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ABSTRACT 
 

The prediction of the failure of composite laminates subjected to multi-axial loading in regions with mild stress gradients is 
of considerable interest for some aerospace applications such as pressurized vessels. In such components, which are 
devoid of notches or other stress concentrations, matrix cracks can accumulate prior to the localization of damage along a 
narrow fracture path. 

The prediction of the onset of ply damage can be accomplished by using ply-level failure criteria [1]-[2]. To predict ultimate 
failure of a laminate the ‘ply-discount’ method is normally used. The ply discount method reduces by an empirical amount 
the elastic properties of a damaged ply as a function of the type of damage predicted. Such an approach is not rigorous for 
the simulation of the progressive accumulation of transverse matrix cracks. 

The main objective of the current work is to develop an alternative method to predict the onset of ply damage and ultimate 
failure of a laminate. The failure criteria used to predict damage onset are the LaRC03 failure criteria [2]. 

A micromechanical model of a laminate containing matrix transverse cracks under multi-axial loading is proposed  
(Figure 1). The model proposed can predict the increased strength of a ply when it is embedded in a multidirectional 
laminate [3], and it relates the multi-axial strain state to the density of transverse matrix cracks. 

Based on the micromechanical analyses, a new model is formulated in the framework of damage mechanics. The 
characteristics of the constitutive model, e.g. the free energy, the damage evolution functions and the loading-unloading 
conditions are based on the micromechanical model. 

The algorithm for the integration of the constitutive equation and the implementation of the model in computational models 
based on the Finite Element Method or in the Classical Lamination Theory are presented. Several examples relating the 
applied loads to the stiffness of a multidirectional laminate are presented (Figure 2). 
 

       
Fig. 1 Representative volume element of a laminate 

with matrix cracks 
Fig. 2 Relation between applied strain and axial 

modulus of the composite. 
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Abstract. A new damage model based on a micromechanical analysis of cracked[±θ◦/90◦n]s
laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumu-
lation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks
on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also
accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic
properties of several laminates and multiaxial loads are presented.
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1 INTRODUCTION

The aerospace industry is committed to improve the performance of aircraft whilst reducing
emissions and weight. Such a goal can be achieved by the use of advanced polymer-based com-
posite materials, that have excellent properties for aerospace applications, such as low density,
and fatigue and corrosion resistance.

The design procedure used for advanced composite structures relies on a ’building-block’
approach [1], where a large number of experimental tests are performed throughout the product
development process. The use of improved analytical or numerical models in the prediction
of the mechanical behavior of composite structures can significantly reduce the cost of such
structures. Such models should predict the onset of material degradation, the effect of the non-
critical damage mechanisms on the stiffness of the laminate, and ultimate structural failure.

Strength-based failure criteria are commonly used to predict failure in composite materi-
als [2]-[7]. Failure criteria predict the onset of the several damage mechanisms occurring in
composites and, depending on the laminate, geometry and loading conditions, may also predict
structural collapse.

In multidirectional composite laminates, damage accumulates during the loading process.
Final failure occurs as a result of damage accumulation and stress re-distribution. The ulti-
mate failure load is higher than the initial damage predicted by strength-based failure criteria.
Furthermore, stress- or strain-based failure criteria cannot represent size effects that occur in
quasi-brittle materials [8].

Simplified models, such as the ply discount method where some scalar components of the
stiffness tensor are reduced to approximately zero when damage is predicted, are often used by
the industry to predict ultimate laminate failure. However, these methods cannot represent with
satisfactory accuracy the progressive reduction of the stiffness of a laminate as a result of the
accumulation of matrix cracks.

Constitutive laws based on Continuum Damage Mechanics (CDM) have been proposed to
predict the material response, from the onset of damage up to final collapse [9]-[14]. Although
the existing CDM models can predict accurately the evolution of damage, they usually rely
on fitting parameters that need to be measured at laminate level, such as the critical values of
thermodynamic forces [14].

Three-dimensional models based on CDM use material properties measured at the ply level.
Damage mechanisms such as transverse matrix cracks are represented by strain-softening con-
stitutive models and bands of localized deformation. The implementation of strain-softening
models in finite element models causes convergence difficulties during the iterative solution
procedure. Furthermore, strain-softening models require regularization techniques to provide
mesh-independent solutions [15, 16].

Alternative methods based on the combination of elastic analysis of cracked plies and finite
Fracture Mechanics provide the basis for an accurate representation of the response of compos-
ite materials [17]-[28]. Micromechanical models have been developed to predict the initiation
and evolution of transverse matrix cracks under either in-plane shear or transverse tension. Gen-
eralizations of these models are required for the more usual case of multiaxial loading.

