approach
where the commonality is exploited and the
whole development cycle is targeted for forma1
reuse.

For the product line approach to have a
significant impact, the software development
process must reuse all artifacts of the
development cycle, not just the code. This
includes the process artifacts fi-om requirements,
design, test, reviews, and all of the associated
documentation. A component based reuse
process that addresses these aspects has been
under formal development at Goddard Space
Flight Center for about two years. This process
and support tools, called the Core Flight System
(CFS), is based on three major components, a
small runtime flight executive, an expandable
CatalogAibrary of reusable software components,
and a integrated development environment to
bring it all together. When complete, the CFS is
designed to allow components to be selected,
configured, and deployed into running systems
with all the process artifacts, which can reduce
aspects of the development cycle from years to
months.

1 of5
4th Responsive Space Conference 2006

, ' E

RUNTIMEEXECUTIVE

To provide an operating basis for the CFS
component reuse model we have developed a
small footprint core system executive that
supports runtime plug-and-play of software
components that conform to the core Application
Programmer Interface (API). This allows
software developers to select components from
the CatalogAibrary and quickly integrate them
into new systems. This system executive is
called the core Flight Executive or cFE. The core
Flight Executive, denoted in blue the figure 1,
consists of an operating system abstraction layer,
a hardware abstraction layer, a set of common
system services, and a Publish and Subscribe
messaging middleware. This executive, while
facilitating reuse, also adds a great deal of
development and operational flexibility in the
areas of rapid prototyping, on-orbit software
maintenance, redundancy management, and
communications.

W

I Components

Y

Figure 1

CORE COMPONENT SERVICES

Management, 7) Time Management. Each
service typically includes a library and an
external interface application. The library
contains the runtime services and the APIs. The
external interface applications implement any
required service state machines and contain the
high level command and telemetry interfaces for
ground system interactions. One of the
subsystems, the OS Abstraction, is implemented
as a library only. This subsystem may be used
without the others as a stand-alone product.
Prior to deployment, each service can be
configured and scaled to match the mission
requirements. These configuration parameters
are isolated to a few files which affect system
performance and resources utilization allowing
the cFE to quickly target a wider range of
platforms. All of the cFE services maintain
information for each user component and its
tasks in order to provide a way of cleaning up
after an application that may have crashed and to
provide information to the ground for
performance and resource monitoring. This
feature is especially useful during development
and can be used to restart single components on-
orbit in response to contingencies.

Messaging Middleware
The software message bus architecture has a long
flight heritage at Goddard. It was first
implemented in 1990 as the abstraction for inter-
task communications. The core service Software
Bus (SB) adds a dynamic Publish and Subscribe
messaging interface and handles both local and
distributed inter-task communications, in a
transparent way. The primary abstraction of
Software Bus is to provide a mechanism for
message transmission such that data providers
send packets without knowledge of the data
consumers. This allows the one or more
subscribers to be on any platform within scope of
the bus and not affect the sending application.
This location transparency is a critical feature for
rapid integration, component portability and
reconfiguration. Only device drivers need to be
tied to specific hardware platforms. Figure 2
illustrates the spacecraft messaging concept. All
components connect to the same bus regardless
of platform.

The core Flight Executive is the minimal set of
component services required for any generic
processing element in the flight domain. This
core is compiled and linked as a unit generating
a single object and several configuration files.
The core services are split into the following 7
logical subsystems: 1) Messaging Middleware,
2) Event Handler, 3) OS Abstraction Layer, 4)
Executive Services, 5) File Services, 6) Table

2 o f 5
4th Responsive Space Conference 2006

The Software Bus message-based subscription
supports the heritage concepts of one-to-one,
one-to-many, and many-to-one routing
configurations along with the Poll (non-
blocking) and Pend (blocking w/wo timeout)
options for message receipt. The quality of
service (QoS) concepts of priority and reliability
are implemented for all off-processor messages.

Event handler
Event messages are informational text generated
by an application in response to commands,
software errors, hardware errors, application-
initialization, etc. Event messages are sent to
alert the operators that some significant event
on- board has occurred. Event messages may
also be sent for debugging application code
during development, maintenance, and testing.
The event handler implements the operator
interface, filtering, formatting, sending, and error
counters for all event messages.

OS Abstraction Layer (OSAL)
The OSAL is the API and library abstractions
for common operating systems used in
development and deployment of flight software
systems, including embedded and desktop
systems. To keep it simple, OSAL implements
only the subset of operating system functions as
required from the heritage analysis and system
goals. The OSAL' is a Goddard stand-alone open
source project. See reference for more
information on supported operating systems and
target platforms.

inspecting component applications were not
present in the heritage architectures but are
required to meet the fundamental design goals of
CFS.
On system startup, the boot firmware copies the
cFE and operating system from non-volatile
memory into pre-determined addresses in
volatile memory. Control is then transferred to
the OS and then to ES which handles the startup
of the cFE and the rest of the cFE Applications
as indicated in a configuration fie. Each
application has one main task and may have
additional child tasks. For embedded flight
platforms, the cFE itself is linked and loaded
with the RTOS and BSP as a single static
executable in non-volatile memory. On desktop
platforms, such as Linwi, the cFE is loaded as a
process.