In order to predict ultimate failure, a micromechanical model needs to be used in combination
with a fiber failure criterion. Furthermore, a general methodology to predict laminate strength
should be able to predict matrix cracking under high values of transverse compression. These
damage mechanisms usually correspond to the final failure of laminates under uniform states of
stress [6].
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The objective of this work is to define a new damage model based on micromechanical
models of transverse matrix cracks to predict the onset and evolution of transverse matrix cracks
under multiaxial loading. A new constitutive model is derived based on the thermodynamics
of irreversible processes. The model proposed herein represents transverse matrix cracks as
distributed damage. The model is able to predict the onset and propagation of matrix transverse
cracks under multiaxial loading as well as the final failure of uniformly stressed laminates where
a periodic distribution of transverse matrix cracks can be assumed.

2 MICROMECHANICAL MODEL

The proposed continuum damage model is based on two major components: a set of stress
based failure criteria and a micromechanical model of transverse matrix cracking in multidirec-
tional laminates.

The failure criteria define the onset of transverse matrix cracking, i.e. the activation of the
damage variables. A micromechanical model of transverse matrix cracks is required to define
the evolution of the damage variables.

Several micromechanical models of transverse matrix cracks that have been proposed in the
literature [19, 28] can be used within the framework developed here. The micromechanical
model proposed by Tan and Nuismer [17, 18] accounts for the effects of the adjoining plies on
the homogenized elastic properties of a cracked ply. This micromechanical model is the basis
of the developments presented in this work.

Using the assumption of generalized plane strain, Tan and Nuismer [17, 18] developed a
model able to relate the density of transverse matrix cracks in a central90o ply to the homoge-
nized elastic properties of that ply. The model developed by Tan and Nuismer was used for the
prediction of the evolution of transverse matrix cracks under either in-plane shear or transverse
tensile stresses.

The laminates under investigation are symmetric and balanced with a[±θ/90o
n]s layup con-

taining a periodic distribution of transverse matrix cracks, as shown in Figure1. The micro-
mechanical analysis of a balanced symmetrical laminate requires the division of the laminate
in two sub-laminates: the90o layers in the middle layer (sublaminate 1), and the outer plies
(sublaminate 2).
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Figure 1:One-quarter of the laminate.

Sublaminate 1 is taken as transversely isotropic. The outer layers, sublaminate 2, may con-
tain several layers with different fiber orientations but must be orthotropic in the laminate global
system (x, y and z coordinates).
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2.1 CONSTITUTIVE TENSOR

The stiffness tensor of the balanced and symmetric laminate shown in Figure1 can be written
as a function of the density of transverse matrix cracks (1/L) in the sublaminate 1:

Ā(L) =




Ā(L)11 Ā(L)12 0
Ā(L)21 Ā(L)22 0

0 0 Ā(L)66


 (1)

where the terms̄Aij(L), i, j = 1, 2, 6 are obtained from the Tan and Nuismer model [18].
The undamaged stiffness matrix̄Q of the laminate is obtained from lamination theory using

the undamaged stiffness matrix of sublaminate 1,Q̄(1), and the stiffness matrix of sublaminate
2, Q̄(2):

Q
(1)
ij =

1

h(1)

(
h̄Q̄ij − h(2)Q

(2)
ij

)
(2)

with h̄ = h(1) + h(2).
Assuming that the degradation due to the transverse matrix cracks only occur in sublaminate

1, the damaged stiffness tensor of laminate 1 is given as:

Ā
(1)
ij (L) =

1

h(1)

(
h̄Āij(L)− h(2)Q

(2)
ij

)
(3)

whereĀ
(1)
ij (L) (i, j = 1, 2, 6) are the scalar components of the stiffness tensor of sublaminate 1.

These components are a function of the distance between transverse matrix cracks (L, defined
in Figure1).

Having definedĀ(1)
ij (L), it is possible to calculate the effective transverse modulus, Poisson

ratio, and shear modulus of the 90◦ ply:

Ē
(1)
2 (L) = Ē(1)

x (L) = Ā
(1)
11 (L)−

[
Ā

(1)
12 (L)

]2

Ā
(1)
22 (L)

(4)

ῡ
(1)
21 (L) = ῡ(1)

xy (L) =
Ā

(1)
12 (L)

Ā
(1)
22 (L)

(5)

Ḡ
(1)
12 (L) = Ḡ(1)

xy (L) = Ā
(1)
66 (L) (6)

The quotientυ21

E2
is not a function of damage. This observation is in agreement with several

other models, such as the ones proposed by Laws et al. [23, 24], and Nguyen [25].
The plane stress compliance tensor of the damaged sublaminate 1,H(1), only contains two

components that depend on the density of transverse matrix cracks:H
(1)
22 (L) andH

(1)
66 (L). The

tensorH(1), is established as a function of the density of transverse matrix cracks,L, as:

H(1)=




1
E1

−υ21

E2
0

−υ12

E1
H

(1)
22 (L) 0

0 0 H
(1)
66 (L)


 (7)
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with:

H
(1)
22 (L) =

1

Ē
(1)
2 (L)

=
Ā

(1)
22 (L)

Ā
(1)
11 (L)Ā

(1)
22 (L)−

[
Ā

(1)
12 (L)

]2 (8)

H
(1)
66 (L) =

1

Ḡ
(1)
12 (L)

=
1

Ā
(1)
66 (L)

(9)

The evolution of the homogenized elastic properties of the cracked ply (sublaminate 1) as
a function ofβ = 1/(2L) is shown in Figure2 for a [±25◦/90◦3]s laminate with the material
properties shown in Table1.

E1 (GPa) E2 (GPa) G12 (GPa) υ12

163.4 11.9 6.2 0.30

Table 1:Elastic properties of typical carbon/epoxy composite.

Figure 2:Effective elastic properties of the 90◦ ply as a function of the density of matrix cracks.

Figure2 shows that the Young modulus of sublaminate 1,E1, is not affected by the presence
of transverse matrix cracks. Furthermore, the curvesE2(β)/E2 andυ21(β)/υ21 are coincident
(Figure2).

2.2 ONSET OF MATRIX TRANSVERSE CRACKS

The onset of transverse matrix cracking in a ply under the combined effect of in-plane shear
stresses and transverse tensile stresses needs to be predicted using an appropriate failure crite-
rion. The failure criterion should be established in terms of the actual strengths of a ply when it
is embedded in a multidirectional laminate (in-situ strengths).
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2.2.1 In-situ strengths

A methodology to predict the onset of matrix transverse cracking must be able to predict
the in-situ strengths of a ply. Both the transverse tensile and in-plane shear strengths of a ply
embedded in a multidirectional laminate are higher than the corresponding values measured in
unidirectional laminates [29].

The thick models described in [30] are used. The tensile transverse in-situ strengths of
sublaminate (1) is [30]:

For a thin embedded ply:YT =

√
8GIc

πtΛo
22

(10)

For a thick ply:YT = 1.12
√

2Y ud
T (11)

whereY ud
T is the tensile transverse strength measured in a unidirectional test specimen,t is the

thickness of sublaminate 1,GIc is the mode I intralaminar fracture toughness andΛ◦22 is defined
as:

Λ◦22 = 2

(
1

E2

− υ2
21

E1

)
(12)

The in-situ shear strengths are obtained as [29]:

SL =

√
(1 + χφG2

12)
1/2 − 1

3χG12

(13)

whereχ is the shear response factor defined in [29], and the parameterφ is calculated according
to the configuration of the ply:

For a thick ply: φ =
12

(
Sud

L

)2

G12

+ 18χ
(
Sud

L

)4

For a thin ply: φ =
48GIIc

πt
(14)

whereSud
L is the shear strength measured using an unidirectional test specimen andGIIc is the

mode II fracture toughness.

2.2.2 Failure criterion for the prediction of transverse cracking under multiaxial loading

In general, a ply represented by sublaminate 1 in Figure1 is subjected to transverse tensile
stresses and in-plane shear stresses. Under pure in-plane shear or pure transverse tension, the
onset of transverse matrix cracking is predicted by comparing the components of the stress
tensor with the respective in-situ strengths (defined in the previous section).

Under multiaxial loading, it is necessary to use a failure criterion to predict the onset of
matrix cracking. The LaRC04 [4, 5] failure criteria are a function of the components of the
stress tensor and in-situ strengths. For transverse tension, the criterion used is:

(1− g)
σ22

YT
+ g(

σ22

YT
)2 + (

σ12

SL
)2 − 1 ≤ 0 with σ22 ≥ 0 (15)

6



Pedro P. Camanho, Joan A. Mayugo, Pere Maimı́ and Carlos G. D́avila

whereg = GIc
GIIc

. GIIc is the mode II component of the fracture toughness associated with matrix
transverse cracking.

Under moderate values of transverse compression, the cracks propagate along the laminate
thickness direction, and the LaRC04 failure criterion is:

1

SL

〈|σ12|+ ηLσ22

〉− 1 ≤ 0 with σ22 < 0 (16)

whereηL is the coefficient of longitudinal influence defined in [4, 5].