File Services
The File Service implements the standard file
access interfaces for embedded systems along
with interfaces for operator control. It will also
contain the APIs for retrieving the file tracking
data. The tracking data allows for system
monitoring and application cleanup.

Table Management
A table is a related set of data values (equivalent
to a C structure or array) that can be loaded and
dumped as a single unit by the ground. Tables
are used in the flight code to give system
operators the ability to update constants used by
the flight software during spacecraft operation
without the need for patching the software.
Some tables are also used for dumping
infrequently needed status information to the
ground on command.
The cFE implements Table Services using a
different paradigm than has been used in heritage
missions. A Table is considered a shared
memory resource. An Application requests the
creation of the shared memory from the cFE and
the Application must routinely request access
and subsequently release access to the Table. In
this way, Table Services is able to perform Table
updates without the Application being involved.

Executive Services
The Executive Services (ES) subsystem provides
system startup, interfaces for run-time control of
the cFE and component applications, system
logging and intermpt/exception handling. Many
of the control features for stopping, starting, and

3 o f 5
4th Responsive Space Conference 2006

Time Management
Time Management handles the ground time
interface, intra-processor time distribution and
provides the time utilities API for local
applications. For intra-processor time

distribution, time management provides both
server and client interfaces.

COMPONENT CATALOGLIBRARY

Once given a base of standard services and the
associated Application Programmer Interfaces
(API), the team could focus on building a set of
common spacecraft software components. The
selection of common components is based on the
heritage analysis which allows a significant
amount of code to be ported from existing
spacecraft. Even with the heritage code base, the
construction of the component library has been,
and still is, the most tedious element of the CFS.
Modular component standards for requirements,
tests, configuration management, change
tracking, and other artifacts needed to be
established across the software development
organization. Previously individual projects
established these standards with little or no
coordination with other projects. It was only with
the consolidation of flight software developers in
one organization that the standards were
adopted.
Each component in the catalog is designed for
modularity only interfacing to other components
through the cFE APIs. The configuration
management (CM) tool is setup to supports this
modularity by keeping the requirements, code,
unit tests, build tests, directory & build structure
and documentation for each component separate.
This allows each component to be extracted and
managed as a whole unit isolated from other
components. Another often overlooked aspect of
reuse approaches is commonality of the compile,
link, and make tools. The adoption of the
standard open source GNU tools facilitates
commonality by removing dependencies on
proprietary tools. Each component has local
"make" files and associated links to a standard
set of environment variables that integrate it to
the system make environment. The end result of
this effort is that a component can be "checked
out" of the CM tool and built with no
modification to the local directory structure or
make utilities.
Key to the cFE is the fact that individual

catalog components can be compiled and
statically linked separately from the cFE and
other cFE applications. Static linking means the
global Load Image symbols don't change when
the application is bound to the original image,

INTEGRATED DEVELOPMENT
ENVIRONMENT

The Integrated Develop Environment (DE)
provides a set of tools and interfaces for mission
engineers to select and configure components
and deploy the system. The environment is
based of the open source Eclipse' tools now
being adopted by many commercial vendors.
Although this is a work in progress, we expect to
automate several aspects of the development
process. Eclipse JAVA plugins are being
developed for cFE parameter configuration,
component selection and configuration, CM and
discrepancykhange request tracking (DCR),
system build, requirements generation, command
and telemetry database generation, test
procedures, and documentation. Figure 3
illustrates the concept. Graphical User Interface
(GUI) plug-ins are used to assist the mission
engineer in selecting, determining dependencies,
and configuring the cFE and components, while
other plug-ins generate the component artifacts.

IDE

L

B
Figure 3

RAPID SYSTEM BUILDUP

For rapid system buildup the cFE/CFS concept
provides a ready solution. Given one of the
supported processing platforms, the common

4 o f 5
4th Responsive Space Conference 2006

components can be selected from the component
library, configured for the mission, and built
using the make tools. The application fdes can
then be transferred to the target platform RAM
or non-volatile memory, and started. During
startup the components register for resources and
subscribe to messages. Other components can
subscribe to any output messages and the
telemetry can be routed to the ground. New
mission components can be developed from the
component template and loaded using the same
method. Rapid prototyping of new concepts are
supported with the runtime load and unload
features. Engineers can quickly make changes,
assess performance and unlodreload as needed.
The cFE tracks registration and resource
allocations during the load and startup and
allows component cleanup when needed from
other applications.

CONCLUSION

The CFS can be used to rapidly build new flight
systems. Using a standard set of supported
avionics boxes integrated with a ring of standard
cFE services, mission developers can add a
system ring of catalogflibrary software
components to create the command & data,
guidance navigation & control, power, thermal,
and instrument subsystems needed to assemble a
complete spacecraft. Processing platforms can
be chosen for power requirements, performance
and other criteria based on system needs
knowing the abstraction layers will isolate the
reusable components from the platform choices.
A prototype cFE was flown on the CHIPsat
mission in December 2005. The first class B
mission to use the cFE and some of the library
components will launch in late 2008 or early
2009 on the Lunar Reconnaissance Orbiter
(LRO).

' http://www.eclipse.org/
http://opensource.gsfc.nasa.gov/pmjects/osal/osal.php

A

Core Ring
System Ring
Personality Ring

5 o f 5
4th Responsive Space Conference 2006