2.3 Evolution of matrix transverse cracks under multiaxial loading

2.3.1 Transverse tension

Tan and Nuismer [18] obtained a closed-form expression that defines the evolution of trans-
verse matrix cracks under uniaxial stress states (either transverse tension or in-plane shear).

To predict failure under multiaxial loading, i.e. when the lamina is simultaneously under
tensile and in-plane shear strains,εxx andγxy respectively, it is necessary to derive a relation
between the density of transverse matrix cracks and the applied multiaxial strain state. It is
assumed that the relation between the tensile and shear strains is constant throughout the loading
history:

κ =
γxy

εxx

with εxx > 0 (17)

whereκ is themultiaxial strain ratio.
Consider a ply with crack densityL, as shown in Figure3 a).

2L

a) Crack density 2L

L

b) Crack density L

L

Figure 3:Progression of transverse matrix cracks.

The strain energy in a laminate cell of length2L subjected to transverse tension and in-plane
shear just prior to fracture,U2L, can be established as a function of the strain tensor and of the
crack density as:

U2L = 2hLb
[
Ex(L)ε2

xx + A66(L)γ2
xy

]
(18)

whereEx(L) is the axial stiffness of the laminate with a crack density of1/(2L) andb is the
specimen width;A66(L) is the laminate effective shear stiffness corresponding to a crack density
of 1/(2L), 2h and 2L are the laminate thickness and the distance between two consecutive
transverse matrix cracks, respectively.

After the propagation of transverse matrix cracks, Figure3b), the strain energy in the original
unit cell of length2L is:

UL = 2hLb

[
Ex

(
L

2

)
ε2

xx + A66

(
L

2

)
γ2

xy

]
(19)
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whereEx(L/2) and A66(L/2) are respectively the axial stiffness and the laminate effective
shear stiffness corresponding to a crack density defined byL.

The energy required to generate a new matrix crack in a ply equals the loss of strain energy
of the laminate [18]. Therefore, the difference between equation (18) and equation (19) is equal
to the energy released by the sublaminate 1:

∆U = U2L − UL =

= 2hLb

{[
Ex(L)− Ex

(
L

2

)]
ε2

xx +

[
A66(L)− A66

(
L

2

)]
γ2

xy

}
(20)

∆U = 2h(1)bGc = 2h(1)bGI + 2h(1)bGII (21)

whereGc is the mixed-mode fracture toughness of sublaminate 1 under tensile (mode I) and
shear (mode II) loading. From (20) and (21):

[
Ex(L)− Ex

(
L

2

)]
ε2

xx +

[
A66(L)− A66

(
L

2

)]
γ2

xy =
h(1)Gc

hL
(22)

Using the definition ofκ given in (17), equation (22) can be re-written as a function of the
strains:

{(
Ex(L)− Ex

(
L

2

))
+ κ2

[
A66(L)− A66

(
L

2

)]}
ε2

xx =
h(1)Gc

hL
(23)

or:

{
1

κ2

[
Ex(L)− Ex

(
L

2

)]
+

[
A66(L)− A66

(
L

2

)]}
γ2

xy =
h(1)Gc

hL
(24)

The relations between the normal and shear strains and the crack density are obtained as:

εxx =

√
h(1)Gc

hL

1[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] (25)

γxy =

√
h(1)Gc

hL

κ2

[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] = κεxx (26)

Equations (25) and (26), are established as a function of the mixed-mode fracture toughness
Gc that needs to be defined.

The mixed-mode fracture toughness is defined in terms of the mode I and mode II compo-
nents as:

Gc = GI + GII (27)

From (27) and (22):
h(1)GI

hL
=

[
Ex(L)− Ex

(
L

2

)]
ε2

xx (28)

h(1)GII

hL
=

[
A66(L)− A66

(
L

2

)]
γ2

xy (29)

8
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Dividing equations (28) and (29) by (23) and (24), respectively:

AI =
GI

Gc

=

[
Ex(L)− Ex

(
L
2

)]
[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] (30)

AII =
GII

Gc

=
κ2

[
A66(L)− A66

(
L
2

)]
[
Ex(L)− Ex

(
L
2

)]
+ κ2

[
A66(L)− A66

(
L
2

)] (31)

AI andAII are the ratios between the mode I and mode II components of the energy release
rate and the mixed-mode fracture toughness.

The criterion proposed by Hahn [31] for the prediction of transverse matrix cracking under
transverse tensile and in-plane shear loads is used:

(1− g)

√
GIIc

GIc
+ g

GI

GIc
+

GII

GIIc
= 1 (32)

Substituting equations (30) and (31) into (32) gives:

(1− g)

√
AIGc

GIc
+ g

AIGc

GIc
+

(1− AI) Gc

GIIc
= 1 (33)

The positive real solution of (33) is:

Gc = GIIc +
AI

2

(GIc −GIIc)
2

GIc

(
1−

√
1 +

4

AI

GIcGIIc

(GIc −GIIc)
2

)
(34)

whereAI depends on the density of transverse matrix cracks,β, and on the multiaxial strain
ratio,κ (equation (30)).

Figure 4 shows the relation between the crack densityβ and εxx for different multiaxial
strain ratios. A[±25◦/90◦3]s laminate with the elastic properties shown in Table1 is used in the
predictions.

Figure 4:Relation between applied strain (εxx andκ) and density of matrix cracks.
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The effects of multiaxial strain states on the crack density are clearly shown in Figure4.
It can be observed in Figure4 that the density of transverse matrix cracks increases with the
multiaxial strain ratio for a fixed value ofεxx.

2.3.2 Transverse compression

Transverse matrix cracks created by a combination of transverse compression and in-plane
shear close under the effect of the compressive transverse stress. When a crack closes, its faces
can transmit normal tractions but shear tractions may cause slippage between the crack faces.
Therefore, it can be assumed that transverse matrix cracks only affect the shear stiffness of a
laminate.

Following the procedure described in the previous section, the energy released by the sub-
laminate 1 is:

∆U = 2hLbγ2
xy

[
A66(L)− A66

(
L

2

)]
= 2h(1)bGIIc (35)

The relation between the shear strain and the crack density is obtained as:

γxy =

√
h(1)GIIc

hL
[
A66(L)− A66

(
L
2

)] (36)

3 MICROMECHANICS-BASED DAMAGE MODEL

3.1 Constitutive model

A damage model able to represent the onset and accumulation of a periodic distribution of
transverse matrix cracks should yield a compliance tensor similar to the one obtained from
the micromechanical model, equation (7). An appropriate damage model can be developed by
defining the Gibbs free energy per unit volume,ΨG, as:

ΨG =
1

2

[
σ2

11

E1

+
σ2

22

(1− d2) E2

+
σ2

12

(1− d6) G12

−
(

υ21

E2

+
υ12

E1

)
σ11σ22

]
+

+ (α11σ11 + α22σ22) ∆T + (β11σ11 + β22σ22)∆M (37)

whereE1, E2, υ12, υ21 andG12 are the in-plane elastic orthotropic properties of a unidirectional
lamina. The subscript 1 denotes the longitudinal (fiber) direction and 2 denotes the transverse
(matrix) direction. d2 andd6 are damage variables associated with transverse matrix crack-
ing. α11 andα22 are the coefficients of thermal expansion in the longitudinal and transverse
directions, respectively.β11 andβ22 are the coefficients of hygroscopic expansion in the lon-
gitudinal and transverse directions, respectively.∆T and∆M are respectively the changes in
temperature and moisture content from the stress-free state.

The proposed model distinguishes between active(d2+) and passive damage(d2−) variables,
corresponding to the opening or closure of transverse matrix cracks under load reversal respec-
tively. To account for the active damage under either opening or closure, the following equation
is proposed:

d2 = d2+
〈σ22〉
|σ22| + d2−

〈−σ22〉
|σ22| (38)

10
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where the McCauley operator〈x〉 is defined as〈x〉 := 1
2
(x + |x|).

The damage variablesd2 andd6 can be related to the density of transverse matrix cracks
using the micromechanical model previously described.

The constitutive model is obtained as:

ε =
∂ΨG

∂σ
= H : σ+∆Tα + ∆Mβ (39)

where the compliance tensorH is:

H =
∂2ΨG

∂σ2
=




1
E1

−υ21

E2
0

−υ12

E1

1
(1−d2)E2

0

0 0 1
(1−d6)G12


 (40)

The compliance tensor is established in terms of the damage variables and is similar to the
compliance tensor derived in the micromechanical model.

Using (7) and (40) the damage variablesd2 andd6 can be expressed in terms of the crack
densityβ as:

d2+ = 1− 1

E2H22 (β)
(41)

d6 = 1− 1

G12H66 (β)
(42)

The functionsH22 (β) andH66 (β) are obtained from equations (8) and (9) with β = 1/(2L).
The condition of positive energy dissipation is established as a function of the thermody-

namic forces,Y, and as a function of the time derivative of the damage variables,ḋ, and it is
given by:

Ξ = Y · ḋ =
∂ΨG

∂d
· ḋ ≥ 0

Ξ =
σ2

22

2 (1− d2+)2 E2

ḋ2+ +
σ2

12

2 (1− d6)
2 G12

ḋ6≥0 (43)

whereΞ is the rate of energy dissipation per unit volume.
The condition of positive dissipation, when interpreted from a micromechanical point of

view, establishes that the density of transverse matrix cracks can only increase or remain con-
stant.

3.1.1 Damage activation functions

Transverse matrix cracks are predicted using two scalar functions,Fk (k = 2+, 2−), estab-
lished in terms of the effective stress tensorσ̃t, and of the damage threshold value,rt:

Fk := φk

(
σ̃t

)− rt ≤ 0 (44)

wheret is the current time. The initial threshold value,r◦, is equal to 1, and the following
condition must be satisfied in order to fulfill the Second Principle of Thermodynamics:

ṙ ≥ 0 (45)
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Damage onset occurs when any of the functionsφk (σ̃t) reaches the initial damage threshold
value of 1. The functionsφk (σ̃t) used to predict transverse matrix cracking are based on the
LaRC04 failure criteria previously proposed by the authors [4, 5]. The damage activation func-
tions are used to predict the onset of transverse matrix cracks lying in ply thickness direction,
as shown in Figure1.

Transverse matrix cracks lying in the direction of the ply thickness occur under transverse
tension(σ22 ≥ 0), or under moderate values of transverse compression and in-plane shear
(σ22 < 0).

For high values of transverse compression, the matrix fractures lie along a plane that is
inclined at an angleα to the direction of the ply thickness. Inclined fracture planes caused
by transverse compression induce delamination between the plies. This damage mechanism is
usually catastrophic in uniformly stressed composites where local redistribution to more lightly
loaded regions of the structure cannot occur [6]. Therefore, laminate failure can be assumed to
occur when matrix cracking under high values of transverse compression is predicted.

The damage activation function used to predict matrix cracking under transverse tension
(σ̃t

22 ≥ 0) and in-plane shear is defined as:

F2+ := φ2+

(
σ̃t

)− rt ≤ 0 (46)

with:

φ2+

(
σ̃t

)
=

√
(1− g)

σ̃t
22

YT
+ g

(
σ̃t

22

YT

)2

+

(
σ̃t

12

SL

)2

(47)

The damage activation function used to predict matrix cracking withα = 0◦ under moderate
values of transverse compression (σ̃t

22 < 0) and in-plane shear is defined as:

F2- := φ2-

(
σ̃t

)− rt ≤ 0 (48)

with:

φ2-

(
σ̃t

)
=

α=0o

1

SL

〈∣∣σ̃t
12

∣∣ + ηLσ̃t
22

〉
(49)

The equations proposed can predict accurately transverse matrix transverse cracking. The
failure envelope, or initial elastic limit, predicted using equations (46) and (48), and the corre-
sponding experimental data are shown in Figure5.
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Figure 5: Comparison between predictions and experimental data [32] and definition of ply or laminate failure
domains.

Figure5 also shows the domain of validity of the model: the damage model is only defined
for fracture anglesα = 0◦. Forα > 0◦, the laminate is assumed to fail.

3.1.2 Damage evolution functions

Using the principle of strain equivalence, the effective stress tensor can be written as a func-
tion of the strain and undamaged stiffness tensors:

σ̃ = Co: ε (50)

The strain tensor is established in terms of the density of transverse cracks and the multiaxial
strain ratioκ, equations (25-26). Therefore, all terms in the damage threshold functions can be
formulated as a function of the density of transverse matrix cracks and of the multiaxial strain
ratio:

Fk = f(βt, κt) (51)

For a given state of strain at timet, the multiaxial strain ratio is a dependent variable that can
be easily defined using equation (17) in material coordinates:

κt =
γt

12

εt
11

(52)

The density of transverse matrix cracks is a state variable. Therefore, it is necessary to define
an evolution law subjected to thermodynamic restrictions.

The first condition to be satisfied is the requirement of positive dissipation:

β̇ ≥ 0 (53)

13
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Furthermore, it is necessary to define the conditions for the evolution of the elastic domain:

Fk(σ̃
t, βt) ≤ 0 (54)

β̇Fk(σ̃
t, βt) = 0 (55)

Equations (53)-(55) are the Kuhn-Tucker conditions which ensure a consistent evolution of
damage during loading and load reversals.

The evolution laws of the state variables are defined as:

·
σ̃ =

∂σ̃

∂ε
: ε̇ =

∂σ̃

∂ε
:

(
∂ε

∂β
β̇ +

∂ε

∂κ
κ̇

)
= Co :

(
∂ε

∂β
β̇ +

∂ε

∂κ
κ̇

)
(56)

ṙ =
∂r

∂β
β̇ +

∂r

∂κ
κ̇ (57)

For a given loading state, the damage consistency condition must be applied to define the
evolution of the internal variables. The consistency condition is defined as:

Fk = 0 ⇒ Ḟk =
∂Fk

∂σ̃
:
·
σ̃ +

∂Fk

∂r
ṙ = 0 (58)

From (46) and (48):
∂Fk

∂r
= −1 (59)

Using (59) in (58):

Ḟk =
∂Fk

∂σ̃
:
·
σ̃ − ṙ =

∂Fk

∂σ̃
: Co : ε̇− ṙ = 0 (60)

Using equations (56) and (57) in (60):

Ḟk =
∂Fk

∂σ̃
: Co :

(
∂ε

∂β
β̇ +

∂ε

∂κ
κ̇

)
−

(
∂r

∂β
β̇ +

∂r

∂κ
κ̇

)
= 0 (61)

Taking into account that the micromechanical model proposed assumes a constant loading
ratio, κ̇ = 0:

Ḟk =
∂Fk

∂σ̃
:

(
Co :

∂ε

∂β
− ∂r

∂β

)
β̇ = 0 (62)

The density of of transverse matrix cracks,β, is calculated from the integration of equation
(62) using a numerical method, such as the return-mapping algorithm.

4 LAMINATE FAILURE

In the presence of stress concentrations the onset of fiber localized failure does not cause
immediate structural collapse. Experimental results [33, 34] show that structural collapse is
caused by the the progression of fiber fracture. Therefore, it is necessary to use a damage model
that accounts for the stress re-distributions caused by fiber fractures.

The model proposed here assumes that for uniformly stressed laminates the onset of fiber
fracture and delamination caused by high compressive transverse stresses triggers structural
collapse. Therefore, laminate final failure is predicted when fiber failure or matrix cracking
with α 6= 0◦ occurs.
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4.1 Fiber failure

The criterion for fiber fracture under longitudinal tension (σ11 ≥ 0) is defined as [4, 5]:

FI1+ :=
σ11

XT
− 1 ≤ 0 (63)

whereXT is the ply tensile strength in the longitudinal direction.
The LaRC03 failure criterion for fiber kinking under longitudinal compression (σ11 < 0) is a

function of the components of the stress tensor in a frame representing the fiber misalignment,
σ

(m)
ij [4, 5]:

σ
(m)
11 = σ11 cos2 ϕ + σ22 sin2 ϕ + 2 |σ12| sin ϕ cos ϕ

σ
(m)
22 = σ11 sin2 ϕ + σ22 cos2 ϕ− 2 |σ12| sin ϕ cos ϕ

σ
(m)
12 = −σ11 sin ϕ cos ϕ + σ22 sin ϕ cos ϕ + |σ12|

(
cos2 ϕ− sin2 ϕ

) (64)

where the fiber misalignment angleϕ is defined as [4]:

ϕ =
|σ12|+ (G12 −XC) ϕc

G12 + σ11 − σ22

(65)

ϕc = tan−1




1−
√

1− 4
(

SL
XC

+ ηL
)(

SL
XC

)

2
(

SL
XC

+ ηL
)


 (66)

whereXC is the ply compressive strength in the longitudinal direction.
Depending on the sign of the in-plane transverse stressσ

(m)
22 , the criteria for fiber kinking

(σ11 < 0) are:

FI1- : =

〈∣∣∣σ(m)
12

∣∣∣ + ηLσ
(m)
22

SL

〉
− 1 ≤ 0, σ

(m)
22 < 0 (67)

or FI1- : = (1− g)
σ

(m)
12

YT
+ g

(
σ

(m)
12

YT

)2

+

(
σ

(m)
12

SL

)2

− 1 ≤ 0, σ
(m)
22 ≥ 0 (68)

4.2 Matrix failure with α 6= 0◦

The failure criteria for matrix cracking under transverse compression (σ22 < 0) and in-plane
shear andα 6= 0◦ are defined as [4, 5]:

FI2- :=

(
τT
e

ST

)2

+

(
τL
e

SL

)2

− 1 ≤ 0, |σ11| ≤ YC (69)

FI2- :=

(
τ

(m)T
e

ST

)2

+

(
τ

(m)L
e

SL

)2

− 1 ≤ 0, |σ11| > YC (70)

where the effective shear stresses in the fracture plane are defined as:
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τT
e =

〈∣∣τT
∣∣ + ηT σn cos θ

〉
(71)

τL
e =

〈∣∣τL
∣∣ + ηLσn sin θ

〉
(72)

whereθ = tan−1
(

−|σ12|
σ22 sin α

)
. The components of the stress tensor on the fracture plane are given

by [4, 5]:




σn = σ22 cos2 α
τT = −σ22 sin α cos α
τL = σ12 cos α

(73)

The termsτmT
e andτmL

e are calculated from equations (71)-(73) using the relevant compo-
nents of the stress tensor established in a frame representing the fiber misalignment, equation
(64). The angleα is determined by maximizing the failure index FI2− (69-70) using a simple
iterative procedure.

The coefficients of transverse and longitudinal influence,ηT andηL, respectively, are [4, 5]:

ηT =
−1

tan 2α0

(74)

ηL = −SL cos 2α0

YC cos2 α0

(75)

with α0 ≈ 53◦. YC is the ply compressive strength in the transverse direction.

5 EXAMPLES

The present damage model can be used in combination with classical lamination theory
using stand-alone codes. Alternatively, the damage model can be implemented as a constitutive
subroutine for the finite element method.

The damage model was implemented using a commercial symbolic computing software. The
model was verified by calculating the response of several glass-epoxy laminates under uniaxial
and multiaxial loads:[±45◦/90◦4]s, [0◦2/90◦4]s, [0◦2/90◦2]s and[0◦2/90◦]s.

In all calculations performed, the ply thickness was taken as 0.144mm, and the temperature
difference from the stress free condition was -100◦C. The coefficients of thermal expansion in
the longitudinal and transverse directions areα11 = 7.43×10−6/◦C andα22 = 22.4×10−6/◦C,
respectively. The remaining material properties used are shown in Tables2 and3.

E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) υ12 υ23 χ (10−8MPa−3)
44.7 12.8 5.8 4.5 0.30 0.42 2.0

Table 2:Elastic properties of glass-epoxy [20]
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Yud
T (MPa) Sud

L (MPa) GIc (N/mm−1) GIIc (N/mm−1)
40.0 73.0 0.20 0.40

Table 3:Strengths and fracture toughnesses of glass-epoxy [20].

The predicted response of[±40◦/90◦4]s and[0◦2/90◦4]s, is shown in Figure6 for two values of
the multiaxial strain ratio:κ = 0 andκ = 10.

Figure 6:Relation between laminate modulus and applied strain for[±45◦/90◦4]s and[0◦2/90◦4]s laminates.

Figure6 shows that the rate of degradation of the elastic properties of the laminate is higher
when the axial stiffness of the outer sublaminate decreases. The effect of multiaxial loading
is also clear in Figure6: as expected, the application of shear strains leads to a reduction of
the extension corresponding to the onset of transverse matrix cracks and to a higher rate of
degradation of the elastic properties of the laminate.

Figure7 compares the response of[0◦2/90◦4]s, [0◦2/90◦2]s and [0◦2/90◦]s laminates forκ = 0
andκ = 2.

Figure 7:Relation between laminate modulus and applied strain for[0◦2/90◦4]s, [0◦2/90◦2]s and[0◦2/90◦]s laminates.

17



Pedro P. Camanho, Joan A. Mayugo, Pere Maimı́ and Carlos G. D́avila

The in-situ effect is shown in Figure7: for κ = 0, the strain corresponding to the onset
of matrix cracking of the[0◦2/90◦]s laminate is 1.9 and 1.3 times higher than the strains of the
[0◦2/90◦4]s and [0◦2/90◦2]s laminates respectively. Furthermore, the strain at the onset of matrix
cracking of the[0◦2/90◦]s is 2.7 times higher than the ultimate transverse strain measured in an
unidirectional test specimen.

6 CONCLUSIONS

A new, micromechanics-based, continuum damage model able to simulate the onset and
propagation of transverse matrix cracks and final laminate failure is proposed. The model is
applicable to[±θ◦/90◦n]s laminates, under multiaxial loading and uniform stresses or small
stress gradients.

The model uses ply properties and does not require any tests performed at the laminate
level to identify damage onset and evolution functions. The onset of damage is predicted using
failure criteria and damage evolution laws are established from the micromechanical analysis
of cracked plies.

The onset and accumulation of transverse matrix cracks are represented as a distributed dam-
age mechanism. The onset of localization, which is triggered by either fiber fracture or matrix
cracking withα 6= 0, is assumed to cause a structural collapse.

The predictions show that the rate of degradation of the elastic properties increases when
the stiffness of the outer sublaminate decreases. Decreasing the thickness of the90◦ plies also
increases the degradation rate.
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